51
|
HEIN ASHLEYL, OUELLETTE MICHELM, YAN YING. Radiation-induced signaling pathways that promote cancer cell survival (review). Int J Oncol 2014; 45:1813-9. [PMID: 25174607 PMCID: PMC4203326 DOI: 10.3892/ijo.2014.2614] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/01/2014] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy is a staple cancer treatment approach that has significantly improved local disease control and the overall survival of cancer patients. However, its efficacy is still limited by the development of radiation resistance and the presence of residual disease after therapy that leads to cancer recurrence. Radiation impedes cancer cell growth by inducing cytotoxicity, mainly caused by DNA damage. However, radiation can also simultaneously induce multiple pro-survival signaling pathways, such as those mediated by AKT, ERK and ATM/ATR, which can lead to suppression of apoptosis, induction of cell cycle arrest and/or initiation of DNA repair. These signaling pathways act conjointly to reduce the magnitude of radiation-induced cytotoxicity and promote the development of radioresistance in cancer cells. Thus, targeting these pro-survival pathways has great potential for the radiosensitization of cancer cells. In the present review, we summarize the current literature on how these radiation‑activated signaling pathways promote cancer cell survival.
Collapse
Affiliation(s)
- ASHLEY L. HEIN
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - MICHEL M. OUELLETTE
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - YING YAN
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
52
|
Sebio A, Salazar J, Páez D, Berenguer-Llergo A, del Río E, Tobeña M, Martín-Richard M, Sullivan I, Targarona E, Balart J, Baiget M, Barnadas A. EGFR ligands and DNA repair genes: genomic predictors of complete response after capecitabine-based chemoradiotherapy in locally advanced rectal cancer. THE PHARMACOGENOMICS JOURNAL 2014; 15:77-83. [DOI: 10.1038/tpj.2014.33] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/31/2014] [Accepted: 05/22/2014] [Indexed: 02/06/2023]
|
53
|
Zhou W, Jiang Z, Li X, Xu Y, Shao Z. Cytokines: shifting the balance between glioma cells and tumor microenvironment after irradiation. J Cancer Res Clin Oncol 2014; 141:575-89. [PMID: 25005789 DOI: 10.1007/s00432-014-1772-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/30/2014] [Indexed: 12/13/2022]
Abstract
Malignant gliomas invariably recur after irradiation, showing radioresistance. Meanwhile, cranial irradiation can bring some risk for developing cognitive dysfunction. There is increasing evidence that cytokines play their peculiar roles in these processes. On the one hand, cytokines directly influence the progression of malignant glioma, promoting or suppressing tumor progression. On the other hand, cytokines indirectly contribute to the immunologic response against gliomas, exhibiting pro-inflammatory or immunosuppressive activities. We propose that cytokines are not simply unregulated products from tumor cells or immune cells, but mediators finely adjust the balance between glioma cells and tumor microenvironment after irradiation. The paper, therefore, focuses on the changes of cytokines after irradiation, analyzing how these mediate the response of tumor cells and normal cells to irradiation. In addition, cytokine-based immunotherapeutic strategies, accompanied with irradiation, for the treatment of gliomas are also discussed.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Radiation Oncology, Cancer Centre, Qilu Hospital, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | | | | | | | | |
Collapse
|
54
|
Chen X, Liao C, Chu Q, Zhou G, Lin X, Li X, Lu H, Xu B, Yue Z. Dissecting the molecular mechanism of ionizing radiation-induced tissue damage in the feather follicle. PLoS One 2014; 9:e89234. [PMID: 24586618 PMCID: PMC3930710 DOI: 10.1371/journal.pone.0089234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/16/2014] [Indexed: 11/18/2022] Open
Abstract
Ionizing radiation (IR) is a common therapeutic agent in cancer therapy. It damages normal tissue and causes side effects including dermatitis and mucositis. Here we use the feather follicle as a model to investigate the mechanism of IR-induced tissue damage, because any perturbation of feather growth will be clearly recorded in its regular yet complex morphology. We find that IR induces defects in feather formation in a dose-dependent manner. No abnormality was observed at 5 Gy. A transient, reversible perturbation of feather growth was induced at 10 Gy, leading to defects in the feather structure. This perturbation became irreversible at 20 Gy. Molecular and cellular analysis revealed P53 activation, DNA damage and repair, cell cycle arrest and apoptosis in the pathobiology. IR also induces patterning defects in feather formation, with disrupted branching morphogenesis. This perturbation is mediated by cytokine production and Stat1 activation, as manipulation of cytokine levels or ectopic Stat1 over-expression also led to irregular feather branching. Furthermore, AG-490, a chemical inhibitor of Stat1 signaling, can partially rescue IR-induced tissue damage. Our results suggest that the feather follicle could serve as a useful model to address the in vivo impact of the many mechanisms of IR-induced tissue damage.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - Chunyan Liao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - Qiqi Chu
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - Guixuan Zhou
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - Xiang Lin
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - Xiaobo Li
- Department of Radiation Oncology, Union Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Haijie Lu
- Department of Radiation Oncology, Union Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Benhua Xu
- Department of Radiation Oncology, Union Hospital of Fujian Medical University, Fuzhou, Fujian, China
- * E-mail: (BX); (ZY)
| | - Zhicao Yue
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
- * E-mail: (BX); (ZY)
| |
Collapse
|
55
|
Ingargiola M, Runge R, Heldt JM, Freudenberg R, Steinbach J, Cordes N, Baumann M, Kotzerke J, Brockhoff G, Kunz-Schughart LA. Potential of a Cetuximab-based radioimmunotherapy combined with external irradiation manifests in a 3-D cell assay. Int J Cancer 2014; 135:968-80. [PMID: 24615356 DOI: 10.1002/ijc.28735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/04/2013] [Accepted: 01/08/2014] [Indexed: 12/22/2022]
Abstract
Targeting epidermal growth factor receptor (EGFR)-overexpressing tumors with radiolabeled anti-EGFR antibodies is a promising strategy for combination with external radiotherapy. In this study, we evaluated the potential of external plus internal irradiation by [(90) Y]Y-CHX-A″-DTPA-C225 (Y-90-C225) in a 3-D environment using FaDu and SAS head and neck squamous cell carcinoma (HNSCC) spheroid models and clinically relevant endpoints such as spheroid control probability (SCP) and spheroid control dose 50% (SCD50 , external irradiation dose inducing 50% loss of spheroid regrowth). Spheroids were cultured using a standardized platform. Therapy response after treatment with C225, CHX-A"-DTPA-C225 (DTPA-C225), [(90) Y]Y-CHX-A"-DTPA (Y-90-DTPA) and Y-90-C225 alone or in combination with X-ray was evaluated by long-term monitoring (60 days) of spheroid integrity and volume growth. Penetration kinetics into spheroids and EGFR binding capacities on spheroid cells were identical for unconjugated C225 and Y-90-C225. Spheroid-associated radioactivity upon exposure to the antibody-free control conjugate Y-90-DTPA was negligible. Determination of the SCD50 demonstrated higher intrinsic radiosensitivity of FaDu as compared with SAS spheroids. Treatment with unconjugated C225 alone did not affect spheroid growth and cell viability. Also, C225 treatment after external irradiation showed no additive effect. However, the combination of external irradiation with Y-90-C225 (1 µg/ml, 24 hr) resulted in a considerable benefit as reflected by a pronounced reduction of the SCD50 from 16 Gy to 9 Gy for SAS spheroids and a complete loss of regrowth for FaDu spheroids due to the pronounced accumulation of internal dose caused by the continuous exposure to cell-bound radionuclide upon Y-90-C225-EGFR interaction.
Collapse
Affiliation(s)
- M Ingargiola
- OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany; Institute of Radiooncology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
It is historically well known that signaling by the PI3K-AKT and MEK1/2-ERK1/2 pathways in a cell type-dependent fashion can collaborate to maintain cell viability. (1)(-) (3) Signaling pathways can also crosstalk with each other wherein one pathway can signal to either enhance or suppress signaling by another. (4) Signaling by the ERK1/2 pathway can also stimulate release of growth factors which can feed back onto tumor cells to re-energize signaling pathways. (5) The studies described by Toulany et al. add to this knowledge base by examining the relationship between PI3K-AKT and MEK1/2-ERK1/2 pathway signaling, EGF receptor signaling, K-RAS function, and tumor cell survival. (6.)
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry; Massey Cancer Center; Virginia Commonwealth University; Richmond, VA USA
| |
Collapse
|
57
|
The Molecular Crosstalk between the MET Receptor Tyrosine Kinase and the DNA Damage Response-Biological and Clinical Aspects. Cancers (Basel) 2013; 6:1-27. [PMID: 24378750 PMCID: PMC3980615 DOI: 10.3390/cancers6010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/06/2013] [Accepted: 12/06/2013] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy remains an imperative treatment modality for numerous malignancies. Enduring significant technical achievements both on the levels of treatment planning and radiation delivery have led to improvements in local control of tumor growth and reduction in healthy tissue toxicity. Nevertheless, resistance mechanisms, which presumably also involve activation of DNA damage response signaling pathways that eventually may account for loco-regional relapse and consequent tumor progression, still remain a critical problem. Accumulating data suggest that signaling via growth factor receptor tyrosine kinases, which are aberrantly expressed in many tumors, may interfere with the cytotoxic impact of ionizing radiation via the direct activation of the DNA damage response, leading eventually to so-called tumor radioresistance. The aim of this review is to overview the current known data that support a molecular crosstalk between the hepatocyte growth factor receptor tyrosine kinase MET and the DNA damage response. Apart of extending well established concepts over MET biology beyond its function as a growth factor receptor, these observations directly relate to the role of its aberrant activity in resistance to DNA damaging agents, such as ionizing radiation, which are routinely used in cancer therapy and advocate tumor sensitization towards DNA damaging agents in combination with MET targeting.
