51
|
Kozub PC, Barboza K, Galdeano F, Quarin CL, Cavagnaro JB, Cavagnaro PF. Reproductive biology of the native forage grass Trichloris crinita (Poaceae, Chloridoideae). PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:444-453. [PMID: 28135030 DOI: 10.1111/plb.12549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
Trichloris crinita is a perennial forage grass species native to arid regions of the American continent. Due to its extensive area of distribution, good forage quality and resistance to drought and grazing, this species is widely utilised as forage and for revegetation purposes in environments with low water availability. Despite its importance, genetic improvement of T. crinita has been very limited, partly as consequence of the lack of knowledge on its mode of reproduction. In the present work, we studied the reproductive biology of T. crinita by means of embryological analyses, flow cytometric seed screen (FCSS), self-compatibility tests and progeny testing with morphological and molecular markers. Cytological analyses revealed embryo sacs with eight nuclei and of Polygonum type for all T. crinita accessions analysed. FCSS histograms exhibited two clear peaks corresponding to 2C and 3C DNA content, indicating embryo sacs of sexual origin. Controlled pollination experiments designed to evaluate seed set (%) demonstrated that T. crinita is self-compatible, whereas results from morphological and simple sequence repeat (SSR) marker analysis of progeny revealed lack of outcrossing. Together, these results indicate that T. crinita reproduces sexually. It is a self-compatible and autogamous species. It is expected that these data will have a positive impact in the genetics and breeding of this species, and therefore contribute to its proper utilisation in arid regions.
Collapse
Affiliation(s)
- P C Kozub
- Facultad de Ciencias Agrarias (FCA), Instituto de Biología Agrícola de Mendoza (IBAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - K Barboza
- Instituto Nacional de Tecnología Agropecuaria (INTA) E.E.A. La Consulta, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - F Galdeano
- Facultad de Ciencias Agrarias (FCA), Instituto de Botánica del Nordeste (IBONE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| | - C L Quarin
- Facultad de Ciencias Agrarias (FCA), Instituto de Botánica del Nordeste (IBONE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| | - J B Cavagnaro
- Facultad de Ciencias Agrarias (FCA), Instituto de Biología Agrícola de Mendoza (IBAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - P F Cavagnaro
- Instituto Nacional de Tecnología Agropecuaria (INTA) E.E.A. La Consulta, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Facultad de Ciencias Agrarias, Instituto de Horticultura, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
52
|
Ortiz JPA, Revale S, Siena LA, Podio M, Delgado L, Stein J, Leblanc O, Pessino SC. A reference floral transcriptome of sexual and apomictic Paspalum notatum. BMC Genomics 2017; 18:318. [PMID: 28431521 PMCID: PMC5399859 DOI: 10.1186/s12864-017-3700-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/11/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Paspalum notatum Flügge is a subtropical grass native to South America, which includes sexual diploid and apomictic polyploid biotypes. In the past decade, a number of apomixis-associated genes were discovered in this species through genetic mapping and differential expression surveys. However, the scarce information on Paspalum sequences available in public databanks limited annotations and functional predictions for these candidates. RESULTS We used a long-read 454/Roche FLX+ sequencing strategy to produce robust reference transcriptome datasets from florets of sexual and apomictic Paspalum notatum genotypes and delivered a list of transcripts showing differential representation in both reproductive types. Raw data originated from floral samples collected from premeiosis to anthesis was assembled in three libraries: i) sexual (SEX), ii) apomictic (APO) and iii) global (SEX + APO). A group of physically-supported Paspalum mRNA and EST sequences matched with high level of confidence to both sexual and apomictic libraries. A preliminary trial allowed discovery of the whole set of putative alleles/paralogs corresponding to 23 previously identified apomixis-associated candidate genes. Moreover, a list of 3,732 transcripts and several co-expression and protein -protein interaction networks associated with apomixis were identified. CONCLUSIONS The use of the 454/Roche FLX+ transcriptome database will allow the detailed characterization of floral alleles/paralogs of apomixis candidate genes identified in prior and future work. Moreover, it was used to reveal additional candidate genes differentially represented in apomictic and sexual flowers. Gene ontology (GO) analyses of this set of transcripts indicated that the main molecular pathways altered in the apomictic genotype correspond to specific biological processes, like biotic and abiotic stress responses, growth, development, cell death and senescence. This data collection will be of interest to the plant reproduction research community and, particularly, to Paspalum breeding projects.
