51
|
Yu Z, Li H, Xia P, Kong W, Chang Y, Fu C, Wang K, Yang X, Qi Z. Application of fibrin-based hydrogels for nerve protection and regeneration after spinal cord injury. J Biol Eng 2020; 14:22. [PMID: 32774454 PMCID: PMC7397605 DOI: 10.1186/s13036-020-00244-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Traffic accidents, falls, and many other events may cause traumatic spinal cord injuries (SCIs), resulting in nerve cells and extracellular matrix loss in the spinal cord, along with blood loss, inflammation, oxidative stress (OS), and others. The continuous development of neural tissue engineering has attracted increasing attention on the application of fibrin hydrogels in repairing SCIs. Except for excellent biocompatibility, flexibility, and plasticity, fibrin, a component of extracellular matrix (ECM), can be equipped with cells, ECM protein, and various growth factors to promote damage repair. This review will focus on the advantages and disadvantages of fibrin hydrogels from different sources, as well as the various modifications for internal topographical guidance during the polymerization. From the perspective of further improvement of cell function before and after the delivery of stem cell, cytokine, and drug, this review will also evaluate the application of fibrin hydrogels as a carrier to the therapy of nerve repair and regeneration, to mirror the recent development tendency and challenge.
Collapse
Affiliation(s)
- Ziyuan Yu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Hongru Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Weijian Kong
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Yuxin Chang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Chuan Fu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Kai Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| |
Collapse
|
52
|
Robinson K, Platt S, Bibi K, Banovic F, Barber R, Howerth EW, Madsen G. A Pilot Study on the Safety of a Novel Antioxidant Nanoparticle Delivery System and Its Indirect Effects on Cytokine Levels in Four Dogs. Front Vet Sci 2020; 7:447. [PMID: 32851027 PMCID: PMC7406565 DOI: 10.3389/fvets.2020.00447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022] Open
Abstract
Acute spinal cord injury consists of a primary, traumatic event followed by a cascade of secondary events resulting in ongoing cell damage and death. There is great interest in prevention of these secondary effects to reduce permanent long-term neurologic deficits. One such target includes reactive oxygen species released following injury, which can be enzymatically converted into less harmful molecules by superoxide dismutase and catalase. Canine intervertebral disc herniation has been suggested as a naturally occurring model for acute spinal cord injury and its secondary effects in people. The aims of this study were to test the safety of a novel antioxidant delivery system in four healthy dogs and to indirectly test effect of delivery via cytokine measurement. All dogs experienced adverse events to some degree, with two experiencing adverse events considered to be severe. The clinical signs, including combinations of bradycardia, hypotension, hypersalivation, pale gums, and involuntary urination, were consistent with complement activation-related pseudoallergy (CARPA). CARPA is a well-known phenomenon that has been reported to occur with nanoparticle-based drug delivery, among other documented causes. Two dogs also had mild to moderate changes in their blood cell count and chemistry, including elevated alanine transferase, and thrombocytopenia, which both returned to normal by day 7 post-administration. Cytokine levels trended downwards over the first 3 days, but many were elevated at measurement on day 7. Intradermal testing suggested catalase as a potential cause for reactions. No long-term clinical signs were observed, and necropsy results revealed no concerning pathology. Additional evaluation of this product, including further characterization of reactions to catalase containing components, dose-escalation, and desensitization should be performed before evaluation in clinically affected dogs.
Collapse
Affiliation(s)
- Kelsey Robinson
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Simon Platt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Katherine Bibi
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Frane Banovic
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Renee Barber
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Elizabeth W Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Gary Madsen
- ProTransit Nanotherapy, LLC, Omaha, NE, United States
| |
Collapse
|
53
|
Chambel SS, Tavares I, Cruz CD. Chronic Pain After Spinal Cord Injury: Is There a Role for Neuron-Immune Dysregulation? Front Physiol 2020; 11:748. [PMID: 32733271 PMCID: PMC7359877 DOI: 10.3389/fphys.2020.00748] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating event with a tremendous impact in the life of the affected individual and family. Traumatic injuries related to motor vehicle accidents, falls, sports, and violence are the most common causes. The majority of spinal lesions is incomplete and occurs at cervical levels of the cord, causing a disruption of several ascending and descending neuronal pathways. Additionally, many patients develop chronic pain and describe it as burning, stabbing, shooting, or shocking and often arising with no stimulus. Less frequently, people with SCI also experience pain out of context with the stimulus (e.g., light touch). While abolishment of the endogenous descending inhibitory circuits is a recognized cause for chronic pain, an increasing number of studies suggest that uncontrolled release of pro- and anti-inflammatory mediators by neurons, glial, and immune cells is also important in the emergence and maintenance of SCI-induced chronic pain. This constitutes the topic of the present mini-review, which will focus on the importance of neuro-immune dysregulation for pain after SCI.
Collapse
Affiliation(s)
- Sílvia S Chambel
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,Translational NeuroUrology Group, Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal
| | - Isaura Tavares
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,Pain Research Group, Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal
| | - Célia D Cruz
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,Translational NeuroUrology Group, Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal
| |
Collapse
|
54
|
Wang Y, Xie C, Wang P, Wang X, Wang C, Xun X, Lin C, Huang Z, Cheng Y, Li L, Teng H. An elastic gel consisting of natural polyphenol and pluronic for simultaneous dura sealing and treatment of spinal cord injury. J Control Release 2020; 323:613-623. [DOI: 10.1016/j.jconrel.2020.04.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/01/2023]
|
55
|
Neural stem cell delivery via porous collagen scaffolds promotes neuronal differentiation and locomotion recovery in spinal cord injury. NPJ Regen Med 2020; 5:12. [PMID: 32566251 PMCID: PMC7295991 DOI: 10.1038/s41536-020-0097-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Neural stem cell (NSC) grafts have demonstrated significant effects in animal models of spinal cord injury (SCI), yet their clinical translation remains challenging. Significant evidence suggests that the supporting matrix of NSC grafts has a crucial role in regulating NSC effects. Here we demonstrate that grafts based on porous collagen-based scaffolds (PCSs), similar to biomaterials utilized clinically in induced regeneration, can deliver and protect embryonic NSCs at SCI sites, leading to significant improvement in locomotion recovery in an experimental mouse SCI model, so that 12 weeks post-injury locomotion performance of implanted animals does not statistically differ from that of uninjured control animals. NSC-seeded PCS grafts can modulate key processes required to induce regeneration in SCI lesions including enhancing NSC neuronal differentiation and functional integration in vivo, enabling robust axonal elongation, and reducing astrogliosis. Our findings suggest that the efficacy and translational potential of emerging NSC-based SCI therapies could be enhanced by delivering NSC via scaffolds derived from well-characterized clinically proven PCS.
Collapse
|
56
|
Lee JS, Hsu YH, Chiu YS, Jou IM, Chang MS. Anti-IL-20 antibody improved motor function and reduced glial scar formation after traumatic spinal cord injury in rats. J Neuroinflammation 2020; 17:156. [PMID: 32408881 PMCID: PMC7227062 DOI: 10.1186/s12974-020-01814-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) causes devastating neurological consequences, which can result in partial or total paralysis. Irreversible neurological deficits and glial scar formation are characteristic of SCI. Inflammatory responses are a major component of secondary injury and play a central role in regulating the pathogenesis of SCI. IL-20 is a proinflammatory cytokine involved in renal fibrosis and liver cirrhosis through its role in upregulating TGF-β1 production. However, the role of IL-20 in SCI remains unclear. We hypothesize that IL-20 is upregulated after SCI and is involved in regulating the neuroinflammatory response. METHODS The expression of IL-20 and its receptors was examined in SCI rats. The regulatory roles of IL-20 in astrocytes and neuron cells were examined. The therapeutic effects of anti-IL-20 monoclonal antibody (mAb) 7E in SCI rats were evaluated. RESULTS Immunofluorescence staining showed that IL-20 and its receptors were expressed in astrocytes, oligodendrocytes, and microglia in the spinal cord after SCI in rats. In vitro, IL-20 enhanced astrocyte reactivation and cell migration in human astrocyte (HA) cells by upregulating glial fibrillary acidic protein (GFAP), TGF-β1, TNF-α, MCP-1, and IL-6 expression. IL-20 inhibited cell proliferation and nerve growth factor (NGF)-derived neurite outgrowth in PC-12 cells through Sema3A/NRP-1 upregulation. In vivo, treating SCI rats with anti-IL-20 mAb 7E remarkably inhibited the inflammatory responses. 7E treatment not only improved motor and sensory functions but also improved spinal cord tissue preservation and reduced glial scar formation in SCI rats. CONCLUSIONS IL-20 might regulate astrocyte reactivation and axonal regeneration and result in the secondary injury in SCI. These findings demonstrated that IL-20 may be a promising target for SCI treatment.
Collapse
Affiliation(s)
- Jung-Shun Lee
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Shu Chiu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ming-Shi Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| |
Collapse
|
57
|
Bighinati A, Focarete ML, Gualandi C, Pannella M, Giuliani A, Beggiato S, Ferraro L, Lorenzini L, Giardino L, Calzà L. Improved Functional Recovery in Rat Spinal Cord Injury Induced by a Drug Combination Administered with an Implantable Polymeric Delivery System. J Neurotrauma 2020; 37:1708-1719. [PMID: 32212901 DOI: 10.1089/neu.2019.6949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is an incurable condition, in which a cascade of cellular and molecular events triggered by inflammation and excitotoxicity impairs endogenous regeneration, namely remyelination and axonal outgrowth. We designed a treatment solution based on an implantable biomaterial (electrospun poly (l-lactic acid) [PLLA]) loaded with ibuprofen and triiodothyronine (T3) to counteract inflammation, thus improving endogenous regeneration. In vivo efficacy was tested by implanting the drug-loaded PLLA in the rat model of T8 contusion SCI. We observed the expected recovery of locomotion beginning on day 7. In PLLA-implanted rats (i.e., controls), the recovery stabilized at 21 days post-lesion (DPL), after which no further improvement was observed. On the contrary, in PLLA + ibuprofen (Ibu) + T3 (PLLA-Ibu-T3) rats a further recovery and a significant treatment effect were observed, also confirmed by the gait analysis on 49 DPL. Glutamate release at 24 h and 8 DPL was reduced in PLLA-Ibu-T3- compared to PLLA-implanted rats, such as the estimated lesion volume at 60 DPL. The myelin- and 200-neurofilament-positive area fraction was higher in PLLA-Ibu-T3-implanted rats, where the percentage of astrocytes was significantly reduced. The implant of a PLLA electrospun scaffold loaded with Ibu and T3 significantly improves the endogenous regeneration, leading to an improvement of functional locomotion outcome in the SCI.