Collapse
|
58
|
Sarkar S, Rajput S, Tripathi AK, Mandal M. Targeted therapy against EGFR and VEGFR using ZD6474 enhances the therapeutic potential of UV-B phototherapy in breast cancer cells. Mol Cancer 2013; 12:122. [PMID: 24138843 PMCID: PMC4015769 DOI: 10.1186/1476-4598-12-122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 10/08/2013] [Indexed: 11/20/2022] Open
Abstract
Background The hypoxic environment of tumor region stimulated the up regulation of growth factors responsible for angiogenesis and tumor proliferation. Thus, targeting the tumor vasculature along with the proliferation by dual tyrosine kinase inhibitor may be the efficient way of treating advanced breast cancers, which can be further enhanced by combining with radiotherapy. However, the effectiveness of radiotherapy may be severely compromised by toxicities and tumor resistance due to radiation-induced adaptive response contributing to recurrence and metastases of breast cancer. The rational of using ZD6474 is to evaluate the feasibility and efficacy of combined VEGFR2 and EGFR targeting with concurrent targeted and localized UV-B phototherapy in vitro breast cancer cells with the anticipation to cure skin lesions infiltrated with breast cancer cells. Materials and methods Breast cancer cells were exposed to UV-B and ZD6474 and the cell viability, apoptosis, invasion and motility studies were conducted for the combinatorial effect. Graphs and statistical analyses were performed using Graph Pad Prism 5.0. Results ZD6474 and UV-B decreased cell viability in breast cancers in combinatorial manner without affecting the normal human mammary epithelial cells. ZD6474 inhibited cyclin E expression and induced p53 expression when combined with UV-B. It activated stress induced mitochondrial pathway by inducing translocation of bax and cytochrome-c. The combination of ZD6474 with UV-B vs. either agent alone also more potently down-regulated the anti-apoptotic bcl-2 protein, up-regulated pro-apoptotic signaling events involving expression of bax, activation of caspase-3 and caspase-7 proteins, and induced poly (ADP-ribose) polymerase resulting in apoptosis. ZD6474 combined with UV-B inhibited invasion of breast cancer cells in vitro as compared to either single agent, indicating a potential involvement of pro-angiogenic growth factors in regulating the altered expression and reorganization of cytoskeletal proteins in combinatorial treated breast cancer cells. Involvement of combination therapy in reducing the expression of matrix metalloprotease was also observed. Conclusions Collectively, our studies indicate that incorporating an anti-EGFR plus VEGFR strategy (ZD6474) with phototherapy (UV-B), an alternative approach to the ongoing conventional radiotherapy for the treatment of infiltrating metastatic breast cancer cells in the skin and for locally recurrence breast cancer than either approach alone.
Collapse
Affiliation(s)
| | | | | | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
| |
Collapse
|
59
|
Diaz-Miqueli A, Martinez GS. Nimotuzumab as a radiosensitizing agent in the treatment of high grade glioma: challenges and opportunities. Onco Targets Ther 2013; 6:931-42. [PMID: 23926436 PMCID: PMC3729249 DOI: 10.2147/ott.s33532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nimotuzumab is a humanized monoclonal antibody that binds specifically to human epidermal growth factor receptor, blocking receptor activation. Evidence of its radiosensitizing capacity has been widely evaluated. This article integrates published research findings regarding the role of nimotuzumab in the treatment of high grade glioma in combination with radiotherapy or radiochemotherapy in adult and pediatric populations. First, the mechanisms of action of nimotuzumab and its current applications in clinical trials containing both radiation and chemoradiation therapies are reviewed. Second, a comprehensive explanation of potential mechanisms driving radiosensitization by nimotuzumab in experimental settings is given. Finally, future directions of epidermal growth factor receptor targeting with nimotuzumab in combination with radiation containing regimens, based on its favorable toxicity profile, are proposed. It is hoped that this review may provide further insight into the rational design of new approaches employing nimotuzumab as a useful alternative for the therapeutic management of high grade glioma.
Collapse
|
60
|
Li P, Veldwijk MR, Zhang Q, Li ZB, Xu WC, Fu S. Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells. BMC Cancer 2013; 13:297. [PMID: 23777562 PMCID: PMC3697997 DOI: 10.1186/1471-2407-13-297] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 06/12/2013] [Indexed: 02/04/2023] Open
Abstract
Background Over-expression of epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor (IGF-1R) have been shown to closely correlate with radioresistance of breast cancer cells. This study aimed to investigate the impact of co-inhibition of EGFR and IGF-1R on the radiosensitivity of two breast cancer cells with different profiles of EGFR and IGF-1R expression. Methods The MCF-7 (EGFR +/−, IGF-1R +++) and MDA-MB-468 (EGFR +++, IGF-1R +++) breast cancer cell lines were used. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle distribution were measured by flow cytometry. Phospho-Akt and phospho-Erk1/2 were quantified by western blot. In vivo studies were conducted using MDA-MB-468 cells xenografted in nu/nu mice. Results In MDA-MB-468 cells, the inhibition of IGF-1R upregulated the p-EGFR expression. Either EGFR (AG1478) or IGF-1R inhibitor (AG1024) radiosensitized MDA-MB-468 cells. In MCF-7 cells, radiosensitivity was enhanced by AG1024, but not by AG1478. Synergistical radiosensitizing effect was observed by co-inhibition of EGFR and IGF-1R only in MDA-MB-468 cells with a DMF10% of 1.90. The co-inhibition plus irradiation significantly induced more apoptosis and arrested the cells at G0/G1 phase in MDA-MB-468 cells. Only co-inhibition of EGFR and IGF-1R synergistically diminished the expression of p-Akt and p-Erk1/2 in MDA-MB-468 cells. In vivo studies further verified the radiosensitizing effects by co-inhibition of both pathways in a MDA-MB-468 xenograft model. Conclusion Our data suggested that co-inhibition of EGFR and IGF-1R synergistically radiosensitized breast cancer cells with both EGFR and IGF-1R high expression. The approach may have an important therapeutic implication in the treatment of breast cancer patients with high expression of EGFR and IGF-1R.
Collapse
Affiliation(s)
- Ping Li
- Department of Radiation Oncology, Sixth People's Hospital of Jiao Tong University, 600 Yi Shan Rd,, Shanghai 200233, People's Republic of China
| | | | | | | | | | | |
Collapse
|
61
|
Komatsu T, Kunieda E, Oizumi Y, Tamai Y, Akiba T. Clinical characteristics of brain metastases from lung cancer according to histological type: Pretreatment evaluation and survival following whole-brain radiotherapy. Mol Clin Oncol 2013; 1:692-698. [PMID: 24649230 PMCID: PMC3915483 DOI: 10.3892/mco.2013.130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 04/30/2013] [Indexed: 11/06/2022] Open
Abstract
The histological type of lung cancer in patients with brain metastases may affect response to treatment and survival. We evaluated the clinical characteristics of brain metastases from lung cancer according to histological type in 70 consecutive patients with brain metastases from histologically confirmed lung cancer, who had been previously treated with whole-brain radiotherapy (WBRT). Histological type was divided into three categories: adenocarcinoma, small-cell lung carcinoma (SCLC) and other non-small cell lung cancer (NSCLC). The number, size and maximum diameter of brain metastases, the size and maximum diameter of peritumoral edema, the ratio of tumor and peritumoral edema, the asymptomatic ratio, the tumor size reduction rate, the complete response (CR) rate, the intracranial progression-free survival (PFS) and the overall survival (OS) were also evaluated. The median survival time for all patients was 26.2 weeks. Patients with SCLC exhibited a significantly smaller edema size and maximum diameter of edema compared to patients with other NSCLC (P=0.016 and 0.010, respectively). The ratio of tumor and peritumoral edema was also significantly lower in patients with SCLC compared to that in patients with adenocarcinoma and other NSCLC (P= 0.001). Significant differences in intracranial PFS and OS between adenocarcinoma and other NSCLC were also observed (P=0.018 and 0.004, respectively). Patients with adenocarcinoma who were treated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) following WBRT, demonstrated a significant improvement in intracranial PFS and OS (P=0.008 and 0.004, respectively). The findings presented in this study may provide useful information for the management of brain metastases. Patients with SCLC exhibit a tendency to develop peritumoral edema to a lesser extent, compared to patients with other histological tumor types. Findings in the present study suggest that patients with adenocarcinoma, particularly those treated with EGFR-TKIs, exhibit improved survival rates.
Collapse
Affiliation(s)
- Tetsuya Komatsu
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Etsuo Kunieda
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Yukio Oizumi
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Yoshifumi Tamai
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Takeshi Akiba
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
62
|
Chung EJ, Urick ME, Kurshan N, Shield W, Asano H, Smith PD, Scroggins BS, Burkeen J, Citrin DE. MEK1/2 inhibition enhances the radiosensitivity of cancer cells by downregulating survival and growth signals mediated by EGFR ligands. Int J Oncol 2013; 42:2028-36. [PMID: 23588995 PMCID: PMC3699614 DOI: 10.3892/ijo.2013.1890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022] Open
Abstract
The inhibition of the Ras/mitogen-activated protein kinase (Ras/MAPK) pathway through the suppression of mutated Ras or MAPK/extracellular signal-regulated kinase 1/2 (MEK1/2) has been shown to sensitize tumor cells to ionizing radiation (IR). The molecular mechanisms of this sensitization however, are not yet fully understood. In this study, we investigated the role of transforming growth factor-α (TGF-α) in the radiosensitizing effects of selumetinib, a selective inhibitor of MEK1/2. The expression of epidermal growth factor receptor (EGFR) ligands was assessed by ELISA in both Ras wild-type and Ras mutant cells that were exposed to radiation with or without selumetinib. The effects of selumetinib on the TGF-α/EGFR signaling cascade in response to radiation were examined by western blot analysis, clonogenic assay and by determing the yield of mitotic catastrophe. The treatment of cells with selumetinib reduced the basal and IR-induced secretion of TGF-α in both Ras wild-type and Ras mutant cell lines in vitro and in vivo. The reduction of TGF-α secretion was accompanied with a reduction in phosphorylated tumor necrosis factor-α converting enzyme (TACE) in the cells treated with selumetinib with or without IR. The treatment of cells with selumetinib with or without IR inhibited the phosphorylation of EGFR and check-point kinase 2 (Chk2), and reduced the expression of survivin. Supplementation with exogenous TGF-α partially rescued the selumetinib-treated cells from IR-induced cell death, restored EGFR and Chk2 phosphorylation and increased survivin expression. These data suggest that the inhibition of MEK1/2 with selumetinib may provide a mechanism to sensitize tumor cells to IR in a fashion that prevents the activation of the TGF-α autocrine loop following IR.