Collapse
Affiliation(s)
- Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Santiago Revale
- Instituto de Agrobiotecnología de Rosario (INDEAR), Ocampo 210 bis, Provincia de Santa Fe, Rosario, 2000, Argentina.,Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Lorena A Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Maricel Podio
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Luciana Delgado
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Juliana Stein
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Olivier Leblanc
- UMR 232, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, 34394, France
| | - Silvina C Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina.
| |
Collapse
|
53
|
Rodrigo JM, Zappacosta DC, Selva JP, Garbus I, Albertini E, Echenique V. Apomixis frequency under stress conditions in weeping lovegrass (Eragrostis curvula). PLoS One 2017; 12:e0175852. [PMID: 28419145 PMCID: PMC5395188 DOI: 10.1371/journal.pone.0175852] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/31/2017] [Indexed: 01/17/2023] Open
Abstract
To overcome environmental stress, plants develop physiological responses that are triggered by genetic or epigenetic changes, some of which involve DNA methylation. It has been proposed that apomixis, the formation of asexual seeds without meiosis, occurs through the temporal or spatial deregulation of the sexual process mediated by genetic and epigenetic factors influenced by the environment. Here, we explored whether there was a link between the occurrence of apomixis and various factors that generate stress, including drought stress, in vitro culture, and intraspecific hybridization. For this purpose, we monitored the embryo sacs of different weeping lovegrass (Eragrostis curvula [Schrad.] Nees) genotypes after the plants were subjected to these stress conditions. Progeny tests based on molecular markers and genome methylation status were analyzed following the stress treatment. When grown in the greenhouse, the cultivar Tanganyika INTA generated less than 2% of its progeny by sexual reproduction. Plants of this cultivar subjected to different stresses showed an increase of sexual embryo sacs, demonstrating an increased expression of sexuality compared to control plants. Plants of the cv. Tanganyika USDA did not demonstrate the ability to generate sexual embryo sacs under any conditions and is therefore classified as a fully apomictic cultivar. We found that this change in the prevalence of sexuality was correlated with genetic and epigenetic changes analyzed by MSAP and AFLPs profiles. Our results demonstrate that different stress conditions can alter the expression of sexual reproduction in facultative tetraploid apomictic cultivars and when the stress stops the reproductive mode shift back to the apomixis original level. These data together with previous observations allow us to generate a hypothetical model of the regulation of apomixis in weeping lovegrass in which the genetic/s region/s that condition apomixis, is/are affected by ploidy, and is/are subjected to epigenetic control.
Collapse
Affiliation(s)
- Juan Manuel Rodrigo
- CERZOS-CONICET, CCT-Bahía Blanca, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Diego Carlos Zappacosta
- CERZOS-CONICET, CCT-Bahía Blanca, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juan Pablo Selva
- CERZOS-CONICET, CCT-Bahía Blanca, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Ingrid Garbus
- CERZOS-CONICET, CCT-Bahía Blanca, Bahía Blanca, Argentina
- Departamento de Ciencias de la Salud, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - Viviana Echenique
- CERZOS-CONICET, CCT-Bahía Blanca, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
- * E-mail:
| |
Collapse
|
54
|
Hand ML, de Vries S, Koltunow AMG. A Comparison of In Vitro and In Vivo Asexual Embryogenesis. Methods Mol Biol 2016; 1359:3-23. [PMID: 26619856 DOI: 10.1007/978-1-4939-3061-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In plants, embryogenesis generally occurs through the sexual process of double fertilization, which involves a haploid sperm cell fusing with a haploid egg cell to ultimately give rise to a diploid embryo. Embryogenesis can also occur asexually in the absence of fertilization, both in vitro and in vivo. Somatic or gametic cells are able to differentiate into embryos in vitro following the application of plant growth regulators or stress treatments. Asexual embryogenesis also occurs naturally in some plant species in vivo, from either ovule cells as part of a process defined as apomixis, or from somatic leaf tissue in other species. In both in vitro and in vivo asexual embryogenesis, the embryo precursor cells must attain an embryogenic fate without the act of fertilization. This review compares the processes of in vitro and in vivo asexual embryogenesis including what is known regarding the genetic and epigenetic regulation of each process, and considers how the precursor cells are able to change fate and adopt an embryogenic pathway.