Collapse
Affiliation(s)
- Andrea Bighinati
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Letizia Focarete
- Health Sciences and Technologies (HST) CIRI-SDV, Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Department of Chemistry "Giacomo Ciamician" and National Consortium of Materials Science and Technology (INSTM, Bologna RU), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Chiara Gualandi
- Department of Chemistry "Giacomo Ciamician" and National Consortium of Materials Science and Technology (INSTM, Bologna RU), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | - Alessandro Giuliani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products, University of Ferrara, Ferrara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products, University of Ferrara, Ferrara, Italy.,Iret Foundation, Ozzano Emilia, Emilia, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Health Sciences and Technologies (HST) CIRI-SDV, Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Iret Foundation, Ozzano Emilia, Emilia, Italy
| | - Laura Calzà
- Health Sciences and Technologies (HST) CIRI-SDV, Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Iret Foundation, Ozzano Emilia, Emilia, Italy.,Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
58
|
Kwiecien JM, Zhang L, Yaron JR, Schutz LN, Kwiecien-Delaney CJ, Awo EA, Burgin M, Dabrowski W, Lucas AR. Local Serpin Treatment via Chitosan-Collagen Hydrogel after Spinal Cord Injury Reduces Tissue Damage and Improves Neurologic Function. J Clin Med 2020; 9:E1221. [PMID: 32340262 PMCID: PMC7230793 DOI: 10.3390/jcm9041221] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Spinal cord injury (SCI) results in massive secondary damage characterized by a prolonged inflammation with phagocytic macrophage invasion and tissue destruction. In prior work, sustained subdural infusion of anti-inflammatory compounds reduced neurological deficits and reduced pro-inflammatory cell invasion at the site of injury leading to improved outcomes. We hypothesized that implantation of a hydrogel loaded with an immune modulating biologic drug, Serp-1, for sustained delivery after crush-induced SCI would have an effective anti-inflammatory and neuroprotective effect. Rats with dorsal column SCI crush injury, implanted with physical chitosan-collagen hydrogels (CCH) had severe granulomatous infiltration at the site of the dorsal column injury, which accumulated excess edema at 28 days post-surgery. More pronounced neuroprotective changes were observed with high dose (100 µg/50 µL) Serp-1 CCH implanted rats, but not with low dose (10 µg/50 µL) Serp-1 CCH. Rats treated with Serp-1 CCH implants also had improved motor function up to 20 days with recovery of neurological deficits attributed to inhibition of inflammation-associated tissue damage. In contrast, prolonged low dose Serp-1 infusion with chitosan did not improve recovery. Intralesional implantation of hydrogel for sustained delivery of the Serp-1 immune modulating biologic offers a neuroprotective treatment of acute SCI.
Collapse
Affiliation(s)
- Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| | - Jordan R. Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| | - Lauren N. Schutz
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| | | | - Enkidia A. Awo
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| | - Michelle Burgin
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| |
Collapse
|
59
|
Huo X, Zhou J, Liu S, Guo X, Xue Y. Clinical efficacy of single intraoperative 500 mg methylprednisolone management therapy for thoracic myelopathy caused by ossification of the ligamentum flavum. BMC Musculoskelet Disord 2020; 21:177. [PMID: 32192476 PMCID: PMC7083069 DOI: 10.1186/s12891-020-03216-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/13/2020] [Indexed: 11/29/2022] Open
Abstract
Background The objective of our study was to compare clinical outcome and postoperative complications between patients with thoracic myelopathy caused by ossification of the ligamentum flavum (OLF) treated with and without intraoperative methylprednisolone (MP). Methods This retrospective study enrolled 101 patients who underwent posterior approach surgery for OLF and were followed up at least 1 year. Patients were divided into two groups according to MP use in the operation: MP group (n = 47) and non-MP group (n = 54). Clinical outcomes and complications were evaluated before and after operation and at the last follow-up. Results Significant differences were found in modified Japanese Orthopedics Association (mJOA) scores and proportion of Frankel grade (A-C) between the two groups immediately after surgery and at 2-week follow-up. No significant differences were found between the two groups in mJOA score before operation and at the final follow-up. Moreover, no significant differences were observed in recovery rate according to mJOA score at any time points, and there was no significant difference in the proportion of Frankel grade (A-C) between the two groups at final follow-up. There were 13 documented infections: 10 in the MP group and 3 in the non-MP group (P = 0.034). Conclusion Management therapy with intraoperative 500 mg MP showed better recovery of nerve function within 2 weeks in patients with thoracic myelopathy caused by OLF compared with those did not receive MP. However, long-term follow-up results showed that there was no significant difference in neurological recovery between patients with intraoperative MP or not. Moreover, intraoperative MP increased the rate of wound infection.
Collapse
Affiliation(s)
- Xiaoyang Huo
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin, China
| | - Jiaming Zhou
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin, China
| | - Shiwei Liu
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin, China
| | - Xing Guo
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin, China
| | - Yuan Xue
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China. .,Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
60
|
Evaniew N, Mazlouman SJ, Belley-Côté EP, Jacobs WB, Kwon BK. Interventions to Optimize Spinal Cord Perfusion in Patients with Acute Traumatic Spinal Cord Injuries: A Systematic Review. J Neurotrauma 2020; 37:1127-1139. [PMID: 32024432 DOI: 10.1089/neu.2019.6844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Interventions to optimize spinal cord perfusion via support of mean arterial pressure (MAP) or spinal cord perfusion pressure (SCPP) are thought to play a critical role in the management of patients with acute traumatic spinal cord injuries, but there is ongoing controversy about efficacy and safety. We aimed to determine the effects of optimizing spinal cord perfusion on neurological recovery and risks for adverse events. We searched multiple databases for published and unpublished reports. Two reviewers independently screened articles, extracted data, and evaluated risk of bias. We synthesized data and evaluated confidence in anticipated treatment effects according to the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach. We identified 20 eligible observational studies and 1 eligible randomized controlled trial. According to low or very low quality evidence, the effect of MAP support on neurological recovery after acute traumatic spinal cord injury is uncertain, and the use of vasopressors to support MAP may be associated with increased rates of predominantly cardiac adverse events. Increased SCPP appears likely to be associated with improved neurological recovery, but SCPP monitoring via intradural catheters at the anatomical site of injury may involve increased risks of cerebrospinal fluid leakage requiring revision surgery or pseudomeningocele. No study directly compared the effects of specific MAP goal ranges, SCPP ranges, SCPP monitoring techniques, or durations of treatment. Very low quality evidence suggests that norepinephrine may have less risk of adverse events than dopamine. The current literature is insufficient to make strong recommendations about interventions to support spinal cord perfusion via MAP or SCPP goals in patients with acute traumatic spinal cord injuries. Data are compatible with a variety of treatment decisions, and individualized approaches may be optimal. Further investigation to clarify the risks, benefits, and alternatives to MAP or SCPP support in this population is warranted.
Collapse
Affiliation(s)
- Nathan Evaniew
- Vancouver Spine Surgery Institute (VSSI), Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Shahriar J Mazlouman
- International Collaboration on Repair Discoveries (ICORD), Department of Orthopaedics, Vancouver, British Columbia, Canada
| | - Emilie P Belley-Côté
- Population Health Research Institute and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - W Bradley Jacobs
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Brian K Kwon
- Vancouver Spine Surgery Institute (VSSI), Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries (ICORD), Department of Orthopaedics, Vancouver, British Columbia, Canada
| |
Collapse
|
61
|
Neuroprotective Agents as an Adjuvant Treatment in Patients With Acute Spinal Cord Injuries: A Qualitative Systematic Review of Randomized Trials. Clin Spine Surg 2020; 33:65-75. [PMID: 31404015 DOI: 10.1097/bsd.0000000000000861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
STUDY DESIGN This was a systematic literature review. OBJECTIVE The objective of this study was to evaluate randomized clinical trials that address potential neuroprotective agents used to improve neurological outcome in patients with spinal cord injury (SCI). SUMMARY OF BACKGROUND DATA Clinical treatment of acute SCI has evolved significantly, but neurological recovery of severely injured patients remains modest. Neuroprotective agents may act to limit secondary damage in the sequence of pathophysiologic insults that occur after primary SCI. METHODS We performed a systematic review in accordance with Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines of all clinical randomized trials that evaluated potential neuroprotective agents (drugs, stem cells, and any type of medicative interventions) in neurological outcome of acute SCI. All the studies were graded according to their level of evidence in accordance with the Oxford Level of Evidence-based Medicine. RESULTS A total of 16 randomized clinical trials were included and fully analyzed in our review. The following 12 substances/drugs were analyzed: methylprednisolone (MP), naloxone, tirilizad, nimodipine, Sygen, autologous incubated macrophages, autologous bone marrow cells, minocycline, erythropoietin, ganglioside, vitamin D, and progesterone. Modest benefits were attributed to minocycline and Sygen (without statistical significance), and some benefits were obtained with erythropoietin and progesterone plus vitamin D in neurological outcome. For MP, the benefits are also controversial and may be attributed to statistical artifacts and with a high risk of adverse effects. The other substances did not change the final outcome. All studies were considered as grade B of recommendation (100%) and levels of evidences as B2 (81.25%) and B3 (18.75%). CONCLUSIONS Our review reported some potential substances that may improve neurological outcome in acute SCI: MP, vitamin D associated with progesterone, and erythropoietin. Their potential benefits were modest in the evaluated studies, requiring further randomized clinical trials with large samples of patients, without statistical artifacts, for routine clinical use. Furthermore, potential adverse effects must be considered with the use of neuroprotective agents in SCI. Until then, the use of these substances may be experimental or restricted to specific clinical situations.
Collapse
|
62
|
The safety and efficacy of steroid treatment for acute spinal cord injury: A Systematic Review and meta-analysis. Heliyon 2020; 6:e03414. [PMID: 32095652 PMCID: PMC7033344 DOI: 10.1016/j.heliyon.2020.e03414] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/17/2019] [Accepted: 02/12/2020] [Indexed: 12/29/2022] Open
Abstract
Introduction The role for steroids in acute spinal cord injury (ASCI) remains unclear; while some studies have demonstrated the risks of steroids outweigh the benefits,a meta-analyses conducted on heterogeneous patient populations have shown significant motor improvement at short-term but not at long-term follow-up. Given the heterogeneity of the patient population in previous meta-analyses and the publication of a recent trial not included in these meta-analyses, we sought to re-assess and update the safety and short-term and long-term efficacy of steroid treatment following ASCI in a more homogeneous patient population. Materials and methods A literature search was conducted on PubMed, EMBASE and Cochrane Library through June 2019 for studies evaluating the utility of steroids within the first 8 h following ASCI. Neurological and safety outcomes were extracted for patients treated and not treated with steroids. Pooled effect estimates were calculated using the random-effects model. Results Twelve studies, including five randomized controlled trials (RCTs) and seven observational studies (OBSs), were meta-analyzed. Overall, methylprednisolone was not associated with significant short-term or long-term improvements in motor or neurological scores based on RCTs or OBSs. An increased risk of hyperglycemia was shown in both RCTs (RR: 13.7; 95% CI: 1.93, 97.4; 1 study) and OBSs (RR: 2.9; 95% CI: 1.55, 5.41; 1 study). Risk for pneumonia was increased with steroids; while this increase was not statistically significant in the RCTs (pooled RR: 1.16; 95% C.I: 0.59, 2.29; 3 studies), it reached statistical significance in the OBSs (pooled RR: 2.00; 95% C.I: 1.32, 3.02; 6 studies). There was no statistically significant increased risk of gastrointestinal bleeding, decubitus ulcers, surgical site infections, sepsis, atelectasis, venous thromboembolism, urinary tract infections, or mortality among steroid-treated ASCI patients compared to untreated controls in either RCTs or OBSs. Conclusions Methylprednisolone therapy within the first 8 h following ASCI failed to show a statistically significant short-term or long-term improvement in patients' overall motor or neurological scores compared to controls who were not administered steroids. For the same comparison, there was an increased risk of pneumonia and hyperglycemia compared to controls. Routine use of methylprednisone following ASCI should be carefully considered in the context of these results.
