51
|
González-Cao M, Rodón J, Karachaliou N, Sánchez J, Santarpia M, Viteri S, Pilotto S, Teixidó C, Riso A, Rosell R. Other targeted drugs in melanoma. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:266. [PMID: 26605312 DOI: 10.3978/j.issn.2305-5839.2015.08.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Targeted therapy drugs are developed against specific molecular alterations on cancer cells. Because they are "targeted" to the tumor, these therapies are more effective and better tolerated than conventional therapies such as chemotherapy. In the last decade, great advances have been made in understanding of melanoma biology and identification of molecular mechanisms involved in malignant transformation of cells. The identification of oncogenic mutated kinases involved in this process provides an opportunity for development of new target therapies. The dependence of melanoma on BRAF-mutant kinase has provided an opportunity for development of mutation-specific inhibitors with high activity and excellent tolerance that are now being used in clinical practice. This marked a new era in the treatment of metastatic melanoma and much research is now ongoing to identify other "druggable" kinases and transduction signaling networking. It is expected that in the near future the spectrum of target drugs for melanoma treatment will increase. Herein, we review the most relevant potential novel drugs for melanoma treatment based on preclinical data and the results of early clinical trials.
Collapse
Affiliation(s)
- María González-Cao
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Jordi Rodón
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Niki Karachaliou
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Jesús Sánchez
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Mariacarmela Santarpia
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Santiago Viteri
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Sara Pilotto
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Cristina Teixidó
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Aldo Riso
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Rafael Rosell
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| |
Collapse
|
52
|
Hsueh YS, Chang HH, Chiang NJ, Yen CC, Li CF, Chen LT. MTOR inhibition enhances NVP-AUY922-induced autophagy-mediated KIT degradation and cytotoxicity in imatinib-resistant gastrointestinal stromal tumors. Oncotarget 2015; 5:11723-36. [PMID: 25375091 PMCID: PMC4294368 DOI: 10.18632/oncotarget.2607] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/21/2014] [Indexed: 01/16/2023] Open
Abstract
Our previous study demonstrated NVP-AUY922, a HSP90AA1 inhibitor, could enhance mutant KIT degradation in gastrointestinal stromal tumor (GIST) cells through both proteasome- and autophagy-mediated pathways. Herein, we showed rapamycin, a MTOR inhibitor and autophagy inducer, could reduce total and phospho-KIT expression levels and enhance apoptosis in imatinib-resistant GIST cells. The involvement of autophagy in rapamycin-induced KIT downregulation was further confirmed by co-localization of KIT and autophagosome, and partial recovery of KIT expression level by either siRNA-mediated BECN1 and ATG5 silencing or autophagy inhibitors after rapamycin. Rapamycin and NVP-AUY922 synergistically inhibited GIST cells growth in vitro. The combination of low-dose NVP-AUY922 with rapamycin had comparable effects on reducing KIT expression, increasing MAP1LC3B puncta and tumor necrosis, and inhibiting tumor growth as high-dose NVP-AUY922 did in GIST430 xenograft model. Our results suggest the addition of a MTOR inhibitor may reduce NVP-AUY922 dose requirement and potentially improve its therapeutic index in mutant KIT-expressing GISTs.
Collapse
Affiliation(s)
- Yuan-Shuo Hsueh
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Hui Hua Chang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nai-Jung Chiang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan. Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chueh-Chuan Yen
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chien-Feng Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan. Department of Pathology, Chi-Mei Foundation Medical Center, Tainan, Taiwan. Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan. Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan. Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan. Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwann
| |
Collapse
|
53
|
Trendowski M. PU-H71: An improvement on nature's solutions to oncogenic Hsp90 addiction. Pharmacol Res 2015; 99:202-16. [DOI: 10.1016/j.phrs.2015.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/26/2022]
|
54
|
Bauer S, Joensuu H. Emerging Agents for the Treatment of Advanced, Imatinib-Resistant Gastrointestinal Stromal Tumors: Current Status and Future Directions. Drugs 2015; 75:1323-34. [PMID: 26187774 PMCID: PMC4532715 DOI: 10.1007/s40265-015-0440-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Imatinib is strongly positioned as the recommended first-line agent for most patients with advanced gastrointestinal stromal tumor (GIST) due to its good efficacy and tolerability. Imatinib-resistant advanced GIST continues to pose a therapeutic challenge, likely due to the frequent presence of multiple mutations that confer drug resistance. Sunitinib and regorafenib are approved as second- and third-line agents, respectively, for patients whose GIST does not respond to imatinib or who do not tolerate imatinib, and their use is supported by large randomized trials. ATP-mimetic tyrosine kinase inhibitors provide clinical benefit even in heavily pretreated GIST suggesting that oncogenic dependency on KIT frequently persists. Several potentially useful tyrosine kinase inhibitors with distinct inhibitory profiles against both KIT ATP-binding domain and activation loop mutations have not yet been fully evaluated. Agents that have been found promising in preclinical models and early clinical trials include small molecule KIT and PDGFRA mutation-specific inhibitors, heat shock protein inhibitors, histone deacetylase inhibitors, allosteric KIT inhibitors, KIT and PDGFRA signaling pathway inhibitors, and immunological approaches including antibody-drug conjugates. Concomitant or sequential administration of tyrosine kinase inhibitors with KIT signaling pathway inhibitors require further evaluation, as well as rotation of tyrosine kinase inhibitors as a means to suppress drug-resistant cell clones.
Collapse
Affiliation(s)
- Sebastian Bauer
- />Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- />German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Heikki Joensuu
- />Department of Oncology, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00029 Helsinki, Finland
| |
Collapse
|
55
|
Alturkmani HJ, Pessetto ZY, Godwin AK. Beyond standard therapy: drugs under investigation for the treatment of gastrointestinal stromal tumor. Expert Opin Investig Drugs 2015; 24:1045-58. [PMID: 26098203 DOI: 10.1517/13543784.2015.1046594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Gastrointestinal stromal tumor (GIST) is the most common nonepithelial malignancy of the GI tract. With the discovery of KIT and later platelet-derived growth factor α (PDGFRA) gain-of-function mutations as factors in the pathogenesis of the disease, GIST was the quintessential model for targeted therapy. Despite the successful clinical use of imatinib mesylate, a selective receptor tyrosine kinase (RTK) inhibitor that targets KIT, PDGFRA and BCR-ABL, we still do not have treatment for the long-term control of advanced GIST. AREAS COVERED This review summarizes the drugs that are under investigation or have been assessed in trials for GIST treatment. The article focuses on their mechanisms of actions, the preclinical evidence of efficacy, and the clinical trials concerning safety and efficacy in humans. EXPERT OPINION It is known that KIT and PDGFRA mutations in GIST patients influence the response to treatment. This observation should be taken into consideration when investigating new drugs. RECIST was developed to help uniformly report efficacy trials in oncology. Despite the usefulness of this system, many questions are being addressed about its validity in evaluating the true efficacy of drugs knowing that new targeted therapies do not affect the tumor size as much as they halt progression and prolong survival.