Collapse
Affiliation(s)
- Melanie L Hand
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture, Waite Campus, Urrbrae, South Australia
| | - Sacco de Vries
- Department of Biochemistry, University of Wageningen, Wageningen, 6703 HA, The Netherlands
| | - Anna M G Koltunow
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture, Waite Campus, Urrbrae, South Australia.
| |
Collapse
|
55
|
Galdeano F, Urbani MH, Sartor ME, Honfi AI, Espinoza F, Quarin CL. Relative DNA content in diploid, polyploid, and multiploid species of Paspalum (Poaceae) with relation to reproductive mode and taxonomy. JOURNAL OF PLANT RESEARCH 2016; 129:697-710. [PMID: 26965283 DOI: 10.1007/s10265-016-0813-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/21/2016] [Indexed: 05/20/2023]
Abstract
It is generally accepted that polyploids have downsized basic genomes rather than additive values with respect to their related diploids. Changes in genome size have been reported in correlation with several biological characteristics. About 75 % of around 350 species recognized for Paspalum (Poaceae) are polyploid and most polyploids are apomictic. Multiploid species are common with most of them bearing sexual diploid and apomictic tetraploid or other ploidy levels. DNA content in the embryo and the endosperm was measured by flow cytometry in a seed-by-seed analysis of 47 species including 77 different entities. The relative DNA content of the embryo informed the genome size of the accession while the embryo:endosperm ratio of DNA content revealed its reproductive mode. The genome sizes (2C-value) varied from 0.5 to 6.5 pg and for 29 species were measured for the first time. Flow cytometry provided new information on the reproductive mode for 12 species and one botanical variety and supplied new data for 10 species concerning cytotypes reported for the first time. There was no significant difference between the mean basic genome sizes (1Cx-values) of 32 sexual and 45 apomictic entities. Seventeen entities were diploid and 60 were polyploids with different degrees. There were no clear patterns of changes in 1Cx-values due to polyploidy or reproductive systems, and the existing variations are in concordance with subgeneric taxonomical grouping.
Collapse
Affiliation(s)
- Florencia Galdeano
- Instituto de Botánica del Nordeste, CONICET-UNNE, Facultad de Ciencias Agrarias, FCA-UNNE, J.B. Cabral 2131, 3400, Corrientes, Argentina.
| | - M H Urbani
- Instituto de Botánica del Nordeste, CONICET-UNNE, Facultad de Ciencias Agrarias, FCA-UNNE, J.B. Cabral 2131, 3400, Corrientes, Argentina
| | - M E Sartor
- Instituto de Botánica del Nordeste, CONICET-UNNE, Facultad de Ciencias Agrarias, FCA-UNNE, J.B. Cabral 2131, 3400, Corrientes, Argentina
| | - A I Honfi
- Instituto de Biología Subtropical, CONICET-UNaM, Facultad de Ciencias Exactas, Químicas y Naturales, UNaM, Rivadavia 2370, 3300, Posadas, Misiones, Argentina
| | - F Espinoza
- Instituto de Botánica del Nordeste, CONICET-UNNE, Facultad de Ciencias Agrarias, FCA-UNNE, J.B. Cabral 2131, 3400, Corrientes, Argentina
| | - C L Quarin
- Instituto de Botánica del Nordeste, CONICET-UNNE, Facultad de Ciencias Agrarias, FCA-UNNE, J.B. Cabral 2131, 3400, Corrientes, Argentina
| |
Collapse
|
56
|
Siena LA, Ortiz JPA, Calderini O, Paolocci F, Cáceres ME, Kaushal P, Grisan S, Pessino SC, Pupilli F. An apomixis-linked ORC3-like pseudogene is associated with silencing of its functional homolog in apomictic Paspalum simplex. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1965-78. [PMID: 26842983 DOI: 10.1093/jxb/erw018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Apomixis in plants consists of asexual reproduction by seeds. Here we characterized at structural and functional levels an apomixis-linked sequence of Paspalum simplex homologous to subunit 3 of the ORIGIN RECOGNITION COMPLEX (ORC3). ORC is a multiprotein complex which controls DNA replication and cell differentiation in eukaryotes. Three PsORC3 copies were identified, each one characterized by a specific expression profile. Of these, PsORC3a, specific for apomictic genotypes, is a pseudogene that was poorly and constitutively expressed in all developmental stages of apomictic flowers, whereas PsORC3b, the putative functional gene in sexual flowers, showed a precise time-related regulation. Sense transcripts of PsORC3 were expressed in the female cell lineage of both apomictic and sexual reproductive phenotypes, and in aposporous initials. Although strong expression was detected in sexual early endosperm, no expression was present in the apomictic endosperm. Antisense PsORC3 transcripts were revealed exclusively in apomictic germ cell lineages. Defective orc3 mutants of rice and Arabidopsis showed normal female gametophytes although the embryo and endosperm were arrested at early phases of development. We hypothesize that PsORC3a is associated with the down-regulation of its functional homolog and with the development of apomictic endosperm which deviates from the canonical 2(maternal):1(paternal) genome ratio.
