51
|
Schippers MP, Dukas R, Smith RW, Wang J, Smolen K, McClelland GB. Lifetime performance in foraging honeybees: behaviour and physiology. ACTA ACUST UNITED AC 2006; 209:3828-36. [PMID: 16985199 DOI: 10.1242/jeb.02450] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Honeybees, Apis mellifera, gradually increase their rate of forage uptake as they gain foraging experience. This increase in foraging performance has been proposed to occur as a result of learning; however, factors affecting flight ability such as changes in physiological components of flight metabolism could also contribute to this pattern. Thus, the purpose of this study was to assess the contribution of physiological changes to the increase in honeybee foraging performance. We investigated aspects of honeybee flight muscle biochemistry throughout the adult life, from non-foraging hive bees, through young and mature foragers, to old foragers near the end of their lifespan. Two-dimensional gel proteomic analysis on honeybee thorax muscle revealed an increase in several proteins from hive bees to mature foragers including troponin T 10a, aldolase and superoxide dismutase. By contrast, the activities (V(max)) of enzymes involved in aerobic performance, phosphofructokinase, hexokinase, pyruvate kinase and cytochrome c oxidase, did not increase in the flight muscles of hive bees, young foragers, mature foragers and old foragers. However, citrate synthase activity was found to increase with foraging experience. Hence, our results suggest plasticity in both structural and metabolic components of flight muscles with foraging experience.
Collapse
Affiliation(s)
- M-P Schippers
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | | | | | | | | | |
Collapse
|
52
|
Eanes WF, Merritt TJS, Flowers JM, Kumagai S, Sezgin E, Zhu CT. Flux control and excess capacity in the enzymes of glycolysis and their relationship to flight metabolism in Drosophila melanogaster. Proc Natl Acad Sci U S A 2006; 103:19413-8. [PMID: 17159148 PMCID: PMC1748240 DOI: 10.1073/pnas.0607095104] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
An important question in evolutionary and physiological genetics is how the control of flux-base phenotypes is distributed across the enzymes in a pathway. This control is often related to enzyme-specific levels of activity that are reported to be in excess of that required for demand. In glycolysis, metabolic control is frequently considered vested in classical regulatory enzymes, each strongly displaced from equilibrium. Yet the contribution of individual steps to control is unclear. To assess enzyme-specific control in the glycolytic pathway, we used P-element excision-derived mutagenesis in Drosophila melanogaster to generate full and partial knockouts of seven metabolic genes and to measure tethered flight performance. For most enzymes, we find that reduction to half of the normal activity has no measurable impact on wing beat frequency. The enzymes catalyzing near-equilibrium reactions, phosphoglucose isomerase, phosphoglucomutase, and triosephosphate isomerase fail to show any decline in flight performance even when activity levels are reduced to 17% or less. At reduced activities, the classic regulatory enzymes, hexokinase and glycogen phosphorylase, show significant drops in flight performance and are nearer to saturation. Our results show that flight performance is canalized or robust to the activity variation found in natural populations. Furthermore, enzymes catalyzing near-equilibrium reactions show strong genetic dominance down to low levels of activity. This implies considerable excess enzyme capacity for these enzymes.
Collapse
Affiliation(s)
- Walter F Eanes
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | | | | | | | | |
Collapse
|
53
|
Kim YH, Haidl G, Schaefer M, Egner U, Herr JC. Compartmentalization of a unique ADP/ATP carrier protein SFEC (Sperm Flagellar Energy Carrier, AAC4) with glycolytic enzymes in the fibrous sheath of the human sperm flagellar principal piece. Dev Biol 2006; 302:463-76. [PMID: 17137571 PMCID: PMC1858657 DOI: 10.1016/j.ydbio.2006.10.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 09/28/2006] [Accepted: 10/04/2006] [Indexed: 11/17/2022]
Abstract
The longest part of the sperm flagellum, the principal piece, contains the fibrous sheath, a cytoskeletal element unique to spermiogenesis. We performed mass spectrometry proteomics on isolated human fibrous sheaths identifying a unique ADP/ATP carrier protein, SFEC [AAC4], seven glycolytic enzymes previously unreported in the human sperm fibrous sheath, and sorbitol dehydrogenase. SFEC, pyruvate kinase and aldolase were co-localized by immunofluorescence to the principal piece. A homology model constructed for SFEC predicted unique residues at the entrance to the nucleotide binding pocket of SFEC that are absent in other human ADP/ATP carriers, suggesting opportunities for selective drug targeting. This study provides the first evidence of a role for an ADP/ATP carrier family member in glycolysis. The co-localization of SFEC and glycolytic enzymes in the fibrous sheath supports a growing literature that the principal piece of the flagellum is capable of generating and regulating ATP independently from mitochondrial oxidation in the mid-piece. A model is proposed that the fibrous sheath represents a highly ordered complex, analogous to the electron transport chain, in which adjacent enzymes in the glycolytic pathway are assembled to permit efficient flux of energy substrates and products with SFEC serving to mediate energy generating and energy consuming processes in the distal flagellum, possibly as a nucleotide shuttle between flagellar glycolysis, protein phosphorylation and mechanisms of motility.
Collapse
Affiliation(s)
- Young-Hwan Kim
- Center for Research in Contraceptive and Reproductive Health, Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908 U.S.A
| | - Gerhard Haidl
- Department of Dermatology/Andrology Unit, University of Bonn, Bonn, Germany
| | - Martina Schaefer
- Research Center Europe, Enabling Technologies, Schering AG, 13342 Berlin, Germany
| | - Ursula Egner
- Research Center Europe, Enabling Technologies, Schering AG, 13342 Berlin, Germany
| | - John C. Herr
- Center for Research in Contraceptive and Reproductive Health, Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908 U.S.A
- *Corresponding Author: John C. Herr, Department of Cell Biology, P.O. Box 800732, University of Virginia Health System, Charlottesville, Virginia 22908, Phone: (434) 924-2007, Fax (434) 982-3912, E-mail:
| |
Collapse
|
54
|
Martinez Agosto JA, McCabe ER. Conserved family of glycerol kinase loci in Drosophila melanogaster. Mol Genet Metab 2006; 88:334-45. [PMID: 16545593 PMCID: PMC2807631 DOI: 10.1016/j.ymgme.2006.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Accepted: 01/10/2006] [Indexed: 10/24/2022]
Abstract
Glycerol kinase (GK) is an enzyme that catalyzes the formation of glycerol 3-phosphate from ATP and glycerol, the rate-limiting step in glycerol utilization. We analyzed the genome of the model organism Drosophila melanogaster and identified five GK orthologs, including two loci with sequence homology to the mammalian Xp21 GK protein. Using a combination of sequence analysis and evolutionary comparisons of orthologs between species, we characterized functional domains in the protein required for GK activity. Our findings include additional conserved domains that suggest novel nuclear and mitochondrial functions for glycerol kinase in apoptosis and transcriptional regulation. Investigation of GK function in Drosophila will inform us about the role of this enzyme in development and will provide us with a tool to examine genetic modifiers of human metabolic disorders.
