51
|
Hidaka A, Harrison TA, Cao Y, Sakoda LC, Barfield R, Giannakis M, Song M, Phipps AI, Figueiredo JC, Zaidi SH, Toland AE, Amitay EL, Berndt SI, Borozan I, Chan AT, Gallinger S, Gunter MJ, Guinter MA, Harlid S, Hampel H, Jenkins MA, Lin Y, Moreno V, Newcomb PA, Nishihara R, Ogino S, Obón-Santacana M, Parfrey PS, Potter JD, Slattery ML, Steinfelder RS, Um CY, Wang X, Woods MO, Van Guelpen B, Thibodeau SN, Hoffmeister M, Sun W, Hsu L, Buchanan DD, Campbell PT, Peters U. Intake of Dietary Fruit, Vegetables, and Fiber and Risk of Colorectal Cancer According to Molecular Subtypes: A Pooled Analysis of 9 Studies. Cancer Res 2020; 80:4578-4590. [PMID: 32816852 PMCID: PMC7572895 DOI: 10.1158/0008-5472.can-20-0168] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/12/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
Protective associations of fruits, vegetables, and fiber intake with colorectal cancer risk have been shown in many, but not all epidemiologic studies. One possible reason for study heterogeneity is that dietary factors may have distinct effects by colorectal cancer molecular subtypes. Here, we investigate the association of fruit, vegetables, and fiber intake with four well-established colorectal cancer molecular subtypes separately and in combination. Nine observational studies including 9,592 cases with molecular subtypes for microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and somatic mutations in BRAF and KRAS genes, and 7,869 controls were analyzed. Both case-only logistic regression analyses and polytomous logistic regression analyses (with one control set and multiple case groups) were used. Higher fruit intake was associated with a trend toward decreased risk of BRAF-mutated tumors [OR 4th vs. 1st quartile = 0.82 (95% confidence interval, 0.65-1.04)] but not BRAF-wildtype tumors [1.09 (0.97-1.22); P difference as shown in case-only analysis = 0.02]. This difference was observed in case-control studies and not in cohort studies. Compared with controls, higher fiber intake showed negative association with colorectal cancer risk for cases with microsatellite stable/MSI-low, CIMP-negative, BRAF-wildtype, and KRAS-wildtype tumors (P trend range from 0.03 to 3.4e-03), which is consistent with the traditional adenoma-colorectal cancer pathway. These negative associations were stronger compared with MSI-high, CIMP-positive, BRAF-mutated, or KRAS-mutated tumors, but the differences were not statistically significant. These inverse associations for fruit and fiber intake may explain, in part, inconsistent findings between fruit or fiber intake and colorectal cancer risk that have previously been reported. SIGNIFICANCE: These analyses by colorectal cancer molecular subtypes potentially explain the inconsistent findings between dietary fruit or fiber intake and overall colorectal cancer risk that have previously been reported.
Collapse
Affiliation(s)
- Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Richard Barfield
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Amanda E Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ivan Borozan
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Mark A Guinter
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Heather Hampel
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- School of Public Health, University of Washington, Seattle, Washington
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Shuji Ogino
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mireia Obón-Santacana
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Caroline Y Um
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Xiaoliang Wang
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Canada
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Daniel D Buchanan
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genetic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| |
Collapse
|
52
|
Eijkelboom AH, Brouwer JGM, Vasen HFA, Bisseling TM, Koornstra JJ, Kampman E, van Duijnhoven FJB. Diet quality and colorectal tumor risk in persons with Lynch syndrome. Cancer Epidemiol 2020; 69:101809. [PMID: 32947154 DOI: 10.1016/j.canep.2020.101809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Persons with Lynch syndrome (LS) have an increased risk of developing colorectal tumors (CRTs). Adherence to diet quality indices associated with colorectal cancer (CRC) risk in the general population has not been studied before in LS. METHODS Dietary habits of 490 participants with LS from a prospective cohort study was collected using a food frequency questionnaire. The Dutch Healthy Diet index 2015 (DHD15-index) and Dietary Approaches to Stop Hypertension (DASH) were used to score food-based diet quality. Diet quality scores were divided into tertiles where a higher tertile reflects a higher diet quality. Multivariable Cox proportional hazard regression models were used to estimate the association between the DHD15-index, DASH score and CRT risk. RESULTS During a median follow-up time of 53.4 months, 210 participants (42.9%) developed CRTs. The DHD-index and DASH score were not associated with CRT risk; hazard ratios for highest vs. lowest tertile were 1.00 (95% Confidence Interval (CI): 0.67-1.48) and 1.11 (95% CI: 0.74-1.69), respectively. No linear trends across the DHD-index and DASH score tertiles were observed (P-trend = 0.97 and 0.83 respectively). CONCLUSION In contrast to observations in the general population, no evidence for an association between the food-based DHD15-index or DASH score and CRT risk was observed in persons with LS. Further studies are needed investigating the association between diet quality and mechanisms leading to the development of LS-associated tumors.