Collapse
|
63
|
Brauge D, Plas B, Vinchon M, Charni S, Di Rocco F, Sacko O, Mrozek S, Sales de Gauzy J. Multicenter study of 37 pediatric patients with SCIWORA or other spinal cord injury without associated bone lesion. Orthop Traumatol Surg Res 2020; 106:167-171. [PMID: 31786134 DOI: 10.1016/j.otsr.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/28/2019] [Accepted: 10/01/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Pure traumatic spinal cord injury (without associated bone lesion) are encountered in pediatric accidentology, the most typical being spinal cord injury without radiological abnormality (SCIWORA). The present study reports a multicenter series of under-18-year-olds admitted for traumatic medullary lesion. The objectives were: (1) to describe the causes of pure spinal cord injuries in children in France and their clinical presentation; (2) to identify any prognostic factors; and (3) to describe their medical management in France. PATIENTS AND METHOD A multicenter retrospective study was conducted in 3 pediatric spine pathology reference centers. Files of 37 patients with confirmed spinal cord injury between January 1988 and June 2017 were analyzed: SCIWORA (n=30), myelopathy associated with severe cranial trauma (n=2), and obstetric trauma (n=5). Accident causes, associated lesions, initial Frankel grade, level of clinical spinal cord injury, initial MRI findings, type of treatment and neurology results at last follow-up were collated. The main endpoint was neurologic recovery, defined by improvement of at least 1 Frankel grade. RESULTS Causes comprised 17 road accidents, 11 sports accidents, 5 obstetric lesions and 4 falls. Mean follow-up was 502 days. The rate of at least partial neurologic recovery was 20/30 in SCIWORA, 0/5 in obstetric trauma, and 0/4 in case of associated intracranial lesion. In SCIWORA, factors associated with recovery comprised age, accident type, and absence of initial MRI lesion. DISCUSSION We report a large series of pediatric spinal cord injury without associated bone lesion. This is a potentially serious pathology, in which prognosis is mainly related to age and trauma mechanism. LEVEL OF EVIDENCE IV, case series.
Collapse
Affiliation(s)
- David Brauge
- Pôle neuroscience - neurochirurgie (neuroscience - neurosurgery cluster), faculté de médecine (faculty of medicine), hôpital de Purpan (Purpan hospital), 31059 Toulouse, France; Arts et métier ParisTech, institut de biomécanique humaine George Charpak (Institute of human biomechanics), 75013 Paris, France.
| | - Benjamin Plas
- Pôle neuroscience - neurochirurgie (neuroscience - neurosurgery cluster), faculté de médecine (faculty of medicine), hôpital de Purpan (Purpan hospital), 31059 Toulouse, France
| | - Mathieu Vinchon
- Service de neurochirurgie (Department of neurosurgery), hôpital universitaire Roger Salengro (university hospital), 59037 Lille, France
| | - Saloua Charni
- Pôle neuroscience - neurochirurgie (neuroscience - neurosurgery cluster), faculté de médecine (faculty of medicine), hôpital de Purpan (Purpan hospital), 31059 Toulouse, France
| | - Federico Di Rocco
- Service de neurochirurgie pédiatrique (Department of pediatric neurosurgery), hôpital femme mère-enfant (Women, mother, child hospital), hospice civil de Lyon (Lyon hospitals), 69003 Lyon, France
| | - Oumar Sacko
- Pôle neuroscience - neurochirurgie (neuroscience - neurosurgery cluster), faculté de médecine (faculty of medicine), hôpital de Purpan (Purpan hospital), 31059 Toulouse, France
| | - Ségolène Mrozek
- Service d'anesthésie réanimation (Department of anesthesiology and critical care), faculté de médecine (faculty of medicine), hôpital de Purpan (Purpan hospital), 31059 Toulouse, France
| | - Jérôme Sales de Gauzy
- Service de chirurgie orthopédique et traumatologique (Department of orthopedic and trauma surgery), hôpital des enfants (Children's hospital), hôpital universitaire (university hospital), 31059 Toulouse, France
| |
Collapse
|
64
|
Bydon M, Dietz AB, Goncalves S, Moinuddin FM, Alvi MA, Goyal A, Yolcu Y, Hunt CL, Garlanger KL, Del Fabro AS, Reeves RK, Terzic A, Windebank AJ, Qu W. CELLTOP Clinical Trial: First Report From a Phase 1 Trial of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells in the Treatment of Paralysis Due to Traumatic Spinal Cord Injury. Mayo Clin Proc 2020; 95:406-414. [PMID: 31785831 DOI: 10.1016/j.mayocp.2019.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/30/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition with limited pharmacological treatment options to restore function. Regenerative approaches have recently attracted interest as an adjuvant to current standard of care. Adipose tissue-derived (AD) mesenchymal stem cells (MSCs) represent a readily accessible cell source with high proliferative capacity. The CELLTOP study, an ongoing multidisciplinary phase 1 clinical trial conducted at Mayo Clinic (ClinicalTrials.gov Identifier: NCT03308565), is investigating the safety and efficacy of intrathecal autologous AD-MSCs in patients with blunt, traumatic SCI. In this initial report, we describe the outcome of the first treated patient, a 53-year-old survivor of a surfing accident who sustained a high cervical American Spinal Injury Association Impairment Scale grade A SCI with subsequent neurologic improvement that plateaued within 6 months following injury. Although he improved to an American Spinal Injury Association grade C impairement classification, the individual continued to be wheelchair bound and severely debilitated. After study enrollment, an adipose tissue biopsy was performed and MSCs were isolated, expanded, and cryopreserved. Per protocol, the patient received an intrathecal injection of 100 million autologous AD-MSCs infused after a standard lumbar puncture at the L3-4 level 11 months after the injury. The patient tolerated the procedure well and did not experience any severe adverse events. Clinical signs of efficacy were observed at 3, 6, 12, and 18 months following the injection in both motor and sensory scores based on International Standards for Neurological Classification of Spinal Cord Injury. Thus, in this treated individual with SCI, intrathecal administration of AD-MSCs was feasible and safe and suggested meaningful signs of improved, rather than stabilized, neurologic status warranting further clinical evaluation.
Collapse
Affiliation(s)
- Mohamad Bydon
- Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN.
| | - Allan B Dietz
- Division of Transfusion Medicine, Mayo Clinic, Rochester, MN
| | - Sandy Goncalves
- Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - F M Moinuddin
- Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Mohammed Ali Alvi
- Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Anshit Goyal
- Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Yagiz Yolcu
- Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Christine L Hunt
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN
| | - Kristin L Garlanger
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| | - Anna S Del Fabro
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| | - Ronald K Reeves
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| | - Andre Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN; Department of Clinical Genomics, Mayo Clinic, Rochester, MN
| | | | - Wenchun Qu
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN.
| |
Collapse
|
65
|
Kuboyama T. [Development of New Therapies for Neurodegenerative Diseases via Axonal Growth]. YAKUGAKU ZASSHI 2019; 139:1385-1390. [PMID: 31685734 DOI: 10.1248/yakushi.19-00147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In neurodegenerative diseases, such as Alzheimer's disease (AD) and spinal cord injury (SCI), inhibited axonal regeneration lead to irreversible functional impairment. Although many agents that eliminate axonal growth impediments have been clinically investigated, none induced functional recovery. I hypothesized that the removal of impediments alone was not enough and that promoting axonal growth and neuronal network reconstruction were needed for recovery from neurodegenerative diseases. To promote axonal growth, I have focused on neurons and microglia. In vitro models of AD and SCI were developed by culturing neurons in the presence of amyloid β (Aβ) and chondroitin sulfate proteoglycan, respectively. These were then used to identify several extracts of herbal medicines and their constituents that promoted axonal growth. Oral administration of these extracts and their constituents improved memory and motor function in in vivo mouse models of AD and SCI, respectively. The bioactive compounds in these extracts were identified by analyzing brain and spinal cord samples from the mice. Their protein targets were identified using the drug affinity responsive target stability method. Analysis of early events in the axons after culture with Aβ revealed that the inhibition of endocytosis was sufficient to prevent the axonal atrophy and memory deficits caused by Aβ. The compounds that increased M2 microglia were observed to promote axonal normalization and growth; they were also found to recover memory and motor function in mice models of AD and SCI, respectively. The above results indicate that axonal growth plays important roles in the recovery from AD and SCI.
Collapse
Affiliation(s)
- Tomoharu Kuboyama
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama
| |
Collapse
|
66
|
Wilson JR, Badhiwala JH, Moghaddamjou A, Martin AR, Fehlings MG. Degenerative Cervical Myelopathy; A Review of the Latest Advances and Future Directions in Management. Neurospine 2019; 16:494-505. [PMID: 31476852 PMCID: PMC6790745 DOI: 10.14245/ns.1938314.157] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 01/23/2023] Open
Abstract
The assessment, diagnosis, operative and nonoperative management of degenerative cervical myelopathy (DCM) have evolved rapidly over the last 20 years. A clearer understanding of the pathobiology of DCM has led to attempts to develop objective measurements of the severity of myelopathy, including technology such as multiparametric magnetic resonance imaging, biomarkers, and ancillary clinical testing. New pharmacological treatments have the potential to alter the course of surgical outcomes, and greater innovation in surgical techniques have made surgery safer, more effective and less invasive. Future developments for the treatment of DCM will seek to improve the diagnostic accuracy of imaging, improve the objectivity of clinical assessment, and increase the use of surgical technology to ensure the best outcome is achieved for each individual patient.
Collapse
Affiliation(s)
- Jamie R.F. Wilson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Spinal Program, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Jetan H. Badhiwala
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Spinal Program, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Ali Moghaddamjou
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Spinal Program, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Allan R. Martin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Spinal Program, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Spinal Program, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
67
|
Therapeutic Effects of Intravenous Injection of Fresh and Frozen Thawed HO-1-Overexpressed Ad-MSCs in Dogs with Acute Spinal Cord Injury. Stem Cells Int 2019; 2019:8537541. [PMID: 31481975 PMCID: PMC6701425 DOI: 10.1155/2019/8537541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/27/2019] [Indexed: 12/31/2022] Open
Abstract
Owing to the antioxidant and anti-inflammatory functions of hemeoxygenase-1 (HO-1), HO-1-expressing canine adipose-derived mesenchymal stem cells (Ad-MSCs) could be efficacious in treating spinal cord injury (SCI). Further, frozen thawed HO-1 Ad-MSCs could be instantly available as an emergency treatment for SCI. We compared the effects of intravenous treatment with freshly cultured HO-1 Ad-MSCs (HO-1 MSCs), only green fluorescent protein-expressing Ad-MSCs (GFP MSCs), and frozen thawed HO-1 Ad-MSCs (FT-HO-1 MSCs) in dogs with acute SCI. For four weeks, dogs were evaluated for improvement in hind limb locomotion using a canine Basso Beattie Bresnahan (cBBB) score. Upon completion of the study, injured spinal cord segments were harvested and used for western blot and histopathological analyses. All cell types had migrated to the injured spinal cord segment. The group that received HO-1 MSCs showed significant improvement in the cBBB score within four weeks. This group also showed significantly higher expression of NF-M and reduced astrogliosis. There was reduced expression of proinflammatory cytokines (IL6, TNF-α, and IL-1β) and increased expression of anti-inflammatory markers (IL-10, HO-1) in the HO-1 MSC group. Histopathological assessment revealed decreased fibrosis at the epicenter of the lesion and increased myelination in the HO-1 MSC group. Together, these data suggest that HO-1 MSCs could improve hind limb function by increasing the anti-inflammatory reaction, leading to neural sparing. Further, we found similar results between GFP MSCs and FT-HO-1 MSCs, which suggest that FT-HO-1 MSCs could be used as an emergency treatment for SCI.
