51
|
Marcelot A, Petitalot A, Ropars V, Le Du MH, Samson C, Dubois S, Hoffmann G, Miron S, Cuniasse P, Marquez JA, Thai R, Theillet FX, Zinn-Justin S. Di-phosphorylated BAF shows altered structural dynamics and binding to DNA, but interacts with its nuclear envelope partners. Nucleic Acids Res 2021; 49:3841-3855. [PMID: 33744941 PMCID: PMC8053085 DOI: 10.1093/nar/gkab184] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/05/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023] Open
Abstract
Barrier-to-autointegration factor (BAF), encoded by the BANF1 gene, is an abundant and ubiquitously expressed metazoan protein that has multiple functions during the cell cycle. Through its ability to cross-bridge two double-stranded DNA (dsDNA), it favours chromosome compaction, participates in post-mitotic nuclear envelope reassembly and is essential for the repair of large nuclear ruptures. BAF forms a ternary complex with the nuclear envelope proteins lamin A/C and emerin, and its interaction with lamin A/C is defective in patients with recessive accelerated aging syndromes. Phosphorylation of BAF by the vaccinia-related kinase 1 (VRK1) is a key regulator of BAF localization and function. Here, we demonstrate that VRK1 successively phosphorylates BAF on Ser4 and Thr3. The crystal structures of BAF before and after phosphorylation are extremely similar. However, in solution, the extensive flexibility of the N-terminal helix α1 and loop α1α2 in BAF is strongly reduced in di-phosphorylated BAF, due to interactions between the phosphorylated residues and the positively charged C-terminal helix α6. These regions are involved in DNA and lamin A/C binding. Consistently, phosphorylation causes a 5000-fold loss of affinity for dsDNA. However, it does not impair binding to lamin A/C Igfold domain and emerin nucleoplasmic region, which leaves open the question of the regulation of these interactions.
Collapse
Affiliation(s)
- Agathe Marcelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Ambre Petitalot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Marie-Hélène Le Du
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Camille Samson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | | | - Guillaume Hoffmann
- High Throughput Crystallization Lab, EMBL Grenoble Outstation, Grenoble Cedex, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Philippe Cuniasse
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Jose Antonio Marquez
- High Throughput Crystallization Lab, EMBL Grenoble Outstation, Grenoble Cedex, France
| | | | - François-Xavier Theillet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| |
Collapse
|
52
|
Abstract
Micronuclei are aberrant nuclear compartments that form when chromosomes or chromosome fragments fail to incorporate into a primary nucleus during mitotic exit. Ruptures at the micronuclear envelope are associated with DNA damage and activation of immune sensing pathways. To gain insights into these processes, we have developed a method to purify ruptured micronuclei. This method paves the way toward understanding the consequences of micronuclear envelope rupture. For complete details on the use and execution of this protocol, please refer to Mohr et al. (2021). An optimized protocol for purifying micronuclei with ruptured nuclear envelopes Use of fluorescent markers enables flow sorting of distinct populations of micronuclei Preservation of micronuclear protein and DNA content for functional characterization
Collapse
Affiliation(s)
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
53
|
Halfmann CT, Roux KJ. Barrier-to-autointegration factor: a first responder for repair of nuclear ruptures. Cell Cycle 2021; 20:647-660. [PMID: 33678126 DOI: 10.1080/15384101.2021.1892320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The nuclear envelope (NE) is a critical barrier between the cytosol and nucleus that is key for compartmentalization within the cell and serves an essential role in organizing and protecting genomic DNA. Rupturing of the NE through loss of constitutive NE proteins and/or mechanical force applied to the nucleus results in the unregulated mixing of cytosolic and nuclear compartments, leading to DNA damage and genomic instability. Nuclear rupture has recently gained interest as a mechanism that may participate in various NE-associated diseases as well as cancer. Remarkably, these rupturing events are often transient, with cells being capable of rapidly repairing nuclear ruptures. Recently, we identified Barrier-to-Autointegration Factor (BAF), a DNA-binding protein involved in post-mitotic NE reformation and cytosolic viral regulation, as an essential protein for nuclear rupture repair. During interphase, the highly mobile cytosolic BAF is primed to monitor for a compromised NE by rapidly binding to newly exposed nuclear DNA and subsequently recruiting the factors necessary for NE repair. This review highlights the recent findings of BAF's roles in rupture repair, and offers perspectives on how regulatory factors that control BAF activity may potentially alter the cellular response to nuclear ruptures and how BAF may participate in human disease.
