51
|
Synthesis of trans- methyl ferulate bearing an oxadiazole ether as potential activators for controlling plant virus. Bioorg Chem 2021; 115:105248. [PMID: 34392177 DOI: 10.1016/j.bioorg.2021.105248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/23/2022]
Abstract
A series of new ferulic acid derivatives bearing an oxadiazole ether was synthesized by introducing a structure of oxadiazole into trans-ferulic acid via an ether linkage. The synthesized target compounds were evaluated in vivo for their anti-TMV (tobacco mosaic virus) activity, which indicated that some synthesized compounds displayed strong activity for controlling TMV. For protective activity, compounds 6f and 6h had the most activities of 65% and 69.8% at 500 mg L-1, respectively. Compounds 6a, 6b, 6e, 6f and 6h showed > 60% curative activities at 500 mg L-1. Preliminary proteomics analysis showed that compound 6h could regulate the phenylpropanoid biosynthesis pathway and chloroplast function. These results indicated that synthesized novel ferulic acid derivatives could be used for controlling TMV.
Collapse
|
52
|
Mishra P, Nandi CK. Structural Decoding of a Small Molecular Inhibitor on the Binding of SARS-CoV-2 to the ACE 2 Receptor. J Phys Chem B 2021; 125:8395-8405. [PMID: 34297554 PMCID: PMC8340085 DOI: 10.1021/acs.jpcb.1c03294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/08/2021] [Indexed: 01/21/2023]
Abstract
Inhibition of the interaction of the receptor-binding domain (RBD) of the spike protein and the human angiotensin-converting enzyme 2 (ACE 2) receptor is the most effective therapeutic formulation to restrict the contagious respiratory illness and multiple organ failure caused by the novel SARS-CoV-2 virus. Based on the structural decoding of the RBD of the spike protein, here we have generated a new set of small molecules that have strong inhibiting properties on the binding of the spike protein to ACE 2 receptors. These small-molecule inhibitors surprisingly show binding to the main protease, nucleoprotein, and RNA-dependent RNA polymerase, which are the other responsible factors for the viral infection. The newly designed molecules show better performance than several existing repurposed drugs. Conformational changes from closed to closed lock and open conformations of the SARS-CoV-2 binding to the ACE 2 receptor were observed in the presence of these small molecular inhibitors, suggesting their strong abilities to counteract the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Pushpendra
Mani Mishra
- School of Basic Sciences, Indian
Institute of Technology Mandi, Himachal Pradesh 175005, India
| | - Chayan Kanti Nandi
- School of Basic Sciences, Indian
Institute of Technology Mandi, Himachal Pradesh 175005, India
| |
Collapse
|
53
|
Hasan M, Parvez MSA, Azim KF, Imran MAS, Raihan T, Gulshan A, Muhit S, Akhand RN, Ahmed SSU, Uddin MB. Main protease inhibitors and drug surface hotspots for the treatment of COVID-19: A drug repurposing and molecular docking approach. Biomed Pharmacother 2021; 140:111742. [PMID: 34052565 PMCID: PMC8130501 DOI: 10.1016/j.biopha.2021.111742] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
Here, drug repurposing and molecular docking were employed to screen approved MPP inhibitors and their derivatives to suggest a specific therapeutic agent for the treatment of COVID-19. The approved MPP inhibitors against HIV and HCV were prioritized, while RNA dependent RNA Polymerase (RdRp) inhibitor remdesivir including Favipiravir, alpha-ketoamide were studied as control groups. The target drug surface hotspot was also investigated through the molecular docking technique. Molecular dynamics was performed to determine the binding stability of docked complexes. Absorption, distribution, metabolism, and excretion analysis was conducted to understand the pharmacokinetics and drug-likeness of the screened MPP inhibitors. The results of the study revealed that Paritaprevir (-10.9 kcal/mol) and its analog (CID 131982844) (-16.3 kcal/mol) showed better binding affinity than the approved MPP inhibitors compared in this study, including remdesivir, Favipiravir, and alpha-ketoamide. A comparative study among the screened putative MPP inhibitors revealed that the amino acids T25, T26, H41, M49, L141, N142, G143, C145, H164, M165, E166, D187, R188, and Q189 are at potentially critical positions for being surface hotspots in the MPP of SARS-CoV-2. The top 5 predicted drugs (Paritaprevir, Glecaprevir, Nelfinavir, and Lopinavir) and the topmost analog showed conformational stability in the active site of the SARS-CoV-2 MP protein. The study also suggested that Paritaprevir and its analog (CID 131982844) might be effective against SARS-CoV-2. The current findings are limited to in silico analysis and lack in vivo efficacy testing; thus, we strongly recommend a quick assessment of Paritaprevir and its analog (CID 131982844) in a clinical trial.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Sorwer Alam Parvez
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Abdus Shukur Imran
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Airin Gulshan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Samuel Muhit
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Rubaiat Nazneen Akhand
- Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Syed Sayeem Uddin Ahmed
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Md Bashir Uddin
- Department of Medicine, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| |
Collapse
|
54
|
Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. Molecular docking and dynamics simulation study of bioactive compounds from Ficus carica L. with important anticancer drug targets. PLoS One 2021; 16:e0254035. [PMID: 34260631 PMCID: PMC8279321 DOI: 10.1371/journal.pone.0254035] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
Ficus carica L., commonly known as fig, has been used in traditional medicine for metabolic disorders, cardiovascular diseases, respiratory diseases and cancer. Various bioactive compounds have been previously isolated from the leaves, fruit, and bark, which have different pharmacological properties, but the anticancer mechanisms of this plant are not known. In the current study we focused on understanding the probable mechanisms underlying the anticancer activity of F. carica plant extracts by molecular docking and dynamic simulation approaches. We evaluated the drug-likeness of the active constituents of the plant and explored its binding affinity with selected anticancer drug target receptors such as cyclin-dependent kinase 2 (CDK-2), cyclin-dependent kinase 6 (CDK-6), topoisomerase-I (Topo I), topoisomerase-II (Topo II), B-cell lymphoma 2 (Bcl-2), and vascular endothelial growth factor receptor 2 (VEGFR-2). In silico toxicity studies revealed that thirteen molecules out of sixty-eight major active compounds in the plant extract have acceptable drug-like properties. Compound 37 (β-bourbonene) has a good binding affinity with the majority of drug targets, as revealed by molecular docking studies. The complexes of the lead molecules with the drug receptors were stable in terms of molecular dynamics simulation derived parameters such as root mean square deviation and radius of gyration. The top ten residues contributing significantly to the binding free energies were deciphered through analysis of molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA). Thus, the results of our studies unravel the potential of F. carica bioactive compounds as anticancer candidate molecules against selected macromolecular receptors.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, Yuseong-gu, Daejeon, Republic of Korea