Collapse
Affiliation(s)
- Julian A. Martinez Agosto
- Department of Pediatrics, David Geffen School of Medicine at UCLA; and Mattel Children’s Hospital at UCLA, USA
| | - Edward R.B. McCabe
- Department of Pediatrics, David Geffen School of Medicine at UCLA; and Mattel Children’s Hospital at UCLA, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA; UCLA Molecular Biology Institute; and UCLA Biomedical Engineering Interdepartmental Training Program, USA
- Corresponding author. Fax: +1 310 267 2045. (E.R.B. McCabe)
| |
Collapse
|
55
|
Mack PD, Kapelnikov A, Heifetz Y, Bender M. Mating-responsive genes in reproductive tissues of female Drosophila melanogaster. Proc Natl Acad Sci U S A 2006; 103:10358-10363. [PMID: 16798875 PMCID: PMC1502462 DOI: 10.1073/pnas.0604046103] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Male-derived accessory gland proteins that are transferred to females during mating have profound effects on female reproductive physiology including increased ovulation, mating inhibition, and effects on sperm utilization and storage. The extreme rates of evolution seen in accessory gland proteins may be driven by sperm competition and sexual conflict, processes that may ultimately drive complex interactions between female- and male-derived molecules and sperm. However, little is known of how gene expression in female reproductive tissues changes in response to the presence of male molecules and sperm. To characterize this response, we conducted parallel genomic and proteomic analyses of gene expression in the reproductive tract of 3-day-old unmated and mated female Drosophila melanogaster. Using DNA microarrays, we identified 539 transcripts that are differentially expressed in unmated vs. mated females and revealed a striking peak in differential expression at 6 h postmating and a marked shift from primarily down-regulated to primarily up-regulated transcripts within 3 h after mating. Combining two-dimensional gel electrophoresis and liquid chromatography mass spectrometry analyses, we identified 84 differentially expressed proteins at 3 h postmating, including proteins that appeared to undergo posttranslational modification. Together, our observations define transcriptional and translational response to mating within the female reproductive tract and suggest a bimodal model of postmating gene expression initially correlated with mating and the final stages of female reproductive tract maturation and later with the declining presence of male reproductive molecules and with sperm maintenance and utilization.
Collapse
Affiliation(s)
- Paul D Mack
- *Department of Genetics, University of Georgia, Athens, GA 30602; and
| | - Anat Kapelnikov
- Department of Entomology, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yael Heifetz
- Department of Entomology, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Michael Bender
- *Department of Genetics, University of Georgia, Athens, GA 30602; and
| |
Collapse
|
56
|
Adamowicz A, Gizak A, Dzugaj A. Subcellular localization of muscle FBPase in carp (Cyprinus carpio) tissues. Comp Biochem Physiol B Biochem Mol Biol 2006; 144:223-8. [PMID: 16580859 DOI: 10.1016/j.cbpb.2006.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 02/16/2006] [Accepted: 02/20/2006] [Indexed: 10/25/2022]
Abstract
Subcellular localization of muscle FBPase-a regulatory enzyme of glyconeogenesis-was investigated in carp using immunohistochemistry and protein exchange method. Results of the experiments revealed that, in striated muscles, FBPase associates with alpha-actinin of the Z-line and co-localizes with aldolase. Additionally, in cardiac and smooth muscle cells FBPase is present inside the nuclei. In the light of findings on mammalian muscle FBPase, the data presented here indicates that interaction of the enzyme with specific cellular partners and nuclear presence of FBPase is a general phenomenon in contemporary vertebrates.
Collapse
Affiliation(s)
- A Adamowicz
- Department of Animal Physiology, Institute of Zoology, Wroclaw University, Cybulskiego 30, 50-205 Wroclaw, Poland
| | | | | |
Collapse
|
57
|
Krisfalusi M, Miki K, Magyar PL, O'Brien DA. Multiple glycolytic enzymes are tightly bound to the fibrous sheath of mouse spermatozoa. Biol Reprod 2006; 75:270-8. [PMID: 16687649 DOI: 10.1095/biolreprod.105.049684] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The fibrous sheath is a cytoskeletal structure located in the principal piece of mammalian sperm flagella. Previous studies showed that glyceraldehyde 3-phosphate dehydrogenase, spermatogenic (GAPDHS), a germ cell-specific glycolytic isozyme that is required for sperm motility, is tightly bound to the fibrous sheath. To determine if other glycolytic enzymes are also bound to this cytoskeletal structure, we isolated highly purified fibrous sheath preparations from mouse epididymal sperm using a sequential extraction procedure. The isolated fibrous sheaths retain typical ultrastructural features and exhibit little contamination by axonemal or outer dense fiber proteins in Western blot analyses. Proteomic analysis using peptide-mass fingerprinting and MS/MS peptide fragment ion matching identified GAPDHS and two additional glycolytic enzyme subunits, the A isoform of aldolase 1 (ALDOA) and lactate dehydrogenase A (LDHA), in isolated fibrous sheaths. The presence of glycolytic enzymes in the fibrous sheath was also examined by Western blotting. In addition to GAPDHS, ALDOA, and LDHA, this method determined that pyruvate kinase is also tightly bound to the fibrous sheath. These data support a role for the fibrous sheath as a scaffold for anchoring multiple glycolytic enzymes along the length of the flagellum to provide a localized source of ATP that is essential for sperm motility.
Collapse
Affiliation(s)
- Michelle Krisfalusi
- Laboratory for Reproductive Biology, University of North Carolina School of Medicine, NC 27599, USA
| | | | | | | |
Collapse
|
58
|
Merritt TJS, Sezgin E, Zhu CT, Eanes WF. Triglyceride pools, flight and activity variation at the Gpdh locus in Drosophila melanogaster. Genetics 2006; 172:293-304. [PMID: 16204217 PMCID: PMC1456158 DOI: 10.1534/genetics.105.047035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 09/25/2005] [Indexed: 11/18/2022] Open
Abstract
We have created a set of P-element excision-derived Gpdh alleles that generate a range of GPDH activity phenotypes ranging from zero to full activity. By placing these synthetic alleles in isogenic backgrounds, we characterize the effects of minor and major activity variation on two different aspects of Gpdh function: the standing triglyceride pool and glycerol-3-phosphate shuttle-assisted flight. We observe small but statistically significant reductions in triglyceride content for adult Gpdh genotypes possessing 33-80% reductions from normal activity. These small differences scale to a notable proportion of the observed genetic variation in triglyceride content in natural populations. Using a tethered fly assay to assess flight metabolism, we observed that genotypes with 100 and 66% activity exhibited no significant difference in wing-beat frequency (WBF), while activity reductions from 60 to 10% showed statistically significant reductions of approximately 7% in WBF. These studies show that the molecular polymorphism associated with GPDH activity could be maintained in natural populations by selection in the triglyceride pool.
Collapse
Affiliation(s)
- Thomas J S Merritt
- Department of Ecology and Evolution, State University of New York, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
59
|
Dziewulska-Szwajkowska D, Ogorzałek A. F-actin, beta-tubulin, aldolase, and fructose-1,6-bisphosphatase in heteropteran ovarioles--I. Immunocytochemical investigations of whole-mounted ovarioles. Cell Tissue Res 2005; 321:311-21. [PMID: 15947967 DOI: 10.1007/s00441-005-1146-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 04/19/2005] [Indexed: 11/25/2022]
Abstract
The distribution of F-actin, beta-tubulin, aldolase, and fructose-1,6-bisphosphatase (FBPase) in ovarioles of four heteropteran species (Ilyocoris cimicoides, Coreus marginatus, Lygus pratensis, and Notostira elongata) was investigated biochemically and immunocytochemically. Aldolase was found to be uniformly distributed in the cytoplasm of trophocytes and follicular cells, with the highest concentration in prefollicular cells. Its concentration in follicular cells increased during differentiation and reached a peak in ovarian follicles at the stage of late choriogenesis. FBPase was observed in the cytoplasm (weak reaction) and on cell borders (strong reaction) of both germ line and somatic cells. No FBPase or aldolase signal was observed on the F-actin trophic core mesh or on stress fibers.