Collapse
Affiliation(s)
- Anouk H Eijkelboom
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands.
| | - Jesca G M Brouwer
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands.
| | - Hans F A Vasen
- The Netherlands Foundation for the Detection of Hereditary Tumors, Leiden, the Netherlands.
| | - Tanya M Bisseling
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands.
| | - Jan J Koornstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands.
| | | |
Collapse
|
53
|
Fujiyoshi K, Chen Y, Haruki K, Ugai T, Kishikawa J, Hamada T, Liu L, Arima K, Borowsky J, Väyrynen JP, Zhao M, Lau MC, Gu S, Shi S, Akimoto N, Twombly TS, Drew DA, Song M, Chan AT, Giovannucci EL, Meyerhardt JA, Fuchs CS, Nishihara R, Lennerz JK, Giannakis M, Nowak JA, Zhang X, Wu K, Ogino S. Smoking Status at Diagnosis and Colorectal Cancer Prognosis According to Tumor Lymphocytic Reaction. JNCI Cancer Spectr 2020; 4:pkaa040. [PMID: 32923934 PMCID: PMC7477375 DOI: 10.1093/jncics/pkaa040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Smoking has been associated with worse colorectal cancer patient survival and may potentially suppress the immune response in the tumor microenvironment. We hypothesized that the prognostic association of smoking behavior at colorectal cancer diagnosis might differ by lymphocytic reaction patterns in cancer tissue. METHODS Using 1474 colon and rectal cancer patients within 2 large prospective cohort studies (Nurses' Health Study and Health Professionals Follow-up Study), we characterized 4 patterns of histopathologic lymphocytic reaction, including tumor-infiltrating lymphocytes (TILs), intratumoral periglandular reaction, peritumoral lymphocytic reaction, and Crohn's-like lymphoid reaction. Using covariate data of 4420 incident colorectal cancer patients in total, an inverse probability weighted multivariable Cox proportional hazards regression model was conducted to adjust for selection bias due to tissue availability and potential confounders, including tumor differentiation, disease stage, microsatellite instability status, CpG island methylator phenotype, long interspersed nucleotide element-1 methylation, and KRAS, BRAF, and PIK3CA mutations. RESULTS The prognostic association of smoking status at diagnosis differed by TIL status. Compared with never smokers, the multivariable-adjusted colorectal cancer-specific mortality hazard ratio for current smokers was 1.50 (95% confidence interval = 1.10 to 2.06) in tumors with negative or low TIL and 0.43 (95% confidence interval = 0.16 to 1.12) in tumors with intermediate or high TIL (2-sided P interaction = .009). No statistically significant interactions were observed in the other patterns of lymphocytic reaction. CONCLUSIONS The association of smoking status at diagnosis with colorectal cancer mortality may be stronger for carcinomas with negative or low TIL, suggesting a potential interplay of smoking and lymphocytic reaction in the colorectal cancer microenvironment.
Collapse
Affiliation(s)
- Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Surgery, Kurume University, Kurume, Fukuoka, Japan
| | - Yang Chen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Junko Kishikawa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Tsuyoshi Hamada
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Li Liu
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer Borowsky
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Juha P Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Simeng Gu
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Shanshan Shi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Tyler S Twombly
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT, USA
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Smilow Cancer Hospital, New Haven, CT, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
54
|
Pesola F, Eloranta S, Martling A, Saraste D, Smedby KE. Family history of colorectal cancer and survival: a Swedish population-based study. J Intern Med 2020; 287:723-733. [PMID: 32012369 PMCID: PMC7318575 DOI: 10.1111/joim.13036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES A family history of colorectal cancer (CRC) is an established risk factor for developing CRC, whilst the impact of family history on prognosis is unclear. The present study assessed the association between family history and prognosis and, based on current evidence, explored whether this association was modified by age at diagnosis. METHODS Using data from the Swedish Colorectal Cancer Registry (SCRCR) linked with the Multigeneration Register and the National Cancer Register, we identified 31 801 patients with a CRC diagnosed between 2007 and 2016. The SCRCR is a clinically rich database which includes information on the cancer stage, grade, location, treatment, complications and postoperative follow-up. RESULTS We estimated excess mortality rate ratios (EMRR) for relative survival and hazard ratios (HR) for disease-free survival with 95% confidence intervals (CIs) using flexible parametric models. We found no association between family history and relative survival (EMRR = 0.96, 95% CIs: 0.89-1.03, P = 0.21) or disease-free survival (HR = 0.98, 95% CIs: 0.91-1.06, P = 0.64). However, age was found to modify the impact of family history on prognosis. Young patients (<50 at diagnosis) with a positive family history had less advanced (i.e. stages I and II) cancers than those with no family history (OR = 0.71, 95% CI: 0.56-0.89, P = 0.004) and lower excess mortality even after adjusting for cancer stage (EMMR = 0.63, 95% CIs: 0.47-0.84, P = 0.002). CONCLUSIONS Our results suggest that young individuals with a family history of CRC may have greater health awareness, attend opportunistic screening and adopt lifestyle changes, leading to earlier diagnosis and better prognosis.