Collapse
Affiliation(s)
- Lorena A Siena
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina
| | - Juan Pablo A Ortiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina
| | - Ornella Calderini
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Francesco Paolocci
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Maria E Cáceres
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Pankaj Kaushal
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Simone Grisan
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Silvina C Pessino
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina
| | - Fulvio Pupilli
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| |
Collapse
|
57
|
Hodac̆ L, Ulum FB, Opfermann N, Breidenbach N, Hojsgaard D, Tjitrosoedirdjo SS, Vornam B, Finkeldey R, Hörandl E. Population Genetic Structure and Reproductive Strategy of the Introduced Grass Centotheca lappacea in Tropical Land-Use Systems in Sumatra. PLoS One 2016; 11:e0147633. [PMID: 26807958 PMCID: PMC4726506 DOI: 10.1371/journal.pone.0147633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/28/2015] [Indexed: 11/19/2022] Open
Abstract
Intensive transformation of lowland rainforest into oil palm and rubber monocultures is the most common land-use practice in Sumatra (Indonesia), accompanied by invasion of weeds. In the Jambi province, Centotheca lappacea is one of the most abundant alien grass species in plantations and in jungle rubber (an extensively used agroforest), but largely missing in natural rainforests. Here, we investigated putative genetic differentiation and signatures for adaptation in the introduced area. We studied reproductive mode and ploidy level as putative factors for invasiveness of the species. We sampled 19 populations in oil palm and rubber monocultures and in jungle rubber in two regions (Bukit Duabelas and Harapan). Amplified fragment length polymorphisms (AFLP) revealed a high diversity of individual genotypes and only a weak differentiation among populations (FST = 0.173) and between the two regions (FST = 0.065). There was no significant genetic differentiation between the three land-use systems. The metapopulation of C. lappacea consists of five genetic partitions with high levels of admixture; all partitions appeared in both regions, but with different proportions. Within the Bukit Duabelas region we observed significant isolation-by-distance. Nine AFLP loci (5.3% of all loci) were under natural diversifying selection. All studied populations of C. lappacea were diploid, outcrossing and self-incompatible, without any hints of apomixis. The estimated residence time of c. 100 years coincides with the onset of rubber and oil palm planting in Sumatra. In the colonization process, the species is already in a phase of establishment, which may be enhanced by efficient selection acting on a highly diverse gene pool. In the land-use systems, seed dispersal might be enhanced by adhesive spikelets. At present, the abundance of established populations in intensively managed land-use systems might provide opportunities for rapid dispersal of C. lappacea across rural landscapes in Sumatra, while the invasion potential in rainforest ecosystems appears to be moderate as long as they remain undisturbed.