Collapse
|
60
|
Yañez AJ, Ludwig HC, Bertinat R, Spichiger C, Gatica R, Berlien G, Leon O, Brito M, Concha II, Slebe JC. Different involvement for aldolase isoenzymes in kidney glucose metabolism: aldolase B but not aldolase A colocalizes and forms a complex with FBPase. J Cell Physiol 2005; 202:743-53. [PMID: 15389646 DOI: 10.1002/jcp.20183] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The expression of aldolase A and B isoenzyme transcripts was confirmed by RT-PCR in rat kidney and their cell distribution was compared with characteristic enzymes of the gluconeogenic and glycolytic metabolic pathway: fructose-1,6-bisphosphatase (FBPase), phosphoenol pyruvate carboxykinase (PEPCK), and pyruvate kinase (PK). We detected aldolase A isoenzyme in the thin limb and collecting ducts of the medulla and in the distal tubules and glomerula of the cortex. The same pattern of distribution was found for PK, but not for aldolase B, PEPCK, and FBPase. In addition, co-localization studies confirmed that aldolase B, FBPase, and PEPCK are expressed in the same proximal cells. This segregated cell distribution of aldolase A and B with key glycolytic and gluconeogenic enzymes, respectively, suggests that these aldolase isoenzymes participate in different metabolic pathways. In order to test if FBPase interacts with aldolase B, FBPase was immobilized on agarose and subjected to binding experiments. The results show that only aldolase B is specifically bound to FBPase and that this interaction was specifically disrupted by 60 microM Fru-1,6-P2. These data indicate the presence of a modulated enzyme-enzyme interaction between FBPase and isoenzyme B. They affirm that in kidney, aldolase B specifically participates, along the gluconeogenic pathway and aldolase A in glycolysis.
Collapse
Affiliation(s)
- Alejandro J Yañez
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Casilla, Valdivia, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Weber K, Johnson N, Champlin D, Patty A. Many P-element insertions affect wing shape in Drosophila melanogaster. Genetics 2004; 169:1461-75. [PMID: 15545659 PMCID: PMC1449561 DOI: 10.1534/genetics.104.027748] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A screen of random, autosomal, homozygous-viable P-element insertions in D. melanogaster found small effects on wing shape in 11 of 50 lines. The effects were due to single insertions and remained stable and significant for over 5 years, in repeated, high-resolution measurements. All 11 insertions were within or near protein-coding transcription units, none of which were previously known to affect wing shape. Many sites in the genome can affect wing shape.
Collapse
Affiliation(s)
- Kenneth Weber
- Department of Biological Sciences, University of Southern Maine, Portland, 04104-9300, USA.
| | | | | | | |
Collapse
|
62
|
Yáñez AJ, Bertinat R, Concha II, Slebe JC. Nuclear localization of liver FBPase isoenzyme in kidney and liver. FEBS Lett 2003; 550:35-40. [PMID: 12935882 DOI: 10.1016/s0014-5793(03)00809-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nuclear localization has been observed for glycolytic enzymes but not for key gluconeogenic enzymes. We report our findings on the intracellular localization of liver FBPase in rat liver and kidney, the main organs in the endogenous glucose production. Immunofluorescence and confocal analysis revealed that FBPase was present in the cytosol and, unexpectedly, inside the nucleus of hepatocytes and proximal cells of the nephron. Additionally, FBPase was found in the plasma membrane area of adjacent hepatocytes where glycogen is synthesized and in the apical region of proximal kidney cells. This subcellular distribution in multiple compartments suggests the presence of different localization signals on FBPase for diverse metabolic functions.
Collapse
Affiliation(s)
- Alejandro J Yáñez
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | | | | | | |
Collapse
|
63
|
Harrison GJ, van Wijhe MH, de Groot B, Dijk FJ, Gustafson LA, van Beek JHGM. Glycolytic buffering affects cardiac bioenergetic signaling and contractile reserve similar to creatine kinase. Am J Physiol Heart Circ Physiol 2003; 285:H883-90. [PMID: 12714331 DOI: 10.1152/ajpheart.00725.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Creatine kinase (CK) and glycolysis represent important energy-buffering processes in the cardiac myocyte. Although the role of compartmentalized CK in energy transfer has been investigated intensely, similar duties for intracellular glycolysis have not been demonstrated. By measuring the response time of mitochondrial oxygen consumption to dynamic workload jumps (tmito) in isolated rabbit hearts, we studied the effect of inhibiting energetic systems (CK and/or glycolysis) on transcytosolic signal transduction that couples cytosolic ATP hydrolysis to activation of oxidative phosphorylation. Tyrode-perfused hearts were exposed to 15 min of the following: 1) 0.4 mM iodoacetamide (IA; n = 6) to block CK (CK activity <3% vs. control), 2) 0.3 mM iodoacetic acid (IAA; n = 5) to inhibit glycolysis (GAPDH activity <3% vs. control), or 3) vehicle (control, n = 7) at 37 degrees C. Pretreatment tmito was similar across groups at 4.3 +/- 0.3 s (means +/- SE). No change in tmito was observed in control hearts; however, in IAA- and IA-treated hearts, tmito decreased by 15 +/- 3% and 40 +/- 5%, respectively (P < 0.05 vs. control), indicating quicker energy supply-demand signaling in the absence of ADP/ATP buffering by CK or glycolysis. The faster response times in IAA and IA groups were independent of the size of the workload jump, and the increase in myocardial oxygen consumption during workload steps was unaffected by CK or glycolysis blockade. Contractile function was compromised by IAA and IA treatment versus control, with contractile reserve (defined as increase in rate-pressure product during a standard heart rate jump) reduced to 80 +/- 8% and 80 +/- 10% of baseline, respectively (P < 0.05 vs. control), and significant elevations in end-diastolic pressure, suggesting raised ADP concentration. These results demonstrate that buffering of phosphate metabolites by glycolysis in the cytosol contributes appreciably to slower mitochondrial activation and may enhance contractile efficiency during increased cardiac workloads. Glycolysis may therefore play a role similar to CK in heart muscle.
Collapse
Affiliation(s)
- Glenn J Harrison
- Heart Foundation Research Centre, Griffith University, Gold Coast, Queensland 9726, Australia
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
Two views currently dominate experimental approaches to metabolic regulation. The first, let us call it Model 1, assumes that cells behave like a watery bag of enzymes. The alternative Model 2, however, assumes that 3-dimensional order and structure constrain metabolite behavior. A major problem in cell metabolism is determining why essentially all metabolite concentrations are remarkably stable (homeostatic) over large changes in pathway fluxes-for convenience, this is termed the [s] stability paradox. During large-scale transitions from maintenance metabolic rates to maximally activated work, contrasting demands of intracellular homeostasis versus metabolic regulation obviously arise. Data accumulated over the last 3-4 decades now make it clear that the demands of homeostasis prevail: during rest-work transitions, metabolites such as ATP and O(2) are notably and rigorously homeostatic; other intermediates usually do not vary by more than 0.5- to threefold over the resting condition. This impressive homeostasis is maintained despite changes in pathway fluxes that can exceed two orders of magnitude. Classical or Model 1 approaches to this problem can explain metabolite homeostasis, but the mechanisms for each metabolite, each enzyme locus, are necessarily specific. Thus Model 1 approaches basically do not provide a global explanation for the [s] stability paradox. Model 2 takes a different tack and assumes that an intracellular convection system acts as an over-riding 'assist' mechanism for facilitating enzyme-substrate encounter. Model 2 postulates that intracellular movement and convection are powered by macromolecular motors (unconventional myosins, dyneins, kinesin) running on actin or tubulin tracks. For fast and slow muscle fibers, microfilaments are concentrated near the periphery (where convection may be most important), but also extend throughout the actomyosin contractile apparatus both in horizontal and vertical dimensions. To this point in the development of the field, Model 1 and Model 2 approaches have operated as 'two solitudes', each considering the other incompatible with its own experimental modus operandi. In order to finally assemble a model that can sensibly explain a realistic working range of metabolic systems, opening of channels of communication between the above two very differing views of metabolic regulation would seem to be the requirement for the future.