| | - Mohammad Abul Farah
- Genetics Laboratory, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Mashay Al-Anazi
- Genetics Laboratory, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
55
|
Wong LR, Tan EA, Lim MEJ, Shen W, Lian XL, Wang Y, Chen L, Ho PCL. Functional effects of berberine in modulating mitochondrial dysfunction and inflammatory response in the respective amyloidogenic cells and activated microglial cells - In vitro models simulating Alzheimer's disease pathology. Life Sci 2021; 282:119824. [PMID: 34265361 DOI: 10.1016/j.lfs.2021.119824] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 12/09/2022]
Abstract
AIM Berberine (BBR) is an alkaloid extracted from Coptidis Rhizoma, also known as Huang-Lian. Huang-Lian has been used extensively in traditional Chinese medicine for the treatment of various diseases, including diabetes and dementia. Because Alzheimer's disease (AD) is a complex disease that involves various pathophysiological changes, the diverse neuroprotective effects of BBR may be useful for improving the brain's energy state at an early stage of the disease. MAIN METHODS We performed extracellular flux and 1H NMR-based metabolic profiling analyses to investigate the effects of BBR on metabolic processes in these cells. Pioglitazone (PIO), a peroxisome proliferator-activated receptor-γ (PPARγ) agonist has been studied extensively for the treatment of AD. We explored the combination dosing effects of BBR and PIO in vitro, then leveraged computational methods to explain the experimental finding. KEY FINDINGS BBR demonstrates potential in modulating the mitochondrial bioenergetics and attenuating dysfunction of the primary energy and glutathione metabolism pathways in an AD cell model. It also suppresses basal respiration and reduces the production of pro-inflammatory cytokines in activated microglial cells. Both experimental and computational observations indicate that BBR and PIO have comparable binding affinities to the PPARγ protein, suggesting both drugs may have some overlapping effects for AD. SIGNIFICANCE BBR exerts beneficial effects on disrupted metabolic processes in amyloidogenic cells and activated microglial cells, which are important for preventing or delaying early-stage disease progression. The choice of BBR or PIO for AD treatment depends on their respective pharmacokinetic profiles, delivery, efficacy and safety, and warrants further study.
Collapse
Affiliation(s)
- Ling Rong Wong
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117559, Republic of Singapore
| | - Edwin Aik Tan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117559, Republic of Singapore
| | - Ming En Joshua Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117559, Republic of Singapore
| | - Wanxiang Shen
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117559, Republic of Singapore
| | - Xin Le Lian
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117559, Republic of Singapore
| | - Yali Wang
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117559, Republic of Singapore
| | - Lu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137 Chengdu, Sichuan, People's Republic of China.
| | - Paul Chi-Lui Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117559, Republic of Singapore.
| |
Collapse
|
56
|
Yang JF, Chen MX, Zhang J, Hao GF, Yang GF. Structural dynamics and determinants of abscisic acid-receptor binding preference in different aggregation states. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5051-5065. [PMID: 33909901 DOI: 10.1093/jxb/erab178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
In the 21st century, drought has been the main cause of shortages in world grain production and has created problems with food security. Abscisic acid (ABA) is a key plant hormone involved in the response to abiotic stress, especially drought. The pyrabactin resistance (PYR)/PYR1-like (PYL)/regulatory component of abscisic acid receptor (RCAR) family of proteins (simplified as PYLs) is a well-known ABA receptor family, which can be divided into dimeric and monomeric forms. PYLs can recognize ABA and activate downstream plant drought-resistance signals. However, the difference between monomeric and dimeric receptors in the mechanism of the response to ABA is unclear. Here, we reveal that monomeric receptors have a competitive advantage over dimeric receptors for binding to ABA, driven by the energy penalty resulting from dimer dissociation. ABA also plays different roles with the monomer and the dimer: in the monomer, it acts as a 'conformational stabilizer' for stabilizing the closed gate, whereas for the dimer, it serves as an 'allosteric promoter' for promoting gate closure, which leads to dissociation of the two subunits. This work illustrates how receptor oligomerization could modulate hormonal responses and provides a new concept for novel engineered plants based on ABA binding of monomers.
Collapse
Affiliation(s)
- Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mo-Xian Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
57
|
Jin Y, Wang Z, Dong AY, Huang YQ, Hao GF, Song BA. Web repositories of natural agents promote pests and pathogenic microbes management. Brief Bioinform 2021; 22:6294160. [PMID: 34098581 DOI: 10.1093/bib/bbab205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
The grand challenge to meet the increasing demands for food by a rapidly growing global population requires protecting crops from pests. Natural active substances play a significant role in the sustainable pests and pathogenic microbes management. In recent years, natural products- (NPs), antimicrobial peptides- (AMPs), medicinal plant- and plant essential oils (EOs)-related online resources have greatly facilitated the development of pests and pathogenic microbes control agents in an efficient and economical manner. However, a comprehensive comparison, analysis and summary of these existing web resources are still lacking. Here, we surveyed these databases of NPs, AMPs, medicinal plants and plant EOs with insecticidal, antibacterial, antiviral and antifungal activity, and we compared their functionality, data volume, data sources and applicability. We comprehensively discussed the limitation of these web resources. This study provides a toolbox for bench scientists working in the pesticide, botany, biomedical and pharmaceutical engineering fields. The aim of the review is to hope that these web resources will facilitate the discovery and development of potential active ingredients of pests and pathogenic microbes control agents.