Collapse
Affiliation(s)
- F. Pesola
- School of Cancer & Pharmaceutical SciencesKing's College LondonLondonUK
| | - S. Eloranta
- Department of Medicine SolnaDivision of Clinical EpidemiologyKarolinska Institutet and Karolinska University HospitalStockholmSweden
| | - A. Martling
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - D. Saraste
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - K. E. Smedby
- Department of Medicine SolnaDivision of Clinical EpidemiologyKarolinska Institutet and Karolinska University HospitalStockholmSweden
| |
Collapse
|
55
|
Barry EL, Fedirko V, Baron JA. NSAIDs and Colorectal Cancer Phenotypes: What Now? J Natl Cancer Inst 2020; 111:440-441. [PMID: 30388268 DOI: 10.1093/jnci/djy174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Veronika Fedirko
- Department of Epidemiology, Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, GA
| | - John A Baron
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH.,Department of Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC
| |
Collapse
|
56
|
Atef N, Alieldin N, Sherif G, Loay I, Mostafa Mahmoud A, Mohamed G. Microsatellite Instability and Life Style Factors in Sporadic Colorectal Cancer. Asian Pac J Cancer Prev 2020; 21:1471-1480. [PMID: 32458658 PMCID: PMC7541856 DOI: 10.31557/apjcp.2020.21.5.1471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Colorectal cancer (CRC) in Egypt is a relatively high young onset disease. As a form of heterogeneous cancer, there is interplay between genetic and environmental factors. We aimed at probing the association of life style factors and Microsatellite Instability (MSI) status that could provide more insights on carcinogenic process of CRC. Methods: One hundred incident sporadic CRC patients were involved. Information on risk factors of CRC was obtained and microsatellite instability status was predicted through evaluation of MMR protein expression via immunohistochemistry (IHC). Results: Median age was 47.50 years, females represented 54.0% and 36% of patients were Microsatellite Instability High (MSI-H). Most patients with right sided colon cancer (78.3%) were MSI-H while mostly stable or low MSS/MSI-L for left-sided colon and rectum (78.6%, 74.3% respectively, p<0.001). Patients with low physical activity had higher risk of MSS/MSI-L than those with moderate or high activity p =0.026. Patients with BMI greater than 30 Kg/m2 had higher MSS/MSI-L (75.5%) than those with BMI between 25-30 Kg/m2 (60.6%) and those with normal BMI <25 (38.9%), p for trend = 0.006. On subgroup analyses, the association of high BMI with MSS/MSI-L was only shown in patients younger than 40 years, females, stage III, non-mucin secreting adenocarcinoma and a significant interaction with physical activity. Conclusion: In Conclusion, the present study confirms the increased risk of MSS/MSI-L with increased BMI and speculates this association to be modified by patient’s life style and tumor characteristics. Further research is needed to validate present results.
Collapse
Affiliation(s)
- Nora Atef
- Biostatistics and Cancer Epidemiology department, National Cancer Institute (NCI), Cairo University, Egypt
| | - Nelly Alieldin
- Biostatistics and Cancer Epidemiology department, National Cancer Institute (NCI), Cairo University, Egypt
| | - Ghada Sherif
- Biostatistics and Cancer Epidemiology department, National Cancer Institute (NCI), Cairo University, Egypt
| | - Iman Loay
- Pathology Department, NCI, Cairo University, Egypt
| | | | | |
Collapse
|
57
|
Bodén S, Myte R, Harbs J, Sundkvist A, Zingmark C, Löfgren Burström A, Palmqvist R, Harlid S, Van Guelpen B. C-reactive Protein and Future Risk of Clinical and Molecular Subtypes of Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:1482-1491. [PMID: 32317300 DOI: 10.1158/1055-9965.epi-19-1339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/27/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Inflammation has been implicated in colorectal cancer etiology, but the relationship between C-reactive protein (CRP) and colorectal cancer risk is unclear. We aimed to investigate the association between prediagnostic plasma CRP concentrations and the risk of clinical and molecular colorectal cancer subtypes. METHODS We used prospectively collected samples from 1,010 matched colorectal cancer case-control pairs from two population-based cohorts in Northern Sweden, including 259 with repeated samples. Conditional logistic regression and linear mixed models were used to estimate relative risks of colorectal cancer, including subtypes based on BRAF and KRAS mutations, microsatellite instability status, tumor location, stage, lag time, and (using unconditional logistic regression) body mass index. RESULTS CRP was not associated with colorectal cancer risk, regardless of clinical or molecular colorectal cancer subtype. For participants with advanced tumors and blood samples <5 years before diagnosis, CRP was associated with higher risk [OR per 1 unit increase in natural logarithm (ln) transformed CRP, 1.32; 95% confidence interval (CI), 1.01-1.73]. CRP levels increased over time, but average time trajectories were similar for cases and controls (P interaction = 0.19). CONCLUSIONS Our results do not support intertumoral heterogeneity as an explanation for previous inconsistent findings regarding the role of CRP in colorectal cancer etiology. The possible association in the subgroup with advanced tumors and shorter follow-up likely reflects undiagnosed cancer at baseline. IMPACT Future efforts to establish the putative role of chronic, low-grade inflammation in colorectal cancer development will need to address the complex relationship between systemic inflammatory factors and tumor microenvironment, and might consider larger biomarker panels than CRP alone.