Collapse
Affiliation(s)
- P W Hochachka
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
65
|
Sullivan DT, MacIntyre R, Fuda N, Fiori J, Barrilla J, Ramizel L. Analysis of glycolytic enzyme co-localization in Drosophila flight muscle. J Exp Biol 2003; 206:2031-8. [PMID: 12756285 DOI: 10.1242/jeb.00367] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila flight muscles, glycolytic enzymes are co-localized along sarcomeres at M-lines and Z-discs and co-localization is required for normal flight. We have extended our analysis of this phenomenon to include a set of six glycolytic enzymes that catalyze consecutive reactions along the glycolytic pathway: aldolase, glycerol-3-phosphate dehydrogenase (GPDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), triose phosphate isomerase, phosphoglycerate kinase and phosphoglycerol mutase (PGLYM). Each of these enzymes has an identical pattern of localization. In mutants null for GPDH, localization of none of the other enzymes occurs and therefore is interdependent. In optimally fixed preparations of myofibrils, accumulation of the enzymes at M-lines is much greater than at Z-discs. However, localization at M-lines is more labile, as shown by loss of localization when fixation is delayed. We have begun to analyze the protein-protein interaction involved in glycolytic enzyme co-localization using the yeast two-hybrid system. We have identified two pair-wise interactions. One is between GPDH and GAPDH and another is between GPDH and PGLYM.
Collapse
Affiliation(s)
- David T Sullivan
- Department of Biology, Syracuse University, Syracuse, NY 13224, USA.
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
Muscles are ideal models with which to examine the relationship between structure and metabolism because they are some of the most highly structured cells, and are capable of the largest and most rapid metabolic transitions as well as the highest metabolic rates known. Studies of metabolism have traditionally been conducted within what can considered as the kinetic paradigm provided by 'solution biochemistry'; i.e. the rates of enzymatic reactions are studied in terms of their regulation by mass-action and allosteric effectors and, most recently, metabolic control analysis of pathways. This approach has served biology well and continues to be useful. Here, we consider the diffusion of small and large molecules in muscles and energy metabolism in the context of intracellular space. We find that in attempting to explain certain phenomena, a purely kinetic paradigm appears insufficient. Instead, phenomena such as the 'shuttling' of high-energy phosphate donors and acceptors and the binding of metabolic enzymes to intracellular structures or to each other are better understood when metabolic rates and their regulation are considered in the context of intracellular compartments, distances, gradients and diffusion. As in all of biology, however, complexity dominates, and to such a degree that one pathway may consist of several reactions that each behave according to different rules. 'Soluble' creatine kinase operates at or near equilibrium, while mitochondrial and myofibrillar creatine kinases directly channel substrate to (or from) the adenine nucleotide translocase and actomyosin-ATPase, their operation being thus displaced from equilibrium. Hexose 6-phosphate metabolism appears to obey the rules of solution biochemistry, e.g. phosphoglucoisomerase behaves as Haldane would have predicted in 1930. In contrast, given low steady-state substrate and product concentrations and high flux rates, a number of glycolytic reactions further downstream must be catalyzed by enzymes localized in close proximity to each other. Metabolites may be channeled within these complexes. When observed, mechanistic differences between species in the same steps or processes should not be surprising, considering how animals vary so much in structures, mechanical properties, mitochondrial contents and metabolic rates. This analysis suggests that declarations of the triumph of one mechanism or paradigm over all others, as well as calls for the abandonment of solution biochemistry, are unwarranted. Rather, metabolic biochemistry would seem better served by reconciling the old and the new.
Collapse
Affiliation(s)
- Raul K Suarez
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106-9610, USA.
| |
Collapse
|
67
|
Kovacs J, Low P, Pacz A, Horvath I, Olah J, Ovadi J. Phosphoenolpyruvate-dependent tubulin-pyruvate kinase interaction at different organizational levels. J Biol Chem 2003; 278:7126-30. [PMID: 12482859 DOI: 10.1074/jbc.m210244200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Evidence for the direct binding of pyruvate kinase to tubulin/microtubule and for the inhibitory effect of phosphoenolpyruvate on tubulin-enzyme hetero-association were provided by surface plasmon resonance and pelleting experiments. Electron microscopy revealed that pyruvate kinase induces depolymerization of paclitaxel-stabilized microtubules into large oligomeric aggregates and bundles the tubules in a salt concentration-dependent manner. The C-terminal "tail"-free microtubules did not bind pyruvate kinase, suggesting the crucial role of the C-terminal segments in the binding of kinase. Immunoblotting and polymerization experiments with cell-free brain extract revealed that pyruvate kinase specifically binds to microtubules, the binding of pyruvate kinase impedes microtubule assembly, and phosphoenolpyruvate counteracts the destabilization of microtubules induced by pyruvate kinase. We also showed by immunostaining the juxtanuclear localization of pyruvate kinase in intact L929 cells and that this localization was influenced by treatments with paclitaxel or vinblastine. These findings suggest that the distribution of the enzyme may be controlled by the microtubular network in vivo.
Collapse
Affiliation(s)
- Janos Kovacs
- Department of General Zoology, Eötvös Loránd University, P.O. Box 330, H-1445 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
68
|
Chowrashi P, Mittal B, Sanger JM, Sanger JW. Amorphin is phosphorylase; phosphorylase is an alpha-actinin-binding protein. CELL MOTILITY AND THE CYTOSKELETON 2002; 53:125-35. [PMID: 12211109 DOI: 10.1002/cm.10059] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In a study of myofibrillar proteins, Chowrashi and Pepe [1982: J. Cell Biol. 94:565-573] reported the isolation of a new, 85-kD Z-band protein that they named amorphin. We report that partial sequences of purified amorphin protein indicate that amorphin is identical to phosphorylase, an enzyme important in the metabolism of glycogen. Anti-amorphin antibodies also reacted with purified chicken and rabbit phosphorylase. To explore the basis for phosphorylase's (amorphin's) localization in the Z-bands of skeletal muscles, we reacted biotinylated alpha-actinin with purified amorphin and with purified phosphorylase and found that alpha-actinin bound to each. Radioimmune assays also indicated that phosphorylase (amorphin) bound to alpha-actinin, and, with lower affinity, to F-actin. Negative staining of actin filaments demonstrated that alpha-actinin mediates the binding of phosphorylase to actin filaments. There are several glycolytic enzymes that bind actin (e.g., aldolase, phosphofructokinase, and pyruvate kinase), but phosphorylase is the first one demonstrated to bind alpha-actinin. Localization of phosphorylase in live cells was assessed by transfecting cultures of quail embryonic myotubes with plasmids expressing phosphorylase fused to Green Fluorescent Protein (GFP). This resulted in targeting of the fusion protein to Z-bands accompanied by a diffuse pattern in the cytoplasm.