Collapse
Affiliation(s)
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
54
|
Zhen Y, Radulovic M, Vietri M, Stenmark H. Sealing holes in cellular membranes. EMBO J 2021; 40:e106922. [PMID: 33644904 PMCID: PMC8013788 DOI: 10.15252/embj.2020106922] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
The compartmentalization of eukaryotic cells, which is essential for their viability and functions, is ensured by single or double bilayer membranes that separate the cell from the exterior and form boundaries between the cell’s organelles and the cytosol. Nascent nuclear envelopes and autophagosomes, which both are enveloped by double membranes, need to be sealed during the late stage of their biogenesis. On the other hand, the integrity of cellular membranes such as the plasma membrane, lysosomes and the nuclear envelope can be compromised by pathogens, chemicals, radiation, inflammatory responses and mechanical stress. There are cellular programmes that restore membrane integrity after injury. Here, we review cellular mechanisms that have evolved to maintain membrane integrity during organelle biogenesis and after injury, including membrane scission mediated by the endosomal sorting complex required for transport (ESCRT), vesicle patching and endocytosis.
Collapse
Affiliation(s)
- Yan Zhen
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Maja Radulovic
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Marina Vietri
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine and Health Sciences, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
55
|
Mohr L, Toufektchan E, von Morgen P, Chu K, Kapoor A, Maciejowski J. ER-directed TREX1 limits cGAS activation at micronuclei. Mol Cell 2021; 81:724-738.e9. [PMID: 33476576 PMCID: PMC7897315 DOI: 10.1016/j.molcel.2020.12.037] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Micronuclei are aberrant nuclear compartments that can form as a result of chromosome mis-segregation. Frequent loss of micronuclear envelope integrity exposes DNA to the cytoplasm, leading to chromosome fragmentation and immune activation. Here, we use micronuclei purification to show that the endoplasmic reticulum (ER)-associated nuclease TREX1 inhibits cGAS activation at micronuclei by degrading micronuclear DNA upon micronuclear envelope rupture. We demonstrate that the ER accesses ruptured micronuclei and plays a critical role in enabling TREX1 nucleolytic attack. TREX1 mutations, previously implicated in immune disease, untether TREX1 from the ER, disrupt TREX1 localization to micronuclei, diminish micronuclear DNA damage, and enhance cGAS activation. These results establish ER-directed resection of micronuclear DNA by TREX1 as a critical regulator of cytosolic DNA sensing in chromosomally unstable cells and provide a mechanistic basis for the importance of TREX1 ER tethering in preventing autoimmunity.
Collapse
Affiliation(s)
- Lisa Mohr
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eléonore Toufektchan
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Patrick von Morgen
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kevan Chu
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aakanksha Kapoor
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
56
|
Burla R, La Torre M, Maccaroni K, Verni F, Giunta S, Saggio I. Interplay of the nuclear envelope with chromatin in physiology and pathology. Nucleus 2020; 11:205-218. [PMID: 32835589 PMCID: PMC7529417 DOI: 10.1080/19491034.2020.1806661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
The nuclear envelope compartmentalizes chromatin in eukaryotic cells. The main nuclear envelope components are lamins that associate with a panoply of factors, including the LEM domain proteins. The nuclear envelope of mammalian cells opens up during cell division. It is reassembled and associated with chromatin at the end of mitosis when telomeres tether to the nuclear periphery. Lamins, LEM domain proteins, and DNA binding factors, as BAF, contribute to the reorganization of chromatin. In this context, an emerging role is that of the ESCRT complex, a machinery operating in multiple membrane assembly pathways, including nuclear envelope reformation. Research in this area is unraveling how, mechanistically, ESCRTs link to nuclear envelope associated factors as LEM domain proteins. Importantly, ESCRTs work also during interphase for repairing nuclear envelope ruptures. Altogether the advances in this field are giving new clues for the interpretation of diseases implicating nuclear envelope fragility, as laminopathies and cancer. ABBREVIATIONS na, not analyzed; ko, knockout; kd, knockdown; NE, nuclear envelope; LEM, LAP2-emerin-MAN1 (LEM)-domain containing proteins; LINC, linker of nucleoskeleton and cytoskeleton complexes; Cyt, cytoplasm; Chr, chromatin; MB, midbody; End, endosomes; Tel, telomeres; INM, inner nuclear membrane; NP, nucleoplasm; NPC, Nuclear Pore Complex; ER, Endoplasmic Reticulum; SPB, spindle pole body.