Collapse
Affiliation(s)
- Hani J Alturkmani
- University of Kansas Medical Center, Department of Pathology and Laboratory Medicine , Kansas City, Kansas , USA
| | | | | |
Collapse
|
56
|
Abdel-Rahman O, Fouad M. Systemic therapy options for advanced gastrointestinal stromal tumors beyond first-line imatinib: a systematic review. Future Oncol 2015; 11:1829-43. [DOI: 10.2217/fon.15.33] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ABSTRACT This systematic review aims at assessment of the available evidence for systemic therapy options for patients with advanced gastrointestinal stromal tumors beyond first-line imatinib. Eligible trials were identified using databases search. In total, 26 studies were eligible and included in the final analysis. Among second-line studies, median progression-free survival ranged from 1.9 to 10 months while median overall survival ranged from 15 to 62 months. Among third-line agents, median progression-free survival ranged from 1.8 to 4.6 months while median overall survival ranged from 8.2 to 19 months. The available data for the second-line suggest that sunitinib is the best option while in the third line, regorafenib is the best option.
Collapse
Affiliation(s)
- Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona Fouad
- Medical Microbiology & Immunology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
57
|
Khandelwal A, Crowley VM, Blagg BSJ. Natural Product Inspired N-Terminal Hsp90 Inhibitors: From Bench to Bedside? Med Res Rev 2015; 36:92-118. [PMID: 26010985 DOI: 10.1002/med.21351] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/03/2015] [Accepted: 04/19/2015] [Indexed: 02/06/2023]
Abstract
The 90 kDa heat shock proteins (Hsp90) are responsible for the conformational maturation of nascent polypeptides and the rematuration of denatured proteins. Proteins dependent upon Hsp90 are associated with all six hallmarks of cancer. Upon Hsp90 inhibition, protein substrates are degraded via the ubiquitin-proteasome pathway. Consequentially, inhibition of Hsp90 offers a therapeutic opportunity for the treatment of cancer. Natural product inhibitors of Hsp90 have been identified in vitro, which have served as leads for the development of more efficacious inhibitors and analogs that have entered clinical trials. This review highlights the development of natural product analogs, as well as the development of clinically important inhibitors that arose from natural products.
Collapse
Affiliation(s)
- Anuj Khandelwal
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, KS 66045
| | - Vincent M Crowley
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, KS 66045
| | - Brian S J Blagg
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, KS 66045
| |
Collapse
|
58
|
Abstract
OPINION STATEMENT The management of advanced gastrointestinal stromal tumor (GIST) has been dramatically altered by the development of tyrosine kinase inhibitors. The disease, which had a median overall survival of 12 months for patients with unresectable disease, now has a median survival approaching 5 or more years. The challenge faced clinically is how to care for patients when they have progressed on all approved therapies. Clinical trials evaluating the role of novel combination therapies with investigational agents that target AKT/PI3K pathways are of interest especially given the preclinical rationale available. The addition of an mTOR inhibitor can be tried as these are available, but requires care and monitoring for additional toxicities. With improved understanding of this disease, which we thought of as one biology, personalized therapies are being studied and tested and is particularly relevant for GIST that are less responsive to the standard kinase inhibitors, such as platelet-derived growth factor alpha (PDGFRA) D842V and wild-type/succinate dehydrogenase (SDH)-deficient GIST. IGF1R inhibitors as a class are not being developed because of the lack of significant efficacy in many clinical trials and the efficacy in WT GIST has been limited; to date drugs targeting VEGFR, such as sunitinib and regorafenib, appear to be the best agents available for this group of patients. The exciting findings seen with CTLA4 and PD-1/PD-L1 antibodies in melanoma and other solid tumors is exciting, especially because there is a growing body of evidence that such approaches have biologic rationale; clinical trials evaluating these agents are awaited with interest. Last, recent work has shed light on older agents that may have a role in GIST. Moving forward to test these agents alone or in combination with TKIs offers potentially new strategies for treating advanced disease.
Collapse
Affiliation(s)
- Natthapol Songdej
- Department of Medical Oncology and Hematology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | | |
Collapse
|
59
|
Zhu JQ, Ou WB. Therapeutic targets in gastrointestinal stromal tumors. World J Transl Med 2015; 4:25-37. [DOI: 10.5528/wjtm.v4.i1.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/14/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common type of mesenchymal tumor of the gastrointestinal tract. The tumorigenesis of GISTs is driven by gain-of-function mutations in KIT or platelet-derived growth factor receptor α (PDGFRA), resulting in constitutive activation of the tyrosine kinase and its downstream signaling pathways. Oncogenic KIT or PDGFRA mutations are compelling therapeutic targets for the treatment of GISTs, and the KIT/PDGFRA inhibitor imatinib is the standard of care for patients with metastatic GISTs. However, most GIST patients develop clinical resistance to imatinib and other tyrosine kinase inhibitors. Five mechanisms of resistance have been characterized: (1) acquisition of a secondary point mutation in KIT or PDGFRA; (2) genomic amplification of KIT; (3) activation of an alternative receptor tyrosine kinase; (4) loss of KIT oncoprotein expression; and (5) wild-type GIST. Currently, sunitinib is used as a second-line treatment for patients after imatinib failure, and regorafenib has been approved for patients whose disease is progressing on both imatinib and sunitinib. Phase II/III trials are currently in progress to evaluate novel inhibitors and immunotherapies targeting KIT, its downstream effectors such as phosphatidylinositol 3-kinase, protein kinase B and mammalian target of rapamycin, heat shock protein 90, and histone deacetylase inhibitor. Other candidate targets have been identified, including ETV1, AXL, insulin-like growth factor 1 receptor, KRAS, FAS receptor, protein kinase c theta, ANO1 (DOG1), CDC37, and aurora kinase A. These candidates warrant clinical evaluation as novel therapeutic targets in GIST.