Collapse
Affiliation(s)
- Eun Joo Chung
- Section of Translational Radiation Oncology, Radiation Oncology Branch, National Institutes of Health, Bethesda 20892, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Stahler C, Roth J, Cordes N, Taucher-Scholz G, Mueller-Klieser W. Impact of carbon ion irradiation on epidermal growth factor receptor signaling and glioma cell migration in comparison to conventional photon irradiation. Int J Radiat Biol 2013; 89:454-61. [DOI: 10.3109/09553002.2013.766769] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
64
|
Abstract
Diagnostic medical radiation has been the most rapidly increasing component of population background radiation exposure in Western countries over the past decade. This trend is set to increase as CT scanning is readily available with burgeoning use in everyday clinical practice. Consequently, the issue of cancer induction from the doses received during diagnostic medical exposures is highly relevant. In this review we explain current understanding of potential cancer induction at low doses of sparsely ionising radiation. For cancers that may be induced at low doses, a mechanistic description of radiation-induced cancer is discussed, which, in combination with extrapolation of data based on population cohort studies, provides the basis of the currently accepted linear no-threshold model. We explore the assumptions made in deriving risk estimates, the controversies surrounding the linear no-threshold model and the potential future challenges facing clinicians and policy-makers with regards to diagnostic medical radiation and cancer risk, most notably the uncertainties regarding deriving risk estimates from epidemiological data at low doses.
Collapse
Affiliation(s)
- D J Shah
- Department of Radiology, Northwick Park Hospital, Harrow, UK.
| | | | | |
Collapse
|
65
|
Zhuang HQ, Yuan ZY, Wang J, Wang P, Zhao LJ, Zhang BL. Research progress on criteria for discontinuation of EGFR inhibitor therapy. Onco Targets Ther 2012; 5:263-70. [PMID: 23082072 PMCID: PMC3475392 DOI: 10.2147/ott.s36103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The clinical success of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) as therapeutic agents has prompted great interest in their further development and clinical testing for a wide variety of malignancies. However, most studies have focused on the efficacy of TKI, and few studies have been done on the criteria for their discontinuation. The current standard for drug discontinuation is “until progression”, based on change in tumor size. However, tumor size is not related to the gene expression which determines the efficacy of TKI in the final analysis, and it is also difficult to make a thorough and correct prediction based on tumor size when the TKI is discontinued. Nevertheless, clinical evaluation of the criteria for TKI discontinuation is still in its early days. Some promising findings have started to emerge. With the improving knowledge of EGFR and its inhibitors, it is expected that the criteria for discontinuation of EGFR inhibitor therapy will become clearer.
Collapse
Affiliation(s)
- Hong-Qing Zhuang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Lung Cancer Center, Tianjin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
66
|
Kasputis T, Pannier AK. The role of surface chemistry-induced cell characteristics on nonviral gene delivery to mouse fibroblasts. J Biol Eng 2012; 6:17. [PMID: 22967455 PMCID: PMC3517526 DOI: 10.1186/1754-1611-6-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/06/2012] [Indexed: 01/05/2023] Open
Abstract
Background Gene delivery approaches serve as a platform to modify gene expression of a cell population with applications including functional genomics, tissue engineering, and gene therapy. The delivery of exogenous genetic material via nonviral vectors has proven to be less toxic and to cause less of an immune response in comparison to viral vectors, but with decreased efficiency of gene transfer. Attempts have been made to improve nonviral gene transfer efficiency by modifying physicochemical properties of gene delivery vectors as well as developing new delivery techniques. In order to further improve and understand nonviral gene delivery, our approach focuses on the cell-material interface, since materials are known to modulate cell behavior, potentially rendering cells more responsive to nonviral gene transfer. In this study, self-assembled monolayers of alkanethiols on gold were employed as model biomaterial interfaces with varying surface chemistries. NIH/3T3 mouse fibroblasts were seeded on the modified surfaces and transfected using either lipid- or polymer- based complexing agents. Results Transfection was increased in cells on charged hydrophilic surfaces presenting carboxylic acid terminal functional groups, while cells on uncharged hydrophobic surfaces presenting methyl terminations demonstrated reduced transfection for both complexing agents. Surface–induced cellular characteristics that were hypothesized to affect nonviral gene transfer were subsequently investigated. Cells on charged hydrophilic surfaces presented higher cell densities, more cell spreading, more cells with ellipsoid morphologies, and increased quantities of focal adhesions and cytoskeleton features within cells, in contrast to cell on uncharged hydrophobic surfaces, and these cell behaviors were subsequently correlated to transfection characteristics. Conclusions Extracellular influences on nonviral gene delivery were investigated by evaluating the upregulation and downregulation of transgene expression as a function of the cell behaviors induced by changes in the cells’ microenvronments. This study demonstrates that simple surface modifications can lead to changes in the efficiency of nonviral gene delivery. In addition, statistically significant differences in various surface-induced cell characteristics were statistically correlated to transfection trends in fibroblasts using both lipid and polymer mediated DNA delivery approaches. The correlations between the evaluated complexing agents and cell behaviors (cell density, spreading, shape, cytoskeleton, focal adhesions, and viability) suggest that polymer-mediated transfection is correlated to cell morphological traits while lipid-mediated transfection correlates to proliferative characteristics.
Collapse
Affiliation(s)
- Tadas Kasputis
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 LW Chase Hall, Lincoln, NE, 68583-0726, USA.
| | | |
Collapse
|
67
|
[Prognostic significance of changes of tumor epidermal growth factor receptor expression after neoadjuvant chemoradiation in patients with rectal adenocarcinoma]. Strahlenther Onkol 2012; 188:833-8. [PMID: 22847519 DOI: 10.1007/s00066-012-0160-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/16/2012] [Indexed: 01/23/2023]
Abstract
PURPOSE The aim of the present study was to examine the effect of neoadjuvant chemoradiation on tumor epidermal growth factor receptor (EGFR) expression in patients with locally advanced rectal adenocarcinoma. PATIENTS AND METHODS A total of 53 patients with rectal adenocarcinoma (clinical stages II and III) were studied. Neoadjuvant treatment consisted of 50.4 Gy/28 fractions external radiation with concomitant continuous 5-fluorouracil. Surgical resection was performed 4-6 weeks after the chemoradiation. EGFR expression in the pretreatment biopsies and in the resected specimens was assessed with immunohistochemistry. RESULTS Patients with an increase of EGFR expression during chemoradiation had significantly shorter disease-free survival (DFS; p = 0.003) and overall survival (OS; p = 0.005) compared to patients with either no change or decrease in EGFR expression. The 5-year DFS in patients with increased EGFR expression was only 29% compared to 61% in patients without an increase of EGFR expression. Similarly, the 5-year OS of the patients with increased EGFR expression was 29% compared to 66% in patients without an increase of EGFR expression. All recurrences in patients who had an increase of EGFR expression occurred within the first 2 years after the treatment. The increase in EGFR expression was the only significant predictor of DFS (p = 0.007) and OS (p = 0.04) using multivariate Cox regression analysis. CONCLUSION An increase of EGFR expression during chemoradiation may be associated with significantly shorter DFS and OS. The increase of EGFR could identify a population of patients in whom the effect of the treatment with anti-EGFR therapy should be studied.
Collapse
|
68
|
Furusawa Y, Wei ZL, Sakurai H, Tabuchi Y, Li P, Zhao QL, Nomura T, Saiki I, Kondo T. TGF-β-activated kinase 1 promotes cell cycle arrest and cell survival of X-ray irradiated HeLa cells dependent on p21 induction but independent of NF-κB, p38 MAPK and ERK phosphorylations. Radiat Res 2012; 177:766-74. [PMID: 22490020 DOI: 10.1667/rr2792.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Transforming growth factor-β-activated kinase 1 (TAK1) appears to play a role in inhibiting apoptotic death in response to multiple stresses. To assess the role of TAK1 in X-ray induced apoptosis and cell death, we irradiated parental and siRNA-TAK1-knockdown HeLa cells. Changes in gene expression levels with and without TAK1-knockdown were also examined after irradiation to elucidate the molecular mechanisms involved. After X-ray irradiation, cell death estimated by the colony formation assay increased in the TAK1-knockdown cells. Apoptosis induction, determined by caspase-3 cleavage, suggested that the increased radiosensitivity of the TAK1-knockdown cells could be partially explained by the induction of apoptosis. However, cell cycle analysis revealed that the percentage of irradiated cells in the G(2)/M-phase decreased, and those in the S- and SubG(1)-phases increased due to TAK1 depletion, suggesting that the loss of cell cycle checkpoint regulation may also be involved in the observed increased radiosensitivity. Interestingly, significant differences in the induction of NF-κB, p38 MAPK and ERK phosphorylation, the major downstream molecules of TAK1, were not observed in TAK1 knockdown cells compared to their parental control cells after irradiation. Instead, global gene expression analysis revealed differentially expressed genes after irradiation that bioinformatics analysis suggested are associated with cell cycle regulatory networks. In particular, CDKN1A (coding p21(WAF1)), which plays a central role in the identified network, was up-regulated in control cells but not in TAK1 knockdown cells after X-ray irradiation. Si-RNA knockdown of p21 decreased the percentage of cells in the G(2)/M phase and increased the percentage of cells in the S- and SubG(1)-phases after X-ray irradiation in a similar manner as TAK-1 knockdown. Taken together, these findings suggest that the role of TAK1 in cell death, cell cycle regulation and apoptosis after X irradiation is independent of NF-κB, p38 MAPK, and ERK phosphorylation, and dependent, in part, on p21 induction.
Collapse
Affiliation(s)
- Yukihiro Furusawa
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
de Albuquerque-Xavier AC, Bastos LGR, de Freitas JCM, Leve F, de Souza WF, de Araujo WM, Wanderley JLM, Tanaka MN, de Souza W, Morgado-Díaz JA. Blockade of irradiation-induced autophagosome formation impairs proliferation but does not enhance cell death in HCT-116 human colorectal carcinoma cells. Int J Oncol 2012; 40:1267-76. [PMID: 22246348 PMCID: PMC3584567 DOI: 10.3892/ijo.2012.1329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/26/2011] [Indexed: 02/04/2023] Open
Abstract
This work was undertaken to gain further information on the molecular mechanisms underlying autophagosome formation and its relation with tumor cell survival in response to radiation in colon cancer. A human colon cancer cell line, HCT-116, was examined with respect to cell survival after blockade of irradiation-induced autophagosome formation by pharmacological interference. Autophagosome formation was confirmed using a kinetic study with incorporated bovine serum albumin gold-conjugate (BSA-Au) analyzed by electron microscopy and an autophagosome-associated LC3B antibody measured by immunofluorescence and Western blotting. Annexin V/PI double staining was used to monitor cell death by apoptosis, and cell cycle profiles by flow cytometry. Ionizing radiation (IR) promoted autophagosome formation in the HCT-116 IR-surviving cells. Pharmacological interference showed that PI3K/Akt and Src were involved in early stages of autophagosome formation. IR alone decreased cell proliferation by arresting cells in the G2/M phase, and pharmacological interference of autophagosome formation decreased proliferation, but did not affect cell survival. Also, our data suggest that decreased proliferation caused by PI3K and Src inhibitors could be through S phase cell cycle delay. Our results clearly indicate that blockade of IR-induced autophagosome formation impairs proliferation but does not enhance cell death in colon cancer cells.