Collapse
|
68
|
Liu Z, Yang Y, He L, Pang M, Luo C, Liu B, Rong L. High-dose methylprednisolone for acute traumatic spinal cord injury: A meta-analysis. Neurology 2019; 93:e841-e850. [PMID: 31358617 DOI: 10.1212/wnl.0000000000007998] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Due to the continuing debates on the utility of high-dose methylprednisolone (MP) early after acute spinal cord injury (ASCI), we aimed to evaluate the therapeutic and adverse effects of high-dose MP according to the second National Acute Spinal Cord Injury Study (NASCIS-2) dosing protocol in comparison to no steroids in patients with ASCI by performing a meta-analysis on the basis of the current available clinical trials. METHODS We searched PubMed and Cochrane Library (to May 22, 2018) for studies comparing neurologic recoveries, adverse events, and in-hospital costs between ASCI patients who underwent high-dose MP treatment or not. Data were synthesized with corresponding statistical models according to the degree of heterogeneity. RESULTS = 0.78). CONCLUSIONS Based on the current evidence, high-dose MP treatment, in comparison to controls, does not contribute to better neurologic recoveries but may increase the risk of adverse events in patients with ASCI. Therefore, we recommend against routine use of high-dose MP early after ASCI.
Collapse
Affiliation(s)
- Zhongyu Liu
- From the Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery; and Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Yang Yang
- From the Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery; and Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Lei He
- From the Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery; and Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Mao Pang
- From the Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery; and Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Chunxiao Luo
- From the Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery; and Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Bin Liu
- From the Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery; and Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Limin Rong
- From the Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery; and Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.
| |
Collapse
|
69
|
Jaja BNR, Jiang F, Badhiwala JH, Schär R, Kurpad S, Grossman RG, Harrop JS, Guest JD, Toups EG, Shaffrey CI, Aarabi B, Boakye M, Fehlings MG, Wilson JR. Association of Pneumonia, Wound Infection, and Sepsis with Clinical Outcomes after Acute Traumatic Spinal Cord Injury. J Neurotrauma 2019; 36:3044-3050. [PMID: 31007137 DOI: 10.1089/neu.2018.6245] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
< 0.001). There were no statistical differences between participants with or without PWS with respect to time from injury to surgery, and administration of steroids. Dominance analysis showed injury level, baseline AIS grade, and subject pre-morbid medical status collectively accounted for 77.7% of the predicted variance of PWS. Regression analysis indicated subjects with PWS demonstrated higher odds for respiratory (odds ratio [OR] 3.91, 95% confidence interval [CI]: 1.42-10.79) and ambulatory (OR 3.94, 95% CI: 1.50-10.38) support at 6 month follow-up in adjusted analysis. This study has shown an association between PWS occurring during acute admission and poorer functional outcomes following SCI.
Collapse
Affiliation(s)
- Blessing N R Jaja
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada.,Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Fan Jiang
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Division of Orthopaedic Surgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Jetan H Badhiwala
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Ralph Schär
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Shekar Kurpad
- Division of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - James S Harrop
- Division of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Jim D Guest
- Division of Neurosurgery, University of Miami, Miami, Florida
| | | | - Chris I Shaffrey
- Division of Neurosurgery, University of Virginia, Chalottesville, Virginia
| | - Bizhan Aarabi
- Division of Neurosurgery, Shock Trauma, University of Maryland, Baltimore, Maryland
| | - Max Boakye
- Division of Neurosurgery, University of Louisville, Louisville, Kentucky
| | - Michael G Fehlings
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jefferson R Wilson
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
70
|
Yu YG, Yang J, Cheng XH, Shang W, Zhao BH, Zhao F, Chen ZG, Huang ZH. The protection of acute spinal cord injury by subarachnoid space injection of Danshen in animal models. J Spinal Cord Med 2019; 42:355-359. [PMID: 29920172 PMCID: PMC6522962 DOI: 10.1080/10790268.2018.1468583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
CONTEXT/OBJECTIVE Following acute spinal cord injury (ASCI) in rabbits, subarachnoid space injection of Danshen was performed to protect the neurological damage. In this study, we established rabbit models of spinal cord injury using a modified Allen's method. DESIGN After the operation introducing the injuries, the rabbits were randomized into two different groups, control group (normal saline, NS) and Danshen, a component extracted from Chinese herb, treatment group. Each rabbit was supplied with either the drug or placebo at 0.3 ml/kg each day through subarachnoid cavity. SETTING Rabbit model of acute spinal cord injury were used for the response to Danshen treatment. PARTICIPANTS Total 48 Chinese rabbits aged four∼ five months old provided by Experimental Animal Center of Hubei Province were used for this study. INTERVENTIONS Danshen drug or placebo was administered via a silicon tube embedded under the spinal dura mater to administer the drugs into subarachnoid cavity. OUTCOME MEASURES After the treatment, damage indicators including cell apoptosis, morphological changes and oxidative damages were assessed. RESULTS We found out that cell apoptosis was decreased after Danshen injection as determined by downregulation of apoptosis index (AI) by TUNEL analysis as well as propidium iodide (PI) percentage by FACS analysis. In the meanwhile, we observed cells after the treatment have increased numbers of BCL-2 positive cells, this indicated the antiapoptotic gene expression is increased after Danshen treatment. When we check the oxidative damage indicators, we found superoxide dismutase (SOD) was increased and malondiadehyde (MDA) levels were decreased after the treatment. CONCLUSION Danshen can protect ASCI through inhibition of oxidative damage in the injured cells and thus reduce the subsequent cell apoptosis in the spinal.
Collapse
Affiliation(s)
- Yong-Gui Yu
- Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jian Yang
- Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xin-Hua Cheng
- Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China,Correspondence to: Xin-Hua Cheng, Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, No. 39 Middle Chaoyang Road, Shiyan, Hubei, 442000, China; Ph: +86-719-8637636.
| | - Wei Shang
- Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bing-Hao Zhao
- Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Fei Zhao
- Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhi-Guo Chen
- Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhen-Hua Huang
- Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
71
|
Amanat M, Vaccaro AR. Reducing alpha-synuclein in spinal cord injury: A new strategy of treatment. J Neurosci Res 2019; 97:729-732. [PMID: 30916814 DOI: 10.1002/jnr.24406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Man Amanat
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexander R Vaccaro
- Department of Orthopaedics, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
72
|
Gao Y, Vijayaraghavalu S, Stees M, Kwon BK, Labhasetwar V. Evaluating accessibility of intravenously administered nanoparticles at the lesion site in rat and pig contusion models of spinal cord injury. J Control Release 2019; 302:160-168. [PMID: 30930216 DOI: 10.1016/j.jconrel.2019.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/13/2019] [Accepted: 03/27/2019] [Indexed: 01/17/2023]
Abstract
In spinal cord injury (SCI), timely therapeutic intervention is critical to inhibit the post-injury rapidly progressing degeneration of spinal cord. Towards that objective, we determined the accessibility of intravenously administered biodegradable nanoparticles (NPs) as a drug delivery system to the lesion site in rat and pig contusion models of SCI. Poly (d,l-lactide co-glycolide, PLGA)-based NPs loaded with a near-infrared dye as a marker for NPs were used. To analyze and quantify localization of NPs to the lesion site, we mapped the entire spinal cord, segment-by-segment, for the signal count. Our objectives were to determine the NP dose effect and duration of retention of NPs at the lesion site, and the time window post-SCI within which NPs localize at the lesion site. We hypothesized that breakdown of the blood-spinal cord barrier following contusion injury could lead to more specific localization of NPs at the lesion site. The mapping data showed a dose-dependent increase and significantly greater localization of NPs at the lesion site than in the remaining uninjured segment of the spinal cord. Further, NPs were seen to be retained at the lesion site for more than a week. With delayed post-SCI administration, localization of NPs at the lesion site was reduced but still localize even at four weeks post-injury administration. Interestingly, in uninjured animals (sham control), greater accumulation of NPs was seen in the thoracic and lumbar enlargement regions of the spinal cord, which in animals with SCI changed to the lesion site, indicating drastic post-injury hemodynamic changes in the spinal cord. Similar to the rat results, pig contusion model of SCI showed greater NP localization at the lesion site. In conclusion, NPs could potentially be explored as a carrier for delivery of therapeutics to the lesion site to minimize the impact of post-SCI response.
Collapse
Affiliation(s)
- Yue Gao
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sivakumar Vijayaraghavalu
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Melinda Stees
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian K Kwon
- Department of Orthopedics, International Collaboration of Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
73
|
The endoplasmic reticulum stress transducer old astrocyte specifically induced substance positively regulates glial scar formation in spinal cord injury. Neuroreport 2019; 29:1443-1448. [PMID: 30273224 PMCID: PMC6250257 DOI: 10.1097/wnr.0000000000001128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Supplemental Digital Content is available in the text. To investigate the relationship between endoplasmic reticulum (ER) stress mediated by old astrocyte specifically induced substance (OASIS) and astrogliosis in spinal cord injury (SCI). SCI models were established using adult male mice deficient for OASIS and C57BL/6 (wild-type mice) mice. After SCI, recovery and astrogliosis were examined in the mice at specific time points using functional and histological methods. After SCI, functional recovery was better in the OASIS-deficient mice than in the wild-type mice. OASIS deletion did not inhibit astrocyte migration but reduced the excessive accumulation of N-cadherin-expressing reactive astrocytes that formed the glial scar around the injury site. In addition, OASIS deletion increased the number of serotonin-positive axons in spinal cord regions caudal to the injury site. These findings suggested that the OASIS-mediated ER stress response inhibits the repair of the injured spinal cord by promoting the development of N-cadherin-expressing reactive astrocytes that form glial scars following injury. OASIS deletion inhibited the development of N-cadherin-positive reactive astrocytes that form glial scars and promoted axon growth and functional recovery after SCI. These results suggest that the ER stress response mediated by OASIS could be a new target in the treatment of SCI.
Collapse
|
74
|
Arnaez J, Miranda M, Riñones E, García-Alix A. Whole-Body Cooling and Erythropoietin in Neonatal Cervical Spine Injury. Ther Hypothermia Temp Manag 2019; 9:159-162. [PMID: 30614764 DOI: 10.1089/ther.2018.0042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is mounting experimental evidence that therapeutic hypothermia (TH) mitigates secondary mechanisms of spinal cord injury (SCI). There is a potential synergistic neuroprotective effect for SCI through the combination of TH and other promising therapies. The treatment of TH for SCI has promising results in adults, but its use is anecdotal in newborns with SCI. SCI is a rare, serious, and often fatal complication of instrumental delivery. For the first time, we describe the case of a male newborn infant with upper SCI who was born at term age and was offered whole-body cooling and erythropoietin treatment with unsuccessful outcome. There are still many unresolved issues related to TH in the SCI, some of them specific to the neonatal patient. Accurately establishing the diagnosis and its severity is crucial to redirect care for SCI and to indicate potential neuroprotective therapies. Considering the lack of therapeutic options, the extremely poor outcomes associated with acute SCI, and the extensive experience in safe use of whole-body cooling in newborn infants, we feel that moderate whole-body cooling should be offered as soon as possible after birth to the newborn infant with SCI.