Collapse
|
60
|
Suzuki M, Takeda T, Nakagawa H, Iwata S, Watanabe T, Siddiquey MNA, Goshima F, Murata T, Kawada JI, Ito Y, Kojima S, Kimura H. The heat shock protein 90 inhibitor BIIB021 suppresses the growth of T and natural killer cell lymphomas. Front Microbiol 2015; 6:280. [PMID: 25914683 PMCID: PMC4391044 DOI: 10.3389/fmicb.2015.00280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/20/2015] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV), which infects not only B cells but also T and natural killer (NK) cells, is associated with a variety of lymphoid malignancies. Because EBV-associated T and NK cell lymphomas are refractory and resistant to conventional chemotherapy, there is a continuing need for new effective therapies. EBV-encoded “latent membrane protein 1” (LMP1) is a major oncogene that activates nuclear factor kappa B (NF-κB), c-Jun N-terminal kinase (JNK), and phosphatidylinositol 3-kinase signaling pathways, thus promoting cell growth and inhibiting apoptosis. Recently, we screened a library of small-molecule inhibitors and isolated heat shock protein 90 (Hsp90) inhibitors as candidate suppressors of LMP1 expression. In this study, we evaluated the effects of BIIB021, a synthetic Hsp90 inhibitor, against EBV-positive and -negative T and NK lymphoma cell lines. BIIB021 decreased the expression of LMP1 and its downstream signaling proteins, NF-κB, JNK, and Akt, in EBV-positive cell lines. Treatment with BIIB021 suppressed proliferation in multiple cell lines, although there was no difference between the EBV-positive and -negative lines. BIIB021 also induced apoptosis and arrested the cell cycle at G1 or G2. Further, it down-regulated the protein levels of CDK1, CDK2, and cyclin D3. Finally, we evaluated the in vivo effects of the drug; BIIB021 inhibited the growth of EBV-positive NK cell lymphomas in a murine xenograft model. These results suggest that BIIB021 has suppressive effects against T and NK lymphoma cells through the induction of apoptosis or a cell cycle arrest. Moreover, BIIB021 might help to suppress EBV-positive T or NK cell lymphomas via the down-regulation of LMP1 expression.
Collapse
Affiliation(s)
- Michio Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine Nagoya, Japan ; Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Tadashi Takeda
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Hikaru Nakagawa
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Seiko Iwata
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | | | - Fumi Goshima
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Yoshinori Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| |
Collapse
|
61
|
E6^E7, a novel splice isoform protein of human papillomavirus 16, stabilizes viral E6 and E7 oncoproteins via HSP90 and GRP78. mBio 2015; 6:e02068-14. [PMID: 25691589 PMCID: PMC4337564 DOI: 10.1128/mbio.02068-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcripts of human papillomavirus 16 (HPV16) E6 and E7 oncogenes undergo alternative RNA splicing to produce multiple splice isoforms. However, the importance of these splice isoforms is poorly understood. Here we report a critical role of E6^E7, a novel isoform containing the 41 N-terminal amino acid (aa) residues of E6 and the 38 C-terminal aa residues of E7, in the regulation of E6 and E7 stability. Through mass spectrometric analysis, we identified that HSP90 and GRP78, which are frequently upregulated in cervical cancer tissues, are two E6^E7-interacting proteins responsible for the stability and function of E6^E7, E6, and E7. Although GRP78 and HSP90 do not bind each other, GRP78, but not HSP90, interacts with E6 and E7. E6^E7 protein, in addition to self-binding, interacts with E6 and E7 in the presence of GRP78 and HSP90, leading to the stabilization of E6 and E7 by prolonging the half-life of each protein. Knocking down E6^E7 expression in HPV16-positive CaSki cells by a splice junction-specific small interfering RNA (siRNA) destabilizes E6 and E7 and prevents cell growth. The same is true for the cells with a GRP78 knockdown or in the presence of an HSP90 inhibitor. Moreover, mapping and alignment analyses for splicing elements in 36 alpha-HPVs (α-HPVs) suggest the possible expression of E6^E7 mostly by other oncogenic or possibly oncogenic α-HPVs (HPV18, -30, -31, -39, -42, -45, -56, -59, -70, and -73). HPV18 E6^E7 is detectable in HPV18-positive HeLa cells and HPV18-infected raft tissues. All together, our data indicate that viral E6^E7 and cellular GRP78 or HSP90 might be novel targets for cervical cancer therapy. HPV16 is the most prevalent HPV genotype, being responsible for 60% of invasive cervical cancer cases worldwide. What makes HPV16 so potent in the development of cervical cancer remains a mystery. We discovered in this study that, besides producing two well-known oncoproteins, E6 and E7, seen in other high-risk HPVs, HPV16 produces E6^E7, a novel splice isoform of E6 and E7. E6^E7, in addition to self-interacting, binds cellular chaperone proteins, HSP90 and GRP78, and viral E6 and E7 to increase the steady-state levels and half-lives of viral oncoproteins, leading to cell proliferation. The splicing cis elements in the regulation of HPV16 E6^E7 production are highly conserved in 11 oncogenic or possibly oncogenic HPVs, and we confirmed the production of HPV18 E6^E7 in HPV18-infected cells. This study provides new insight into the mechanism of splicing, the interplay between different products of the polycistronic viral message, and the role of the host chaperones as they function.
Collapse
|
62
|
Spreafico A, Delord JP, De Mattos-Arruda L, Berge Y, Rodon J, Cottura E, Bedard PL, Akimov M, Lu H, Pain S, Kaag A, Siu LL, Cortes J. A first-in-human phase I, dose-escalation, multicentre study of HSP990 administered orally in adult patients with advanced solid malignancies. Br J Cancer 2015; 112:650-9. [PMID: 25625276 PMCID: PMC4333497 DOI: 10.1038/bjc.2014.653] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/04/2014] [Accepted: 12/04/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Heat-shock protein 990 (HSP990) is a potent and selective synthetic small-molecule HSP90 inhibitor. The primary objectives of this phase I first-in-human study were to determine dose-limiting toxicities (DLTs), maximum-tolerated dose (MTD) and recommended phase II dose (RP2D). Secondary objectives included characterisation of the safety profile, pharmacokinetics (PKs) and pharmacodynamics (PDs). METHODS Heat-shock protein 990 was administered orally once or two times weekly on a 28-day cycle schedule in patients with advanced solid tumours. Dose escalation was guided by a Bayesian logistic regression model with overdose control. RESULTS A total of 64 patients were enrolled. Fifty-three patients received HSP990 once weekly at 2.5, 5, 10, 20, 30, 50 or 60 mg, whereas 11 patients received HSP990 two times weekly at 25 mg. Median duration of exposure was 8 weeks (range 1-116 weeks) and 12 patients remained on treatment for >16 weeks. Dose-limiting toxicities occurred in seven patients and included diarrhoea, QTc prolongation, ALT/AST elevations and central neurological toxicities. The most common drug-related adverse events were diarrhoea, fatigue and decreased appetite. Further dose escalation beyond 60 mg once weekly was not possible owing to neurological toxicity. Rapid absorption, no drug accumulation and large interpatient variability in PK exposures were observed. No objective responses were seen; 25 patients had a best overall response of stable disease. CONCLUSIONS Heat-shock protein 990 is relatively well tolerated, with neurological toxicity being the most relevant DLT. The single agent MTD/RP2D of HSP990 was declared at 50 mg once weekly.