Collapse
Affiliation(s)
- Stina Bodén
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden.
| | - Robin Myte
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Justin Harbs
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Anneli Sundkvist
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
58
|
Amitay EL, Carr PR, Jansen L, Roth W, Alwers E, Herpel E, Kloor M, Bläker H, Chang-Claude J, Brenner H, Hoffmeister M. Smoking, alcohol consumption and colorectal cancer risk by molecular pathological subtypes and pathways. Br J Cancer 2020; 122:1604-1610. [PMID: 32225169 PMCID: PMC7250912 DOI: 10.1038/s41416-020-0803-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Background Smoking and alcohol increase risk for colorectal malignancies. However, colorectal cancer (CRC) is a heterogenic disease and associations with the molecular pathological pathways are unclear. Methods This population-based case–control study includes 2444 cases with first-diagnosis CRC and 2475 controls. Tumour tissue was analysed for MSI (microsatellite instability), CIMP (CpG island methylator phenotype), BRAF (B-Raf proto-oncogene serine/threonine kinase gene) and KRAS (Kirsten rat sarcoma viral oncogene homologue gene) mutations. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were estimated for associations between alcohol and smoking and CRC molecular subtypes and pathways. Results Current smoking showed higher ORs for MSI-high (OR = 2.79, 95% CI: 1.86–4.18) compared to MSS (OR = 1.41, 1.14–1.75, p-heterogeneity (p-het) = 0.001), BRAF-mutated (mut) (OR = 2.40, 1.41–4.07) compared to BRAF-wild type (wt) (OR = 1.52, 1.24–1.88, p-het = 0.074), KRAS-wt (OR = 1.70, 1.36–2.13) compared to KRAS-mut (OR = 1.26, 0.95–1.68, p-het = 0.039) and CIMP-high (OR = 2.01, 1.40–2.88) compared to CIMP-low/negative CRC (OR = 1.50, 1.22–1.85, p-het=0.101). Current smoking seemed more strongly associated with sessile serrated pathway (CIMP-high + BRAF-mut; OR = 2.39, 1.27–4.52) than with traditional pathway CRC (MSS + CIMP-low/negative + BRAF-wt; OR = 1.50, 1.16–1.94) and no association was observed with alternate pathway CRC (MSS + CIMP-low/negative + KRAS-wt; OR = 1.08, 0.77–1.43). No heterogeneity was observed in alcohol consumption association by molecular subtypes. Conclusions In this large case–control study, smoking was more strongly associated with MSI-high and KRAS-wt CRC and with cases showing features of the sessile serrated pathway. Association patterns were less clear for alcohol consumption.
Collapse
Affiliation(s)
- Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Prudence R Carr
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Elizabeth Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, University hospital Leipzig, Leipzig, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
59
|
A longitudinal study of prediagnostic metabolic biomarkers and the risk of molecular subtypes of colorectal cancer. Sci Rep 2020; 10:5336. [PMID: 32210264 PMCID: PMC7093429 DOI: 10.1038/s41598-020-62129-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/02/2020] [Indexed: 01/06/2023] Open
Abstract
Body fatness increases the risk of colorectal cancer (CRC). Insulin resistance and altered adipokines are potential mechanisms, but previous biomarker studies have been inconsistent. Intertumoral heterogeneity might provide an explanation. We investigated insulin, C-peptide, adiponectin, and leptin in relation to CRC molecular subtypes using a nested case-control design (1010 cases, 1010 matched controls, median 12.3 years from baseline to CRC diagnosis) from the population-based Northern Sweden Health and Disease Study. Repeated samples were available from 518 participants. Risks of CRC and subtypes, defined by tumor BRAF and KRAS mutations and microsatellite instability (MSI) status, were estimated using conditional logistic regression and linear mixed models. Higher C-peptide and lower adiponectin were associated with increased CRC risk (odds ratios per standard deviation increase (95% CI): 1.11 (1.01, 1.23) and 0.91 (0.83, 1.00), respectively), though weakened when adjusted for body mass index. Insulin and leptin were not associated with CRC risk. Within-individual time trajectories were similar in cases and controls, and no subtype-specific relationships were identified (all Pheterogeneity > 0.1). Adiponectin was weakly inversely associated with the risk of KRAS-mutated (P = 0.08) but not BRAF-mutated or KRAS/BRAF-wildtype CRC, consistent with the one previous study. These findings contribute to an increased understanding of the complex role of body size in CRC.
Collapse
|
60
|
Carr PR, Amitay EL, Jansen L, Alwers E, Roth W, Herpel E, Kloor M, Schneider M, Bläker H, Chang-Claude J, Brenner H, Hoffmeister M. Association of BMI and major molecular pathological markers of colorectal cancer in men and women. Am J Clin Nutr 2020; 111:562-569. [PMID: 31897467 DOI: 10.1093/ajcn/nqz315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Observational studies have consistently shown that a high BMI is associated with increased risk of colorectal cancer (CRC). However, the underlying mechanisms linking obesity to CRC remain unclear. OBJECTIVES To investigate the associations of BMI and CRC by major molecular pathological subtypes of CRC. METHODS This analysis included 2407 cases and 2454 controls from a large German population-based case-control study. Information on recent weight and height as well as other demographic and lifestyle data were obtained by standardized interviews. Multinomial logistic regression was used to estimate ORs and 95% CIs for the associations between BMI and risk of CRC by major molecular pathological features: microsatellite instability (MSI), CpG island methylator phenotype (CIMP), B-Raf proto-oncogene serine/threonine kinase (BRAF) mutation, and Kirsten rat sarcoma viral oncogene homolog gene (KRAS) mutation. RESULTS Among women, a higher BMI was differentially and more strongly associated with risk of MSI CRC (OR per 5 kg/m2: 1.69; 95% CI: 1.34, 2.12; Pheterogeneity ≤ 0.001), CIMP-high CRC (OR per 5 kg/m2: 1.57; 95% CI: 1.30, 1.89; Pheterogeneity ≤ 0.001), BRAF-mutated CRC (OR per 5 kg/m2: 1.56; 95% CI: 1.22, 1.99; Pheterogeneity = 0.04), and KRAS-wildtype CRC (OR per 5 kg/m2: 1.35; 95% CI: 1.17, 1.54; Pheterogeneity = 0.01), compared with the risk of CRC in subjects with the molecular feature counterpart. In men, no meaningful differences in CRC risk were observed for the investigated molecular feature pairs. For the association of BMI with MSI CRC, we observed effect modification by sex (Pinteraction = 0.04). Also, in women, the risk of CRC with the serrated pathway features was more strongly increased with higher BMI than risk of CRC with the traditional pathway features (OR per 5 kg/m2: 1.73; 95% CI: 1.28, 2.34; Pheterogeneity = 0.01). CONCLUSIONS In women, the relation between BMI and MSI-high CRC seems to be stronger than that between BMI and microsatellite-stable CRC. However, a validation in an independent cohort is needed. This observational study was registered at the German Clinical Trials Register (http://www.drks.de; study ID: DRKS00011793), an approved primary register in the WHO network.