Collapse
Affiliation(s)
- Juan Arnaez
- 1 Neonatal Unit, Hospital Universitario de Burgos, Burgos, Spain.,2 Fundación NeNe, Spain
| | - María Miranda
- 1 Neonatal Unit, Hospital Universitario de Burgos, Burgos, Spain
| | - Ester Riñones
- 3 Neuroradiology Department, Hospital Universitario de Burgos, Burgos, Spain
| | - Alfredo García-Alix
- 2 Fundación NeNe, Spain.,4 Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain.,5 Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
75
|
Heller RA, Seelig J, Bock T, Haubruck P, Grützner PA, Schomburg L, Moghaddam A, Biglari B. Relation of selenium status to neuro-regeneration after traumatic spinal cord injury. J Trace Elem Med Biol 2019; 51:141-149. [PMID: 30466924 DOI: 10.1016/j.jtemb.2018.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/07/2018] [Accepted: 10/04/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The trace element selenium (Se) is crucial for the biosynthesis of selenoproteins. Both neurodevelopment and the survival of neurons that are subject to stress depend on a regular selenoprotein biosynthesis and sufficient Se supply by selenoprotein P (SELENOP). HYPOTHESIS Neuro-regeneration after traumatic spinal cord injury (TSCI) is related to the Se status. STUDY DESIGN Single-centre prospective observational study. PATIENTS AND METHODS Three groups of patients with comparable injuries were studied; vertebral fractures without neurological impairment (n = 10, group C), patients with TSCI showing no remission (n = 9, group G0), and patients with remission developing positive abbreviated injury score (AIS) conversion within 3 months (n = 10, group G1). Serum samples were available from different time points (upon admission, and after 4, 9 and 12 h, 1 and 3 days, 1 and 2 weeks, and 1, 2 and 3 months). Serum trace element concentrations were determined by total reflection X-ray fluorescence, SELENOP by ELISA, and further parameters by laboratory routine. RESULTS Serum Se and SELENOP concentrations were higher on admission in the remission group (G1) as compared to G0. During the first week, both parameters remained constant in C and G0, whereas they declined significantly in the remission group. Similarly, the concentration changes between admission and 24 h were most pronounced in this group of recovering patients (G1). Binary logistic regression analysis including the delta of Se and SELENOP within the first 24 h indicated an AUC of 90.0% (CI: 67.4%-100.0%) with regards to predicting the outcome after TSCI. CONCLUSION A Se deficit might constitute a risk factor for poor outcome after TSCI. A dynamic decline of serum Se and SELENOP concentrations after admission may reflect ongoing repair processes that are associated with higher odds for a positive clinical outcome.
Collapse
Affiliation(s)
- Raban Arved Heller
- Heidelberg Trauma Research Group, Department of Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Julian Seelig
- Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Bock
- Heidelberg Trauma Research Group, Department of Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Haubruck
- Heidelberg Trauma Research Group, Department of Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Paul Alfred Grützner
- BG Trauma Centre Ludwigshafen, Department of Trauma Surgery and Orthopedics, Medical Director, Ludwigshafen, Germany
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Arash Moghaddam
- Heidelberg Trauma Research Group, Department of Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Bahram Biglari
- BG Trauma Centre Ludwigshafen, Department of Paraplegiology, Ludwigshafen, Germany
| |
Collapse
|
76
|
Liu X, Botchway BOA, Tan X, Zhang Y, Fang M. Resveratrol treatment of spinal cord injury in rat model. Microsc Res Tech 2018; 82:296-303. [PMID: 30575194 DOI: 10.1002/jemt.23171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/03/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022]
Abstract
Spinal cord injury (SCI) is catastrophic and can culminate in disability and death. The routine therapy employed in early stages of SCI currently entails surgical procedures combined with high doses of methylprednisolone (MP). MP is highly controversial for the lack of consensus on its true therapeutic effects. Resveratrol (RES) has recently been recognized as a potential and novel therapeutic drug in SCI. Herein, we investigated the effect of RES in a SCI rat-model and found significant improvement in Basso-Beattie-Bresnahan scores. Results obtained from histological, immunohistochemistry, and ultra-structural examinations evidenced the tremendous treatment effect of RES. On the basis of our experimental results, we hypothesize that RES could serve as an effective SCI therapeutic with prolong treatment time following injury.
Collapse
Affiliation(s)
- Xuehong Liu
- Department of Histology and Embryology, Shaoxing University School of Medicine, Shaoxing, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoning Tan
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Shaoxing University School of Medicine, Shaoxing, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
77
|
Tran AP, Warren PM, Silver J. The Biology of Regeneration Failure and Success After Spinal Cord Injury. Physiol Rev 2018. [PMID: 29513146 DOI: 10.1152/physrev.00017.2017] [Citation(s) in RCA: 513] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since no approved therapies to restore mobility and sensation following spinal cord injury (SCI) currently exist, a better understanding of the cellular and molecular mechanisms following SCI that compromise regeneration or neuroplasticity is needed to develop new strategies to promote axonal regrowth and restore function. Physical trauma to the spinal cord results in vascular disruption that, in turn, causes blood-spinal cord barrier rupture leading to hemorrhage and ischemia, followed by rampant local cell death. As subsequent edema and inflammation occur, neuronal and glial necrosis and apoptosis spread well beyond the initial site of impact, ultimately resolving into a cavity surrounded by glial/fibrotic scarring. The glial scar, which stabilizes the spread of secondary injury, also acts as a chronic, physical, and chemo-entrapping barrier that prevents axonal regeneration. Understanding the formative events in glial scarring helps guide strategies towards the development of potential therapies to enhance axon regeneration and functional recovery at both acute and chronic stages following SCI. This review will also discuss the perineuronal net and how chondroitin sulfate proteoglycans (CSPGs) deposited in both the glial scar and net impede axonal outgrowth at the level of the growth cone. We will end the review with a summary of current CSPG-targeting strategies that help to foster axonal regeneration, neuroplasticity/sprouting, and functional recovery following SCI.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| | - Philippa Mary Warren
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| |
Collapse
|
78
|
Vidal PM, Ulndreaj A, Badner A, Hong J, Fehlings MG. Methylprednisolone treatment enhances early recovery following surgical decompression for degenerative cervical myelopathy without compromise to the systemic immune system. J Neuroinflammation 2018; 15:222. [PMID: 30081922 PMCID: PMC6080373 DOI: 10.1186/s12974-018-1257-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/17/2018] [Indexed: 11/10/2022] Open
Abstract
Background Degenerative cervical myelopathy (DCM) is caused by degenerative or congenital changes to the discs and soft tissues of the cervical spine, which leads to chronic compression of the spinal cord. The current treatment for moderate to severe DCM consists of surgical decompression, which, while effective in most cases, can result in neuroinflammation and spinal cord reperfusion injury, leading to perioperative neurological complications and suboptimal neurological recovery. The primary objective of this study was to assess, in a translationally relevant animal model of DCM, the efficacy of perioperative methylprednisolone (MP) in enhancing neurological recovery and to evaluate its effect on the inflammatory response following decompression. Methods DCM was induced in C57BL/6 mice. Briefly, an aromatic polyether material was implanted underneath the C5-C6 laminae to cause progressive compression of the cervical spinal cord due to focal ossification. Decompressive surgery was undertaken at 12 weeks post initial biomaterial implantation. Animals received one dose of MP (30 mg/kg) or vehicle 30 min before decompression and at 2 weeks after decompression. Acute analysis of secreted cytokines and spinal cord microvasculature was complemented with immunohistochemistry for glial and neuronal cell markers. Locomotor outcomes were measured using the CatWalk system. The composition of circulating white blood cells was analyzed by flow cytometry. Results A single dose of MP before decompression significantly sped locomotor recovery (*p < 0.05) and reduced the incidence of perioperative motor complications, without affecting the composition of circulating white blood cells. Histological assessment of the spinal cord showed significant neuronal preservation and a modest reduction in parenchymal inflammation. Conclusions Our data suggest that MP reduces perioperative neurological complications following decompressive surgery for DCM by protecting neurons from inflammation, without compromising the composition of circulating immune cells. We propose that MP, which is commonly used for neurological disorders including spinal cord injury, be considered as a perioperative adjunct to decompressive surgery to attenuate neurological complications.
Collapse
Affiliation(s)
- Pia M Vidal
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Laboratory of Neuroimmunology, Fundación Ciencia & Vida, Santiago, Chile
| | - Antigona Ulndreaj
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Anna Badner
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - James Hong
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Michael G Fehlings
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, Ontario, Canada. .,Head, Spinal Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
79
|
Chen XG, Chen LH, Xu RX, Zhang HT. Effect evaluation of methylprednisolone plus mitochondrial division inhibitor-1 on spinal cord injury rats. Childs Nerv Syst 2018; 34:1479-1487. [PMID: 29682689 DOI: 10.1007/s00381-018-3792-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/28/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE To investigate the combination effect of methylprednisolone (MP) and mitochondrial division inhibitor-1 (Mdivi-1) on the neurological function recovery of rat spinal cord injury (SCI) model. METHODS The weight-drop method was used to establish the rat SCI model; then, rats were randomized into sham group, SCI group, MP group, Mdivi-1 group and MP+Mdivi-1 group. Motor function scores were quantified to evaluate locomotor ability; HE staining was used to assess spinal cord histopathology; tissue water content, oxidative stress, tissue mitochondrial function, neurons apoptosis, and apoptosis-related protein expression were detected. RESULTS From the third day after SCI, BBB score of the MP+Mdivi-1 group was obviously higher than the other experimental groups (p < 0.05). Compared with the SCI group, tissue water content of the Mdivi-1 group and MP+Mdivi-1 group reduced obviously (p < 0.05), mitochondrial membrane potential (MMP) level and ATP content in the Mdivi-1 group and MP+Mdivi-1 group were both higher (p < 0.05). Meanwhile, three kinds of treatment all reduced apoptosis significantly, while MP plus Mdivi-1 exhibited the best inhibition effect on apoptosis (p < 0.05). The expression levels of Drp1, cytochrome c, and caspase-3 were all upregulated obviously; Mdivi-1 could inhibit Drp1 upregulation induced by SCI; for the upregulation of cytochrome c and caspase-3, the inhibition effect of Mdivi-1 approached MP. When MP combined with Mdivi-1, there was the best inhibition effect. CONCLUSIONS MP combined with Mdivi-1 may produce better neurological function recovery, through improving functional status of mitochondria and inhibiting lipid peroxidation in damaged tissue of SCI rats, and thus alleviating apoptosis.
Collapse
Affiliation(s)
- Xu-Gui Chen
- The Affiliated Bayi Brain Hospital, the Army General Hospital PLA, No. 5, Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Li-Hua Chen
- The Affiliated Bayi Brain Hospital, the Army General Hospital PLA, No. 5, Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Ru-Xiang Xu
- The Affiliated Bayi Brain Hospital, the Army General Hospital PLA, No. 5, Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Hong-Tian Zhang
- The Affiliated Bayi Brain Hospital, the Army General Hospital PLA, No. 5, Nanmencang, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
80
|
Abstract
Traumatic spinal cord injury (SCI) results in impaired neurologic function that for many individuals is permanent and significantly impacts health, function, quality of life, and life expectancy. Many efforts have been taken to develop effective treatments for SCI; nevertheless, proven therapies targeting neurologic regeneration and functional recovery have been limited. Existing therapeutic approaches, including early surgery, strict blood pressure control, and consideration of treatment with steroids, remain debated and largely focus on mitigating secondary injury after the primary trauma has occurred. Today, there is more research being performed in SCI than ever before. Current clinical trials are exploring pharmacologic, cell-based, physiologic, and rehabilitation approaches to reduce secondary injury and also overcome barriers to neurorecovery. In the future, it is likely that tailored treatments combining many of these strategies will offer significant benefits for persons with SCI. This article aims to review key past, current and emerging neurologic and rehabilitation therapeutic approaches for adults with traumatic SCI.
Collapse
Affiliation(s)
- Jayne Donovan
- Kessler Institute for Rehabilitation, 1199 Pleasant Valley Way, West Orange, New Jersey, 07052, USA.