Collapse
Affiliation(s)
- A Spreafico
- Drug Development Program, UHN – Princess Margaret Cancer Centre, Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - J-P Delord
- Institut Claudius Regaud, Toulouse, France
| | - L De Mattos-Arruda
- Vall d'Hebron University Hospital, Hospital and Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Y Berge
- Institut Claudius Regaud, Toulouse, France
| | - J Rodon
- Vall d'Hebron University Hospital, Hospital and Universitat Autonoma de Barcelona, Barcelona, Spain
| | - E Cottura
- Institut Claudius Regaud, Toulouse, France
| | - P L Bedard
- Drug Development Program, UHN – Princess Margaret Cancer Centre, Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - M Akimov
- Novartis Pharma AG, Basel, Switzerland
| | - H Lu
- Novartis Pharmaceuticals Corp, East Hanover, NJ, USA
| | - S Pain
- Novartis Pharmaceuticals Corp, East Hanover, NJ, USA
| | - A Kaag
- Novartis Pharma AG, Basel, Switzerland
| | - L L Siu
- Drug Development Program, UHN – Princess Margaret Cancer Centre, Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - J Cortes
- Vall d'Hebron University Hospital, Hospital and Universitat Autonoma de Barcelona, Barcelona, Spain
| |
Collapse
|
63
|
Chessum N, Jones K, Pasqua E, Tucker M. Recent advances in cancer therapeutics. PROGRESS IN MEDICINAL CHEMISTRY 2015; 54:1-63. [PMID: 25727702 DOI: 10.1016/bs.pmch.2014.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past 20 years, cancer therapeutics has undergone a paradigm shift away from the traditional cytotoxic drugs towards the targeting of proteins intimately involved in driving the cancer phenotype. The poster child for this alternative approach to the treatment of cancer is imatinib, a small-molecule kinase inhibitor designed to target chronic myeloid leukaemia driven by the BCR-ABL translocation in a defined patient population. The improvement in survival achieved by treatment of this patient cohort with imatinib is impressive. Thus, the aim is to provide efficacy but with low toxicity. The role of the medicinal chemist in oncology drug discovery is now closely aligned with the role in most other therapeutic areas with high-throughput and/or fragment-based screening, structure-based design, selectivity, pharmacokinetic optimisation and pharmacodynamic biomarker modulation, all playing a familiar part in the process. In this chapter, we selected four areas in which compounds are either approved drugs or in clinical trials. These are chaperone inhibitors, kinase inhibitors, histone deacetylase inhibitors and inhibitors of protein-protein interactions. Even within these areas, we have been selective, particularly for kinase inhibitors, and our aim has been to exemplify newer approaches and novel aspects of medicinal chemistry.
Collapse
Affiliation(s)
- Nicola Chessum
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Keith Jones
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Elisa Pasqua
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Michael Tucker
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
64
|
Park S, Park JA, Kim YE, Song S, Kwon HJ, Lee Y. Suberoylanilide hydroxamic acid induces ROS-mediated cleavage of HSP90 in leukemia cells. Cell Stress Chaperones 2015; 20:149-57. [PMID: 25119188 PMCID: PMC4255254 DOI: 10.1007/s12192-014-0533-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/03/2014] [Accepted: 07/29/2014] [Indexed: 12/20/2022] Open
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone that supports stability of client proteins. We found that HSP90 was cleaved to 55 kDa protein after treatment with histone deacetylase (HDAC) inhibitors including suberoylanilide hydroxamic acid (SAHA) in several leukemia cell lines. We further analyzed molecular changes induced by SAHA in K562 cells. The SAHA-induced cleavage of HSP90 was blocked by a pan-caspase inhibitor, z-VAD-fmk, implying that the process is dependent on caspase activity. However, the experiments using antagonistic and agonistic Fas antibodies revealed that the cleavage of HSP90 was not dependent on Fas signaling. SAHA induced generation of reactive oxygen species (ROS), and the cleavage of HSP90 was blocked by a ROS scavenger N-acetylcystein (NAC). We also confirmed that hydrogen peroxide (H2O2) induced cleavage of HSP90 in a similar manner. Caspase 2, 3, 4, 6, 8, and 10 were activated by treatment with SAHA, and the activities were reduced by the pretreatment of NAC. Treatment of the cells with caspase 10 inhihitor, but not other inhibitors of caspases activated by SAHA, prevented cleavage of HSP90 by SAHA. SAHA-induced ROS generation and HSP90 cleavage were dependent on newly synthesized unknown proteins. Taken together, our results suggest that the cleavage of HSP90 by SAHA is mediated by ROS generation and caspase 10 activation. HSP90 cleavage may provide an additional mechanism involved in anti-cancer effects of HDAC inhibitors.
Collapse
Affiliation(s)
- Sangkyu Park
- />Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763 Republic of Korea
| | - Jeong-A Park
- />Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763 Republic of Korea
| | - Young-Eun Kim
- />Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763 Republic of Korea
- />Biotechnology Research Institute, Chungbuk National University, Cheongju, Chungbuk 361-763 Republic of Korea
| | - Sukgil Song
- />College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 361-763 Republic of Korea
| | - Hyung-Joo Kwon
- />Center for Medical Science Research, Hallym University, Chuncheon, 200-720 Republic of Korea
- />Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 200-720 Republic of Korea
| | - Younghee Lee
- />Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763 Republic of Korea
- />Biotechnology Research Institute, Chungbuk National University, Cheongju, Chungbuk 361-763 Republic of Korea
- />Department of Biochemistry, College of Natural Sciences, Chungbuk National University, 52 Naesudong-Ro, Heungduk-Gu, Cheongju, Chungbuk 361-763 Republic of Korea
| |
Collapse
|
65
|
Infante JR, Weiss GJ, Jones S, Tibes R, Bauer TM, Bendell JC, Hinson JM, Von Hoff DD, Burris HA, Orlemans EO, Ramanathan RK. Phase I dose-escalation studies of SNX-5422, an orally bioavailable heat shock protein 90 inhibitor, in patients with refractory solid tumours. Eur J Cancer 2014; 50:2897-904. [PMID: 25262379 DOI: 10.1016/j.ejca.2014.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/25/2014] [Accepted: 07/23/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Orally administered SNX-5422, a novel, selective prodrug of the Heat shock protein 90 (Hsp90) inhibitor SNX-2112, was investigated in two sequential phase I studies to determine the safety, maximum tolerated doses (MTDs) and pharmacokinetic profile of SNX-5422. METHODS Using a dose-escalation design, 3-6 adults with advanced solid tumours received SNX-5422 every-other-day (QOD) or once-daily (QD) 3weeks on/1week off or QD continuously, with disease assessments every 8 weeks. Single-dose and steady-state pharmacokinetic parameters of SNX-2112 were determined. RESULTS In total, 56 patients were enrolled: QOD 3 weeks on/1 week off, n=36; QD 3weeks on/1 week off, n=17; QD continuous, n=3. Doses ranged from 4 to 133mg/m(2) QOD and 50 to 89 mg/m(2) QD. The MTDs were defined as 100mg/m(2) QOD and 67 mg/m(2) QD, respectively, with diarrhoea being dose-limiting on both 3 weeks on/1 week off schedules. Overall, treatment-related adverse events were mainly low grade, including diarrhoea (64%), nausea (39%), fatigue (28%), and vomiting (28%). Reversible grade 1-3 nyctalopia (night blindness) was reported by four patients (dose: 50-89mg/m(2) QD; 100mg/m(2) QOD). Exposure was generally linear, though greater than dose-proportional. Of 32 evaluable patients on QOD dosing, there was one durable complete response (prostate cancer), one confirmed (HER2+breast cancer) and one unconfirmed partial response (adrenal gland cancer). Three patients (QOD schedule) had stable disease for ⩾ 6 months. CONCLUSIONS The dose and schedule recommended for further study with SNX-5422 is 100mg/m(2) QOD 3 weeks on/1 week off based on improved tolerability and preliminary evidence of clinical activity.