Collapse
Affiliation(s)
- Prokash Chowrashi
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, 19104-6058, USA
| | | | | | | |
Collapse
|
69
|
Brown LJ, Koza RA, Everett C, Reitman ML, Marshall L, Fahien LA, Kozak LP, MacDonald MJ. Normal thyroid thermogenesis but reduced viability and adiposity in mice lacking the mitochondrial glycerol phosphate dehydrogenase. J Biol Chem 2002; 277:32892-8. [PMID: 12093799 DOI: 10.1074/jbc.m202408200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial glycerol phosphate dehydrogenase (mGPD) is important for metabolism of glycerol phosphate for gluconeogenesis or energy production and has been implicated in thermogenesis induced by cold and thyroid hormone treatment. mGPD in combination with the cytosolic glycerol phosphate dehydrogenase (cGPD) is proposed to form the glycerol phosphate shuttle, catalyzing the interconversion of dihydroxyacetone phosphate and glycerol phosphate with net oxidation of cytosolic NADH. We made a targeted deletion in Gdm1 and produced mice lacking mGPD. On a C57BL/6J background these mice showed a 50% reduction in viability compared with wild-type littermates. Uncoupling protein-1 mRNA levels in brown adipose tissue did not differ between mGPD knockout and control pups, suggesting normal thermogenesis. Pups lacking mGPD had decreased liver ATP and slightly increased liver glycerol phosphate. In contrast, liver and muscle metabolites were normal in adult animals. Adult mGPD knockout animals had a normal cold tolerance, normal circadian rhythm in body temperature, and demonstrated a normal temperature increase in response to thyroid hormone. However, they were found to have a lower body mass index, a 40% reduction in the weight of white adipose tissue, and a slightly lower fasting blood glucose than controls. The phenotype may be secondary to consequences of the obligatory production of cytosolic NADH from glycerol metabolism in the mGPD knockout animal. We conclude that, although mGPD is not essential for thyroid thermogenesis, variations in its function affect viability and adiposity in mice.
Collapse
Affiliation(s)
- Laura J Brown
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
de Groof AJ, Oerlemans FT, Jost CR, Wieringa B. Changes in glycolytic network and mitochondrial design in creatine kinase-deficient muscles. Muscle Nerve 2001; 24:1188-96. [PMID: 11494272 DOI: 10.1002/mus.1131] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Skeletal muscles respond with high plasticity to pathobiological conditions or changes in physiological demand by remodeling cytoarchitectural and metabolic characteristics of individual myocytes. We have previously shown that muscles of mice without mitochondrial and/or cytosolic creatine kinases (ScCKmit(-/-) and/or M-CK(-/-)) partly compensate for the defect(s) by redirecting metabolic pathways and ultrastructural characteristics. Here, we show by semiquantitative Western blot analysis that the compensatory changes involve mutation- and fiber-type-specific coordinated regulation of divergent but functionally coupled groups of proteins. Fast-twitch gastrocnemius muscle of CK(--/--) mice display a two- to fourfold upregulation of mitochondrial cytochrome c oxidase, inorganic phosphate carrier, adenine nucleotide translocator, and voltage-dependent anion channel proteins. In parallel, cytosolic myoglobin is upregulated. Slow-twitch soleus muscle responds with changes in the glycolytic enzyme pattern, including a shift in lactate dehydrogenase isoenzyme composition. Adaptations in the network for oxidative adenosine triphosphate (ATP) production are already apparent at 17 days of age.
Collapse
Affiliation(s)
- A J de Groof
- Department of Cell Biology, Nijmegen Center for Molecular Life Sciences, University Medical Center, University of Nijmegen, P.O. Box 9101, NL-6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
71
|
Abstract
In this introduction to the Proceedings of the Symposium on Glutamine, we consider various lines of evidence that might potentially lead to an answer to the question posed in the title. We begin with a short summary of the multiple functions of glutamine, which are extensive and, superficially at least, equally as impressive as those of glutamate. However, each of these amino acids may serve an equivalent role in some of these functions due to their ready metabolic interconversion. We raise the question whether glutamine is of primordial or rudimentary significance or whether it is a product of somebody else's existence. Thus, there is a short account of the prebiotic events of evolution that led to the appearance of glutamine and life on Earth. In doing this, it then appears that glutamine is a rather schizophrenic molecule, stable and thermodynamically reliable in biochemical environments, but labile in chemical ones. We then turn to the involvement of glutamine in mammalian N (nitrogen) commerce, with initial emphasis on the nitrogen cycle on Earth, then N transport and N excretion, before assessing its contribution to carbon/energy or C/E commerce. We hypothesize that, in addition to its utilization in immune cell function and in normal intestinal tissues, glutamine is a particularly key anapleurotic and energy-yielding substrate in conditions of hypoxia, anoxia and dysoxia. It also serves as a quantitatively important gluconeogenic metabolite under normal postabsorptive conditions. We postulate that in certain conditions, this carbon-energy econometric function might be by-passed with ornithine. In conclusion, the answer to the question above depends on the context, and this point will receive elaboration in many of the individual contributions that collaborate to form these Proceedings.
Collapse
Affiliation(s)
- V R Young
- Laboratory of Human Nutrition, School of Science and Clinical Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
72
|
Kraft T, Hornemann T, Stolz M, Nier V, Wallimann T. Coupling of creatine kinase to glycolytic enzymes at the sarcomeric I-band of skeletal muscle: a biochemical study in situ. J Muscle Res Cell Motil 2001; 21:691-703. [PMID: 11227796 DOI: 10.1023/a:1005623002979] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The specific interaction of muscle type creatine-kinase (MM-CK) with the myofibrillar M-line was demonstrated by exchanging endogenous MM-CK with an excess of fluorescently labeled MM-CK in situ, using chemically skinned skeletal muscle fibers and confocal microscopy. No binding of labeled MM-CK was noticed at the I-band of skinned fibers, where the enzyme is additionally located in vivo, as shown earlier by immunofluorescence staining of cryosections of intact muscle. However, when rhodamine-labeled MM-CK was diffused into skinned fibers that had been preincubated with phosphofructokinase (PFK), a glycolytic enzyme known to bind to actin, a striking in vivo-like interaction of Rh-MM-CK with the I-band was found, presumably mediated by binding of Rh-MM-CK to the glycolytic enzyme. Aldolase, another actin-binding glycolytic enzyme was also able to bind Rh-MM-CK to the I-band, but formation of the complex occurred preferably at long sarcomere length (> 3.0 microm). Neither pyruvate kinase, although known for its binding to actin, nor phosphoglycerate kinase (PGK), not directly interacting with the I-band itself, did mediate I-band targeting of MM-CK. Anchoring of MM-CK to the I-band via PFK, but not so via aldolase, was strongly pH-dependent and occurred below pH 7.0. Labeling performed at different sarcomere length indicated that the PFK/MM-CK complex bound to thin filaments of the I-band, but not within the actomyosin overlap zones. The physiological consequences of the structural interaction of MM-CK with PFK at the I-band is discussed with respect to functional coupling of MM-CK to glycolysis, metabolic regulation and channeling in multi-enzyme complexes. The in situ binding assay with skinned skeletal muscle fibers described here represents a useful method for further studies of specific protein-protein interactions in a structurally intact contractile system under various precisely controlled conditions.
Collapse
Affiliation(s)
- T Kraft
- Swiss Federal Institute of Technology, Institute of Cell Biology, ETH Zürich.
| | | | | | | | | |
Collapse
|
73
|
Suarez RK. Energy metabolism during insect flight: biochemical design and physiological performance. Physiol Biochem Zool 2000; 73:765-71. [PMID: 11121349 DOI: 10.1086/318112] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2000] [Indexed: 11/04/2022]
Abstract
Flying insects achieve the highest known mass-specific rates of O(2) consumption in the animal kingdom. Because the flight muscles account for >90% of the organismal O(2) uptake, accurate estimates of metabolic flux rates (J) in the muscles can be made. In steady state, these are equal to the net forward flux rates (v) at individual steps and can be compared with flux capacities (V(max)) measured in vitro. In flying honeybees, hexokinase and phosphofructokinase, both nonequilibrium reactions in glycolysis, operate at large fractions of their maximum capacities (i.e., they operate at high v/V(max)). Phosphoglucoisomerase is a reversible reaction that operates near equilibrium. Despite V(max) values more than 20-fold greater than the net forward flux rates during flight, a close match is found between the V(max) required in vivo (estimated using the Haldane relationship) to maintain near equilibrium and this net forward flux rate and the V(max) measured in vitro under simulated physiological conditions. Rates of organismal O(2) consumption and difference spectroscopy were used to estimate electron transfer rates per molecule of respiratory chain enzyme during flight. These are much higher than those estimated in mammalian muscles. Current evidence indicates that metabolic enzymes in honeybees do not display higher catalytic efficiencies than the homologous enzymes in mammals, and the high electron transfer rates do not appear to be the result of higher enzyme densities per unit cristae surface area. A number of possible mechanistic explanations for the higher rates of electron transfer are proposed.