Collapse
Affiliation(s)
- Yin Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Zheng Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - An-Yu Dong
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Yuan-Qin Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Ge-Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Bao-An Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
58
|
Banjare P, Matore B, Singh J, Roy PP. In silico local QSAR modeling of bioconcentration factor of organophosphate pesticides. In Silico Pharmacol 2021; 9:28. [PMID: 33868896 PMCID: PMC8019672 DOI: 10.1007/s40203-021-00087-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022] Open
Abstract
The persistent and accumulative nature of the pesticide of indiscriminate use emerged as ecotoxicological hazards. The bioconcentration factor (BCF) is one of the key elements for environmental assessments of the aquatic compartment. Limitations of prediction accuracy of global model facilitate the use of local predictive models in toxicity modeling of emerging compounds. The BCF data of diverse organophosphate (n = 55) was collected from the Pesticide Properties Database and used as a model data set in the present study to explore physicochemical properties and structural alert concerning BCF. The structures were downloaded from Pubchem, ChemSpider database. Two splitting techniques (biological sorting and structure-based) were used to divide the whole dataset into training and test set compounds. The QSAR study was carried out with two-dimensional descriptors (2D) calculated from PaDEL by applying genetic algorithm (GA) as chemometric tools using QSARINS software. The models were statistically robust enough both internally as well as externally (Q2: 0.709-0.722, Q2 Ext: 0.717-0.903, CCC: 0.857-0.880). Overall molecular mass, presence of fused, and heterocyclic ring with electron-withdrawing groups affect the BCF value. The developed models reflected extended applicability domain (AD) and reliable predictions than the reported models for the studied chemical class. Finally, predictions of unknown organophosphate pesticides and the toxic nature of unknown organophosphate pesticides were commented on. These findings may be useful for the scientific community in prioritizing high potential pesticides of organophosphate class.
Collapse
Affiliation(s)
- Purusottam Banjare
- Department of Pharmacy, Guru GhasidasVishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Balaji Matore
- Department of Pharmacy, Guru GhasidasVishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Jagadish Singh
- Department of Pharmacy, Guru GhasidasVishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Partha Pratim Roy
- Department of Pharmacy, Guru GhasidasVishwavidyalaya (A Central University), Bilaspur, 495009 India
| |
Collapse
|
59
|
Marques SM, Planas-Iglesias J, Damborsky J. Web-based tools for computational enzyme design. Curr Opin Struct Biol 2021; 69:19-34. [PMID: 33667757 DOI: 10.1016/j.sbi.2021.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/30/2022]
Abstract
Enzymes are in high demand for very diverse biotechnological applications. However, natural biocatalysts often need to be engineered for fine-tuning their properties towards the end applications, such as the activity, selectivity, stability to temperature or co-solvents, and solubility. Computational methods are increasingly used in this task, providing predictions that narrow down the space of possible mutations significantly and can enormously reduce the experimental burden. Many computational tools are available as web-based platforms, making them accessible to non-expert users. These platforms are typically user-friendly, contain walk-throughs, and do not require deep expertise and installations. Here we describe some of the most recent outstanding web-tools for enzyme engineering and formulate future perspectives in this field.
Collapse
Affiliation(s)
- Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Centre for Clinical Research, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Centre for Clinical Research, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Centre for Clinical Research, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
60
|
Dey D, Paul PK, Al Azad S, Al Mazid MF, Khan AM, Sharif MA, Rahman MH. Molecular optimization, docking, and dynamic simulation profiling of selective aromatic phytochemical ligands in blocking the SARS-CoV-2 S protein attachment to ACE2 receptor: an in silico approach of targeted drug designing. J Adv Vet Anim Res 2021; 8:24-35. [PMID: 33860009 PMCID: PMC8043340 DOI: 10.5455/javar.2021.h481] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/11/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES The comprehensive in silico study aims to figure out the most effective aromatic phytochemical ligands among a number from a library, considering their pharmacokinetic efficacies in blocking "angiotensin-converting enzyme 2 (ACE2) receptor-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein" complex formation as part of a target-specific drug designing. MATERIALS AND METHODS A library of 57 aromatic pharmacophore phytochemical ligands was prepared from where the top five ligands depending on Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) and quantitative structure-activity relationship (QSAR)-based pharmacokinetic properties were considered. The selected ligands were optimized for commencing molecular docking and dynamic simulation as a complex with the ACE2 receptor to compare their blocking efficacy with the control drug. The ligand-receptor complexes' accuracy in preventing the Spike (S) protein of SARS-CoV-2 penetration inside the host cells has been analyzed through hydrogen-hydrophobic bond interactions, principal component analysis (PCA), root mean square deviation (RMSD), root mean square fluctuation (RMSF), and B-Factor. Advanced in silico programming language and bioanalytical software were used for high throughput and authentic results. RESULTS ADMET and QSAR revealed Rhamnetin, Lactupicrin, Rhinacanthin D, Flemiflavanone D, and Exiguaflavanone A as the ligands of our interest to be compared with the control Cassiarin D. According to the molecular docking binding affinity to block ACE2 receptor, the efficiency mountings were Rhinacanthin D > Flemiflavanone D > Lactupicrin > Exiguaflavanone A > Rhamnetin. The binding affinity of the Cassiarin D-ACE2 complex was (-10.2 KJ/mol) found inferior to the Rhinacanthin D-ACE2 complex (-10.8 KJ/mol), referring to Rhinacanthin D as a more stable candidate to use as drugs. The RMSD values of protein-ligand complexes evaluated according to their structural conformation and stable binding pose ranged between 0.1~2.1 Å. The B-factor showed that very few loops were present in the protein structure. The RMSF peak fluctuation regions ranged 5-250, predicting efficient ligand-receptor interactions. CONCLUSION The experiment sequentially measures all the parameters required in referring to any pharmacophore as a drug, considering which all aromatic components analyzed in the study can strongly be predicted as target-specific medication against the novel coronavirus 2019 infection.