Collapse
Affiliation(s)
- Jeffrey R Infante
- Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, TN, USA.
| | - Glen J Weiss
- Virginia G. Piper Cancer Center at Scottsdale Healthcare/TGen, Scottsdale, AZ, USA
| | - Suzanne Jones
- Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, TN, USA
| | - Raoul Tibes
- Virginia G. Piper Cancer Center at Scottsdale Healthcare/TGen, Scottsdale, AZ, USA
| | - Todd M Bauer
- Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, TN, USA
| | - Johanna C Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, TN, USA
| | | | - Daniel D Von Hoff
- Virginia G. Piper Cancer Center at Scottsdale Healthcare/TGen, Scottsdale, AZ, USA
| | - Howard A Burris
- Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, TN, USA
| | | | - Ramesh K Ramanathan
- Virginia G. Piper Cancer Center at Scottsdale Healthcare/TGen, Scottsdale, AZ, USA
| |
Collapse
|
66
|
Jhaveri K, Ochiana SO, Dunphy MPS, Gerecitano JF, Corben AD, Peter RI, Janjigian YY, Gomes-DaGama EM, Koren J, Modi S, Chiosis G. Heat shock protein 90 inhibitors in the treatment of cancer: current status and future directions. Expert Opin Investig Drugs 2014; 23:611-28. [PMID: 24669860 PMCID: PMC4161020 DOI: 10.1517/13543784.2014.902442] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Heat shock protein 90 (HSP90) serves as a critical facilitator for oncogene addiction. There has been augmenting enthusiasm in pursuing HSP90 as an anticancer strategy. In fact, since the initial serendipitous discovery that geldanamycin (GM) inhibits HSP90, the field has rapidly moved from proof-of-concept clinical studies with GM derivatives to novel second-generation inhibitors. AREAS COVERED The authors highlight the current status of the second-generation HSP90 inhibitors in clinical development. Herein, the authors note the lessons learned from the completed clinical trials of first- and second-generation inhibitors and describe various assays attempting to serve for a more rational implementation of these agents to cancer treatment. Finally, the authors discuss the future perspectives for this promising class of agents. EXPERT OPINION The knowledge gained thus far provides perhaps only a glimpse at the potential of HSP90 for which there is still much work to be done. Lessons from the clinical trials suggest that HSP90 therapy would advance at a faster pace if patient selection and tumor pharmacokinetics of these drugs were better understood and applied to their clinical development. It is also evident that combining HSP90 inhibitors with other potent anticancer therapies holds great promise not only due to synergistic antitumor activity but also due to the potential of prolonging or preventing the development of drug resistance.
Collapse
Affiliation(s)
- Komal Jhaveri
- New York University Cancer Institute, NYU Clinical Cancer Center, Division of Hematology/Medical Oncology, NY, USA
| | - Stefan O Ochiana
- Sloan-Kettering Institute, Molecular Pharmacology and Chemistry Program, NY, USA
| | - Mark PS Dunphy
- Memorial Sloan-Kettering Cancer Center, Department of Radiology, NY, USA
| | - John F Gerecitano
- Memorial Sloan-Kettering Cancer Center, Lymphoma Medicine Service, NY, USA
| | - Adriana D Corben
- Memorial Sloan-Kettering Cancer Center, Breast Cancer Medicine Service, NY, USA
| | - Radu I Peter
- Technical University of Cluj-Napoca, Department of Mathematics, Cluj-Napoca, Romania
| | - Yelena Y Janjigian
- Memorial Sloan-Kettering Cancer Center, Gastrointestinal Oncology Service, NY, USA
| | - Erica M Gomes-DaGama
- Sloan-Kettering Institute, Molecular Pharmacology and Chemistry Program, NY, USA
| | - John Koren
- Sloan-Kettering Institute, Molecular Pharmacology and Chemistry Program, NY, USA
| | - Shanu Modi
- Memorial Sloan-Kettering Cancer Center, Breast Cancer Medicine Service, NY, USA
| | - Gabriela Chiosis
- Sloan-Kettering Institute, Molecular Pharmacology and Chemistry Program, NY, USA
- Memorial Sloan-Kettering Cancer Center, Breast Cancer Medicine Service, NY, USA
- Molecular Pharmacology & Chemistry, Sloan-Kettering Institute, Department of Medicine, Breast Cancer Service, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, and Weill Graduate School of Medical Sciences, NY, USA
| |
Collapse
|
67
|
Wang T, Goodman MA, McGough RL, Weiss KR, Rao UNM. Immunohistochemical Analysis of Expressions of RB1, CDK4, HSP90, cPLA2G4A, and CHMP2B Is Helpful in Distinction between Myxofibrosarcoma and Myxoid Liposarcoma. Int J Surg Pathol 2014; 22:589-99. [DOI: 10.1177/1066896914532539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role and diagnostic efficacy of gene and protein products RB1, CDK4, CHMP2B, HSP90, and cPLA2G4A, all previously shown to be involved in tumor genesis and cell proliferation, were examined by immunohistochemical techniques in 32 cases of myxofibrosarcomas and 29 myxoid liposarcomas (all diagnosis had been confirmed by fluorescence in situ hybridization). HSP90 demonstrated strong nuclear and cytoplasmic positivity in all myxoid liposarcoma cases, while only 4 myxofibrosarcomas showed scattered HSP90 positivity. All but 4 cases of myxofibrosarcoma displayed strong positivity for cPLA2G4A, while only 2 myxoid liposarcoma cases were cPLA2G4A positive and both were CHMP2B negative. Overexpression of both cPLA2G4A and CHMP2B also suggested higher tumor grade. In conclusion, HSP90 and cPLA2G4A immunohistochemical stains are useful markers to distinguish myxofibrosarcoma from myxoid liposarcoma.