Collapse
Affiliation(s)
- R K Suarez
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106-9610, USA.
| |
Collapse
|
74
|
Mahajan VB, Pai KS, Lau A, Cunningham DD. Creatine kinase, an ATP-generating enzyme, is required for thrombin receptor signaling to the cytoskeleton. Proc Natl Acad Sci U S A 2000; 97:12062-7. [PMID: 11050237 PMCID: PMC17294 DOI: 10.1073/pnas.97.22.12062] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thrombin orchestrates cellular events after injury to the vascular system and extravasation of blood into surrounding tissues. The pathophysiological response to thrombin is mediated by protease-activated receptor-1 (PAR-1), a seven-transmembrane G protein-coupled receptor expressed in the nervous system that is identical to the thrombin receptor in platelets, fibroblasts, and endothelial cells. Once activated by thrombin, PAR-1 induces rapid and dramatic changes in cell morphology, notably the retraction of growth cones, axons, and dendrites in neurons and processes in astrocytes. The signal is conveyed by a series of localized ATP-dependent reactions directed to the actin cytoskeleton. How cells meet the dynamic and localized energy demands during signal transmission is unknown. Using the yeast two-hybrid system, we identified an interaction between PAR-1 cytoplasmic tail and the brain isoform of creatine kinase, a key ATP-generating enzyme that regulates ATP within subcellular compartments. The interaction was confirmed in vitro and in vivo. Reducing creatine kinase levels or its ATP-generating potential inhibited PAR-1-mediated cellular shape changes as well as a PAR-1 signaling pathway involving the activation of RhoA, a small G protein that relays signals to the cytoskeleton. Thrombin-stimulated intracellular calcium release was not affected. Our results suggest that creatine kinase is bound to PAR-1 where it may be poised to provide bursts of site-specific high-energy phosphate necessary for efficient receptor signal transduction during cytoskeletal reorganization.
Collapse
Affiliation(s)
- V B Mahajan
- Department of Microbiology and Molecular Genetics, College of Medicine University of California, Irvine, CA 92697-4025, USA
| | | | | | | |
Collapse
|
75
|
Hochachka PW. Oxygen, homeostasis, and metabolic regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 475:311-35. [PMID: 10849672 DOI: 10.1007/0-306-46825-5_30] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Even a cursory review of the literature today indicates that two views dominate experimental approaches to metabolic regulation. Model I assumes that cell behavior is quite similar to that expected for a bag of enzymes. Model II assumes that 3-D order and structure constrain metabolite behavior and that metabolic regulation theory has to incorporate structure to ever come close to describing reality. The phosphagen system may be used to illustrate that both approaches lead to very productive experimentation and significant advances are being made within both theoretical frameworks. However, communication between the two approaches or the two 'groups' is essentially nonexistent and in many cases (our own for example) some experiments are done in one framework and some in the other (implying some potential schizophrenia in the field). In our view, the primary paradox and problem which no one has solved so far is that essentially all metabolite concentrations are remarkably stable (are homeostatic) over large changes in pathway fluxes. For muscle cells O2 is one of the most perfectly homeostatic of all even though O2 delivery and metabolic rate usually correlate in a 1:1 fashion. Four explanations for this behavior are given by traditional metabolic regulation models. Additionally, there is some evidence for universal O2 sensors which could help to get us out of the paradox. In contrast, proponents of an ultrastructurally dominated view of the cell assume intracellular perfusion or convection as the main means for accelerating enzyme-substrate encounter and as a way to account for the data which have been most perplexing so far: the striking lack of correlation between changes in pathway reaction rates and changes in concentrations of pathway substrates and intermediates, including oxygen. The polarization illustrated by these two views of living cells extends throughout the metabolic regulation field (and has caused the field to progress along two surprisingly independent paths with minimal communication between them). The time may have come when cross talk between the two fields may be useful.
Collapse
Affiliation(s)
- P W Hochachka
- Dept. of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
76
|
Ouporov IV, Keith TJ, Knull HR, Thomasson KA. Computer simulations of glycolytic enzyme interactions with F-actin. J Biomol Struct Dyn 2000; 18:311-23. [PMID: 11089651 DOI: 10.1080/07391102.2000.10506668] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Muscle actin and fructose-1,6-bisphosphate aldolase (aldolase) were chemically crosslinked to produce an 80 kDa product representing one subunit of aldolase linked to one subunit of actin. Hydroxylamine digestion of the crosslinked product resulted in two 40.5 kDa fragments, one that was aldolase linked to the 12 N-terminal residues of actin. Brownian dynamics simulations of muscle aldolase and GAPDH with F-actin (muscle, yeast, and various mutants) estimated the association free energy. Mutations of residues 1-4 of muscle actin to Ala individually or two in combination of the first four residues reduced the estimated binding free energy. Simulations showed that muscle aldolase binds with the same affinity to the yeast actin as to the double mutated muscle actin; these mutations make the N-terminal of muscle actin identical to yeast, supporting the conclusion that the actin N-terminus participates in binding. Because the depth of free energy wells for yeast and the double mutants is less than for native rabbit actin, the simulations support experimental findings that muscle aldolase and GAPDH have a higher affinity for muscle actin than for yeast actin. Furthermore, Brownian dynamics revealed that the lower affinity of yeast actin for aldolase and GAPDH compared to muscle actin, was directly related to the acidic residues at the N-terminus of actin.
Collapse
Affiliation(s)
- I V Ouporov
- Department of Chemistry, University of North Dakota, Grand Forks 58202, USA
| | | | | | | |
Collapse
|
77
|
Abstract
In order to fly, insects require flight muscles that constitute at least 12 to 16% of their total mass, and flight performance increases as this percentage increases. However, flight muscles are energetically and materially expensive to build and maintain, and investment in flight muscles constrains other aspects of function, particularly female fecundity. This review examines ways in which insects vary the size of their flight muscles, and how variation in the relative size and composition of flight muscles affects flight performance. Sources of variability in flight muscle size and composition include genetic differences within and between species, individual phenotypic responses to environmental stimuli, and maturational changes that occur before and during the adult stage. Insects have evolved a wide variety of ways to adjust flight muscle size and contractile performance in order to meet demands imposed by variation in life history and ecology.
Collapse
Affiliation(s)
- J H Marden
- Department of Biology, Pennsylvania State University, University Park 16802, USA.
| |
Collapse
|
78
|
|
79
|
Hornemann T, Stolz M, Wallimann T. Isoenzyme-specific interaction of muscle-type creatine kinase with the sarcomeric M-line is mediated by NH(2)-terminal lysine charge-clamps. J Cell Biol 2000; 149:1225-34. [PMID: 10851020 PMCID: PMC2175123 DOI: 10.1083/jcb.149.6.1225] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/1999] [Accepted: 05/03/2000] [Indexed: 11/22/2022] Open
Abstract
Creatine kinase (CK) is located in an isoenzyme-specific manner at subcellular sites of energy production and consumption. In muscle cells, the muscle-type CK isoform (MM-CK) specifically interacts with the sarcomeric M-line, while the highly homologous brain-type CK isoform (BB-CK) does not share this property. Sequence comparison revealed two pairs of lysine residues that are highly conserved in M-CK but are not present in B-CK. The role of these lysines in mediating M-line interaction was tested with a set of M-CK and B-CK point mutants and chimeras. We found that all four lysine residues are involved in the isoenzyme-specific M-line interaction, acting pair-wise as strong (K104/K115) and weak interaction sites (K8/K24). An exchange of these lysines in MM-CK led to a loss of M-line binding, whereas the introduction of the very same lysines into BB-CK led to a gain of function by transforming BB-CK into a fully competent M-line-binding protein. The role of the four lysines in MM-CK is discussed within the context of the recently solved x-ray structures of MM-CK and BB-CK.