Collapse
Affiliation(s)
- Dipta Dey
- Biochemistry and Molecular Biology Department, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Parag Kumar Paul
- Centre for Energy Research, Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Salauddin Al Azad
- Fermentation Engineering Major, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Mohammad Faysal Al Mazid
- Department of Biomedical Science, Korea Institute of Science and Technology, Seongbuk-gu, Seoul-02792, Republic of Korea
- University of Science and Technology, Daejeon, Republic of Korea
| | - Arman Mahmud Khan
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md. Arman Sharif
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md. Hafijur Rahman
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
61
|
Taherkhani A, Orangi A, Moradkhani S, Khamverdi Z. Molecular Docking Analysis of Flavonoid Compounds with Matrix Metalloproteinase- 8 for the Identification of Potential Effective Inhibitors. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999200831094703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Matrix metalloproteinase-8 (MMP-8) participates in the degradation of different
types of collagens in the extracellular matrix and basement membrane. Up-regulation of the
MMP-8 has been demonstrated in many disorders including cancer development, tooth caries, periodontal/
peri-implant soft and hard tissue degeneration, and acute/chronic inflammation. Therefore,
MMP-8 has become an encouraging target for therapeutic procedures for scientists. We carried out a
molecular docking approach to study the binding affinity of 29 flavonoids, as drug candidates, with
the MMP-8. Pharmacokinetic and toxicological properties of the compounds were also studied.
Moreover, it was attempted to identify the most important amino acids participating in ligand binding
based on the degree of each of the amino acids in the ligand-amino acid interaction network for
MMP-8.
Methods:
Three-dimensional structure of the protein was gained from the RCSB database (PDB ID: 4QKZ).
AutoDock version 4.0 and Cytoscape 3.7.2 were used for molecular docking and network analysis,
respectively. Notably, the inhibitor of the protein in the crystalline structure of the 4QKZ was considered
as a control test. Pharmacokinetic and toxicological features of compounds were predicted
using bioinformatics web tools. Post-docking analyses were performed using BIOVIA Discovery
Studio Visualizer version 19.1.0.18287.
Results and Discussions:
According to results, 24 of the studied compounds were considered to be
top potential inhibitors for MMP-8 based on their salient estimated free energy of binding and inhibition
constant as compared with the control test: Apigenin-7-glucoside, nicotiflorin, luteolin,
glabridin, taxifolin, apigenin, licochalcone A, quercetin, isorhamnetin, myricetin, herbacetin,
kaemferol, epicatechin, chrysin, amentoflavone, rutin, orientin, epiafzelechin, quercetin-3-
rhamnoside, formononetin, isoliquiritigenin, vitexin, catechine, and isoquercitrin. Moreover, His-
197 was found to be the most important amino acid involved in the ligand binding for the enzyme.
Conclusion:
The results of the current study could be used in the prevention and therapeutic procedures
of a number of disorders such as cancer progression and invasion, oral diseases, and
acute/chronic inflammation. Although, in vitro and in vivo tests are inevitable in the future.
Collapse
Affiliation(s)
- Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Athena Orangi
- Dental Research Center, Department of Restorative Dentistry, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Moradkhani
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Product Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Khamverdi
- Dental Research Center, Department of Restorative Dentistry, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
62
|
Li YT, Yao WQ, Zhou S, Xu JX, Lu H, Lin J, Hu XY, Zhang SK. Synthesis, fungicidal activity, and 3D-QSAR of tetrazole derivatives containing phenyloxadiazole moieties. Bioorg Med Chem Lett 2021; 34:127762. [PMID: 33359605 DOI: 10.1016/j.bmcl.2020.127762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
In an effort to discover new agents with good fungicidal activities against CDM (cucumber downy mildew), a series of tetrazole derivatives containing phenyloxadiazole moieties were designed and synthesized. The EC50 values for fungicidal activities against CDM were determined. Bioassay results indicated that most synthesized compounds exhibited potential in vivo fungicidal activity against CDM. A CoMFA (comparative molecular field analysis) model based on the bioactivity was developed to identify some primary structural quality for the efficiency. The values of q2 and r2 for the established model were 0.791 and 0.982 respectively, which reliability and predict abilities were verified. Three analogues (q3, q4, q5) were designed and synthesized based on the model. All these compounds exhibited significant fungicidal activity on CDM with the EC50 of 1.43, 1.52, 1.77 mg·L-1. This work could provide a useful instruction for the further structure optimization.