Collapse
Affiliation(s)
- Tao Wang
- University of Pittsburgh Medical Center–Shadyside Campus, Pittsburgh, PA, USA
| | - Mark A. Goodman
- University of Pittsburgh Medical Center–Shadyside Campus, Pittsburgh, PA, USA
| | - Richard L. McGough
- University of Pittsburgh Medical Center–Shadyside Campus, Pittsburgh, PA, USA
| | - Kurt R. Weiss
- University of Pittsburgh Medical Center–Shadyside Campus, Pittsburgh, PA, USA
| | - Uma N. M. Rao
- University of Pittsburgh Medical Center–Shadyside Campus, Pittsburgh, PA, USA
| |
Collapse
|
68
|
Xu XL, Sun HP, Liu F, Jia JM, Guo XK, Pan Y, Huang HZ, Zhang XJ, You QD. Discovery and Bioevaluation of Novel Pyrazolopyrimidine Analogs as Competitive Hsp90 Inhibitors Through Shape-Based Similarity Screening. Mol Inform 2014; 33:293-306. [PMID: 27485776 DOI: 10.1002/minf.201300150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 02/13/2014] [Indexed: 12/14/2022]
Abstract
Hsp90 as a promising therapeutic target for the treatment of cancer has received great attention. Many Hsp90 inhibitors such as BIIB021 and CUDC-305 have been in clinical. In this paper shape-based similarity screening through ROCS overlays on the basis of CUDC-305, BIIB021, PU-H71 and PU-3 were performed to discover HSP90 inhibitors. A set of 19 novel pyrazolopyrimidine analogues was identified and evaluated on enzyme level and cell-based level as Hsp90 inhibitors. The compound HDI4-04 with IC50 0.35 µM in the Hsp90 ATP hydrolysis assay exhibited potent cytotoxicity against five human cancer cell lines. Western blot analysis and Hsp70 luciferase reporter assay further confirmed that HDI4-04 targeted the Hsp90 protein folding machinery. And according to the biological assay, the SAR was discussed and summarized, which will guide us for further optimization of these compounds.
Collapse
Affiliation(s)
- Xiao-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hao-Peng Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271216
| | - Fang Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian-Min Jia
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiao-Ke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yang Pan
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hao-Ze Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiao-Jin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351. , .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China. , .,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271216. ,
| |
Collapse
|
69
|
Lin S, Li J, Zhou W, Qian W, Wang B, Chen Z. BIIB021, an Hsp90 inhibitor, effectively kills a myelodysplastic syndrome cell line via the activation of caspases and inhibition of PI3K/Akt and NF-κB pathway proteins. Exp Ther Med 2014; 7:1539-1544. [PMID: 24926340 PMCID: PMC4043628 DOI: 10.3892/etm.2014.1651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/12/2014] [Indexed: 12/13/2022] Open
Abstract
The novel orally available inhibitor of the molecular chaperone heat shock protein 90 (Hsp90), BIIB021, induces the apoptosis of various types of tumor cell in vitro and in vivo. However, the effects and mechanisms of this agent on myelodysplastic syndrome (MDS) cell lines remain unknown. The aim of this study was to investigate the effects of BIIB021 on SKM-1 cells (a MDS cell line) and examine its mechanisms of action. The results showed that BIIB021 inhibited the growth of SKM-1 cells effectively in vitro. The treatment of SKM-1 cells with BIIB021 resulted in the inhibition of cell growth through G0/G1-phase cell cycle arrest and induced apoptosis by activating caspase-3, -8 and -9. Furthermore, this study also demonstrated that the mechanisms of apoptosis in SKM-1 cells were associated with the suppression of the phosphatidylinositide 3-kinase/Akt and nuclear factor-κB signaling pathways. Therefore, the findings indicate a novel approach for the treatment of high-risk MDS.
Collapse
Affiliation(s)
- Shengyun Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jing Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Wenjing Zhou
- Institute of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wenbin Qian
- Institute of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Bo Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Zhi Chen
- Department of Hematology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
70
|
Radons J. Inflammatory stress and sarcomagenesis: a vicious interplay. Cell Stress Chaperones 2014; 19:1-13. [PMID: 24046208 PMCID: PMC3857425 DOI: 10.1007/s12192-013-0449-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation represents one of the hallmarks of cancer, but its role in sarcomagenesis has long been overlooked. Sarcomas are a rare and heterogeneous group of tumors of mesenchymal origin accounting for less than 1 % of cancers in adults but 21 % of cancers in the pediatric population. Sarcomas are associated with bad prognosis, and their management requires a multidisciplinary team approach. Several lines of evidence indicate that inflammation has been implicated in sarcomagenesis leading to the activation of the key transcription factors HIF-1, NF- κB, and STAT-3 involved in a complex inflammatory network. In the past years, an increasing number of new targets have been identified in the treatment of sarcomas leading to the development of new drugs that aim to interrupt the vicious connection between inflammation and sarcomagenesis. This article makes a brief overview of preclinical and clinical evidence of the molecular pathways involved in the inflammatory stress response in sarcomagenesis and the most targeted therapies.
Collapse
Affiliation(s)
- Jürgen Radons
- multimmune GmbH c/o Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany,
| |
Collapse
|
71
|
Radons J. The role of inflammation in sarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:259-313. [PMID: 24818727 DOI: 10.1007/978-3-0348-0837-8_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sarcomas encompass a heterogenous group of tumors with diverse pathologically and clinically overlapping features. It is a rarely curable disease, and their management requires a multidisciplinary team approach. Chronic inflammation has emerged as one of the hallmarks of tumors including sarcomas. Classical inflammation-associated sarcomas comprise the inflammatory malignant fibrous histiocytoma and Kaposi sarcoma. The identification of specific chromosomal translocations and important intracellular signaling pathways such as Ras/Raf/MAPK, insulin-like growth factor, PI3K/AKT/mTOR, sonic hedgehog and Notch together with the increasing knowledge of angiogenesis has led to development of targeted therapies that aim to interrupt these pathways. Innovative agents like oncolytic viruses opened the way to design new therapeutic options with encouraging findings. Preclinical evidence also highlights the therapeutic potential of anti-inflammatory nutraceuticals as they can inhibit multiple pathways while being less toxic. This chapter gives an overview of actual therapeutic standards, newest evidence-based studies and exciting options for targeted therapies in sarcomas.