Collapse
|
70
|
Valencia T, Joseph A, Kachroo N, Darby S, Meakin S, Gnanapragasam VJ. Role and expression of FRS2 and FRS3 in prostate cancer. BMC Cancer 2011; 11:484. [PMID: 22078327 PMCID: PMC3231952 DOI: 10.1186/1471-2407-11-484] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/11/2011] [Indexed: 12/25/2022] Open
Abstract
Background FGF receptor substrates (FRS2 and FRS3) are key adaptor proteins that mediate FGF-FGFR signalling in benign as well as malignant tissue. Here we investigated FRS2 and FRS3 as a means of disrupting global FGF signalling in prostate cancer. Methods FRS2 and FRS3 manipulation was investigated in vitro using over-expression, knockdown and functional assays. FRS2 and FRS3 expression was profiled in cell lines and clinical tumors of different grades. Results In a panel of cell lines we observed ubiquitous FRS2 and FRS3 transcript and protein expression in both benign and malignant cells. We next tested functional redundancy of FRS2 and FRS3 in prostate cancer cells. In DU145 cells, specific FRS2 suppression inhibited FGF induced signalling. This effect was not apparent in cells stably over-expressing FRS3. Indeed FRS3 over-expression resulted in enhanced proliferation (p = 0.005) compared to control cells. Given this functional redundancy, we tested the therapeutic principle of dual targeting of FRS2 and FRS3 in prostate cancer. Co-suppression of FRS2 and FRS3 significantly inhibited ERK activation with a concomitant reduction in cell proliferation (p < 0.05), migration and invasion (p < 0.05). Synchronous knockdown of FRS2 and FRS3 with exposure to cytotoxic irradiation resulted in a significant reduction in prostate cancer cell survival compared to irradiation alone (p < 0.05). Importantly, this synergistic effect was not observed in benign cells. Finally, we investigated expression of FRS2 and FRS3 transcript in a cohort of micro-dissected tumors of different grades as well as by immunohistochemistry in clinical biopsies. Here, we did not observe any difference in expression between benign and malignant biopsies. Conclusions These results suggest functional overlap of FRS2 and FRS3 in mediating mitogenic FGF signalling in the prostate. FRS2 and FRS3 are not over-expressed in tumours but targeted dual inhibition may selectively adversely affect malignant but not benign prostate cells.
Collapse
Affiliation(s)
- Tania Valencia
- Translational Prostate Cancer Group, Department of Oncology, Hutchison/MRC research centre, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
71
|
Dent P, Tang Y, Yacoub A, Dai Y, Fisher PB, Grant S. CHK1 inhibitors in combination chemotherapy: thinking beyond the cell cycle. Mol Interv 2011; 11:133-40. [PMID: 21540473 DOI: 10.1124/mi.11.2.11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cellular sensing of DNA damage, along with concomitant cell cycle arrest, is mediated by a great many proteins and enzymes. One focus of pharmaceutical development has been the inhibition of DNA damage signaling, and checkpoint kinases (Chks) in particular, as a means to sensitize proliferating tumor cells to chemotherapies that damage DNA. 7-Hydroxystaurosporine, or UCN-01, is a clinically relevant and well-studied kinase activity inhibitor that exerts chemosensitizing effects by inhibition of Chk1, and a multitude of Chk1 inhibitors have entered development. Clinical development of UCN-01 has overcome many initial obstacles, but the drug has nevertheless failed to show a high level of clinical activity when combined with chemotherapeutic agents. One very likely reason for the lack of clinical efficacy of Chk1 inhibitors may be that the inhibition of Chk1 causes the compensatory activation of ATM and ERK1/2 pathways. Indeed, inhibition of many enzyme activities, not necessarily components of cell cycle regulation, may block Chk1 inhibitor-induced ERK1/2 activation and enhance the toxicity of Chk1 inhibitors. This review examines the rationally hypothesized actions of Chk1 inhibitors as cell cycle modulatory drugs as well as the impact of Chk1 inhibition upon other cell survival signaling pathways. An understanding of Chk1 inhibition in multiple signaling contexts will be essential to the therapeutic development of Chk1 inhibitors.
Collapse
Affiliation(s)
- Paul Dent
- Department of Neurosurgery, Virginia Commonwealth University, Massey Cancer Center, 401 College Street, Richmond, VA 23298-0035, USA.
| | | | | | | | | | | |
Collapse
|
72
|
Arpaia E, Blaser H, Quintela-Fandino M, Duncan G, Leong HS, Ablack A, Nambiar SC, Lind EF, Silvester J, Fleming CK, Rufini A, Tusche MW, Brüstle A, Ohashi PS, Lewis JD, Mak TW. The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. Oncogene 2011; 31:884-96. [PMID: 21765460 PMCID: PMC3289793 DOI: 10.1038/onc.2011.288] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proteins containing a caveolin-binding domain (CBD), such as the Rho-GTPases, can interact with caveolin-1 (Cav1) through its caveolin scaffold domain. Rho-GTPases are important regulators of p130(Cas), which is crucial for both normal cell migration and Src kinase-mediated metastasis of cancer cells. However, although Rho-GTPases (particularly RhoC) and Cav1 have been linked to cancer progression and metastasis, the underlying molecular mechanisms are largely unknown. To investigate the function of Cav1-Rho-GTPase interaction in metastasis, we disrupted Cav1-Rho-GTPase binding in melanoma and mammary epithelial tumor cells by overexpressing CBD, and examined the loss-of-function of RhoC in metastatic cancer cells. Cancer cells overexpressing CBD or lacking RhoC had reduced p130(Cas) phosphorylation and Rac1 activation, resulting in an inhibition of migration and invasion in vitro. The activity of Src and the activation of its downstream targets FAK, Pyk2, Ras and extracellular signal-regulated kinase (Erk)1/2 were also impaired. A reduction in α5-integrin expression, which is required for binding to fibronectin and thus cell migration and survival, was observed in CBD-expressing cells and cells lacking RhoC. As a result of these defects, CBD-expressing melanoma cells had a reduced ability to metastasize in recipient mice, and impaired extravasation and survival in secondary sites in chicken embryos. Our data indicate that interaction between Cav1 and Rho-GTPases (most likely RhoC but not RhoA) promotes metastasis by stimulating α5-integrin expression and regulating the Src-dependent activation of p130(Cas)/Rac1, FAK/Pyk2 and Ras/Erk1/2 signaling cascades.
Collapse
Affiliation(s)
- E Arpaia
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Lilleby W, Solca F, Røe K. Radiotherapy and inhibition of the EGF family as treatment strategies for prostate cancer: combining theragnostics with theragates. Oncol Rev 2011. [DOI: 10.1007/s12156-010-0070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
74
|
Effect of cetuximab and fractionated irradiation on tumour micro-environment. Radiother Oncol 2011; 97:322-9. [PMID: 20667608 DOI: 10.1016/j.radonc.2010.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 07/04/2010] [Accepted: 07/07/2010] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE Previous experiments have shown that application of the anti-EGFR monoclonal antibody C225 (cetuximab) improves local tumour control after irradiation in FaDu human squamous cell carcinoma (hSCC) due to the combined effect of decreased repopulation and improved reoxygenation. The present study investigates early changes of the pimonidazole hypoxic fraction of FaDu tumours and the expression and phosphorylation of the EGFR and its downstream signal transduction molecules after treatment with C225 alone or in combination with irradiation. MATERIAL AND METHODS FaDu tumour xenografts were irradiated with up to 3×3Gy with or without additional C225 treatment and excised at different time points. Tumour hypoxia was evaluated using pimonidazole. EGFR expression and phosphorylation and intratumoural distribution of C225 were assessed by immunofluorescence analysis. Western blots were performed to evaluate expression and phosphorylation of EGFR, ErbB2, AKT and MAPK (ERK1/2). RESULTS Hypoxia did not change during the 4days of treatment in the tumours treated with C225 alone or combined with irradiation. C225 treatment led to downregulation of the total EGFR in FaDu tumours, accompanied by a change of the spatial distribution of the receptor favouring the membranous expression. An induction of phosphorylation of the EGFR (tyr992, tyr1173) was observed with C225 alone or combined with irradiation. AKT phosphorylation was decreased, whereas MAPK phosphorylation remained unchanged. C225 membrane staining was homogeneously distributed over the whole tumour with no differences between hypoxic and non-hypoxic tumour cells. CONCLUSION Pimonidazole-hypoxia of FaDu tumours during the initial part of fractionated irradiation is not influenced by C225, indicating that external hypoxia markers may not be promising as biomarkers for tumour response to combined treatment. The downregulation of the total EGFR, but at the same time higher membrane staining, as well as the changes in downstream signal transduction molecules, warrants further investigation in other tumour models.