Collapse
Affiliation(s)
- Romina Burla
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Klizia Maccaroni
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Fiammetta Verni
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Simona Giunta
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- Rockefeller University, New York, NY, USA
| | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Italy
- Institute of Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
57
|
Jacquet K, Rodrigue MA, Richard DE, Lavoie JN. The adenoviral protein E4orf4: a probing tool to decipher mechanical stress-induced nuclear envelope remodeling in tumor cells. Cell Cycle 2020; 19:2963-2981. [PMID: 33103553 DOI: 10.1080/15384101.2020.1836441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The human adenovirus (Ad) type 2/5 early region 4 (E4) ORF4 protein (E4orf4) exerts a remarkable tumor cell-selective killing activity in mammalian cells. This indicates that E4orf4 can target tumor cell-defining features and is a unique tool to probe cancer cell vulnerabilities. Recently, we found that E4orf4, through an interaction with the polarity protein PAR3, subverts nuclear envelope (NE) remodeling processes in a tumor cell-selective manner. In this Perspective, we outline mechanical signals that modify nuclear dynamics and tumor cell behavior to highlight potential mechanisms for E4orf4's tumoricidal activity. Through an analysis of E4orf4's cellular targets, we define a protein subnetwork that comprises phosphatase systems interconnected to polarity protein hubs, which could contribute to enhanced NE plasticity. We infer that elucidating E4orf4's protein network at a functional level could uncover key mechanisms of NE remodeling that define the tumor cell phenotype.
Collapse
Affiliation(s)
- Kévin Jacquet
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Marc-Antoine Rodrigue
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Darren E Richard
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval , Québec, Canada.,Endocrinology and Nephrology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Josée N Lavoie
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval , Québec, Canada
| |
Collapse
|
58
|
Abstract
The nuclear envelope is often depicted as a static barrier that regulates access between the nucleus and the cytosol. However, recent research has identified many conditions in cultured cells and in vivo in which nuclear membrane ruptures cause the loss of nuclear compartmentalization. These conditions include some that are commonly associated with human disease, such as migration of cancer cells through small spaces and expression of nuclear lamin disease mutations in both cultured cells and tissues undergoing nuclear migration. Nuclear membrane ruptures are rapidly repaired in the nucleus but persist in nuclear compartments that form around missegregated chromosomes called micronuclei. This review summarizes what is known about the mechanisms of nuclear membrane rupture and repair in both the main nucleus and micronuclei, and highlights recent work connecting the loss of nuclear integrity to genome instability and innate immune signaling. These connections link nuclear membrane rupture to complex chromosome alterations, tumorigenesis, and laminopathy etiologies.
Collapse
Affiliation(s)
- John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Emily M Hatch
- Division of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
| |
Collapse
|
59
|
Sears RM, Roux KJ. Diverse cellular functions of barrier-to-autointegration factor and its roles in disease. J Cell Sci 2020; 133:133/16/jcs246546. [PMID: 32817163 DOI: 10.1242/jcs.246546] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Barrier-to-autointegration factor (BAF; encoded by BANF1) is a small highly conserved, ubiquitous and self-associating protein that coordinates with numerous binding partners to accomplish several key cellular processes. By interacting with double-stranded DNA, histones and various other nuclear proteins, including those enriched at the nuclear envelope, BAF appears to be essential for replicating cells to protect the genome and enable cell division. Cellular processes, such as innate immunity, post-mitotic nuclear reformation, repair of interphase nuclear envelope rupture, genomic regulation, and the DNA damage and repair response have all been shown to depend on BAF. This Review focuses on the regulation of the numerous interactions of BAF, which underlie the mechanisms by which BAF accomplishes its essential cellular functions. We will also discuss how perturbation of BAF function may contribute to human disease.