- Rutgers New Jersey Medical School, 183 South Orange Avenue, Newark, New Jersey, 07101, USA.
| | - Steven Kirshblum
- Kessler Institute for Rehabilitation, 1199 Pleasant Valley Way, West Orange, New Jersey, 07052, USA
- Rutgers New Jersey Medical School, 183 South Orange Avenue, Newark, New Jersey, 07101, USA
- The Kessler Foundation, 1199 Pleasant Valley Way, West Orange, New Jersey, 07052, USA
| |
Collapse
|
81
|
González de Molina Ortiz FJ, Gordo Vidal F, Estella García A, Morrondo Valdeolmillos P, Fernández Ortega JF, Caballero López J, Pérez Villares PV, Ballesteros Sanz MA, de Haro López C, Sanchez-Izquierdo Riera JA, Serrano Lázaro A, Fuset Cabanes MP, Terceros Almanza LJ, Nuvials Casals X, Baldirà Martínez de Irujo J. "Do not do" recommendations of the working groups of the Spanish Society of Intensive and Critical Care Medicine and Coronary Units (SEMICYUC) for the management of critically ill patients. Med Intensiva 2018; 42:425-443. [PMID: 29789183 DOI: 10.1016/j.medin.2018.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/24/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
Abstract
The project "Commitment to Quality of Scientific Societies", promoted since 2013 by the Spanish Ministry of Health, seeks to reduce unnecessary health interventions that have not proven effective, have little or doubtful effectiveness, or are not cost-effective. The objective is to establish the "do not do" recommendations for the management of critically ill patients. A panel of experts from the 13 working groups (WGs) of the Spanish Society of Intensive and Critical Care Medicine and Coronary Units (SEMICYUC) was selected and nominated by virtue of clinical expertise and/or scientific experience to carry out the recommendations. Available scientific literature in the management of adult critically ill patients from 2000 to 2017 was extracted. The clinical evidence was discussed and summarized by the experts in the course of consensus finding of each WG, and was finally approved by the WGs after an extensive internal review process carried out during the first semester of 2017. A total of 65 recommendations were developed, of which 5 corresponded to each of the 13 WGs. These recommendations are based on the opinion of experts and scientific knowledge, and aim to reduce those treatments or procedures that do not add value to the care process; avoid the exposure of critical patients to potential risks; and improve the adequacy of health resources.
Collapse
Affiliation(s)
- F J González de Molina Ortiz
- Servicio de Medicina Intensiva, Hospital Universitario Mutua Terrassa, Barcelona, España; Servicio de Medicina Intensiva, Hospital Universitario Quirón Dexeus, Barcelona, España.
| | - F Gordo Vidal
- Servicio de Medicina Intensiva, Hospital Universitario del Henares, Coslada, Madrid, España
| | - A Estella García
- Servicio de Medicina Intensiva, Hospital del SAS de Jerez, Jerez, Cádiz, España
| | - P Morrondo Valdeolmillos
- Servicio de Medicina Intensiva, Hospital Universitario Donostia, San Sebastián, Guipúzcoa, España
| | - J F Fernández Ortega
- Servicio de Medicina Intensiva, Complejo Hospitalario Carlos Haya, Málaga, España
| | - J Caballero López
- Servicio de Medicina Intensiva, Hospital Universitario Arnau de Vilanova, Lleida, España
| | - P V Pérez Villares
- Servicio de Medicina Intensiva, Hospital Universitario Virgen de las Nieves, Granada, España
| | - M A Ballesteros Sanz
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, España
| | - C de Haro López
- Servicio de Medicina Intensiva, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, España
| | | | - A Serrano Lázaro
- Servicio de Medicina Intensiva, Hospital Clínico Universitario, Valencia, España
| | - M P Fuset Cabanes
- Servicio de Medicina Intensiva, Hospital Universitari i Politècnic la Fe, Valencia, España
| | - L J Terceros Almanza
- Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, España
| | - X Nuvials Casals
- Servicio de Medicina Intensiva, Hospital Universitari Vall d'Hebron, Barcelona, España
| | | | | |
Collapse
|
82
|
Collagen-Binding Hepatocyte Growth Factor (HGF) alone or with a Gelatin- furfurylamine Hydrogel Enhances Functional Recovery in Mice after Spinal Cord Injury. Sci Rep 2018; 8:917. [PMID: 29343699 PMCID: PMC5772669 DOI: 10.1038/s41598-018-19316-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
The treatment of spinal cord injury (SCI) is currently a significant challenge. Hepatocyte growth factor (HGF) is a multipotent neurotrophic and neuroregenerative factor that can be beneficial for the treatment of SCI. However, immobilized HGF targeted to extracellular matrix may be more effective than diffusible, unmodified HGF. In this study, we evaluated the neurorestorative effects of an engineered HGF with a collagen biding domain (CBD-HGF). CBD-HGF remained in the spinal cord for 7 days after a single administration, while unmodified HGF was barely seen at 1 day. When a gelatin-furfurylamine (FA) hydrogel was applied on damaged spinal cord as a scaffold, CBD-HGF was retained in gelatin-FA hydrogel for 7 days, whereas HGF had faded by 1 day. A single administration of CBD-HGF enhanced recovery from spinal cord compression injury compared with HGF, as determined by motor recovery, and electrophysiological and immunohistochemical analyses. CBD-HGF alone failed to improve recovery from a complete transection injury, however CBD-HGF combined with gelatin-FA hydrogel promoted endogenous repair and recovery more effectively than HGF with hydrogel. These results suggest that engineered CBD-HGF has superior therapeutic effects than naïve HGF. CBD-HGF combined with hydrogel scaffold may be promising for the treatment of serious SCI.
Collapse
|
83
|
Monteiro S, Salgado AJ, Silva NA. Immunomodulation as a neuroprotective strategy after spinal cord injury. Neural Regen Res 2018; 13:423-424. [PMID: 29623924 PMCID: PMC5900502 DOI: 10.4103/1673-5374.228722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
84
|
Ishii H, Petrenko AB, Sasaki M, Satoh Y, Kamiya Y, Tobita T, Furutani K, Matsuhashi M, Kohno T, Baba H. Free radical scavenger edaravone produces robust neuroprotection in a rat model of spinal cord injury. Brain Res 2017; 1682:24-35. [PMID: 29294349 DOI: 10.1016/j.brainres.2017.12.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 12/06/2017] [Accepted: 12/26/2017] [Indexed: 11/26/2022]
Abstract
We used a multimodal approach to evaluate the effects of edaravone in a rat model of spinal cord injury (SCI). SCI was induced by extradural compression of thoracic spinal cord. In experiment 1, 30 min prior to compression, rats received a 3 mg/kg intravenous bolus of edaravone followed by a maintenance infusion of 1 (low-dose), 3 (moderate-dose), or 10 (high-dose) mg/kg/h edaravone. Although both moderate- and high-dose edaravone regimens promoted recovery of spinal motor-evoked potentials (MEPs) at 2 h post-SCI, the effect of the moderate dose was more pronounced. In experiment 2, moderate-dose edaravone was administered 30 min prior to compression, at the start of compression, or 10 min after decompression. Although both preemptive and coincident administration resulted in significantly improved spinal MEPs at 2 h post-SCI, the effect of preemptive administration was more pronounced. A moderate dose of edaravone resulted in significant attenuation of lipid peroxidation, as evidenced by lower concentrations of the free radical malonyldialdehyde in the spinal cord 3 h post-SCI. Malonyldialdehyde levels in the high-dose edaravone group were not reduced. Both moderate- and high-dose edaravone resulted in significant functional improvements, evidenced by better Basso-Beattie-Bresnahan (BBB) scores and better performance on an inclined plane during an 8 week period post-SCI. Both moderate- and high-dose edaravone significantly attenuated neuronal loss in the spinal cord at 8 weeks post-SCI, as evidenced by quantitative immunohistochemical analysis of NeuN-positive cells. In conclusion, early administration of a moderate dose of edaravone minimized the negative consequences of SCI and facilitated functional recovery.
Collapse
Affiliation(s)
- Hideaki Ishii
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan.
| | - Andrey B Petrenko
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan.
| | - Mika Sasaki
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan.
| | - Yukio Satoh
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan.
| | - Yoshinori Kamiya
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan.
| | - Toshiyuki Tobita
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan; Department of Anesthesiology, Saiseikai Niigata Daini Hospital, 280-7 Teraji, Nishi-ku, Niigata 950-1104, Japan.
| | - Kenta Furutani
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan.
| | - Mari Matsuhashi
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan; Department of Anesthesiology, Niigata Prefectural Central Hospital, 205 Joetsu, Shinnancho, Niigata 943-0192, Japan.
| | - Tatsuro Kohno
- Department of Anesthesiology, Tohoku Medical and Pharmaceutical University, 1-12-1 Fukumuro, Miyaginoku, Sendai, Miyagi 983-8512, Japan.
| | - Hiroshi Baba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan.
| |
Collapse
|
85
|
Liu YS, Zhao Y. Progress in Intraoperative Neurophysiological Monitoring for the Surgical Treatment of Thoracic Spinal Stenosis. ACTA ACUST UNITED AC 2017; 32:260-264. [PMID: 29301602 DOI: 10.24920/j1001-9294.2017.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Thoracic spinal stenosis (TSS) is a group of clinical syndromes caused by thoracic spinal cord compression, which always results in severe clinical complications. The incidence of TSS is relatively low compared with lumbar spinal stenosis, while the incidence of spinal cord injury during thoracic decompression is relatively high. The reported incidence of neurological deficits after thoracic decompression reached 13.9%. Intraoperative neurophysiological monitoring (IONM) can timely provide information regarding the function status of the spinal cord, and help surgeons with appropriate performance during operation. This article illustrates the theoretical basis of applying IONM in thoracic decompression surgery, and elaborates on the relationship between signal changes in IONM and postoperative neurological function recovery of the spinal cord. It also introduces updated information in multimodality IONM, the factors influencing evoked potentials, and remedial measures to improve the prognosis.
Collapse
Affiliation(s)
- Yong-Sheng Liu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yu Zhao
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
86
|
Evaniew N, Noonan VK, Fallah N, Rivers CS, Dvorak MF. Methylprednisolone for the Treatment of Patients with Acute Spinal Cord Injuries: Response. J Neurotrauma 2017; 33:975-6. [PMID: 27094261 DOI: 10.1089/neu.2016.4499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Nathan Evaniew
- 1 Department of Surgery, McMaster University , Hamilton, Ontario, Canada
| | - Vanessa K Noonan
- 2 Rick Hansen Institute, University of British Columbia , Vancouver, British Columbia, Canada
| | - Nader Fallah
- 2 Rick Hansen Institute, University of British Columbia , Vancouver, British Columbia, Canada
| | - Carly S Rivers
- 2 Rick Hansen Institute, University of British Columbia , Vancouver, British Columbia, Canada
| | - Marcel F Dvorak
- 3 Department of Orthopaedics, Blusson Spinal Cord Centre, University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
87
|
Liu X, Zhang Y, Yang Y, Lin J, Huo X, Du X, Botchway BOA, Fang M. Therapeutic Effect of Curcumin and Methylprednisolone in the Rat Spinal Cord Injury. Anat Rec (Hoboken) 2017; 301:686-696. [PMID: 29150987 DOI: 10.1002/ar.23729] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/11/2017] [Accepted: 06/07/2017] [Indexed: 12/14/2022]
Abstract
In addition to imperiling an individual's daily life, spinal cord injury (SCI), a catastrophic medical damage, can permanently impair an individual's body function. Methylprednisolone (MP), a medically accepted therapeutic drug for SCI, is highly controversial for the lack of consensus on its true therapeutic effect. In recent years, curcumin has served as a potential and novel therapeutic drug in SCI. Our study was intended to investigate the precise effect of MP and curcumin in SCI. We examined the function of MP and curcumin in a SCI model rat, both in vivo and in vitro, and found that there was a momentous improvement in Basso-Beattie-Bresnahan scores in the MP-treated group when compared with Cur-treated group within 14 days. Results obtained from the histological, immunohistochemistry and ultrastructural examinations evidenced the curative effect of MP was better than curcumin before Day 14. Nonetheless, there was a significant variation in the treatment effect between the MP-treated and Cur-treated groups after 14 days. The curcumin's effectiveness was more obvious than MP after 14 days following SCI. As such, we surmise that curcumin has a better therapeutic potential than MP with a prolong treatment time in the wake of SCI. Anat Rec, 301:686-696, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xuehong Liu
- Department of Histology and Embryology, Shaoxing University School of Medicine, Shaoxing City, Zhejiang Province, China.,Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Shaoxing University School of Medicine, Shaoxing City, Zhejiang Province, China
| | - Yang Yang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingquan Lin
- Department of Histology and Embryology, Shaoxing University School of Medicine, Shaoxing City, Zhejiang Province, China
| | - Xue Huo
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxue Du
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
88
|
Abstract
Spinal cord injury (SCI) is a common medical condition with a poor prognosis for recovery and catastrophic effects on a patient's quality of life. Available treatments for SCI are limited, and the evidence suggesting their harmful side effects is more consistent than any suggestion of clinical benefit. Developing novel safe and effective therapeutic options for SCI is crucial. Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic cytokine with known multifaceted effects on the central nervous system. Herein, we review the accumulating preclinical evidence for the beneficial effects of G-CSF on functional and structural outcomes after SCI. Meanwhile we present and discuss multiple mechanisms for G-CSF's neuroprotective and neuroregenerative actions through the results of these studies. In addition, we present the available clinical evidence indicating the efficacy and safety of G-CSF administration for the treatment of acute and chronic traumatic SCI, compression myelopathy, and SCI-associated neuropathic pain. Our review indicates that although the quality of clinical evidence regarding the use of G-CSF in SCI is inadequate, the encouraging available preclinical and clinical data warrant its further clinical development, and bring new hope to the longstanding challenge that is treatment of SCI.