Collapse
Affiliation(s)
- Jürgen Radons
- Department of Radiotherapy and Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany,
| |
Collapse
|
72
|
Hsp90 inhibitor BIIB021 enhances triptolide-induced apoptosis of human T-cell acute lymphoblastic leukemia cells in vitro mainly by disrupting p53-MDM2 balance. Acta Pharmacol Sin 2013; 34:1545-53. [PMID: 24241349 DOI: 10.1038/aps.2013.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/02/2013] [Indexed: 01/02/2023] Open
Abstract
AIM To investigate the effects of BIIB021, an inhibitor of heat shock protein 90 (Hsp90) alone or in combination with triptolide (TPL) on T-cell acute lymphoblastic leukemia (T-ALL) and the mechanisms of action. METHODS Human T-ALL cells line Molt-4 was examined. The cell viability was measured using MTT assay. Apoptotic cells were studied with Hoechst 33258 staining. Cell apoptosis and cell cycle were analyzed using flow cytometry with Annexin V/PI staining and PI staining, respectively. The levels of multiple proteins, including Akt, p65, CDK4/6, p18, Bcl-2 family proteins, MDM2, and p53, were examined with Western blotting. The level of MDM2 mRNA was determined using RT-PCR. RESULTS Treatment of Molt-4 cells with BIIB021 (50-800 nmol/L) inhibited the cell growth in a dose-dependent manner (the IC50 value was 384.6 and 301.8 nmol/L, respectively, at 48 and 72 h). BIIB021 dose-dependently induced G0/G1 phase arrest, followed by apoptosis of Molt-4 cells. Furthermore, BIIB021 increased the expression of p18, decreased the expression of CDK4/6, and activated the caspase pathway in Molt-4 cells. Moreover, BIIB021 (50-400 nmol/L) dose-dependently decreased the phospho-MDM2 and total MDM2 protein levels, but slightly increased the phospho-p53 and total p53 protein levels, whereas TPL (5-40 nmol/L) dose-dependently enhanced p53 activation without affecting MDM2 levels. Co-treatment with BIIB021 and TPL showed synergic inhibition on Molt-4 cell growth. The co-treatment disrupted p53-MDM2 balance, thus markedly enhanced p53 activation. In addition, the co-treatment increased the expression of Bak and Bim, followed by increased activation of caspase-9. CONCLUSION The combination of BIIB021 and TPL may provide a novel strategy for treating T-ALL by overcoming multiple mechanisms of apoptosis resistance.
Collapse
|
73
|
A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors. Toxicol Appl Pharmacol 2013; 273:401-9. [PMID: 24090817 DOI: 10.1016/j.taap.2013.09.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/20/2013] [Accepted: 09/21/2013] [Indexed: 11/22/2022]
Abstract
In human trials certain heat shock protein 90 (Hsp90) inhibitors, including 17-DMAG and NVP-AUY922, have caused visual disorders indicative of retinal dysfunction; others such as 17-AAG and ganetespib have not. To understand these safety profile differences we evaluated histopathological changes and exposure profiles of four Hsp90 inhibitors, with or without clinical reports of adverse ocular effects, using a rat retinal model. Retinal morphology, Hsp70 expression (a surrogate marker of Hsp90 inhibition), apoptotic induction and pharmacokinetic drug exposure analysis were examined in rats treated with the ansamycins 17-DMAG and 17-AAG, or with the second-generation compounds NVP-AUY922 and ganetespib. Both 17-DMAG and NVP-AUY922 induced strong yet restricted retinal Hsp70 up-regulation and promoted marked photoreceptor cell death 24h after the final dose. In contrast, neither 17-AAG nor ganetespib elicited photoreceptor injury. When the relationship between drug distribution and photoreceptor degeneration was examined, 17-DMAG and NVP-AUY922 showed substantial retinal accumulation, with high retina/plasma (R/P) ratios and slow elimination rates, such that 51% of 17-DMAG and 65% of NVP-AUY922 present at 30 min post-injection were retained in the retina 6h post-dose. For 17-AAG and ganetespib, retinal elimination was rapid (90% and 70% of drugs eliminated from the retina at 6h, respectively) which correlated with lower R/P ratios. These findings indicate that prolonged inhibition of Hsp90 activity in the eye results in photoreceptor cell death. Moreover, the results suggest that the retina/plasma exposure ratio and retinal elimination rate profiles of Hsp90 inhibitors, irrespective of their chemical class, may predict for ocular toxicity potential.
Collapse
|
74
|
Kang YK, Yoo C, Ryoo BY, Lee JJ, Tan E, Park I, Park JH, Choi YJ, Jo J, Ryu JS, Ryu MH. Phase II study of dovitinib in patients with metastatic and/or unresectable gastrointestinal stromal tumours after failure of imatinib and sunitinib. Br J Cancer 2013; 109:2309-15. [PMID: 24084771 PMCID: PMC3817332 DOI: 10.1038/bjc.2013.594] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/27/2013] [Accepted: 09/09/2013] [Indexed: 12/24/2022] Open
Abstract
Background: This prospective, phase II trial evaluated the efficacy and safety of dovitinib in patients with metastatic and/or unresectable gastrointestinal stromal tumours (GISTs) after failure of at least imatinib and sunitinib. Methods: Patients received oral dovitinib, 500 mg once daily, for 5 consecutive days, followed by a 2-day rest, every 28 days. The primary endpoint was disease control rate (DCR; objective response+stable disease (SD)) at 24 weeks, assessed by computed tomography (CT) scan according to RECIST v1.0. Metabolic response was evaluated by positron emission tomography (PET)–CT scans performed at baseline and after 4 weeks of treatment. Results: Between September 2011 and April 2012, 30 patients were enroled. DCR at 24 weeks by RECIST v1.0 was 13% and one patient (3%) had a partial response. Based on the European Organization for Research and Treatment of Cancer PET response criteria, four patients (13%) had a metabolic partial response after 4 weeks of treatment. At a median follow-up of 8.3 months (range, 6.3–12.2 months), median progression-free survival (PFS) was 3.6 months (95% confidence interval (CI), 3.5–3.7 months) and median overall survival was 9.7 months (95% CI, 6.0–13.4 months). Metabolic progressive disease at Week 4 was significantly associated with shorter PFS (P=0.03). Grade 3/4 adverse events included asthenia (20%), neutropenia (13%), thrombocytopenia (10%), and hypertriglyceridaemia (10%). Most toxicities were manageable by dose modification. Conclusion: Dovitinib showed modest antitumour activity with manageable toxicities in heavily pretreated patients with advanced GISTs.
Collapse
Affiliation(s)
- Y-K Kang
- Department of Oncology and Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Vadakara J, von Mehren M. Gastrointestinal stromal tumors: management of metastatic disease and emerging therapies. Hematol Oncol Clin North Am 2013; 27:905-20. [PMID: 24093167 PMCID: PMC3792495 DOI: 10.1016/j.hoc.2013.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumors of the gastrointestinal tract. Before the advent of tyrosine kinase inhibitors (TKIs) there were few treatment options available to patients with metastatic GIST. Surgery was the mainstay of treatment and the prognosis was dismal. With the advent of imatinib and second-line TKIs the prognosis of metastatic GIST has improved dramatically; however, there is still a need for therapies for patients with disease refractory to TKI therapy. Newer agents are under investigation and may have promise. This article discusses the current standard of care in terms of standard and investigational pharmacotherapy in the management of metastatic GIST.