Collapse
Affiliation(s)
- Yi-Tao Li
- Dongguan HEC Pesticides R&D Co., Ltd, Dongguan 523871, PR China
| | - Wen-Qiang Yao
- Dongguan HEC Pesticides R&D Co., Ltd, Dongguan 523871, PR China
| | - Si Zhou
- Dongguan HEC Pesticides R&D Co., Ltd, Dongguan 523871, PR China
| | - Jun-Xing Xu
- Dongguan HEC Pesticides R&D Co., Ltd, Dongguan 523871, PR China
| | - Hui Lu
- Dongguan HEC Pesticides R&D Co., Ltd, Dongguan 523871, PR China
| | - Jian Lin
- Dongguan HEC Pesticides R&D Co., Ltd, Dongguan 523871, PR China; College of Chemistry Biology and Environmental Engineering, Xiangnan University, Chenzhou 423000, PR China.
| | - Xiao-Yun Hu
- Dongguan HEC Pesticides R&D Co., Ltd, Dongguan 523871, PR China
| | - Shao-Kai Zhang
- Dongguan HEC Pesticides R&D Co., Ltd, Dongguan 523871, PR China
| |
Collapse
|
63
|
Identification of potential antivirals against SARS-CoV-2 using virtual screening method. INFORMATICS IN MEDICINE UNLOCKED 2021; 23:100531. [PMID: 33594342 PMCID: PMC7874919 DOI: 10.1016/j.imu.2021.100531] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 has triggered a major epidemic among people around the world, and it is the newest in the sequence to become prevalent among other infectious diseases. The drug repurposing concept has been utilized effectively for numerous viral infections. Considering the situation and the urgency, the idea of drug repurposing for coronavirus infection (COVID-19) is also being studied. The molecular docking method was used for the screening of 29 antiviral drugs against primary protease proteins (MPP) of SARS-CoV-2, spike ecto-domain, spike receptor binding domain, Nsp9 RNA binding protein, and HR2 domain. Among these drugs, in terms of least binding energy, Indinavir, Sorivudine, Cidofovir, and Darunavir showed minimum docking scores with all the key proteins. For ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) analysis, the ADMET properties of the top 4 drug candidates were retrieved through literature study. This analysis revealed that these drug candidates are well metabolized, distributed, and bioavailable, but have some undesirable effects. Furthermore, some approved structural analogues, such as Telbivudine, Tenofovir, Amprenavir, Fosamprenavir, etc., were predicted as similar drugs which may also be used for treating viral infections. We highly recommend these drug candidates as potential fighters against the deadly SARS-CoV-2 virus, and suggest in vivo trials for experimental validation of our findings.
Collapse
|
64
|
Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. Identification of potential SARS-CoV-2 entry inhibitors by targeting the interface region between the spike RBD and human ACE2. J Infect Public Health 2021; 14:227-237. [PMID: 33493919 PMCID: PMC7752028 DOI: 10.1016/j.jiph.2020.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/04/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a fatal infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The virus infection is initiated upon recognition and binding of the spike (S) protein receptor-binding domain (RBD) to the host cell surface receptor, angiotensin-converting enzyme 2 (ACE2). Blocking the interaction between S protein and ACE2 receptor is a novel approach to prevent the viral entry into the host cell. The present study is aimed at the identification of small molecules which can disrupt the interaction between SARS-CoV-2 S protein and human ACE2 receptor by binding to the interface region. A chemical library consisting of 1,36,191 molecules were screened for drug-like compounds based on Lipinski's rule of five, Verber's rule and in silico toxicity parameters. The filtered drug-like molecules were next subjected to molecular docking in the interface region of RBD. The best three hits viz; ZINC64023823, ZINC33039472 and ZINC00991597 were further taken for molecular dynamics (MD) simulation studies and binding free energy evaluations using Molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) and Molecular mechanics-Generalized Born surface area (MM-GBSA). The protein-ligand complexes showed stable trajectories throughout the simulation time. ZINC33039472 exhibited binding free energy value lower as compared to the control (emodin) with a higher contribution by gas-phase energy and van der Waals energy to the total binding free energy. Thus, ZINC33039472 is identified to be a promising interfacial binding molecule which can inhibit the interaction between the viral S protein and human ACE2 receptor which would consequently help in the management of the disease.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong, 793022, Meghalaya, India.
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
65
|
Adeoye AO, Oso BJ. Investigative studies on the inhibition of amyloid-like fibrils formation by the extracts of Vernonia amygdalina Del. leaf. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00535-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
66
|
Click triazole as a linker for drug repurposing against SARs-CoV-2: A greener approach in race to find COVID-19 therapeutic. CURRENT RESEARCH IN GREEN AND SUSTAINABLE CHEMISTRY 2021; 4. [PMCID: PMC7874918 DOI: 10.1016/j.crgsc.2021.100064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
WHO holding the hands of the scientific commune and trying to repurpose the drugs against the SARS-CoV-2. The robust scientific data has illustrated the probable mechanistic path of SARS-CoV-2 entry and action in damaging the cells. Which further has demonstrated Hydroxychloroquine (HCQ; antimalarial drug) as promising drug therapeutic; apart from certain setbacks to be an excellent agent in treating COVID-19. In the present study, we have explored the derivatives of HCQ, conjugated with bioactive agents by the virtue of sustainably modified clicked triazole approach as potential Mpro enzyme inhibitors. In results, we found the chloroquinetrithaizone has strong binding affinity for the Mpro enzyme of SARS CoV-2. We also found the stable binding of CQ-TrOne conjugate with Mpro by MD simulation studies through RMSD, RMSF and Rg calculations. Moreover, in conjunction with critical reaction coordinate outcomes, binding MMGB/PB energy profile depicted the efficient binding affinity towards Mpro. Also, DFT analyses illustrated the stability of the repurposed drug under study. These significant outcomes have shown high potency of compounds and can be further assessed through in vitro and in vivo assays to develop the effective drug against COVID-19.