Collapse
|
89
|
Ulndreaj A, Badner A, Fehlings MG. Promising neuroprotective strategies for traumatic spinal cord injury with a focus on the differential effects among anatomical levels of injury. F1000Res 2017; 6:1907. [PMID: 29152227 PMCID: PMC5664995 DOI: 10.12688/f1000research.11633.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition of motor, sensory, and autonomic dysfunction. The significant cost associated with the management and lifetime care of patients with SCI also presents a major economic burden. For these reasons, there is a need to develop and translate strategies that can improve outcomes following SCI. Given the challenges in achieving regeneration of the injured spinal cord, neuroprotection has been at the forefront of clinical translation. Yet, despite many preclinical advances, there has been limited translation into the clinic apart from methylprednisolone (which remains controversial), hypertensive therapy to maintain spinal cord perfusion, and early decompressive surgery. While there are several factors related to the limited translational success, including the clinical and mechanistic heterogeneity of human SCI, the misalignment between animal models of SCI and clinical reality continues to be an important factor. Whereas most clinical cases are at the cervical level, only a small fraction of preclinical research is conducted in cervical models of SCI. Therefore, this review highlights the most promising neuroprotective and neural reparative therapeutic strategies undergoing clinical assessment, including riluzole, hypothermia, granulocyte colony-stimulating factor, glibenclamide, minocycline, Cethrin (VX-210), and anti-Nogo-A antibody, and emphasizes their efficacy in relation to the anatomical level of injury. Our hope is that more basic research will be conducted in clinically relevant cervical SCI models in order to expedite the transition of important laboratory discoveries into meaningful treatment options for patients with SCI.
Collapse
Affiliation(s)
- Antigona Ulndreaj
- Institute of Medical Science, University of Toronto, Toronto, Canada.,University of Toronto Spine Program, Toronto, Canada.,Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Anna Badner
- Institute of Medical Science, University of Toronto, Toronto, Canada.,University of Toronto Spine Program, Toronto, Canada.,Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Michael G Fehlings
- Institute of Medical Science, University of Toronto, Toronto, Canada.,University of Toronto Spine Program, Toronto, Canada.,Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| |
Collapse
|
90
|
Nagashima K, Miwa T, Soumiya H, Ushiro D, Takeda-Kawaguchi T, Tamaoki N, Ishiguro S, Sato Y, Miyamoto K, Ohno T, Osawa M, Kunisada T, Shibata T, Tezuka KI, Furukawa S, Fukumitsu H. Priming with FGF2 stimulates human dental pulp cells to promote axonal regeneration and locomotor function recovery after spinal cord injury. Sci Rep 2017; 7:13500. [PMID: 29044129 PMCID: PMC5647367 DOI: 10.1038/s41598-017-13373-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 09/22/2017] [Indexed: 12/31/2022] Open
Abstract
Human dental pulp cells (DPCs), adherent cells derived from dental pulp tissues, are potential tools for cell transplantation therapy. However, little work has been done to optimize such transplantation. In this study, DPCs were treated with fibroblast growth factor-2 (FGF2) for 5-6 consecutive serial passages and were transplanted into the injury site immediately after complete transection of the rat spinal cord. FGF2 priming facilitated the DPCs to promote axonal regeneration and to improve locomotor function in the rat with spinal cord injury (SCI). Additional analyses revealed that FGF2 priming protected cultured DPCs from hydrogen-peroxide-induced cell death and increased the number of DPCs in the SCI rat spinal cord even 7 weeks after transplantation. The production of major neurotrophic factors was equivalent in FGF2-treated and untreated DPCs. These observations suggest that FGF2 priming might protect DPCs from the post-trauma microenvironment in which DPCs infiltrate and resident immune cells generate cytotoxic reactive oxygen species. Surviving DPCs could increase the availability of neurotrophic factors in the lesion site, thereby promoting axonal regeneration and locomotor function recovery.
Collapse
Affiliation(s)
- Kosuke Nagashima
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Takahiro Miwa
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Hitomi Soumiya
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Daisuke Ushiro
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Tomoko Takeda-Kawaguchi
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Naritaka Tamaoki
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Saho Ishiguro
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Yumi Sato
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Kei Miyamoto
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
- Department of Orthopaedic Surgery and Spine Center, Gifu Municipal Hospital, 7-1 Kashima, Gifu, 500-8323, Japan
| | - Takatoshi Ohno
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
- Department of Orthopaedic Surgery, Gifu Red Cross Hospital, 3-36 Iwakura, Gifu, 502-0844, Japan
| | - Masatake Osawa
- Department of Regeneration Technology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Toshiyuki Shibata
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Ken-Ichi Tezuka
- Department of Tissue and Organ Development, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Hidefumi Fukumitsu
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan.
| |
Collapse
|
91
|
Fehlings MG, Wilson JR, Harrop JS, Kwon BK, Tetreault LA, Arnold PM, Singh JM, Hawryluk G, Dettori JR. Efficacy and Safety of Methylprednisolone Sodium Succinate in Acute Spinal Cord Injury: A Systematic Review. Global Spine J 2017; 7:116S-137S. [PMID: 29164020 PMCID: PMC5684849 DOI: 10.1177/2192568217706366] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
STUDY DESIGN Systematic review and meta-analysis. OBJECTIVE The objective of this study was to conduct a systematic review to assess the comparative effectiveness and safety of high-dose methylprednisolone sodium succinate (MPSS) versus no pharmacological treatment in patients with traumatic spinal cord injury (SCI). METHODS A systematic search was performed in PubMed and the Cochrane Collaboration Library for literature published between January 1956 and June 17, 2015. Included studies were critically appraised, and Grades of Recommendation Assessment, Development and Evaluation methods were used to determine the overall quality of evidence for primary outcomes. Previous systematic reviews on this topic were collated and evaluated using the Assessment of Multiple Systematic Reviews scoring system. RESULTS The search yielded 723 citations, 13 of which satisfied inclusion criteria. Among these, 6 were primary research articles and 7 were previous systematic reviews. Based on the included research articles, there was moderate evidence that the 24-hour NASCIS II (National Acute Spinal Cord Injury Studies) MPSS regimen has no impact on long-term neurological recovery when all postinjury time points are considered. However, there is also moderate evidence that subjects receiving the same MPSS regimen within 8 hours of injury achieve an additional 3.2 points (95% confidence interval = 0.10 to 6.33; P = .04) of motor recovery compared with patients receiving placebo or no treatment. CONCLUSION Although safe to administer, a 24-hour NASCIS II MPSS regimen, when all postinjury time points are considered, has no impact on indices of long-term neurological recovery. When commenced within 8 hours of injury, however, a high-dose 24-hour regimen of MPSS confers a small positive benefit on long-term motor recovery and should be considered a treatment option for patients with SCI.
Collapse
Affiliation(s)
- Michael G. Fehlings
- Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jefferson R. Wilson
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- St. Michael’s Hospital, Toronto, Ontario, Canada
| | - James S. Harrop
- Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brian K. Kwon
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Lindsay A. Tetreault
- Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- University College Cork, Cork, Ireland
| | - Paul M. Arnold
- University of Kansas Medical Center, The University of Kansas, Kansas City, KS, USA
| | - Jeffrey M. Singh
- Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | | | | |
Collapse
|
92
|
Abstract
STUDY DESIGN Prospective observational study. OBJECTIVES To describe the correlation between CCL-2, CCL-3, CCL-4 and CXCL-5 serum levels and remission after traumatic spinal cord injury (SCI) in a human protocol compared with animal studies. SETTING Germany, Rhineland-Palatinate (Rheinland-Pfalz). METHODS We examined the serum levels of CCL-2, CCL-3, CCL-4 and CXCL-5 over a 12-week period; in particular, at admission and 4, 9 and 12 h, 1 and 3 days and 1, 2, 4, 8 and 12 weeks after trauma. According to our study design, we matched 10 patients with TSCI and neurological remission with 10 patients with an initial ASIA A grade and no neurological remission. In all, 10 patients with vertebral fracture without neurological deficits served as control. Our analysis was performed using a Luminex Cytokine Panel. Multivariate logistic regression models were used to examine the predictive value with respect to neurological remission vs no neurological remission. RESULTS The results of our study showed differences in the serum expression patterns of CCL-2 in association with the neurological remission (CCL-2 at admission P=0.013). Serum levels of CCL-2 and CCL-4 were significantly different in patients with and without neurological remission. The favored predictive model resulted in an area under the curve (AUC) of 93.1% in the receiver operating characteristic (ROC) analysis. CONCLUSIONS Our results indicate that peripheral serum analysis is a suitable concept for predicting the patient's potential for neurological remission after TSCI. Furthermore, the initial CCL-2 concentration provides an additional predictive value compared with the NLI (neurological level of injury). Therefore, the present study introduces a promising approach for future monitoring concepts and tracking techniques for current therapies. The results indicate that future investigations with an enlarged sample size are needed in order to develop monitoring, prognostic and scoring systems.
Collapse
|
93
|
Rouanet C, Reges D, Rocha E, Gagliardi V, Silva GS. Traumatic spinal cord injury: current concepts and treatment update. ARQUIVOS DE NEURO-PSIQUIATRIA 2017; 75:387-393. [DOI: 10.1590/0004-282x20170048] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/14/2017] [Indexed: 01/03/2023]
Abstract
ABSTRACT Spinal cord injury (SCI) affects 1.3 million North Americans, with more than half occurring after trauma. In Brazil, few studies have evaluated the epidemiology of SCI with an estimated incidence of 16 to 26 per million per year. The final extent of the spinal cord damage results from primary and secondary mechanisms that start at the moment of the injury and go on for days, and even weeks, after the event. There is convincing evidence that hypotension contributes to secondary injury after acute SCI. Surgical decompression aims at relieving mechanical pressure on the microvascular circulation, therefore reducing hypoxia and ischemia. The role of methylprednisolone as a therapeutic option is still a matter of debate, however most guidelines do not recommend its regular use. Neuroprotective therapies aiming to reduce further injury have been studied and many others are underway. Neuroregenerative therapies are being extensively investigated, with cell based therapy being very promising.