Collapse
Affiliation(s)
- Joseph Vadakara
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Margaret von Mehren
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| |
Collapse
|
76
|
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone that is crucial for the stability and function of many proteins essential for cell survival. Many oncogenes, including tyrosine kinases, transcription factors, and cell-cycle regulatory proteins, are client proteins of HSP90. Inhibition of HSP90 causes client protein degradation via the ubiquitin-proteasome pathway, and is a mechanism that might simultaneously downregulate several redundant pathways crucial for cell viability and tumour development. HSP90 inhibitors are currently being developed as anticancer agents, and have shown early promising results in molecularly defined subgroups of solid tumours (eg, ALK-rearranged non-small-cell lung cancer and HER2-amplified breast cancer) and some haematological malignancies (eg, multiple myeloma). Here, we review the current status of HSP90 inhibitors in clinical development, including geldanamycin derivatives, resorcinol derivatives, purine analogues, and other synthetic inhibitors. We also discuss novel strategies and future perspectives on how to optimise the therapeutic potential of this exciting new class of drugs.
Collapse
|
77
|
Muralidharan S, Mandrekar P. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol 2013; 94:1167-84. [PMID: 23990626 DOI: 10.1189/jlb.0313153] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Extensive research in the past decade has identified innate immune recognition receptors and intracellular signaling pathways that culminate in inflammatory responses. Besides its role in cytoprotection, the importance of cell stress in inflammation and host defense against pathogens is emerging. Recent studies have shown that proteins in cellular stress responses, including the heat shock response, ER stress response, and DNA damage response, interact with and regulate signaling intermediates involved in the activation of innate and adaptive immune responses. The effect of such regulation by cell stress proteins may dictate the inflammatory profile of the immune response during infection and disease. In this review, we describe the regulation of innate immune cell activation by cell stress pathways, present detailed descriptions of the types of stress response proteins and their crosstalk with immune signaling intermediates that are essential in host defense, and illustrate the relevance of these interactions in diseases characteristic of aberrant immune responses, such as chronic inflammatory diseases, autoimmune disorders, and cancer. Understanding the crosstalk between cellular stress proteins and immune signaling may have translational implications for designing more effective regimens to treat immune disorders.
Collapse
Affiliation(s)
- Sujatha Muralidharan
- 1.LRB 221, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605.
| | | |
Collapse
|
78
|
Gopalakrishnan R, Matta H, Chaudhary PM. A purine scaffold HSP90 inhibitor BIIB021 has selective activity against KSHV-associated primary effusion lymphoma and blocks vFLIP K13-induced NF-κB. Clin Cancer Res 2013; 19:5016-26. [PMID: 23881928 DOI: 10.1158/1078-0432.ccr-12-3510] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Kaposi sarcoma-associated herpes virus (KSHV)-associated primary effusion lymphomas (PEL) have extremely poor prognosis when treated with conventional chemotherapy. KSHV-encoded viral FLICE-inhibitory protein (vFLIP) K13 binds to the IkappaB kinase (IKK) complex to constitutively activate the NF-κB pathway, which has been shown to be essential for the survival and proliferation of PEL cells. The molecular chaperone HSP90 is a component of the IKK complex and is required for its activity. EXPERIMENTAL DESIGN We have analyzed the effect of HSP90 inhibitors on the survival and proliferation of PEL cells and on the activity of the NF-κB pathway. RESULTS We show that BIIB021, a purine scaffold-based orally administrable HSP90 inhibitor, shows preferential cytotoxicity toward PEL cells as compared with non-PEL cells. The cytotoxic effect of BIIB021 against PEL was associated with induction of cell-cycle arrest and apoptosis. BIIB021 blocked the expression of a number of cellular proteins involved in the regulation of cell cycle and apoptosis. BIIB021 also blocked constitutive NF-κB activity present in PEL cells, in part, by blocking the interaction of vFLIP K13 with the IKK complex subunits. In a xenograft model of PEL, BIIB021 significantly reduced tumor growth. CONCLUSION BIIB021 blocks constitutive NF-κB activity in PEL and shows preferential antitumor activity against PEL in vitro and in vivo. BIIB021 may be a promising agent for treatment of PEL.
Collapse
Affiliation(s)
- Ramakrishnan Gopalakrishnan
- Authors' Affiliation: Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California Keck School of Medicine, Los Angeles, California
| | | | | |
Collapse
|
79
|
A specific expression profile of heat-shock proteins and glucose-regulated proteins is associated with response to neoadjuvant chemotherapy in oesophageal adenocarcinomas. Br J Cancer 2013; 109:370-8. [PMID: 23839491 PMCID: PMC3721390 DOI: 10.1038/bjc.2013.319] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/27/2013] [Accepted: 06/04/2013] [Indexed: 02/08/2023] Open
Abstract
Background: Oesophageal adenocarcinomas often show resistances to chemotherapy (CTX), therefore, it would be of high interest to better understand the mechanisms of resistance. We examined the expression of heat-shock proteins (HSPs) and glucose-regulated proteins (GRPs) in pretherapeutic biopsies of oesophageal adenocarcinomas to assess their potential role in CTX response. Methods: Ninety biopsies of locally advanced adenocarcinomas before platin/5-fluorouracil (FU)-based CTX were investigated by reverse phase protein arrays (RPPAs), immunohistochemistry (IHC) and quantitative RT–PCR. Results: CTX response strongly correlated with survival (P=0.001). Two groups of tumours with specific protein expression patterns were identified by RPPA: Group A was characterised by low expression of HSP90, HSP27 and p-HSP27(Ser15, Ser78, Ser82) and high expression of GRP78, GRP94, HSP70 and HSP60; Group B exhibited the inverse pattern. Tumours of Group A were more likely to respond to CTX, resulting in histopathological tumour regression (P=0.041) and post-therapeutic down-categorisation from cT3 to ypT0–T2 (P=0.040). High HSP60 protein (IHC) and mRNA expression were also associated with tumour down-categorisation (P=0.016 and P=0.004). Conclusion: Our findings may enhance the understanding of CTX response mechanisms, might be helpful to predict CTX response and might have translational relevance as they highlight the role of potentially targetable cellular stress proteins in the context of CTX response.
Collapse
|
80
|
Angelini S, Ravegnini G, Fletcher JA, Maffei F, Hrelia P. Clinical relevance of pharmacogenetics in gastrointestinal stromal tumor treatment in the era of personalized therapy. Pharmacogenomics 2013; 14:941-56. [DOI: 10.2217/pgs.13.63] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|