Collapse
|
75
|
Sano D, Matsumoto F, Valdecanas DR, Zhao M, Molkentine DP, Takahashi Y, Hanna EY, Papadimitrakopoulou V, Heymach J, Milas L, Myers JN. Vandetanib restores head and neck squamous cell carcinoma cells' sensitivity to cisplatin and radiation in vivo and in vitro. Clin Cancer Res 2011; 17:1815-27. [PMID: 21350000 DOI: 10.1158/1078-0432.ccr-10-2120] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE We investigated whether vandetanib, an inhibitor of the tyrosine kinase activities of vascular endothelial growth factor receptor-2 (VEGFR-2), epidermal growth factor receptor (EGFR), and rearranged during transfection (RET), could augment the antitumor activity of radiation with or without cisplatin in preclinical in vitro and in vivo models of human head and neck squamous cell carcinoma (HNSCC). EXPERIMENTAL DESIGN OSC-19 and HN5 HNSCC cells that were cisplatin and radioresistant were treated with vandetanib, cisplatin, and radiation alone or in combination in vitro and in vivo using an orthotopic nude mouse model. Treatment effects were assessed using clonogenic survival assay, tumor volume, bioluminescence imaging, tumor growth delay, survival, microvessel density, tumor and endothelial cell apoptosis, and EGFR and Akt phosphorylation data. RESULTS Vandetanib plus cisplatin radiosensitized HNSCC cells in vitro and in vivo. The combination treatment with vandetanib, cisplatin, and radiation was superior to the rest of treatments (including the double combinations) in antitumoral effects, prolonging survival, decreasing cervical lymph node metastases in vivo. It also increased both tumor and tumor-associated endothelial cell apoptosis and decreased microvessel density in vivo. An analysis of tumor growth delay data revealed that vandetanib plus cisplatin enhanced radioresponse in vivo. All vandetanib-containing treatments inhibited EGFR and Akt phosphorylation in vitro and in vivo. CONCLUSION The addition of vandetanib to combination therapy with cisplatin and radiation was able to effectively overcome cisplatin and radioresistance in in vitro and in vivo models of HNSCC. Further study of this regimen in clinical trials may be warranted.
Collapse
Affiliation(s)
- Daisuke Sano
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Cheng H, An SJ, Dong S, Zhang YF, Zhang XC, Chen ZH, Jian-Su, Wu YL. Molecular mechanism of the schedule-dependent synergistic interaction in EGFR-mutant non-small cell lung cancer cell lines treated with paclitaxel and gefitinib. J Hematol Oncol 2011; 4:5. [PMID: 21255411 PMCID: PMC3035578 DOI: 10.1186/1756-8722-4-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/21/2011] [Indexed: 02/08/2023] Open
Abstract
Background Chemotherapy combined concurrently with TKIs produced a negative interaction and failed to improve survival when compared with chemotherapy or TKIs alone in the treatment of non-small cell lung cancer (NSCLC). The present study investigated the sequence-dependent interaction between paclitaxel and gefitinib and clarified the underlying mechanism. Methods The effects on cell proliferation, EGFR signaling pathway, and TGFα expression were evaluated in a panel of human NSCLC cell lines harboring EGFR mutations with three different combination sequences: sequential treatment with paclitaxel followed by gefitinib (T→G), sequential treatment with gefitinib followed by paclitaxel (G→T), or concomitant treatment (T + G). Results The sequence-dependent anti-proliferative effects differed between EGFR-TKI-sensitive and -resistant cell lines carrying EGFR mutations. A synergistic anti-proliferative activity was obtained with paclitaxel treatment followed by gefitinib in all cell lines, with mean CI values of 0.63 in Hcc827, 0.54 in PC-9, 0.81 in PC-9/GR, and 0.77 in H1650 cells for the T→G sequence. The mean CI values for the G→T sequence were 1.29 in Hcc827, 1.16 in PC-9, 1.52 in PC-9/GR, and 1.5 in H1650 cells. The mean CI values for T+G concomitant treatment were 0.88 in Hcc827, 0.91 in PC-9, 1.05 in PC-9/GR, and 1.18 in H1650 cells. Paclitaxel produced a dose-dependent increase in EGFR phosphorylation. Paclitaxel significantly increased EGFR phosphorylation compared with that in untreated controls (mean differences: +50% in Hcc827, + 56% in PC-9, + 39% in PC-9/GR, and + 69% in H1650 cells; p < 0.05). The T→G sequence produced significantly greater inhibition of EGFR phosphorylation compared with the opposite sequence (mean differences: -58% in Hcc827, -38% in PC-9, -35% in PC-9/GR, and -30% in H1650 cells; p < 0.05). Addition of a neutralizing anti-TGFα antibody abolished paclitaxel-induced activation of the EGFR pathway in PC-9 and H1650 cells. Sequence-dependent TGFα expression and release are responsible for the sequence-dependent EGFR pathway modulation. Conclusion The data suggest that the sequence of paclitaxel followed by gefitinib is an appropriate treatment combination for NSCLC cell lines harboring EGFR mutations. Our results provide molecular evidence to support clinical treatment strategies for patients with lung cancer.
Collapse
Affiliation(s)
- Hua Cheng
- Guangdong Lung Cancer Institute, Medical Research Center of Guangdong General Hospital & Guangdong Academy of Medical Sciences, No,106, Zhongshan 2nd Rd, Guangzhou, Postal code:510080, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia 2011; 12:675-84. [PMID: 20824044 DOI: 10.1593/neo.10688] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/07/2010] [Accepted: 06/08/2010] [Indexed: 01/27/2023] Open
Abstract
Aberrant epidermal growth factor receptor (EGFR) signaling is common in cancer. Increased expression of wild type and mutant EGFR is a widespread feature of diverse types of cancer. EGFR signaling in cancer has been the focus of intense investigation for decades primarily for two reasons. First, aberrant EGFR signaling is likely to play an important role in the pathogenesis of cancer, and therefore, the mechanisms of EGFR-mediated oncogenic signaling are of interest. Second, the EGFR signaling system is an attractive target for therapeutic intervention. EGFR gene amplification and overexpression are a particularly striking feature of glioblastoma (GBM), observed in approximately 40% of tumors. GBM is the most common primary malignant tumor of the central nervous system in adults. In approximately 50% of tumors with EGFR amplification, a specific EGFR mutant (EGFRvIII, also known as EGFR type III, de2-7, Delta EGFR) can be detected. This mutant is highly oncogenic and is generated from a deletion of exons 2 to 7 of the EGFR gene, which results in an in-frame deletion of 267 amino acids from the extracellular domain of the receptor. EGFRvIII is unable to bind ligand, and it signals constitutively. Although EGFRvIII has the same signaling domain as the wild type receptor, it seems to generate a distinct set of downstream signals that may contribute to an increased tumorigenicity. In this review, we discuss recent progress in key aspects of EGFR signaling in GBM, focusing on neuropathology, signal transduction, imaging of the EGFR, and the role of the EGFR in mediating resistance to radiation therapy in GBM.
Collapse
|
78
|
Nestor M, Sundström M, Anniko M, Tolmachev V. Effect of cetuximab in combination with alpha-radioimmunotherapy in cultured squamous cell carcinomas. Nucl Med Biol 2011; 38:103-12. [DOI: 10.1016/j.nucmedbio.2010.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/15/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022]
|
79
|
Bayraktar S, Rocha-Lima CM. Advanced or Metastatic Pancreatic Cancer: Molecular Targeted Therapies. ACTA ACUST UNITED AC 2010; 77:606-19. [DOI: 10.1002/msj.20217] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
80
|
Wachsberger PR, Lawrence YR, Liu Y, Daroczi B, Xu X, Dicker AP. Epidermal growth factor receptor expression modulates antitumor efficacy of vandetanib or cediranib combined with radiotherapy in human glioblastoma xenografts. Int J Radiat Oncol Biol Phys 2010; 82:483-91. [PMID: 21095630 DOI: 10.1016/j.ijrobp.2010.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/02/2010] [Accepted: 09/22/2010] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of this study was to determine the ability of radiation therapy (RT) combined with the tyrosine kinase inhibitors (TKI) vandetanib (antiepidermal growth factor receptor [EGFR] plus antivascular endothelial growth factor receptor [anti-VEGFR]) and cediranib (anti-VEGFR) to inhibit glioblastoma multiforme (GBM) growth. A secondary aim was to investigate how this regimen is modulated by tumor EGFR expression. METHODS AND MATERIALS Radiosensitivity was assessed by clonogenic cell survival assay. VEGF secretion was quantified by enzyme-linked immunosorbent assay. GBM (U87MG wild-type EGFR [wtEGFR] and U87MG EGFR-null) xenografts were treated with vandetanib, cediranib, and RT, alone or in combinations. Excised tumor sections were stained for proliferative and survival biomarkers. RESULTS In vitro, U87MG wtEGFR and U87 EGFR-null cells had similar growth kinetics. Neither TKI affected clonogenic cell survival following RT. However, in vivo, exogenous overexpression of wtEGFR decreased tumor doubling time (T2x) in U87MG xenografts (2.70 vs. 4.41 days for U87MG wtEGFR vs. U87MG vector, respectively). In U87MG EGFR-null cells, TKI combined with radiation was no better than radiation therapy alone. In U87MG wtEGFR, RT in combination with vandetanib (but not with cediranib) significantly increased tumor T2x compared with RT alone (T2x, 10.4 days vs. 4.8 days; p < 0.001). In vivo, growth delay correlated with suppression of pAkt, survivin, and Ki67 expression in tumor samples. The presence of EGFR augmented RT-stimulated VEGF release; this effect was inhibited by vandetanib. CONCLUSIONS EGFR expression promoted tumor growth in vivo but not in vitro, suggesting a microenvironmental effect. GBM xenografts expressing EGFR exhibited greater sensitivity to both cediranib and vandetanib than EGFR-null tumors. Hence EGFR status plays a major role in determining a tumor's in vivo response to radiation combined with TKI, supporting a "personalized" approach to GBM management.