Collapse
Affiliation(s)
- Prudence R Carr
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Elizabeth Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Schneider
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, Charité University Medicine, Berlin, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany.,Genetic Tumor Epidemiology Group, University Medical Center Hamburg-Eppendorf, University Cancer Center Hamburg, Hamburg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
61
|
Amitay EL, Carr PR, Jansen L, Alwers E, Roth W, Herpel E, Kloor M, Bläker H, Chang-Claude J, Brenner H, Hoffmeister M. Postmenopausal hormone replacement therapy and colorectal cancer risk by molecular subtypes and pathways. Int J Cancer 2020; 147:1018-1026. [PMID: 31943160 DOI: 10.1002/ijc.32868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022]
Abstract
Postmenopausal hormone replacement therapy (HRT) was found to be associated with lower risk of colorectal cancer (CRC). However, little is known regarding associations with molecular subtypes of CRC. The current study includes female participants of a large German population-based case-control study (922 CRC cases and 1,183 controls). Tumor tissue samples were analyzed for microsatellite instability (MSI), CpG island methylator phenotype (CIMP), BRAF and KRAS mutation status. Multivariable logistic regression models were used to assess the association of HRT use with molecular subtypes and pathways. Postmenopausal HRT use was overall associated with reduced risk of CRC (adjusted odds ratio (aOR) 0.62, 95% confidence interval (CI) 0.50-0.76) and no major differences were observed for molecular subtypes or for tumor marker combinations representing molecular pathways. When stratified by median age (≤/>71 years) potentially stronger risk reductions were observed in the older group for subtypes showing MSI (OR = 0.36, 95% CI 0.17-0.76), BRAF mutation (OR = 0.40, 95% CI 0.30-0.83) and CIMP-high (OR = 0.40, 95% CI 0.21-0.73) and for CRC suggestive of the sessile serrated pathway (OR = 0.45, 95% CI 0.20-1.01). In conclusion, postmenopausal use of HRT was similarly associated with risk reduction of major molecular tumor subtypes and pathways of CRC. Potentially stronger risk reductions with CRC subtypes diagnosed at higher ages require confirmation and clarification from other studies. The current study extends the limited understanding of the mechanisms of HRT in CRC prevention.
Collapse
Affiliation(s)
- Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Prudence R Carr
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elizabeth Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Germany
| | - Hendrik Bläker
- Institute of Pathology, Charité University Medicine, Berlin, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Genetic Tumour Epidemiology Group, University Medical Center Hamburg-Eppendorf, University Cancer Center Hamburg, Hamburg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
62
|
Li K, Luo H, Huang L, Luo H, Zhu X. Microsatellite instability: a review of what the oncologist should know. Cancer Cell Int 2020; 20:16. [PMID: 31956294 PMCID: PMC6958913 DOI: 10.1186/s12935-019-1091-8] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/28/2019] [Indexed: 02/06/2023] Open
Abstract
The patients with high microsatellite instability (MSI-H)/mismatch repair deficient (dMMR) tumors recently have been reported that can benefit from immunotherapy, and MSI can be used as a genetic instability of a tumor detection index. However, many studies have shown that there are many heterogeneous phenomena in patients with MSI tumors in terms of immunotherapy, prognosis and chemotherapy sensitivity. Here we mainly review the research results of MSI detection methods, the mechanisms of MSI occurrence and its relationship with related tumors, aiming to make a brief analysis of the current research status of MSI and provide comparable reference and guidance value for further research in this field.