Collapse
Affiliation(s)
- Ladislav Hodac̆
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg August University Göttingen, Göttingen, Germany
| | - Fuad Bahrul Ulum
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg August University Göttingen, Göttingen, Germany
| | - Nicole Opfermann
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg August University Göttingen, Göttingen, Germany
| | - Natalie Breidenbach
- Department of Forest Genetics and Forest Tree Breeding, Georg August University Göttingen, Göttingen, Germany
| | - Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg August University Göttingen, Göttingen, Germany
| | | | - Barbara Vornam
- Department of Forest Genetics and Forest Tree Breeding, Georg August University Göttingen, Göttingen, Germany
| | - Reiner Finkeldey
- Department of Forest Genetics and Forest Tree Breeding, Georg August University Göttingen, Göttingen, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg August University Göttingen, Göttingen, Germany
| |
Collapse
|
58
|
Mangla Y, Chaudhary M, Gupta H, Thakur R, Goel S, Raina SN, Tandon R. Facultative apomixis and development of fruit in a deciduous shrub with medicinal and nutritional uses. AOB PLANTS 2015; 7:plv098. [PMID: 26286224 PMCID: PMC4589571 DOI: 10.1093/aobpla/plv098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
Knowledge of reproductive biology of plants is crucial to understand their natural mode of propagation, which may aid in conservation and crop improvement. The reproductive details are also crucial for beginning the cultivation of a potential crop on a commercial scale. Fruits of sea buckthorn, Hippophae rhamnoides, are used in a variety of medicinal and nutritional products. So far, fruits are collected from the female plants in the wild. It is known that the species fruits profusely and also propagates by forming root suckers, but the details of sexual reproduction are not available. We investigated the mode of reproduction and development of fruits from natural populations of sea buckthorn. Megasporogenesis and megagametogenesis were studied through resin-embedded sectioning and ovule-clearing methods, and fruit development through histochemistry. The study of mitosis and male meiosis showed that the plants at the site were diploid (2n = 2x = 24). The embryo sac may develop either through the monosporic pathway and differentiates into 'Polygonum type' or aposporously into 'Panicum type'. The embryo may develop by sexual and adventitious pathways. Thus, sea buckthorn is a facultative apomict. The occurrence of diverse reproductive pathways assures the possibility of generation of novel genotypes through sexuality, while apomictic reproduction maintains adaptive genotypes and ensures reproduction in the absence of pollination. Anatomical details suggest that the fruit of sea buckthorn may be appropriately described as a pseudo-drupe.
Collapse
Affiliation(s)
- Yash Mangla
- Department of Botany, University of Delhi, Delhi 110 007, India
| | - Manju Chaudhary
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 210 303, India
| | - Himshikha Gupta
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 210 303, India
| | - Rakesh Thakur
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 210 303, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi 110 007, India
| | - S N Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 210 303, India
| | - Rajesh Tandon
- Department of Botany, University of Delhi, Delhi 110 007, India
| |
Collapse
|
59
|
Hojsgaard D, Greilhuber J, Pellino M, Paun O, Sharbel TF, Hörandl E. Emergence of apospory and bypass of meiosis via apomixis after sexual hybridisation and polyploidisation. THE NEW PHYTOLOGIST 2014; 204:1000-12. [PMID: 25081588 PMCID: PMC4260133 DOI: 10.1111/nph.12954] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/24/2014] [Indexed: 05/03/2023]
Abstract
Hybridisation and polyploidy are major forces contributing to plant speciation. Homoploid (2x) and heteroploid (3x) hybrids, however, represent critical stages for evolution due to disturbed meiosis and reduced fertility. Apomixis--asexual reproduction via seeds--can overcome hybrid sterility, but requires several concerted alterations of developmental pathways to result in functional seed formation. Here, we analyse the reproductive behaviours of homo- and heteroploid synthetic hybrids from crosses between sexual diploid and tetraploid Ranunculus auricomus species to test the hypothesis that developmental asynchrony in hybrids triggers the shift to apomictic reproduction. Evaluation of male and female gametophyte development, viability and functionality of gametes shows developmental asynchrony, whereas seed set and germinability indicate reduced fitness in synthetic hybrids compared to sexual parents. We present the first experimental evidence for spontaneous apospory in most hybrids as an alternative pathway to meiosis, and the appearance of functional apomictic seeds in triploids. Bypassing meiosis permits these triploid genotypes to form viable seed and new polyploid progeny. Asynchronous development causes reduced sexual seed set and emergence of apospory in synthetic Ranunculus hybrids. Apomixis is functional in triploids and associated with drastic meiotic abnormalities. Selection acts to stabilise developmental patterns and to tolerate endosperm dosage balance shifts which facilitates successful seed set and establishment of apomictic lineages.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, Georg August University of GöttingenUntere Karspüle 2, D-37073, Göttingen, Germany
| | - Johann Greilhuber
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of ViennaRennweg 14, A-1030, Vienna, Austria
| | - Marco Pellino
- Apomixis Research Group, Leibniz Institute of Plant Genetics and Crop Plant ResearchCorrensstraβe 3, D-06466, Gatersleben, Germany
| | - Ovidiu Paun
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of ViennaRennweg 14, A-1030, Vienna, Austria
| | - Timothy F Sharbel