Collapse
Affiliation(s)
- Phyllis R Wachsberger
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | |
Collapse
|
81
|
Affolter A, Fruth K, Brochhausen C, Schmidtmann I, Mann WJ, Brieger J. Activation of mitogen-activated protein kinase extracellular signal-related kinase in head and neck squamous cell carcinomas after irradiation as part of a rescue mechanism. Head Neck 2010; 33:1448-57. [PMID: 21928417 DOI: 10.1002/hed.21623] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/29/2010] [Accepted: 08/12/2010] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Irradiation plays a pivotal role in head and neck squamous cell carcinoma (HNSCC) treatment. However, especially recurrent tumors frequently show increased radioresistance. We analyzed irradiation-stimulated mitogen-activated protein kinase (MAPK) signaling pathways to define cellular rescue mechanisms. METHODS Irradiated HNSCC cells were screened for MAPK activation and results were confirmed and refined by functional analyses. Extracellular signal-regulated kinase (ERK) inhibitor U0126 application enabled us to specify postradiogenic cellular responses. Vascular endothelial growth factor (VEGF) levels were analyzed additionally. RESULTS We observed a pronounced and time-dependent ERK stimulation. Pathway inhibition resulted in decreased radioresistance. Likewise, we found a decrease of VEGF release after inhibitor treatment. ERK activation was confirmed in xenotransplants showing elevated postradiogenic phospho-ERK (pERK) and VEGF levels. CONCLUSIONS Our data give evidence for induction of ERK and successive VEGF release in HNSCC during radiotherapy, which might be partially explained by autoregulated cytoprotection maintained by pERK and potentially VEGF. In conclusion, targeting the ERK-VEGF axis might enhance the efficiency of radiotherapy.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology-Head and Neck Surgery, Molecular Tumor Biology Laboratory, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
82
|
Abstract
Radiation leaves a fairly characteristic footprint in biological materials, but this is rapidly all but obliterated by the canonical biological responses to the radiation damage. The innate immune recognition systems that sense "danger" through direct radiation damage and through associated collateral damage set in motion a chain of events that, in a tissue compromised by radiation, often unwittingly result in oscillating waves of molecular and cellular responses as tissues attempt to heal. Understanding "nature's whispers" that inform on these processes will lead to novel forms of intervention targeted more precisely towards modifying them in an appropriate and timely fashion so as to improve the healing process and prevent or mitigate the development of acute and late effects of normal tissue radiation damage, whether it be accidental, as a result of a terrorist incident, or of therapeutic treatment of cancer. Here we attempt to discuss some of the non-free radical scavenging mechanisms that modify radiation responses and comment on where we see them within a conceptual framework of an evolving radiation-induced lesion.
Collapse
Affiliation(s)
- Kwanghee Kim
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - William H. McBride
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
83
|
EGFR inhibitor C225 increases the radiosensitivity of human lung squamous cancer cells. Cancer Cell Int 2010; 10:39. [PMID: 20969791 PMCID: PMC2972262 DOI: 10.1186/1475-2867-10-39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 10/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of the present study is to investigate the direct biological effects of the epidermal growth factor receptor (EGFR) inhibitor C225 on the radiosensitivity of human lung squamous cancer cell-H520. H520 cells were treated with different dosage of 60Co γ ray irradiation (1.953 Gy/min) in the presence or absence of C225. The cellular proliferation, colony forming capacity, apoptosis, the cell cycle distribution as well as caspase-3 were analyzed in vitro. Results We found that C225 treatment significantly increased radiosensitivity of H-520 cells to irradiation, and led to cell cycle arrest in G1 phase, whereas 60Co γ ray irradiation mainly caused G2 phase arrest. H-520 cells thus displayed both the G1 and G2 phase arrest upon treatment with C225 in combination with 60Co γ ray irradiation. Moreover, C225 treatment significantly increased the apoptosis percentage of H-520 cells (13.91% ± 1.88%) compared with the control group (5.75% ± 0.64%, P < 0.05). Conclusion In this regard, C225 treatment may make H-520 cells more sensitive to irradiation through the enhancement of caspase-3 mediated tumor cell apoptosis and cell cycle arrest.
Collapse
|
84
|
Staehler M, Haseke N, Stadler T, Nuhn P, Roosen A, Stief CG, Wilkowski R. Feasibility and effects of high-dose hypofractionated radiation therapy and simultaneous multi-kinase inhibition with sunitinib in progressive metastatic renal cell cancer. Urol Oncol 2010; 30:290-3. [PMID: 20813555 DOI: 10.1016/j.urolonc.2010.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/06/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Radiotherapy (RT) is considered oncologically ineffective in metastatic renal cell cancer (mRCC). Inhibition of angiogenetic pathway may lead to radiosensitization in mRCC. The aim of this study was to evaluate the efficacy of the simultaneous combination of RT with systemic treatment of bulky (mRCC) using sunitinib. METHODS AND MATERIALS We included 22 patients with progressive mRCC between 04/2007 and 08/2008 at the University Hospital Munich Großhadern. All patients underwent high-dose hypofractionated RT while they were simultaneously treated systemically with sunitinib 50 mg. RESULTS Median age was 63.0 years (range 26.7-84.4). Median dose of radiation was 40 Gy (range 25-50) in a median of 8 fractions (range 5-30). Treatment sites were brain, retroperitoneal and mediastinal lymph nodes, spinal cord, bones, liver, and kidney. Median follow-up was 14.3 months. After 3 months, 2 patients had complete remission (CR), 9 patients showed partial remission (PR) as measured by response evaluation criteria in solid tumors (RECIST) criteria, 2 patients had minor response (MR), and 8 patients had stable disease (SD). Only 1 patient did not respond to therapy. Toxicity was very low with only 1 grade 4 hypertension. Skin toxicities were manageable with no grade 3 event during the combination period. CONCLUSIONS The combination of RT with simultaneous systemic treatment using sunitinib is effective in patients with progressive mRCC. With high dose RT, complete response seems to be possible. Further evaluation should be based upon combination of RT with systemic therapy, rather than sequential RT regiments.
Collapse
Affiliation(s)
- Michael Staehler
- Department of Urology, University of Munich, Klinikum Grosshadern, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
85
|
Kriegs M, Kasten-Pisula U, Rieckmann T, Holst K, Saker J, Dahm-Daphi J, Dikomey E. The epidermal growth factor receptor modulates DNA double-strand break repair by regulating non-homologous end-joining. DNA Repair (Amst) 2010; 9:889-97. [DOI: 10.1016/j.dnarep.2010.05.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 04/28/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
|
86
|
Facteurs pronostiques biologiques des cancers de la vessie. Interactions avec la radiothérapie. ONCOLOGIE 2010. [DOI: 10.1007/s10269-010-1903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
87
|
Gow MD, Seymour CB, Ryan LA, Mothersill CE. Induction of bystander response in human glioma cells using high-energy electrons: a role for TGF-beta1. Radiat Res 2010; 173:769-78. [PMID: 20518656 DOI: 10.1667/rr1895.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We examined bystander cell death produced in T98G cells by exposure to irradiated cell conditioned medium (ICCM) produced by high-energy 20 MeV electrons at a dose rate of 10 Gy min(-1) and doses up to 20 Gy. ICCM induced a bystander response in T98G glioma cells, reducing recipient cell survival by more than 25% below controls at 5 and 10 Gy. Higher doses increased survival to near control levels. ICCM was analyzed for the presence of transforming growth factor alpha (TGF-alpha) and transforming growth factor beta1 (TGF-beta1). Monoclonal antibodies for TGF-alpha (mAb TGF-alpha) and TGF-beta1 (mAb TGF-beta1) were added to the ICCM to neutralize any potential effect of the cytokines. The results indicate that TGF-alpha was not present in the ICCM and addition of mAb TGF-alpha to the ICCM had no effect on bystander cell survival. No active TGF-beta1 was present in the ICCM; however, addition of mAb TGF-beta1 completely abolished bystander death of reporter cells at all doses. These results indicate that bystander cell death can be induced in T98G glioma if a large enough radiation stress is applied and that TGF-beta1 plays a downstream role in this response.
Collapse
Affiliation(s)
- M D Gow
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | |
Collapse
|
88
|
Maruko A, Ohtake Y, Kawaguchi M, Kobayashi T, Baba T, Kuwahara Y, Nakagawa H, Shimura T, Fukumoto M, Ohkubo Y. X-radiation-induced down-regulation of the EGF receptor in primary cultured rat hepatocytes. Radiat Res 2010; 173:620-8. [PMID: 20426661 DOI: 10.1667/rr1793.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to X radiation is associated with a decline in the proliferative activity of the liver, but the molecular mechanism(s) is not well understood. We investigated whether exposure to X radiation is involved in functional changes in the epidermal growth factor (EGF) receptor (EGFR), thereby causing a reduction of EGF-induced DNA synthesis using periportal hepatocytes (PPH) and perivenous hepatocytes (PVH), which differ in their proliferative activity. X radiation dose-dependently decreased DNA synthesis in both subpopulations. The rate of decline in the DNA synthesis was greater in PPH than in PVH, but the zonal difference disappeared after exposure to 10 Gy X radiation. [(125)I]EGF binding studies indicated that high-affinity EGFRs in both subpopulations were down-regulated after X irradiation. Furthermore, EGF-induced EGFR dimerization and phosphorylation at Y1173 in both subpopulations were down-regulated after X irradiation, and the rate of decline was greater in PPH than in PVH. In contrast, phosphorylation at Y845 after EGF treatment was dose-dependently up-regulated after X irradiation in both subpopulations. These results suggest that the X-radiation-related decline in EGF-induced DNA synthesis is caused at least partly by the modification of EGFR function.
Collapse
Affiliation(s)
- Akiko Maruko
- Department of Radiopharmacy, Tohoku Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Kargiotis O, Geka A, Rao JS, Kyritsis AP. Effects of irradiation on tumor cell survival, invasion and angiogenesis. J Neurooncol 2010; 100:323-38. [PMID: 20449629 DOI: 10.1007/s11060-010-0199-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 04/13/2010] [Indexed: 12/19/2022]
Abstract
Ionizing irradiation is a widely applied therapeutic method for the majority of solid malignant neoplasms, including brain tumors where, depending on localization, this might often be the only feasible primary intervention.Without doubt, it has been proved to be a fundamental tool available in the battlefield against cancer, offering a clear survival benefit in most cases. However, numerous studies have associated tumor irradiation with enhanced aggressive phenotype of the remaining cancer cells. A cell population manages to survive after the exposure, either because it receives sublethal doses and/or because it successfully utilizes the repair mechanisms. The biology of irradiated cells is altered leading to up-regulation of genes that favor cell survival, invasion and angiogenesis. In addition, hypoxia within the tumor mass limits the cytotoxicity of irradiation, whereas irradiation itself may worsen hypoxic conditions, which also contribute to the generation of resistant cells. Activation of cell surface receptors, such as the epidermal growth factor receptor, utilization of signaling pathways, and over-expression of cytokines, proteases and growth factors, for example the matrix metalloproteinases and vascular endothelial growth factor, protect tumor and non-tumor cells from apoptosis, increase their ability to invade to adjacent or distant areas, and trigger angiogenesis. This review will try to unfold the various molecular events and interactions that control tumor cell survival, invasion and angiogenesis and which are elicited or influenced by irradiation of the tumor mass, and to emphasize the importance of combining irradiation therapy with molecular targeting.