Collapse
Affiliation(s)
| | | | - Eva Rocha
- Universidade Federal de São Paulo, Brasil
| | | | | |
Collapse
|
94
|
Yao NW, Lu Y, Shi LQ, Xu F, Cai XH. Neuroprotective effect of combining tanshinone IIA with low-dose methylprednisolone following acute spinal cord injury in rats. Exp Ther Med 2017; 13:2193-2202. [PMID: 28565827 PMCID: PMC5443198 DOI: 10.3892/etm.2017.4271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/13/2017] [Indexed: 01/20/2023] Open
Abstract
The present study compared the potential neuroprotective effect of tanshinone IIA (TIIA) monotherapy, methylprednisolone (MP) monotherapy and combined treatment in an adult acute spinal cord injury (ASCI) rat model. The current study used the weight-drop method (Allen's Impactor) in the rat model and the mechanical scratch method in primary spinal cord neuron culture to determine whether the combined treatment was able to reduce the required dosage of MP in the treatment of ASCI to produce a similar or improved therapeutic effect. In vivo male Sprague Dawley rats (n=60) were randomly divided into 5 groups, of which 12 rats were selected for the sham group and T9-T11 laminectomies, leading to ASCI, were performed on 48 of the 60 rats using a 10 g ×25 mm weight-drop at the level of T10 spinal cord. Therefore, the ASCI group (n=12) included the 'laminectomy and weight-drop'. The remaining 36 ASCI model animals were subdivided into 3 groups (n=12 each group): TIIA group (30 mg/kg/day), MP group (30 mg/kg) and combined treatment group (TIIA 30 mg/kg/day + MP 20 mg/kg). Neuronal function following ASCI was evaluated using the Basso Beattie Bresnahan (BBB) locomotor rating scale. Levels of the anti-apoptotic factor B-cell lymphoma-2 (Bcl-2), the pro-apoptotic factors Bcl-2 associated protein X (Bax) and caspase-3, and the inflammatory associated factor nuclear factor-κB, were analyzed by western blot analysis. Immunohistochemistry was used to detect caspase-3. To investigate the underlying mechanism, the anti-oxidative effect of combination TIIA and MP treatment was assessed by measuring the activity of malondialdehyde (MDA) and superoxide dismutase (SOD) in ASCI. In agreement with the experiment in vivo, primary neurons were prepared from the spinal cord of one-day-old Sprague-Dawley rats' and co-cultured with astrocytes from the brain cortex. The injury of neurons was induced by mechanical scratch and levels of apoptosis factors were analyzed by western blot analysis. The results of the current study indicated that injured animals in the combined treatment group exhibited a significant increase in BBB scores (P<0.05). TIIA + MP combined treatment and MP treatment was observed to reduce the expression of pro-apoptotic factors and promote neuron survival in vivo and in vitro. Combined treatment may promote neuroprotection through reduced apoptosis and inflammation caused by ASCI, similar to MP alone. Combined treatment reversed the decrease of SOD and the increase of MDA level caused by ASCI. In addition, combined treatment decreased the expression of caspase-3 in the neurons following ASCI in rats, as indicated by immunofluorescence double labeling. Overall, the present study indicates that the combined treatment of TIIA and MP may protect the neurons by stimulating the rapid initiation of neuroprotection following ASCI and reduce the dosage of MP in the treatment of ASCI required to produce the same or improved neuroprotective effects in vivo and in vitro.
Collapse
Affiliation(s)
- Nian-Wei Yao
- Department of Orthopedics, The Third Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China.,Department of Orthopedics, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China.,College of Acupuncture and Orthopedics, Hubei University of Traditional Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Yuan Lu
- Department of Neurology, Nantong First People's Hospital, Nantong, Jiangsu 226000, P.R. China
| | - Li-Qi Shi
- Department of Orthopedics, Yuyao Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang 315000, P.R. China
| | - Feng Xu
- Department of Orthopedics, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Xian-Hua Cai
- Department of Orthopedics, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
95
|
Abstract
INTRODUCTION Spinal cord injury (SCI) is a devastating condition, where regenerative failure and cell loss lead to paralysis. The heterogeneous and time-sensitive pathophysiology has made it difficult to target tissue repair. Despite many medical advances, there are no effective regenerative therapies. As stem cells offer multi-targeted and environmentally responsive benefits, cell therapy is a promising treatment approach. Areas covered: This review highlights the cell therapies being investigated for SCI, including Schwann cells, olfactory ensheathing cells, mensenchymal stem/stromal cells, neural precursors, oligodendrocyte progenitors, embryonic stem cells, and induced pluripotent stem cells. Through mechanisms of cell replacement, scaffolding, trophic support and immune modulation, each approach targets unique features of SCI pathology. However, as the injury is multifaceted, it is increasingly recognized that a combinatorial approach will be necessary to treat SCI. Expert opinion: Most preclinical studies, and an increasing number of clinical trials, are finding that single cell therapies have only modest benefits after SCI. These considerations, alongside issues of therapy cost-effectiveness, need to be addressed at the bench. In addition to exploring combinatorial strategies, researchers should consider cell reproducibility and storage parameters when designing animal experiments. Equally important, clinical trials must follow strict regulatory guidelines that will enable transparency of results.
Collapse
Affiliation(s)
- Anna Badner
- a Department of Genetics and Development , Krembil Research Institute, University Health Network , Toronto , ON , Canada.,b Institute of Medical Sciences , University of Toronto , Toronto , ON , Canada
| | - Ahad M Siddiqui
- a Department of Genetics and Development , Krembil Research Institute, University Health Network , Toronto , ON , Canada
| | - Michael G Fehlings
- a Department of Genetics and Development , Krembil Research Institute, University Health Network , Toronto , ON , Canada.,b Institute of Medical Sciences , University of Toronto , Toronto , ON , Canada.,c Canada Spinal Program , University Health Network, Toronto Western Hospital , Toronto , ON , Canada
| |
Collapse
|
96
|
Abstract
Cervical spine trauma in the athlete is not an insignificant occurrence with possibly catastrophic results. Football remains one of the most common and most well studied sporting activities associated with spine injuries. Transient spinal cord and peripheral nerve injuries may manifest as quadriparesis or burners/stingers with symptoms that resolve completely. More severe spinal cord injuries, typically from axial loading on the cervical spine, will cause bilateral symptoms with residual neurological deficit. Acute Trauma Life Support principles must always be applied to the player with a potential spine injury. Recent positional statements by National Athletic Trainers' Association advocate equipment removal on the field by 3 individuals with appropriate training, a shift from previous recommendations. This recommendation is still under debate, but equipment removal in the field is an option depending on staff training. The use of steroids in acute spinal cord injury remains controversial. Moderate systemic hypothermia has theoretical benefits for reducing spinal cord damage in the setting of an acute injury. Although it has been studied in the laboratory, only a few clinical trials have been performed and further research is necessary before routine implementation of hypothermia protocols.
Collapse
|
97
|
Shank CD, Walters BC, Hadley MN. Management of acute traumatic spinal cord injuries. HANDBOOK OF CLINICAL NEUROLOGY 2017; 140:275-298. [PMID: 28187803 DOI: 10.1016/b978-0-444-63600-3.00015-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute traumatic spinal cord injury (SCI) is a devastating disease process affecting tens of thousands of people across the USA each year. Despite the increase in primary prevention measures, such as educational programs, motor vehicle speed limits, automobile running lights, and safety technology that includes automobile passive restraint systems and airbags, SCIs continue to carry substantial permanent morbidity and mortality. Medical measures implemented following the initial injury are designed to limit secondary insult to the spinal cord and to stabilize the spinal column in an attempt to decrease devastating sequelae. This chapter is an overview of the contemporary management of an acute traumatic SCI patient from the time of injury through the stay in the intensive care unit. We discuss initial triage, immobilization, and transportation of the patient by emergency medical services personnel to a definitive treatment facility. Upon arrival at the emergency department, we review initial trauma protocols and the evidence-based recommendations for radiographic evaluation of the patient's vertebral column. Finally, we outline closed cervical spine reduction and various aggressive medical therapies aimed at improving neurologic outcome.
Collapse
Affiliation(s)
- C D Shank
- Department of Neurosurgery, University of Alabama, Birmingham, AL, USA
| | - B C Walters
- Department of Neurosurgery, University of Alabama, Birmingham, AL, USA
| | - M N Hadley
- Department of Neurosurgery, University of Alabama, Birmingham, AL, USA.
| |
Collapse
|
98
|
Finnegan J, Ye H. Cell therapy for spinal cord injury informed by electromagnetic waves. Regen Med 2016; 11:675-91. [DOI: 10.2217/rme-2016-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.
Collapse
Affiliation(s)
- Jack Finnegan
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA
| |
Collapse
|
99
|
Bowers CA, Kundu B, Hawryluk GWJ. Methylprednisolone for acute spinal cord injury: an increasingly philosophical debate. Neural Regen Res 2016; 11:882-5. [PMID: 27482201 PMCID: PMC4962570 DOI: 10.4103/1673-5374.184450] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Following publication of NASCIS II, methylprednisolone sodium succinate (MPSS) was hailed as a breakthrough for patients with acute spinal cord injury (SCI). MPSS use for SCI has since become very controversial and it is our opinion that additional evidence is unlikely to break the stalemate amongst clinicians. Patient opinion has the potential to break this stalemate and we review our recent findings which reported that spinal cord injured patients informed of the risks and benefits of MPSS reported a preference for MPSS administration. We discuss the implications of the current MPSS debate on translational research and seek to address some misconceptions which have evolved. As science has failed to resolve the MPSS debate we argue that the debate is an increasingly philosophical one. We question whether SCI might be viewed as a serious condition like cancer where serious side effects of therapeutics are tolerated even when benefits may be small. We also draw attention to the similarity between the side effects of MPSS and isotretinoin which is prescribed for the cosmetic disorder acne vulgaris. Ultimately we question how patient autonomy should be weighed in the context of current SCI guidelines and MPSS's status as a historical standard of care.
Collapse
Affiliation(s)
- Christian A Bowers
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - Bornali Kundu
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - Gregory W J Hawryluk
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
100
|
Elevated Serum Insulin-Like Growth Factor 1 Levels in Patients with Neurological Remission after Traumatic Spinal Cord Injury. PLoS One 2016; 11:e0159764. [PMID: 27447486 PMCID: PMC4957810 DOI: 10.1371/journal.pone.0159764] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 07/06/2016] [Indexed: 01/01/2023] Open
Abstract
After traumatic spinal cord injury, an acute phase triggered by trauma is followed by a subacute phase involving inflammatory processes. We previously demonstrated that peripheral serum cytokine expression changes depend on neurological outcome after spinal cord injury. In a subsequent intermediate phase, repair and remodeling takes place under the mediation of growth factors such as Insulin-like Growth Factor 1 (IGF-1). IGF-1 is a promising growth factor which is thought to act as a neuroprotective agent. Since previous findings were taken from animal studies, our aim was to investigate this hypothesis in humans based on peripheral blood serum. Forty-five patients after traumatic spinal cord injury were investigated over a period of three months after trauma. Blood samples were taken according to a fixed schema and IGF-1 levels were determined. Clinical data including AIS scores at admission to the hospital and at discharge were collected and compared with IGF-1 levels. In our study, we could observe distinct patterns in the expression of IGF-1 in peripheral blood serum after traumatic spinal cord injury regardless of the degree of plegia. All patients showed a marked increase of levels seven days after injury. IGF-1 serum levels were significantly different from initial measurements at four and nine hours and seven and 14 days after injury, as well as one, two and three months after injury. We did not detect a significant correlation between fracture and the IGF-1 serum level nor between the quantity of operations performed after trauma and the IGF-1 serum level. Patients with clinically documented neurological remission showed consistently higher IGF-1 levels than patients without neurological remission. This data could be the base for the establishment of animal models for further and much needed research in the field of spinal cord injury.
Collapse
|