Collapse
Affiliation(s)
- T Hornemann
- Swiss Federal Institute of Technology, Institute of Cell Biology, Eidenössisch Technische Hochschule Zürich Hönggerberg, 8093 Zürich, Switzerland.
| | | | | |
Collapse
|
80
|
Merkulova T, Dehaupas M, Nevers MC, Créminon C, Alameddine H, Keller A. Differential modulation of alpha, beta and gamma enolase isoforms in regenerating mouse skeletal muscle. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3735-43. [PMID: 10848992 DOI: 10.1046/j.1432-1327.2000.01408.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nothing is known about the expression of the glycolytic enzyme enolase in skeletal muscle alterations such as myofiber degeneration and regeneration. Enolase is a dimeric enzyme which exhibits cell type specific isoforms. The embryonic form, alphaalpha, remains expressed in most adult tissues, whereas a transition towards specific isoforms occurs during ontogenesis in two cell types with high energy requirements: alphagamma and gammagamma in neurons, alphabeta and betabeta in striated muscle cells. During murine myogenesis, beta enolase transcripts are detected early in the forming muscles, and the beta gene is further upregulated at specific stages of muscle development. The alpha and beta subunits exhibit characteristic developmental microheterogeneity patterns. High levels of beta enolase subunits characterize the glycolytic fast-twitch fibers of adult muscles. We have investigated the expression of enolase subunits in a mouse experimental model of muscle regeneration. Following a single intramuscular injection of the necrotic agent cardiotoxin, we observed a rapid decrease in the level of the major muscle enolase subunit beta, accounting for the drop in total enolase activity that correlated with the degeneration of myofibers. Concomitant with the regeneration of new fibers, beta subunit levels began to increase, reaching normal values by 30 days after injury. Changes in the embryonic and ubiquitous subunit, alpha, mimicked those occurring during development by two aspects: modifications in electrophoretic variants and redistribution between soluble and insoluble compartments of muscle extracts. Imunocytochemical analyses of alpha and beta enolase subunits first revealed a homogeneous labeling within myofibers. Striations characteristic of normal adult muscle tissue were visible again by day 14 after injury. A perinuclear alpha and beta immunoreactivity was often observed in regenerating myofibers but its functional significance remains to be elucidated. Double labeling experiments with anti-gamma enolase and FITC-alpha bungarotoxin allowed us to follow the neuromuscular junction remodeling that occurs during muscle regeneration despite the absence of nerve injury.
Collapse
Affiliation(s)
- T Merkulova
- CNRS UPR 9065, Collège de France, Paris, France
| | | | | | | | | | | |
Collapse
|
81
|
Affiliation(s)
- P A Srere
- Veterans Administration Medical Center, 4500 South Lancaster Road, Dallas, TX 75216, USA
| |
Collapse
|
82
|
Gitlits VM, Toh BH, Loveland KL, Sentry JW. The glycolytic enzyme enolase is present in sperm tail and displays nucleotide-dependent association with microtubules. Eur J Cell Biol 2000; 79:104-11. [PMID: 10727018 DOI: 10.1078/s0171-9335(04)70012-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examined the expression and localisation of enolase (2-phospho-D-glycerate hydrolase) in differentiating rat spermatogenic cells. We found that enolase is most abundant in mature spermatozoa and in residual cytoplasmic bodies detached from elongating spermatids with little to no enolase detected in meiotic primary spermatocytes and round spermatids. We localised enolase mostly to the tail of mature spermatozoa by immunoblotting and by immunofluorescence. RT-PCR analysis of differentiating spermatogenic cells detected only the alpha isoform of enolase. As several glycolytic enzymes are known to associate with microtubules prepared from brain, we investigated the association of enolase with brain and testis microtubules. We found that only a small fraction of testis and brain-derived cytosolic enolase (4.9% and 11.2%, respectively) co-sediments with microtubules stabilised in the presence of taxol. In the presence of certain nucleotides in excess (3 mM ATP, CTP, GTP and ITP) the association of enolase with microtubules was disrupted, however, this was not the case for UTP. This observation is consistent with the finding that in the presence of 0.5 mM AMP-PNP, a nonhydrolysable analogue of ATP, there is an increased association of enolase with microtubules. We propose that the nucleotide-dependent association of enolase with microtubules regulates enzyme activity by linking energy production to utilisation.
Collapse
Affiliation(s)
- V M Gitlits
- Department of Pathology and Immunology, Monash Medical School, Alfred Hospital, Prahan, Victoria/Australia
| | | | | | | |
Collapse
|
83
|
Hochachka PW. Cross-species studies of glycolytic function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 474:219-29. [PMID: 10635004 DOI: 10.1007/978-1-4615-4711-2_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Researchers probing the functional properties of glycogen (glucose) fermentation to lactate typically work within either one of two theoretical frameworks or models. The first assumes that the cell is analogous to a watery bag of enzymes, while the second assumes that three dimensional order and structure constrain the behaviors of glycolytic intermediates, of glycolytic enzymes, and of integrated glycolytic pathway functions per se. The former approach has been quite successful in accounting for many glycolytic functions but has not been able to satisfactorily explain a hallmark property of the pathway: namely, that large scale change in pathway flux is reflected in only modest changes in concentrations of pathway intermediates. Despite being composed of very different kinds of enzymes, the pathway is remarkably homeostatic by criterion of stability of concentrations of its intermediates in different metabolic states. The view of the cell as a system in which enzyme, substrate, and modulator mobilities are constrained by intracellular structures, the second framework above, posits intracellular perfusion or convection as a means for increasing rates of enzyme-substrate encounter and as an explanation for how high glycolytic pathway fluxes and homeostasis of pathway intermediates can be sustained simultaneously.
Collapse
Affiliation(s)
- P W Hochachka
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
84
|
Luby-Phelps K. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 192:189-221. [PMID: 10553280 DOI: 10.1016/s0074-7696(08)60527-6] [Citation(s) in RCA: 733] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Classical biochemistry is founded on several assumptions valid in dilute aqueous solutions that are often extended without question to the interior milieu of intact cells. In the first section of this chapter, we present these assumptions and briefly examine the ways in which the cell interior may depart from the conditions of an ideal solution. In the second section, we summarize experimental evidence regarding the physical properties of the cell cytoplasm and their effect on the diffusion and binding of macromolecules and vesicles. While many details remain to be worked out, it is clear that the aqueous phase of the cytoplasm is crowded rather than dilute, and that the diffusion and partitioning of macromolecules and vesicles in cytoplasm is highly restricted by steric hindrance as well as by unexpected binding interactions. Furthermore, the enzymes of several metabolic pathways are now known to be organized into structural and functional units with specific localizations in the solid phase, and as much as half the cellular protein content may also be in the solid phase.