Collapse
Affiliation(s)
- Kai Li
- 1Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023 China.,2The Marine Biomedical Research Institute, Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang, 524023 China.,3Cancer Center, The Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023 China
| | - Haiqing Luo
- 3Cancer Center, The Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023 China
| | - Lianfang Huang
- 1Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023 China.,2The Marine Biomedical Research Institute, Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang, 524023 China
| | - Hui Luo
- 2The Marine Biomedical Research Institute, Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang, 524023 China
| | - Xiao Zhu
- 1Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023 China.,2The Marine Biomedical Research Institute, Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang, 524023 China
| |
Collapse
|
63
|
Murphy N, Moreno V, Hughes DJ, Vodicka L, Vodicka P, Aglago EK, Gunter MJ, Jenab M. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol Aspects Med 2019; 69:2-9. [PMID: 31233770 DOI: 10.1016/j.mam.2019.06.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) incidence changes with time and by variations in diet and lifestyle, as evidenced historically by migrant studies and recently by extensive epidemiologic evidence. The worldwide heterogeneity in CRC incidence is strongly suggestive of etiological involvement of environmental exposures, particularly lifestyle and diet. It is established that physical inactivity, obesity and some dietary factors (red/processed meats, alcohol) are positively associated with CRC, while healthy lifestyle habits show inverse associations. Mechanistic evidence shows that lifestyle and dietary components that contribute to energy excess are linked with increased CRC via metabolic dysfunction, inflammation, oxidative stress, bacterial dysbiosis and breakdown of gut barrier integrity while the reverse is apparent for components associated with decreased risk. This chapter will review the available evidence on lifestyle and dietary factors in CRC etiology and their underlying mechanisms in CRC development. This short review will also touch upon available information on potential gene-environment interactions, molecular sub-types of CRC and anatomical sub-sites within the colorectum.
Collapse
Affiliation(s)
- Neil Murphy
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO). Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL). Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - David J Hughes
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Ludmila Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Elom K Aglago
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Marc J Gunter
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Mazda Jenab
- International Agency for Research on Cancer (IARC-WHO), Lyon, France.
| |
Collapse
|
64
|
Li M, Olver I, Keefe D, Holden C, Worthley D, Price T, Karapetis C, Miller C, Powell K, Buranyi-Trevarton D, Fusco K, Roder D. Pre-diagnostic colonoscopies reduce cancer mortality - results from linked population-based data in South Australia. BMC Cancer 2019; 19:856. [PMID: 31464597 PMCID: PMC6716808 DOI: 10.1186/s12885-019-6092-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/26/2019] [Indexed: 01/08/2023] Open
Abstract
Background To investigate the association between pre-diagnostic colonoscopy and colorectal cancer mortality in South Australia. Methods Colonoscopy histories were obtained for colorectal cancer patients diagnosed in 2003–2013 using linked Medical Benefits Schedule (MBS) claims, hospital-inpatient and cancer-registry data. Colonoscopy histories included the year of colonoscopy, numbers of examinations, and the time from first colonoscopy to diagnosis. Histories of multiple exposures to colonoscopies, and exposures of greater than a year from initial colonoscopy to diagnosis, were regarded as indicators of screening or surveillance activity. Colonoscopies occurring within one year of diagnosis were regarded as more likely to be a response to cancer symptoms than those occurring > 1 year before diagnosis. Associations between colonoscopy history and post-diagnostic survival were analysed using sub-hazard ratios (SHRs) from competing risk regression adjusted for socio-demographic and cancer characteristics. Results Having pre-diagnostic colonoscopy was associated with an unadjusted reduction in risk of colorectal cancer death of 17% (SHR: 0.83, 95% CI 0.78–0.89). After adjusting for time period and sociodemographic characteristics, the risk of colorectal cancer death reduced by 17% for one pre-diagnostic colonoscopy examination; 27% for two pre-diagnostic colonoscopy examinations; and 45% for three or more pre-diagnostic colonoscopy examinations. Those with a time of over one year from first colonoscopy in the study window to diagnosis, when compared with less than one year, had a 17% lower risk of colorectal cancer death in this adjusted analysis. These reductions were substantially reduced or eliminated when also adjusting for less advanced stage. Conclusions Pre-diagnostic colonoscopy, and more so, multiple colonoscopies and first colonoscopy occurring over one year from initial colonoscopy to diagnosis, were associated with longer survival post diagnosis. This was largely explained by less advanced cancer stage at the time of diagnosis. Electronic supplementary material The online version of this article (10.1186/s12885-019-6092-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming Li
- Cancer Research Institute, University of South Australia, Adelaide, Australia.