- Apomixis Research Group, Leibniz Institute of Plant Genetics and Crop Plant ResearchCorrensstraβe 3, D-06466, Gatersleben, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, Georg August University of GöttingenUntere Karspüle 2, D-37073, Göttingen, Germany
| |
Collapse
|
60
|
Podio M, Cáceres ME, Samoluk SS, Seijo JG, Pessino SC, Ortiz JPA, Pupilli F. A methylation status analysis of the apomixis-specific region in Paspalum spp. suggests an epigenetic control of parthenogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6411-24. [PMID: 25180110 DOI: 10.1093/jxb/eru354] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Apomixis, a clonal plant reproduction by seeds, is controlled in Paspalum spp. by a single locus which is blocked in terms of recombination. Partial sequence analysis of the apomixis locus revealed structural features of heterochromatin, namely the presence of repetitive elements, gene degeneration, and de-regulation. To test the epigenetic control of apomixis, a study on the distribution of cytosine methylation at the apomixis locus and the effect of artificial DNA demethylation on the mode of reproduction was undertaken in two apomictic Paspalum species. The 5-methylcytosine distribution in the apomixis-controlling genomic region was studied in P. simplex by methylation-sensitive restriction fragment length polymorphism (RFLP) analysis and in P. notatum by fluorescene in situ hybridization (FISH). The effect of DNA demethylation was studied on the mode of reproduction of P. simplex by progeny test analysis of apomictic plants treated with the demethylating agent 5'-azacytidine. A high level of cytosine methylation was detected at the apomixis-controlling genomic region in both species. By analysing a total of 374 open pollination progeny, it was found that artificial demethylation had little or no effect on apospory, whereas it induced a significant depression of parthenogenesis. The results suggested that factors controlling repression of parthenogenesis might be inactivated in apomictic Paspalum by DNA methylation.
Collapse
Affiliation(s)
- Maricel Podio
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino s/n CC 14 (S2125 ZAA), Zavalla, Santa Fe, Argentina Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131, 3400 Corrientes, Argentina
| | - Maria E Cáceres
- CNR-Istituto di Bioscienze e Biorisorse, Research Division: Perugia, Via della Madonna alta 130, I-06128 Perugia, Italy
| | - Sergio S Samoluk
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131, 3400 Corrientes, Argentina
| | - José G Seijo
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131, 3400 Corrientes, Argentina
| | - Silvina C Pessino
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino s/n CC 14 (S2125 ZAA), Zavalla, Santa Fe, Argentina
| | - Juan Pablo A Ortiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino s/n CC 14 (S2125 ZAA), Zavalla, Santa Fe, Argentina Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131, 3400 Corrientes, Argentina
| | - Fulvio Pupilli
- CNR-Istituto di Bioscienze e Biorisorse, Research Division: Perugia, Via della Madonna alta 130, I-06128 Perugia, Italy
| |
Collapse
|
61
|
Siena LA, Ortiz JPA, Leblanc O, Pessino S. PnTgs1-like expression during reproductive development supports a role for RNA methyltransferases in the aposporous pathway. BMC PLANT BIOLOGY 2014; 14:297. [PMID: 25404464 PMCID: PMC4243328 DOI: 10.1186/s12870-014-0297-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 10/20/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND In flowering plants, apomixis (asexual reproduction via seeds) is widely believed to result from failure of key regulators of the sexual female reproductive pathway. In the past few years, both differential display and RNA-seq comparative approaches involving reproductive organs of sexual plants and their apomictic counterparts have yielded extensive lists of candidate genes. Nevertheless, only a limited number of these genes have been functionally characterized, with few clues consequently available for understanding the molecular control of apomixis. We have previously identified several cDNA fragments with high similarity to genes involved in RNA biology and with differential amplification between sexual and apomictic Paspalum notatum plants. Here, we report the characterization of one of these candidates, namely, N69 encoding a protein of the S-adenosyl-L-methionine-dependent methyltransferases superfamily. The purpose of this work was to extend the N69 cDNA sequence and to characterize its expression at different developmental stages in both sexual and apomictic individuals. RESULTS Molecular characterization of the N69 cDNA revealed homology with genes encoding proteins similar to yeast and mammalian trimethylguanosine synthase/PRIP-interacting proteins. These proteins play a dual role as ERK2-controlled transcriptional coactivators and mediators of sn(o)RNA and telomerase RNA cap trimethylation, and participate in mammals and yeast development. The N69-extended sequence was consequently renamed PnTgs1-like. Expression of PnTgs1-like during reproductive development was significantly higher in floral organs of sexual genotypes compared with apomicts. This difference was not detected in vegetative tissues. In addition, expression levels in reproductive tissues of several genotypes were negatively correlated with facultative apomixis rates. Moreover, in situ hybridization observations revealed that PnTgs1-like expression is relatively higher in ovules of sexual plants throughout development, from premeiosis to maturity. Tissues where differential expression is detected include nucellar cells, the site of aposporous initials differentiation in apomictic genotypes. CONCLUSIONS Our results indicate that PnTgs1-like (formerly N69) encodes a trimethylguanosine synthase-like protein whose function in mammals and yeast is critical for development, including reproduction. Our findings also suggest a pivotal role for this candidate gene in nucellar cell fate, as its diminished expression is correlated with initiation of the apomictic pathway in plants.