Collapse
|
67
|
Islam E. Development of chemokine CXCL12-dependent immunotoxin against small cell lung cancer using in silico approaches. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
68
|
Rajapaksha H, Perera BT, Meepage J, Perera RT, Dissanayake C. Mitigate the cytokine storm due to the severe COVID-19: A computational investigation of possible allosteric inhibitory actions on IL-6R and IL-1R using selected phytochemicals. ACTA ACUST UNITED AC 2020. [DOI: 10.5155/eurjchem.11.4.351-363.2043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The novel corona virus 2019 (COVID 19) is growing at an increasing rate with high mortality. Meanwhile, the cytokine storm is the most dangerous and potentially life-threatening event related to COVID 19. Phyto-compounds found in existing Ayurveda drugs have the ability to inhibit the Interleukin 6 (IL-6R) and Interleukin 1 (IL-1R) receptors. IL-6R and IL-1R receptors involve in cytokine storm and recognition of phytochemicals with proven safety profiles could open a pathway to the development of the most effective drugs against cytokine storm. In this study, we intend to perform an in silico investigation of effective phyto compounds, which can be isolated from selected medicinal herbs to avoid cytokine storm, inhibiting the IL-6 and IL-1 receptor binding process. An extensive literature survey followed by virtual screening was carried out to identify phytochemicals with potential anti-hyper-inflammatory action. Flexible docking was conducted for validated models of IL-1R and IL-6R-α with the most promising phytochemicals at possible allosteric sites using AutoDock Vina. Molecular dynamics (MD) studies were conducted for selected protein-ligand complexes using LARMD server and conformational changes were evaluated. According to the results, taepeenin J had Gibbs energy (ΔG) of -10.85 kcal/mol towards IL-1R but had limited oral bioavailability. MD analysis revealed that taepeenin J can cause significant conformational movements in IL-1R. Nortaepeenin B showed a ΔG of -8.5 kcal/mol towards IL-6R-α with an excellent oral bioavailability. MD analysis predicted that it can cause significant conformational movements in IL-6R-α. Hence, the evaluated phytochemicals are potential candidates for further in vitro studies for the development of medicine against cytokine storm on behalf of SARS-COV-2 infected patients.
Collapse
Affiliation(s)
- Harindu Rajapaksha
- Department of Chemistry, Faculty of Science, University of Kelaniya, Dalugama, 11 300, Sri Lanka
| | - Bingun Tharusha Perera
- Department of Chemistry, Faculty of Science, University of Kelaniya, Dalugama, 11 300, Sri Lanka
| | - Jeewani Meepage
- Department of Chemistry, Faculty of Science, University of Kelaniya, Dalugama, 11 300, Sri Lanka
| | - Ruwan Tharanga Perera
- Graduate Studies Division, Gampaha Wickramarachchi Ayurveda Institute, University of Kelaniya, Yakkala, 11870, Sri Lanka
| | - Chithramala Dissanayake
- Department of Cikitsa, Gampaha Wickramarachchi Ayurveda Institute, University of Kelaniya, Yakkala, 11870, Sri Lanka
| |
Collapse
|
69
|
Shan J, Pan X, Wang X, Xiao X, Ji C. FragRep: A Web Server for Structure-Based Drug Design by Fragment Replacement. J Chem Inf Model 2020; 60:5900-5906. [PMID: 33275427 DOI: 10.1021/acs.jcim.0c00767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design of efficient computational tools for structure-guided ligand design is essential for the drug discovery process. We hereby present FragRep, a new web server for structure-based ligand design by fragment replacement. The input is a protein and a ligand structure, either from protein data bank or from molecular docking. Users can choose specific substructures they want to modify. The server tries to find suitable fragments that not only meet the geometric requirements of the remaining part of the ligand but also fit well with local protein environments. FragRep is a powerful computational tool for the rapid generation of ligand design ideas; either in scaffold hopping or bioisosteric replacing. The FragRep Server is freely available to researchers and can be accessed at http://xundrug.cn/fragrep.
Collapse
Affiliation(s)
- Jinwen Shan
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062 China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 China
| | - Xiaolin Pan
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062 China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 China
| | - Xingyu Wang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 China
| | - Xudong Xiao
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062 China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 China
| | - Changge Ji
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062 China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 China
| |
Collapse
|
70
|
Siddiqui S, Upadhyay S, Ahmad R, Gupta A, Srivastava A, Trivedi A, Husain I, Ahmad B, Ahamed M, Khan MA. Virtual screening of phytoconstituents from miracle herb nigella sativa targeting nucleocapsid protein and papain-like protease of SARS-CoV-2 for COVID-19 treatment. J Biomol Struct Dyn 2020; 40:3928-3948. [PMID: 33289456 PMCID: PMC7738213 DOI: 10.1080/07391102.2020.1852117] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel etiological agent of coronavirus disease 2019 (COVID-19). Nigella sativa, commonly known as black seed or black cumin, has been a historical and traditional plant since thousands of years. Based on their therapeutic efficacy, the chief components of terpenoids and flavonoids were selected from N. sativa seeds and seed oil. This study was designed to check the antiviral efficacy of N. sativa main phytoconstituents against five potential targets of SARS-CoV-2 using in silico structure-based virtual screening approach. Out of twenty five phytocomponents, ten components showed best binding affinity against two viral proteins viz. N-terminal RNA binding domain (NRBD; PDB ID: 6M3M) of nucleocapsid protein and papain-like protease (PL-PRO; PDB ID: 6W9C) of SARS-CoV-2 using AutoDock 4.2.6, AutoDock Vina and iGEMDOCK. PASS analyses of all ten phytocomponents using Lipinski's Rule of five showed promising results. Further, druglikeness and toxicity assessment using OSIRIS Data Warrior v5.2.1 software exhibited the feasibility of phytocomponents as drug candidates with no predicted toxicity. Molecular dynamics simulation study of NRBD of SARS-CoV-2 nucleocapsid protein-alpha-spinasterol complex and PL-PRO-cycloeucalenol complex displayed strong stability at 300 K. Both these complexes exhibited constant root mean square deviation (RMSDs) of protein side chains and Cα atoms throughout the simulation run time. Interestingly, PL-PRO and NRBD are key proteins in viral replication, host cell immune evasion and viral assembly. Thus, NRBD and PL-PRO have the potential to serve as therapeutic targets for N. sativa phytoconstituents in drug discovery process against COVID-19.