Collapse
Affiliation(s)
- K Luby-Phelps
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas 75235-9040, USA
| |
Collapse
|
85
|
Hochachka PW. The metabolic implications of intracellular circulation. Proc Natl Acad Sci U S A 1999; 96:12233-9. [PMID: 10535904 PMCID: PMC34257 DOI: 10.1073/pnas.96.22.12233] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/1999] [Accepted: 08/16/1999] [Indexed: 11/18/2022] Open
Abstract
Two views currently dominate research into cell function and regulation. Model I assumes that cell behavior is quite similar to that expected for a watery bag of enzymes and ligands. Model II assumes that three-dimensional order and structure constrain and determine metabolite behavior. A major problem in cell metabolism is determining why essentially all metabolite concentrations are remarkably stable (are homeostatic) over large changes in pathway fluxes-for convenience, this is termed the [s] stability paradox. For muscle cells, ATP and O(2) are the most perfectly homeostatic, even though O(2) delivery and metabolic rate correlate in a 1:1 fashion. In total, more than 60 metabolites are known to be remarkably homeostatic in differing metabolic states. Several explanations of [s] stability are usually given by traditional model I studies-none of which apply to all enzymes in a pathway, and all of which require diffusion as the means for changing enzyme-substrate encounter rates. In contrast, recent developments in our understanding of intracellular myosin, kinesin, and dyenin motors running on actin and tubulin tracks or cables supply a mechanistic basis for regulated intracellular circulation systems with cytoplasmic streaming rates varying over an approximately 80-fold range (from 1 to >80 micrometer x sec(-1)). These new studies raise a model II hypothesis of intracellular perfusion or convection as a primary means for bringing enzymes and substrates together under variable metabolic conditions. In this view, change in intracellular perfusion rates cause change in enzyme-substrate encounter rates and thus change in pathway fluxes with no requirement for large simultaneous changes in substrate concentrations. The ease with which this hypothesis explains the [s] stability paradox is one of its most compelling features.
Collapse
Affiliation(s)
- P W Hochachka
- Department of Zoology, University of British Columbia, Vancouver, BC Canada V6T 1Z4.
| |
Collapse
|
86
|
Burbulis IE, Winkel-Shirley B. Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc Natl Acad Sci U S A 1999; 96:12929-34. [PMID: 10536025 PMCID: PMC23169 DOI: 10.1073/pnas.96.22.12929] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flavonoids are secondary metabolites derived from phenylalanine and acetate metabolism that perform a variety of essential functions in higher plants. Studies over the past 30 years have supported a model in which flavonoid metabolism is catalyzed by an enzyme complex localized to the endoplasmic reticulum [Hrazdina, G. & Wagner, G. J. (1985) Arch. Biochem. Biophys. 237, 88-100]. To test this model further we assayed for direct interactions between several key flavonoid biosynthetic enzymes in developing Arabidopsis seedlings. Two-hybrid assays indicated that chalcone synthase, chalcone isomerase (CHI), and dihydroflavonol 4-reductase interact in an orientation-dependent manner. Affinity chromatography and immunoprecipitation assays further demonstrated interactions between chalcone synthase, CHI, and flavonol 3-hydroxylase in lysates from Arabidopsis seedlings. These results support the hypothesis that the flavonoid enzymes assemble as a macromolecular complex with contacts between multiple proteins. Evidence was also found for posttranslational modification of CHI. The importance of understanding the subcellular organization of elaborate enzyme systems is discussed in the context of metabolic engineering.
Collapse
Affiliation(s)
- I E Burbulis
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406, USA
| | | |
Collapse
|
87
|
in 't Zandt HJ, Oerlemans F, Wieringa B, Heerschap A. Effects of ischemia on skeletal muscle energy metabolism in mice lacking creatine kinase monitored by in vivo 31P nuclear magnetic resonance spectroscopy. NMR IN BIOMEDICINE 1999; 12:327-334. [PMID: 10516614 DOI: 10.1002/(sici)1099-1492(199910)12:6<327::aid-nbm570>3.0.co;2-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The aim of this study was to provide in vivo experimental evidence for the proposed biological significance of the creatine kinase (CK)/phosphocreatine (PCr) system in the energy metabolism of skeletal muscle. As a test system we compared hindlimb muscle of knockout mice lacking the cytosolic M-type (M-CK(-)/(-)), the mitochondrial ScMit-type (ScCKmit(-)/(-)), or both creatine kinase isoenzymes (CK(-)/(-)), and in vivo 31P-NMR was used to monitor metabolic responses during and after an ischemic period. Although single mutants show some subtle specific abnormalities, in general their metabolic responses appear similar to wild type, in contrast to CK(-)/(-) double mutants. This implies that presence of one CK isoform is both necessary and sufficient for the system to be functional in meeting ischemic stress conditions. The global ATP buffering role of the CK/PCr system became apparent in a 30% decline of ATP in the CK(-)/(-) mice during ischemia. Both M-CK(-)/(-) and CK(-)/(-) showed increased phosphomonoester levels during ischemia, most likely reflecting adaptation to a more efficient utilization of glycogenolysis. While in M-CK(-)/(-) muscle PCr can still be hydrolyzed to provide Pi for this process, in CK(-)/(-) muscle only Pi from ATP breakdown is available and Pi levels increase much more slowly. The experiments also revealed that the system plays a role in maintaining pH levels; the CK(-)/(-) mice showed a faster and more pronounced acidification (pH = 6.6) than muscles of wild type and single knockout mutants (pH = 6.9).
Collapse
Affiliation(s)
- H J in 't Zandt
- Department of Radiology, University Hospital Nijmegen, 6500 HB, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
88
|
Abstract
Tissues such as skeletal and cardiac muscles must sustain very large-scale changes in ATP turnover rate during equally large changes in work. In many skeletal muscles these changes can exceed 100-fold. Examination of a number of cell and whole-organism level systems identifies ATP concentration as a key parameter of the interior milieu that is nearly universally 'homeostatic'; it is common to observe no change in ATP concentration even while change in its turnover rate can increase or decrease by two orders of magnitude or more. A large number of other intermediates of cellular metabolism are also regulated within narrow concentration ranges, but none seemingly as precisely as is [ATP]. In fact, the only other metabolite in aerobic energy metabolism that is seemingly as 'homeostatic' is oxygen--at least in working muscles where myoglobin serves to buffer oxygen concentrations at stable and constant values at work rates up to the aerobic maximum. In contrast to intracellular oxygen concentration, a 1:1 relationship between oxygen delivery and metabolic rate is observed over biologically realistic and large-magnitude changes in work. The central regulatory question is how the oxygen delivery signal is transmitted to the intracellular metabolic machinery. Traditional explanations assume diffusion as the dominant mechanism, while proponents of an ultrastructurally dominated view of the cell assume an intracellular perfusion system to account for the data which have been most perplexing to metabolic biochemistry so far: the striking lack of correlation between changes in pathway reaction rates and changes in concentrations of pathway substrates, including oxygen and pathway intermediates.
Collapse
Affiliation(s)
- P W Hochachka
- Department of Zoology, Radiology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
89
|
Wilanowski TM, Hayward DC, Gibson JB. Nucleotide sequence and expression of the sn-glycerol-3-phosphate dehydrogenase gene in Locusta migratoria. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1443:414-8. [PMID: 9878858 DOI: 10.1016/s0167-4781(98)00242-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The sn-glycerol-3-phosphate dehydrogenase gene (Gpdh) in the locust (Locusta migratoria) encodes three mature transcripts and a number of isozymes. Gpdh expression is tissue- and developmentally regulated such that two transcripts are unique to flight muscle. Identical proteins are encoded by two transcripts which are generated by alternative splicing downstream of the stop codon in the penultimate exon.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Genes, Insect/genetics
- Glycerol-3-Phosphate Dehydrogenase (NAD+)
- Glycerolphosphate Dehydrogenase/genetics
- Grasshoppers/chemistry
- Grasshoppers/enzymology
- Grasshoppers/genetics
- Isoenzymes/genetics
- Molecular Sequence Data
- RNA Splicing
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Tissue Distribution
- Transcription, Genetic
Collapse
Affiliation(s)
- T M Wilanowski
- Molecular Genetics and Evolution Group, Research School of Biological Sciences, The Australian National University, G.P.O. Box 475, Canberra ACT 2601, Australia
| | | | | |
Collapse
|