Collapse
Affiliation(s)
- Lorena A Siena
- />Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Parque Villarino, (S2125ZAA) Zavalla, Santa Fe, Argentina
| | - Juan Pablo A Ortiz
- />Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Parque Villarino, (S2125ZAA) Zavalla, Santa Fe, Argentina
- />Instituto de Botánica del Nordeste -IBONE- (UNNE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131, 3400 Corrientes, Argentina
| | - Olivier Leblanc
- />Institut de Recherche pour le Développement, ERL 5300 IRD/CNRS, UMR 232 IRD/Université de Montpellier 2, 911 Avenue Agropolis, Montpellier, France
| | - Silvina Pessino
- />Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Parque Villarino, (S2125ZAA) Zavalla, Santa Fe, Argentina
| |
Collapse
|
62
|
Hojsgaard D, Klatt S, Baier R, Carman JG, Hörandl E. Taxonomy and Biogeography of Apomixis in Angiosperms and Associated Biodiversity Characteristics. CRITICAL REVIEWS IN PLANT SCIENCES 2014; 33:414-427. [PMID: 27019547 PMCID: PMC4786830 DOI: 10.1080/07352689.2014.898488] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Apomixis in angiosperms is asexual reproduction from seed. Its importance to angiospermous evolution and biodiversity has been difficult to assess mainly because of insufficient taxonomic documentation. Thus, we assembled literature reporting apomixis occurrences among angiosperms and transferred the information to an internet database (http://www.apomixis.uni-goettingen.de). We then searched for correlations between apomixis occurrences and well-established measures of taxonomic diversity and biogeography. Apomixis was found to be taxonomically widespread with no clear tendency to specific groups and to occur with sexuality at all taxonomic levels. Adventitious embryony was the most frequent form (148 genera) followed by apospory (110) and diplospory (68). All three forms are phylogenetically scattered, but this scattering is strongly associated with measures of biodiversity. Across apomictic-containing orders and families, numbers of apomict-containing genera were positively correlated with total numbers of genera. In general, apomict-containing orders, families, and subfamilies of Asteraceae, Poaceae, and Orchidaceae were larger, i.e., they possessed more families or genera, than non-apomict-containing orders, families or subfamilies. Furthermore, many apomict-containing genera were found to be highly cosmopolitan. In this respect, 62% occupy multiple geographic zones. Numbers of genera containing sporophytic or gametophytic apomicts decreased from the tropics to the arctic, a trend that parallels general biodiversity. While angiosperms appear to be predisposed to shift from sex to apomixis, there is also evidence of reversions to sexuality. Such reversions may result from genetic or epigenetic destabilization events accompanying hybridization, polyploidy, or other cytogenetic alterations. Because of increased within-plant genetic and genomic heterogeneity, range expansions and diversifications at the species and genus levels may occur more rapidly upon reversion to sexuality. The significantly-enriched representations of apomicts among highly diverse and geographically-extensive taxa, from genera to orders, support this conclusion.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Georg August University Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematic Botany, Göttingen, Germany
| | - Simone Klatt
- Georg August University Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematic Botany, Göttingen, Germany
| | - Roland Baier
- Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), Arbeitsgruppe Anwendungs- und Informationssysteme, Göttingen, Germany
| | - John G. Carman
- Plants, Soils and Climate Department, Utah State University, Logan, UT, USA
| | - Elvira Hörandl
- Georg August University Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematic Botany, Göttingen, Germany
| |
Collapse
|