Collapse
Affiliation(s)
- Rhiannon M Sears
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA.,Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA .,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57069, USA
| |
Collapse
|
60
|
Guo X, Dai X, Wu X, Zhou T, Ni J, Xue J, Wang X. Understanding the birth of rupture-prone and irreparable micronuclei. Chromosoma 2020; 129:181-200. [PMID: 32671520 DOI: 10.1007/s00412-020-00741-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
Micronuclei are extra-nuclear bodies mainly derived from ana-telophase lagging chromosomes/chromatins (LCs) that are not incorporated into primary nuclei at mitotic exit. Unlike primary nuclei, most micronuclei are enclosed by nuclear envelope (NE) that is highly susceptible to spontaneous and irreparable rupture. Ruptured micronuclei act as triggers of chromothripsis-like chaotic chromosomal rearrangements and cGAS-mediated innate immunity and inflammation, raising the view that micronuclei play active roles in human aging and tumorigenesis. Thus, understanding the ways in which micronuclear envelope (mNE) goes awry acquires increased importance. Here, we review the data to present a general framework for this question. We firstly describe NE reassembly after mitosis and NE repair during interphase. Simultaneously, we briefly discuss how mNE is organized and how mNE rupture controls the fate of micronuclei and micronucleated cells. As a focus of this review, we highlight current knowledge about why mNE is rupture-prone and irreparable. For this, we survey observations from a series of elegant studies to provide a systematic overview. We conclude that the birth of rupture-prone and irreparable micronuclei may be the cumulative effects of their intracellular geographic origins, biophysical properties, and specific mNE features. We propose that DNA damage and immunogenicity in micronuclei increase stepwise from altered mNE components, mNE rupture, and refractory to repair. Throughout our discussion, we note interesting issues in mNE fragility that have yet to be resolved.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Xueqin Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Tao Zhou
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Jinglun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
61
|
Unrestrained ESCRT-III drives micronuclear catastrophe and chromosome fragmentation. Nat Cell Biol 2020; 22:856-867. [PMID: 32601372 DOI: 10.1038/s41556-020-0537-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/24/2020] [Indexed: 12/11/2022]
Abstract
The ESCRT-III membrane fission machinery maintains the integrity of the nuclear envelope. Although primary nuclei resealing takes minutes, micronuclear envelope ruptures seem to be irreversible. Instead, micronuclear ruptures result in catastrophic membrane collapse and are associated with chromosome fragmentation and chromothripsis, complex chromosome rearrangements thought to be a major driving force in cancer development. Here we use a combination of live microscopy and electron tomography, as well as computer simulations, to uncover the mechanism underlying micronuclear collapse. We show that, due to their small size, micronuclei inherently lack the capacity of primary nuclei to restrict the accumulation of CHMP7-LEMD2, a compartmentalization sensor that detects loss of nuclear integrity. This causes unrestrained ESCRT-III accumulation, which drives extensive membrane deformation, DNA damage and chromosome fragmentation. Thus, the nuclear-integrity surveillance machinery is a double-edged sword, as its sensitivity ensures rapid repair at primary nuclei while causing unrestrained activity at ruptured micronuclei, with catastrophic consequences for genome stability.
Collapse
|
62
|
Regulation and Consequences of cGAS Activation by Self-DNA. Trends Cell Biol 2020; 30:594-605. [PMID: 32546434 DOI: 10.1016/j.tcb.2020.05.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a major responder to the pathogenic DNA of viruses and bacteria. Upon DNA binding, cGAS becomes enzymatically active to generate the second messenger cGAMP, leading to activation of inflammatory genes, type I interferon production, autophagy, and cell death. Following genotoxic stress, cGAS can also respond to endogenous DNA, deriving from mitochondria, endogenous retroelements, and chromosomes to affect cellular signaling, secretion, and cell fate decisions. However, under unperturbed conditions, signaling from self-DNA is largely, but not completely, inhibited. Here we review how endogenous DNA is exposed to cGAS, how signaling is attenuated but activated under pathological conditions, and how low-level signaling under unperturbed conditions might prime antipathogenic responses.
Collapse
|