| | - Ian Olver
- Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Dorothy Keefe
- SA Cancer Service, South Australian Department for Health and Wellbeing, Adelaide, Australia
| | - Carol Holden
- South Australia Health and Medical Research Institute, Adelaide, Australia
| | - Dan Worthley
- South Australia Health and Medical Research Institute, Adelaide, Australia
| | - Timothy Price
- Clinical Oncology Research Unit, The Queen Elizabeth Hospital, Woodville, Australia
| | | | - Caroline Miller
- South Australia Health and Medical Research Institute, Adelaide, Australia
| | - Kate Powell
- South Australia Health and Medical Research Institute, Adelaide, Australia
| | | | - Kellie Fusco
- Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - David Roder
- Cancer Research Institute, University of South Australia, Adelaide, Australia
| |
Collapse
|
65
|
Association Between Intake of Red and Processed Meat and Survival in Patients With Colorectal Cancer in a Pooled Analysis. Clin Gastroenterol Hepatol 2019; 17:1561-1570.e3. [PMID: 30476588 PMCID: PMC6533164 DOI: 10.1016/j.cgh.2018.11.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Red and processed meat intake is associated with colorectal cancer (CRC) incidence, but it is not clear if intake is associated with patient survival after diagnosis. METHODS We pooled data from 7627 patients with stage I-IV CRC from 10 studies in the International Survival Analysis in Colorectal Cancer Consortium. Cox proportional hazards regression models were used to evaluate the associations of intake of red and processed meat before diagnosis with overall and CRC-specific survival. RESULTS Among 7627 patients with CRC, 2338 died, including 1576 from CRC, over a median follow-up time of 5.1 years. In multivariable-adjusted analyses, higher intake of red or processed meat was not associated with overall survival of patients with stage I-III CRC: Q4 vs Q1 red meat hazard ratio [HR], 1.08 (95% CI, 0.93-1.26) and Q4 vs Q1 processed meat HR, 1.10 (95% CI, 0.93-1.32) or with CRC-specific survival: Q4 vs Q1 red meat HR, 1.09 (95% CI, 0.89-1.33) and Q4 vs Q1 processed meat HR, 1.11 (95% CI, 0.87-1.42). Results were similar for patients with stage IV CRC. However, patients with stage I-III CRC who reported an intake of processed meat above the study-specific medians had a higher risk of death from any cause (HR, 1.12; 95% CI, 1.01-1.25) than patients who reported eating at or less than the median. CONCLUSION In this large consortium of CRC patient cohorts, intake of red and processed meat before a diagnosis of CRC was not associated with shorter survival time after diagnosis, although a possible weak adverse association cannot be excluded. Studies that evaluate dietary data from several time points before and after cancer diagnosis are required to confirm these findings.
Collapse
|
66
|
Hamada T, Nowak JA, Milner DA, Song M, Ogino S. Integration of microbiology, molecular pathology, and epidemiology: a new paradigm to explore the pathogenesis of microbiome-driven neoplasms. J Pathol 2019; 247:615-628. [PMID: 30632609 PMCID: PMC6509405 DOI: 10.1002/path.5236] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/24/2018] [Accepted: 01/06/2019] [Indexed: 02/06/2023]
Abstract
Molecular pathological epidemiology (MPE) is an integrative transdisciplinary field that addresses heterogeneous effects of exogenous and endogenous factors (collectively termed 'exposures'), including microorganisms, on disease occurrence and consequences, utilising molecular pathological signatures of the disease. In parallel with the paradigm of precision medicine, findings from MPE research can provide aetiological insights into tailored strategies of disease prevention and treatment. Due to the availability of molecular pathological tests on tumours, the MPE approach has been utilised predominantly in research on cancers including breast, lung, prostate, and colorectal carcinomas. Mounting evidence indicates that the microbiome (inclusive of viruses, bacteria, fungi, and parasites) plays an important role in a variety of human diseases including neoplasms. An alteration of the microbiome may be not only a cause of neoplasia but also an informative biomarker that indicates or mediates the association of an epidemiological exposure with health conditions and outcomes. To adequately educate and train investigators in this emerging area, we herein propose the integration of microbiology into the MPE model (termed 'microbiology-MPE'), which could improve our understanding of the complex interactions of environment, tumour cells, the immune system, and microbes in the tumour microenvironment during the carcinogenic process. Using this approach, we can examine how lifestyle factors, dietary patterns, medications, environmental exposures, and germline genetics influence cancer development and progression through impacting the microbial communities in the human body. Further integration of other disciplines (e.g. pharmacology, immunology, nutrition) into microbiology-MPE would expand this developing research frontier. With the advent of high-throughput next-generation sequencing technologies, researchers now have increasing access to large-scale metagenomics as well as other omics data (e.g. genomics, epigenomics, proteomics, and metabolomics) in population-based research. The integrative field of microbiology-MPE will open new opportunities for personalised medicine and public health. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jonathan A Nowak
- Department of Pathology Program in MPE Molecular Pathological Epidemiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois, USA
| | - Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology Program in MPE Molecular Pathological Epidemiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
67
|
Ogino S, Nowak JA, Hamada T, Milner DA, Nishihara R. Insights into Pathogenic Interactions Among Environment, Host, and Tumor at the Crossroads of Molecular Pathology and Epidemiology. ANNUAL REVIEW OF PATHOLOGY 2019; 14:83-103. [PMID: 30125150 PMCID: PMC6345592 DOI: 10.1146/annurev-pathmechdis-012418-012818] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evidence indicates that diet, nutrition, lifestyle, the environment, the microbiome, and other exogenous factors have pathogenic roles and also influence the genome, epigenome, transcriptome, proteome, and metabolome of tumor and nonneoplastic cells, including immune cells. With the need for big-data research, pathology must transform to integrate data science fields, including epidemiology, biostatistics, and bioinformatics. The research framework of molecular pathological epidemiology (MPE) demonstrates the strengths of such an interdisciplinary integration, having been used to study breast, lung, prostate, and colorectal cancers. The MPE research paradigm not only can provide novel insights into interactions among environment, tumor, and host but also opens new research frontiers. New developments-such as computational digital pathology, systems biology, artificial intelligence, and in vivo pathology technologies-will further transform pathology and MPE. Although it is necessary to address the rarity of transdisciplinary education and training programs, MPE provides an exemplary model of integrative scientific approaches and contributes to advancements in precision medicine, therapy, and prevention.