Collapse
Affiliation(s)
- Odysseas Kargiotis
- Neurosurgical Research Institute, University of Ioannina, Ioannina, Greece.
| | | | | | | |
Collapse
|
90
|
Choi HJ, Sohn JH, Lee CG, Shim HS, Lee IJ, Yang WI, Kwon JE, Kim SK, Park MS, Lee JH, Kim JH. A phase I study of nimotuzumab in combination with radiotherapy in stages IIB-IV non-small cell lung cancer unsuitable for radical therapy: Korean results. Lung Cancer 2010; 71:55-9. [PMID: 20451284 DOI: 10.1016/j.lungcan.2010.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 04/05/2010] [Accepted: 04/06/2010] [Indexed: 12/01/2022]
Abstract
PURPOSE This study was undertaken to determine safety and tolerability of nimotuzumab, a humanized anti-epidermal growth factor receptor monoclonal antibody, in combination with radiotherapy in stages IIB-IV non-small cell lung cancer (NSCLC) patients who are unsuitable for radical therapy or chemotherapy. METHODS Nimotuzumab (100mg, 200mg and 400mg) was administered weekly from week 1 to week 8 with palliative radiotherapy (30-36 Gy, 3 Gy/day). If tumor control was achieved, nimotuzumab was continued every 2 weeks until unacceptable toxicity or disease progression. Serial skin biopsies were collected for pharmacodynamic assessment. RESULTS Fifteen patients were enrolled in the study, with cohorts of five patients assigned in each dose level of nimotuzumab. Patients and disease characteristics included median age 73 years; Eastern Cooperative Oncology Group performance status (PS) 0-1/2 (n=3/12); female sex (n=2); adenocarcinoma (n=5); never-smoker status (n=2); and stages IIB/IIIB/IV (n=1/8/6). All patients were unable to tolerate radical therapy because of old age or multiple comorbidities. The most commonly reported adverse events were lymphopenia and asthenia (grades 1-2 in most patients). No skin rash or allergic toxicities appeared. Dose-limiting toxicity occurred with pneumonia with grade 4 neutropenia at the 200mg dose of nimotuzumab. Objective response rate and disease control rate inside the radiation field were 46.7% and 100.0%, respectively. CONCLUSIONS Nimotuzumab in combination with radiotherapy is well-tolerated and feasible. Further clinical investigation of nimotuzumab in NSCLC patients is warranted.
Collapse
Affiliation(s)
- Hye Jin Choi
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Kiang JG, Garrison BR, Gorbunov NV. Radiation Combined Injury: DNA Damage, Apoptosis, and Autophagy. ACTA ACUST UNITED AC 2010; 2:1-10. [PMID: 34616567 DOI: 10.4247/am.2010.aba004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Radiation combined injury is defined as an ionizing radiation exposure received in combination with other trauma or physiological insults. The range of radiation threats we face today includes everything from individual radiation exposures to mass casualties resulting from a terrorist nuclear incident, and many of these exposure scenarios include the likelihood of additional traumatic injury. Radiation combined injury sensitizes target organs and cells and exacerbates acute radiation syndrome. Organs and cells with high sensitivity to combined injury are the skin, the hematopoietic system, the gastrointestinal tract, spermatogenic cells, and the vascular system. Among its many effects, radiation combined injury results in decreases in lymphocytes, macrophages, neutrophils, platelets, stem cells, and tissue integrity; activation of the iNOS/NF-κB/NF-IL6 and p53/Bax pathways; and increases in DNA single and double strand breaks, TLR signaling, cytokine concentrations, bacterial infection, and cytochrome c release from mitochondria to cytoplasm. These alterations lead to apoptosis and autophagy and, as a result, increased mortality. There is a pressing need to understand more about the body's response to combined injury in order to be able to develop effective countermeasures, since few currently exist. In this review, we summarize what is known about how combined injury modifies the radiation response, with a special emphasis on DNA damage/repair, signal transduction pathways, apoptosis, and autophagy. We also describe current and prospective countermeasures relevant to the treatment and prevention of combined injury.
Collapse
Affiliation(s)
- Juliann G Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute.,Department of Radiation Biology and of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889-5603, U.S.A
| | - Bradley R Garrison
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute
| | - Nikolai V Gorbunov
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute
| |
Collapse
|
92
|
Dufour C, Cadusseau J, Varlet P, Surena AL, de Faria GP, Dias-Morais A, Auger N, Léonard N, Daudigeos E, Dantas-Barbosa C, Grill J, Lazar V, Dessen P, Vassal G, Prevot V, Sharif A, Chneiweiss H, Junier MP. Astrocytes reverted to a neural progenitor-like state with transforming growth factor alpha are sensitized to cancerous transformation. Stem Cells 2010; 27:2373-82. [PMID: 19544474 DOI: 10.1002/stem.155] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Gliomas, the most frequent primitive central nervous system tumors, have been suggested to originate from astrocytes or from neural progenitors/stem cells. However, the precise identity of the cells at the origin of gliomas remains a matter of debate because no pre-neoplastic state has been yet identified. Transforming growth factor (TGF)-alpha, an epidermal growth factor family member, is frequently overexpressed in the early stages of glioma progression. We previously demonstrated that prolonged exposure of astrocytes to TGF-alpha is sufficient to trigger their reversion to a neural progenitor-like state. To determine whether TGF-alpha dedifferentiating effects are associated with cancerous transforming effects, we grafted intracerebrally dedifferentiated astrocytes. We show that these cells had the same cytogenomic profile as astrocytes, survived in vivo, and did not give birth to tumors. When astrocytes dedifferentiated with TGF-alpha were submitted to oncogenic stress using gamma irradiation, they acquired cancerous properties: they were immortalized, showed cytogenomic abnormalities, and formed high-grade glioma-like tumors after brain grafting. In contrast, irradiation did not modify the lifespan of astrocytes cultivated in serum-free medium. Addition of TGF-alpha after irradiation did not promote their transformation but decreased their lifespan. These results demonstrate that reversion of mature astrocytes to an embryonic state without genomic manipulation is sufficient to sensitize them to oncogenic stress.
Collapse
Affiliation(s)
- Christelle Dufour
- Inserm UMR894, Team Glial Plasticity, University Paris, Descartes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Shin HK, Kim MS, Jeong JH. Combination Effect of Nimotuzumab with Radiation in Colorectal Cancer Cells. ACTA ACUST UNITED AC 2010. [DOI: 10.3857/jkstro.2010.28.3.147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hye Kyung Shin
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jae-Hoon Jeong
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|
94
|
Epperly MW, Lai SY, Kanai AJ, Mason N, Lopresi B, Dixon T, Franicola D, Niu Y, Wilson WR, Greenberger JS. Effectiveness of combined modality radiotherapy of orthotopic human squamous cell carcinomas in Nu/Nu mice using cetuximab, tirapazamine and MnSOD-plasmid liposome gene therapy. In Vivo 2010; 24:1-8. [PMID: 20133969 PMCID: PMC2899489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hypoxic regions limit the radiocontrollability of head and neck carcinomas. Whether or not combinations of plasmid/liposome mediated overexpression of normal tissue protective manganese superoxide dismutase (MnSOD), cetuximab (C225), and the hypoxic cytotoxin tirapazamine (TPZ) enhanced radiotherapeutic effects was tested in a CAL-33 orthotopic mouse cheek tumor model. The tumor volume continued to increase in the control (untreated) mice, with a ninefold increase by 10 days when the tumors exceeded 2 cm(3). The mice receiving 14 Gy only showed reduced tumor growth to 3.1+/-0.1 fold at day 10. The mice receiving MnSOD-PL, C225, TPZ plus 14 Gy had the best outcome with 0.7+/-0.1 fold increase in tumor volume by 10 days (p=0.015) compared to irradiation only. The addition of MnSOD-PL, TPZ, and C225 to irradiation optimized the therapeutic ratio for the local control of hypoxic region-containing CAL-33 orthotopic tumors.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal, Humanized
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/therapy
- Cell Line, Tumor
- Cetuximab
- Dose-Response Relationship, Radiation
- Genetic Therapy
- Humans
- Liposomes
- Mice
- Mice, Nude
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Mouth Neoplasms/therapy
- Nitric Oxide/metabolism
- Radiation-Sensitizing Agents/administration & dosage
- Radiotherapy, Adjuvant
- Superoxide Dismutase/genetics
- Tirapazamine
- Triazines/administration & dosage
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Joensuu G, Joensuu T, Nokisalmi P, Reddy C, Isola J, Ruutu M, Kouri M, Kupelian PA, Collan J, Pesonen S, Hemminki A. A phase I/II trial of gefitinib given concurrently with radiotherapy in patients with nonmetastatic prostate cancer. Int J Radiat Oncol Biol Phys 2009; 78:42-9. [PMID: 20004525 DOI: 10.1016/j.ijrobp.2009.07.1731] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/20/2009] [Accepted: 07/22/2009] [Indexed: 01/24/2023]
Abstract
PURPOSE To estimate the safety and tolerability of daily administration of 250 mg of gefitinib given concurrently with three-dimensional conformal radiotherapy for patients with nonmetastatic prostate cancer. METHODS AND MATERIALS A total of 42 patients with T2-T3N0M0 tumors were treated in a nonrandomized single-center study. A prostate-specific antigen (PSA) level of <20 and a good performance status (WHO, 0-1) were required. Adjuvant or neoadjuvant hormone treatments were not allowed. A daily regimen of 250 mg of gefitinib was started 1 week before radiation therapy began and lasted for the duration of radiation therapy. A dose of 50.4 Gy (1.8 Gy/day) was administered to the tumor, prostate, and seminal vesicles, followed by a 22-Gy booster (2 Gy/day) for a total dose of 72.4 Gy. Correlative studies included analysis of epidermal growth factor receptor (EGFR), EGFRvIII, and phosphorylated EGFR in tumors and tumor necrosis factor, interleukin-1alpha (IL-1alpha), and IL-6 in serum. RESULTS Maximum tolerated dose was not reached in phase I (12 patients), and 30 additional patients were treated in phase II. Thirty (71.4%) patients completed trial medication. Dose-limiting toxicities were recorded for 16 (38.1%) patients, the most common of which was a grade 3 to 4 increase in transaminase (6 patients). After a median follow-up of 38 months, there were no deaths due to prostate cancer. The estimated PSA relapse-free survival rate at 4 years (Kaplan-Meier) was 97%, the salvage therapy-free survival rate was 91%, and the overall survival rate was 87%. These figures compared favorably with those of matched patients treated with radiation only at higher doses. CONCLUSIONS The combination of gefitinib and radiation is reasonably well tolerated and has promising activity against nonmetastatic prostate cancer.