Collapse
Affiliation(s)
- Sahabjada Siddiqui
- Deparment of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Shivbrat Upadhyay
- Deparment of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Anamika Gupta
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Anchal Trivedi
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Ishrat Husain
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Bilal Ahmad
- Research Cell, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Mohsin Ali Khan
- Chancellor, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
71
|
Zhang J, Sun Y, Zhong LY, Yu NN, Ouyang L, Fang RD, Wang Y, He QY. Structure-based discovery of neoandrographolide as a novel inhibitor of Rab5 to suppress cancer growth. Comput Struct Biotechnol J 2020; 18:3936-3946. [PMID: 33335690 PMCID: PMC7734235 DOI: 10.1016/j.csbj.2020.11.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022] Open
Abstract
Rab5 is a small GTPase that plays a crucial role in oncogenic signal transduction, which was considered as an attractive target for cancer therapy. Rapid GDP/GTP exchange in the packet of Rab5 sustains its high activity for promoting cancer progression. However, Rab5 currently remains undruggable due to the lack of specific inhibitor. Herein, we reported the discovery of a novel Rab5 inhibitor, neoandrographolide (NAP), by using high-throughput virtual screening with a natural product library containing 7459 compounds, which can occupy the surface groove of Rab5, competing with GDP/GTP for the binding. Ser34 is the most important residue in the groove of Rab5, as it forms most hydrogen-bond interactions with GDP/GTP or NAP, and in silico mutation of Ser34 decreased the stabilization of Rab5. Moreover, fluorescence titration experiment and isothermal titration calorimetry (ITC) assay revealed a direct binding between NAP and Rab5. Biochemical and cell-based assays showed that NAP treatment not only diminished the activity of Rab5, but also suppressed cell growth of cancer cell. This finding firstly identifies NAP as a novel inhibitor of Rab5, which directly binds with Rab5 by occupying the GDP/GTP binding groove to suppress its functions, highlighting a great potential of NAP to be developed as a chemotherapeutic agent in cancer therapy.
Collapse
Affiliation(s)
- Jing Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yue Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Ye Zhong
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nan-Nan Yu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lan Ouyang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Run-Dong Fang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| |
Collapse
|
72
|
Jin CF, Wang ZZ, Chen KZ, Xu TF, Hao GF. Computational Fragment-Based Design Facilitates Discovery of Potent and Selective Monoamine Oxidase-B (MAO-B) Inhibitor. J Med Chem 2020; 63:15021-15036. [PMID: 33210537 DOI: 10.1021/acs.jmedchem.0c01663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is one of the most common age-related neurodegenerative diseases. Inhibition of monoamine oxidase-B (MAO-B), which is mainly found in the glial cells of the brain, may lead to an elevated level of dopamine (DA) in patients. MAO-B inhibitors have been used extensively for patients with PD. However, the discovery of the selective MAO-B inhibitor is still a challenge. In this study, a computational strategy was designed for the rapid discovery of selective MAO-B inhibitors. A series of (S)-2-(benzylamino)propanamide derivatives were designed. In vitro biological evaluations revealed that (S)-1-(4-((3-fluorobenzyl)oxy)benzyl)azetidine-2-carboxamide (C3) was more potent and selective than safinamide, a promising drug for regulating MAO-B. Further studies revealed that the selectivity mechanism of C3 was due to the steric clash caused by the residue difference of Phe208 (MAO-A) and Ile199 (MAO-B). Animal studies showed that compound C3 could inhibit cerebral MAO-B activity and alleviate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neuronal loss.
Collapse
Affiliation(s)
- Chuan-Fei Jin
- Sunshine Lake Pharma Co. Ltd., Shenzhen 518000; HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, P. R. China
| | - Zhi-Zheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Kang-Zhi Chen
- Sunshine Lake Pharma Co. Ltd., Shenzhen 518000; HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, P. R. China
| | - Teng-Fei Xu
- Sunshine Lake Pharma Co. Ltd., Shenzhen 518000; HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, P. R. China
| | - Ge-Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
73
|
Parvez MSA, Karim MA, Hasan M, Jaman J, Karim Z, Tahsin T, Hasan MN, Hosen MJ. Prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 using comprehensive drug repurposing and molecular docking approach. Int J Biol Macromol 2020; 163:1787-1797. [PMID: 32950529 PMCID: PMC7495146 DOI: 10.1016/j.ijbiomac.2020.09.098] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
The pandemic prevalence of COVID-19 has become a very serious global health issue. Scientists all over the world have been seriously attempting in the discovery of a drug to combat SARS-CoV-2. It has been found that RNA-dependent RNA polymerase (RdRp) plays a crucial role in SARS-CoV-2 replication, and thus could be a potential drug target. Here, comprehensive computational approaches including drug repurposing and molecular docking were employed to predict an effective drug candidate targeting RdRp of SARS-CoV-2. This study revealed that Rifabutin, Rifapentine, Fidaxomicin, 7-methyl-guanosine-5'-triphosphate-5'-guanosine and Ivermectin have a potential inhibitory interaction with RdRp of SARS-CoV-2 and could be effective drugs for COVID-19. In addition, virtual screening of the compounds from ZINC database also allowed the prediction of two compounds (ZINC09128258 and ZINC09883305) with pharmacophore features that interact effectively with RdRp of SARS-CoV-2, indicating their potentiality as effective inhibitors of the enzyme. Furthermore, ADME analysis along with analysis of toxicity was also undertaken to check the pharmacokinetics and drug-likeness properties of the two compounds. Comparative structural analysis of protein-inhibitor complexes revealed that the amino acids Y32, K47, Y122, Y129, H133, N138, D140, T141, S709 and N781 are crucial for drug surface hotspot in the RdRp of SARS-CoV-2.