Collapse
Affiliation(s)
- Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA; , ,
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02215, USA;
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA; , ,
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02215, USA;
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois 60603, USA;
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA; , ,
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
68
|
Hamada T, Nowak JA, Masugi Y, Drew DA, Song M, Cao Y, Kosumi K, Mima K, Twombly TS, Liu L, Shi Y, da Silva A, Gu M, Li W, Nosho K, Keum N, Giannakis M, Meyerhardt JA, Wu K, Wang M, Chan AT, Giovannucci EL, Fuchs CS, Nishihara R, Zhang X, Ogino S. Smoking and Risk of Colorectal Cancer Sub-Classified by Tumor-Infiltrating T Cells. J Natl Cancer Inst 2019; 111:42-51. [PMID: 30312431 PMCID: PMC6335108 DOI: 10.1093/jnci/djy137] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background Evidence indicates not only carcinogenic effect of cigarette smoking but also its immunosuppressive effect. We hypothesized that the association of smoking with colorectal cancer risk might be stronger for tumors with lower anti-tumor adaptive immune response. Methods During follow-up of 134 981 participants (3 490 851 person-years) in the Nurses' Health Study and Health Professionals Follow-up Study, we documented 729 rectal and colon cancer cases with available data on T-cell densities in tumor microenvironment. Using the duplication-method Cox regression model, we examined a differential association of smoking status with risk of colorectal carcinoma subclassified by densities of CD3+ cells, CD8+ cells, CD45RO (PTPRC)+ cells, or FOXP3+ cells. All statistical tests were two-sided. Results The association of smoking status with colorectal cancer risk differed by CD3+ cell density (Pheterogeneity = .007). Compared with never smokers, multivariable-adjusted hazard ratios for CD3+ cell-low colorectal cancer were 1.38 (95% confidence interval = 1.09 to 1.75) in former smokers and 1.59 (95% confidence interval = 1.14 to 2.23) in current smokers (Ptrend = .002, across smoking status categories). In contrast, smoking status was not associated with CD3+ cell-high cancer risk (Ptrend = .52). This differential association appeared consistent in strata of microsatellite instability, CpG island methylator phenotype, or BRAF mutation status. There was no statistically significant differential association according to densities of CD8+ cells, CD45RO+ cells, or FOXP3+ cells (Pheterogeneity > .04, with adjusted α of 0.01). Conclusions Colorectal cancer risk increased by smoking was stronger for tumors with lower T-lymphocyte response, suggesting an interplay of smoking and immunity in colorectal carcinogenesis.
Collapse
Affiliation(s)
| | - Jonathan A Nowak
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Program in Molecular Pathological Epidemiology, Department of Pathology
| | | | - David A Drew
- Clinical and Translational Epidemiology Unit, and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition
| | - Yin Cao
- Clinical and Translational Epidemiology Unit, and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | | | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | | | - Li Liu
- Department of Oncologic Pathology
- Department of Nutrition
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Hubei, P.R. China
| | - Yan Shi
- Department of Oncologic Pathology
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
| | | | - Mancang Gu
- Department of Oncologic Pathology
- College of Pharmacy, Zhejiang Chinese Medical University, Zhejiang, P.R. China
| | | | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology, and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - NaNa Keum
- Department of Nutrition
- Department of Food Science and Biotechnology, Dongguk University, Goyang, the Republic of Korea
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Department of Medicine, and Channing Division of Network Medicine
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Kana Wu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition
- Department of Epidemiology
| | - Molin Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Epidemiology
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Andrew T Chan
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Clinical and Translational Epidemiology Unit, and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Edward L Giovannucci
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition
- Department of Epidemiology
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT
- Department of Medicine, Yale School of Medicine, New Haven, CT
- Smilow Cancer Hospital, New Haven, CT
| | - Reiko Nishihara
- Department of Oncologic Pathology
- Program in Molecular Pathological Epidemiology, Department of Pathology
- Department of Nutrition
- Department of Epidemiology
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Xuehong Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Shuji Ogino
- Department of Oncologic Pathology
- Program in Molecular Pathological Epidemiology, Department of Pathology
- Department of Epidemiology
- Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
69
|
Brenner H, Chen C. The colorectal cancer epidemic: challenges and opportunities for primary, secondary and tertiary prevention. Br J Cancer 2018; 119:785-792. [PMID: 30287914 PMCID: PMC6189126 DOI: 10.1038/s41416-018-0264-x] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is both one of the most common and one of the most preventable cancers globally, with powerful but strongly missed potential for primary, secondary and tertiary prevention. CRC incidence has traditionally been the highest in affluent Western countries, but it is now increasing rapidly with economic development in many other parts of the world. CRC shares several main risk factors, such as smoking, excessive alcohol consumption, physical inactivity and being overweight, with other common diseases; therefore, primary prevention efforts to reduce these risk factors are expected to have multiple beneficial effects that extend beyond CRC prevention, and should have high public health impact. A sizeable reduction in the incidence and mortality of CRC can also be achieved by offering effective screening tests, such as faecal immunochemical tests, flexible sigmoidoscopy and colonoscopy, in organised screening programmes which have been implemented in an increasing number of countries. Countries with early and high uptake rates of effective screening have exhibited major declines in CRC incidence and mortality, in contrast to most other countries. Finally, increasing evidence shows that the prognosis and quality of life of CRC patients can be substantially improved by tertiary prevention measures, such as the administration of low-dose aspirin and the promotion of physical activity.
Collapse
Affiliation(s)
- Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Chen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|