Collapse
Affiliation(s)
- Greetta Joensuu
- Transplantation Laboratory and Haartman Institute and Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Dupla D, Fraczek M, Woźniak Z, Krecicki T. [Relation between epidermal growth factor receptor (EGFR) and p53 expression and radiocurability of laryngeal squamous cell cancer]. Otolaryngol Pol 2009; 63:249-55. [PMID: 19886531 DOI: 10.1016/s0030-6657(09)70117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UNLABELLED Radiotherapy and surgery are the most important treatment modalities for the majority of laryngeal cancers. Because of high efficacy and better organ preservation radiotherapy is generally preferred for early and intermediate stage of the disease. Some of patients with more locally advanced cancers can still be cured by means of radiotherapy, but we have not got reliable prognostics factors for predicting radiocurability. THE AIM OF MY STUDY: was to investigate the value of p53 and EGFR expression for predicting clinical outcomes of laryngeal cancer patients treated with radiotherapy. METHODS AND MATERIALS The study included 50 patients with laryngeal cancer treated in Department of Radiotherapy of Silesian Oncology Center between the years 1998 and 2003. Paraffin sections from archival material were studied immunohistochemically for detection p53 and EGFR and correlated with clinical parameters and local tumor control and patient survival. RESULTS Accumulation of p53 and EGFR were detected in 65% and 50% of tumor respectively. No relationship was observed between immunostaining for investigated proteins and clinicopathologic factors. The TNM tumor stage was the most significant prognostic factor for local control and overall survival. p53 was favorable prognostic factor with 5-years disease free survival rate 82% for patients p53-positive and 75% for p53-negative patients (p = 0.04). CONCLUSION The TNM tumor stage is the most important prognostic factor for laryngeal cancer. Tumors accumulating p53 have better prognosis what indicates possibly role for p53 immunohistochemical analysis for predicting outcomes of radiotherapy in patients with laryngeal cancer.
Collapse
Affiliation(s)
- Dorota Dupla
- Zaklad Teleradioterapii, Dolnoślaskie Centrum Onkologii, Wrocław
| | | | | | | |
Collapse
|
97
|
Braunstein S, Badura ML, Xi Q, Formenti SC, Schneider RJ. Regulation of protein synthesis by ionizing radiation. Mol Cell Biol 2009; 29:5645-56. [PMID: 19704005 PMCID: PMC2772731 DOI: 10.1128/mcb.00711-09] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/13/2009] [Accepted: 08/17/2009] [Indexed: 12/22/2022] Open
Abstract
Ionizing radiation (IR) is a physiologically important stress to which cells respond by the activation of multiple signaling pathways. Using a panel of immortalized and transformed breast epithelial cell lines, we demonstrate that IR regulation of protein synthesis occurs in nontransformed cells and is lost with transformation. In nontransformed cells, IR rapidly activates the MAP kinases ERK1/2, resulting in an early transient increase in cap-dependent mRNA translation that involves mTOR and is radioprotective, enhancing the translation of a subset of mRNAs encoding proteins involved in DNA repair and cell survival. Following a transient increase in translation, IR-sensitive (nontransformed) cells inhibit cap-dependent protein synthesis through a mechanism that involves activation of p53, induction of Sestrin 1 and 2 genes, and stimulation of AMP kinase, inhibiting mTOR and hypophosphorylating 4E-BP1. IR is shown to block proteasome-mediated decay of 4E-BP1, increasing its abundance and the sequestration of eIF4E. The IR signal that impairs mTOR-dependent protein synthesis at late times is assembly of the DNA damage response machinery, consisting of Mre11, Rad50, and NBS1 (MRN); activation of the MRN complex kinase ATM; and p53. These results link genotoxic signaling from the DNA damage response complex to the control of protein synthesis.
Collapse
Affiliation(s)
- Steve Braunstein
- Department of Microbiology, 550 First Avenue, Department of Radiation Oncology, 160 East 34th Street, New York University School of Medicine, New York, New York 10016
| | - Michelle L. Badura
- Department of Microbiology, 550 First Avenue, Department of Radiation Oncology, 160 East 34th Street, New York University School of Medicine, New York, New York 10016
| | - Qiaoran Xi
- Department of Microbiology, 550 First Avenue, Department of Radiation Oncology, 160 East 34th Street, New York University School of Medicine, New York, New York 10016
| | - Silvia C. Formenti
- Department of Microbiology, 550 First Avenue, Department of Radiation Oncology, 160 East 34th Street, New York University School of Medicine, New York, New York 10016
| | - Robert J. Schneider
- Department of Microbiology, 550 First Avenue, Department of Radiation Oncology, 160 East 34th Street, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
98
|
Sambade MJ, Camp JT, Kimple RJ, Sartor CI, Shields JM. Mechanism of lapatinib-mediated radiosensitization of breast cancer cells is primarily by inhibition of the Raf>MEK>ERK mitogen-activated protein kinase cascade and radiosensitization of lapatinib-resistant cells restored by direct inhibition of MEK. Radiother Oncol 2009; 93:639-44. [PMID: 19853943 DOI: 10.1016/j.radonc.2009.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/25/2009] [Accepted: 09/15/2009] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE We recently showed that lapatinib, an EGFR/HER2 inhibitor, radiosensitized breast cancer cells of the basal and HER2+ subtypes. The purpose of this study was to identify the downstream signaling pathways responsible for lapatinib-mediated radiosensitization in breast cancer. MATERIALS AND METHODS Response of EGFR downstream signaling pathways was assessed by Western blot and clonogenic cell survival assays in breast tumor cells after irradiation (5Gy), lapatinib, CI-1040, or combined treatment. RESULTS In SUM102 cells, an EGFR+ basal breast cancer cell line, exposure to ionizing radiation elicited strong activation of ERK1/2 and JNK, which was blocked by lapatinib, and weak/no activation of p38, AKT or STAT3. Direct inhibition of MEK1 with CI-1040 resulted in 95% inhibition of surviving colonies when combined with radiation while inhibition of JNK with SP600125 had no effect. Lapatinib-mediated radiosensitization of SUM102 cells was completely abrogated with expression of constitutively active Raf. Treatment of lapatinib-resistant SUM185 cells with CI-1040 restored radiosensitization with 45% fewer surviving colonies when combined with radiation. CONCLUSIONS These data suggest that radiosensitization by lapatinib is mediated largely through inhibition of MEK/ERK and that direct inhibition of this pathway may provide an additional avenue of radiosensitization in EGFR+ or HER2+ breast cancers.
Collapse
Affiliation(s)
- Maria J Sambade
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
99
|
Mukherjee B, McEllin B, Camacho CV, Tomimatsu N, Sirasanagandala S, Nannepaga S, Hatanpaa KJ, Mickey B, Madden C, Maher E, Boothman DA, Furnari F, Cavenee WK, Bachoo RM, Burma S. EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma. Cancer Res 2009; 69:4252-9. [PMID: 19435898 PMCID: PMC2694953 DOI: 10.1158/0008-5472.can-08-4853] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM) is the most lethal of brain tumors and is highly resistant to ionizing radiation (IR) and chemotherapy. Here, we report on a molecular mechanism by which a key glioma-specific mutation, epidermal growth factor receptor variant III (EGFRvIII), confers radiation resistance. Using Ink4a/Arf-deficient primary mouse astrocytes, primary astrocytes immortalized by p53/Rb suppression, as well as human U87 glioma cells, we show that EGFRvIII expression enhances clonogenic survival following IR. This enhanced radioresistance is due to accelerated repair of DNA double-strand breaks (DSB), the most lethal lesion inflicted by IR. The EGFR inhibitor gefitinib (Iressa) and the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 attenuate the rate of DSB repair. Importantly, expression of constitutively active, myristylated Akt-1 accelerates repair, implicating the PI3K/Akt-1 pathway in radioresistance. Most notably, EGFRvIII-expressing U87 glioma cells show elevated activation of a key DSB repair enzyme, DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Enhanced radioresistance is abrogated by the DNA-PKcs-specific inhibitor NU7026, and EGFRvIII fails to confer radioresistance in DNA-PKcs-deficient cells. In vivo, orthotopic U87-EGFRvIII-derived tumors display faster rates of DSB repair following whole-brain radiotherapy compared with U87-derived tumors. Consequently, EGFRvIII-expressing tumors are radioresistant and continue to grow following whole-brain radiotherapy with little effect on overall survival. These in vitro and in vivo data support our hypothesis that EGFRvIII expression promotes DNA-PKcs activation and DSB repair, perhaps as a consequence of hyperactivated PI3K/Akt-1 signaling. Taken together, our results raise the possibility that EGFR and/or DNA-PKcs inhibition concurrent with radiation may be an effective therapeutic strategy for radiosensitizing high-grade gliomas.
Collapse
Affiliation(s)
- Bipasha Mukherjee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Brian McEllin
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Cristel V. Camacho
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Nozomi Tomimatsu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Shyam Sirasanagandala
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
- Annette G. Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Suraj Nannepaga
- Department of Neurology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
- Annette G. Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Kimmo J. Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
- Annette G. Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Bruce Mickey
- Department of Neurological Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
- Annette G. Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Christopher Madden
- Department of Neurological Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
- Annette G. Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Elizabeth Maher
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
- Department of Neurology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
- Annette G. Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - David A. Boothman
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Frank Furnari
- Annette G. Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Webster K. Cavenee
- Annette G. Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Robert M. Bachoo
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
- Department of Neurology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
- Annette G. Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
100
|
Katz D, Ito E, Liu FF. On the path to seeking novel radiosensitizers. Int J Radiat Oncol Biol Phys 2009; 73:988-96. [PMID: 19251086 DOI: 10.1016/j.ijrobp.2008.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 11/29/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
Abstract
Radiation therapy is a highly effective cancer treatment modality, and extensive investigations have been undertaken over the years to augment its efficacy in the clinic. This review summarizes the current understanding of the biologic bases underpinning many of the clinically used radiosensitizers. In addition, this review illustrates how the advent of innovative, high-throughput technologies with integration of different disciplines could be harnessed for an expeditious discovery process for novel radiosensitizers, providing an exciting future for such pursuits in radiation biology and oncology.
Collapse
Affiliation(s)
- David Katz
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|