Collapse
Affiliation(s)
- Md Sorwer Alam Parvez
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh.
| | - Md Adnan Karim
- Department of Genetic Engineering & Biotechnology, Jashore University of Science & Technology, Jashore, Bangladesh; Center for Bioinformatics, Universitat Des Saarlandes, Saarbrucken, Germany
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Jomana Jaman
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ziaul Karim
- Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany
| | - Tohura Tahsin
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Md Nazmul Hasan
- Department of Genetic Engineering & Biotechnology, Jashore University of Science & Technology, Jashore, Bangladesh
| | - Mohammad Jakir Hosen
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh.
| |
Collapse
|
74
|
Borquaye LS, Gasu EN, Ampomah GB, Kyei LK, Amarh MA, Mensah CN, Nartey D, Commodore M, Adomako AK, Acheampong P, Mensah JO, Mormor DB, Aboagye CI. Alkaloids from Cryptolepis sanguinolenta as Potential Inhibitors of SARS-CoV-2 Viral Proteins: An In Silico Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5324560. [PMID: 33029513 PMCID: PMC7512045 DOI: 10.1155/2020/5324560] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 01/18/2023]
Abstract
The ongoing global pandemic caused by the human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions of people and claimed hundreds of thousands of lives. The absence of approved therapeutics to combat this disease threatens the health of all persons on earth and could cause catastrophic damage to society. New drugs are therefore urgently required to bring relief to people everywhere. In addition to repurposing existing drugs, natural products provide an interesting alternative due to their widespread use in all cultures of the world. In this study, alkaloids from Cryptolepis sanguinolenta have been investigated for their ability to inhibit two of the main proteins in SARS-CoV-2, the main protease and the RNA-dependent RNA polymerase, using in silico methods. Molecular docking was used to assess binding potential of the alkaloids to the viral proteins whereas molecular dynamics was used to evaluate stability of the binding event. The results of the study indicate that all 13 alkaloids bind strongly to the main protease and RNA-dependent RNA polymerase with binding energies ranging from -6.7 to -10.6 kcal/mol. In particular, cryptomisrine, cryptospirolepine, cryptoquindoline, and biscryptolepine exhibited very strong inhibitory potential towards both proteins. Results from the molecular dynamics study revealed that a stable protein-ligand complex is formed upon binding. Alkaloids from Cryptolepis sanguinolenta therefore represent a promising class of compounds that could serve as lead compounds in the search for a cure for the corona virus disease.
Collapse
Affiliation(s)
- Lawrence Sheringham Borquaye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Edward Ntim Gasu
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gilbert Boadu Ampomah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lois Kwane Kyei
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Margaret Amerley Amarh
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Caleb Nketia Mensah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Daniel Nartey
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Commodore
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Philipina Acheampong
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - David Batsa Mormor
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Caleb Impraim Aboagye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
75
|
Kumar N, Sood D, van der Spek PJ, Sharma HS, Chandra R. Molecular Binding Mechanism and Pharmacology Comparative Analysis of Noscapine for Repurposing against SARS-CoV-2 Protease. J Proteome Res 2020; 19:4678-4689. [PMID: 32786685 DOI: 10.1021/acs.jproteome.0c00367] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Originating in the city of Wuhan in China in December 2019, COVID-19 has emerged now as a global health emergency with a high number of deaths worldwide. COVID-19 is caused by a novel coronavirus, referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in pandemic conditions around the globe. We are in the battleground to fight against the virus by rapidly developing therapeutic strategies in tackling SARS-CoV-2 and saving human lives from COVID-19. Scientists are evaluating several known drugs either for the pathogen or the host; however, many of them are reported to be associated with side effects. In the present study, we report the molecular binding mechanisms of the natural alkaloid, noscapine, for repurposing against the main protease of SARS-CoV-2, a key enzyme involved in its reproduction. We performed the molecular dynamics (MD) simulation in an explicit solvent to investigate the molecular mechanisms of noscapine for stable binding and conformational changes to the main protease (Mpro) of SARS-CoV-2. The drug repurposing study revealed the high potential of noscapine and proximal binding to the Mpro enzyme in a comparative binding pattern analyzed with chloroquine, ribavirin, and favipiravir. Noscapine binds closely to binding pocket-3 of the Mpro enzyme and depicted stable binding with RMSD 0.1-1.9 Å and RMSF profile peak conformational fluctuations at 202-306 residues, and a Rg score ranging from 21.9 to 22.4 Å. The MM/PB (GB) SA calculation landscape revealed the most significant contribution in terms of binding energy with ΔPB -19.08 and ΔGB -27.17 kcal/mol. The electrostatic energy distribution in MM energy was obtained to be -71.16 kcal/mol and depicted high free energy decomposition (electrostatic energy) at 155-306 residues (binding pocket-3) of Mpro by a MM force field. Moreover, the dynamical residue cross-correlation map also stated that the high pairwise correlation occurred at binding residues 200-306 of the Mpro enzyme (binding pocket-3) with noscapine. Principal component analysis depicted the enhanced movement of protein atoms with a high number of static hydrogen bonds. The obtained binding results of noscapine were also well correlated with the pharmacokinetic parameters of antiviral drugs.
Collapse
Affiliation(s)
- Neeraj Kumar
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Damini Sood
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Peter J van der Spek
- Division of Clinical Bioinformatics, Department of Pathology, Erasmus MC, University Medical Center, 3015GD Rotterdam, The Netherlands.,Erasmus Center for Data Analysis (ECDA), Rotterdam, The Netherlands
| | - Hari S Sharma
- Division of Clinical Bioinformatics, Department of Pathology, Erasmus MC, University Medical Center, 3015GD Rotterdam, The Netherlands.,Erasmus Center for Data Analysis (ECDA), Rotterdam, The Netherlands
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
76
|
Oso BJ, Adeoye AO, Olaoye IF. Pharmacoinformatics and hypothetical studies on allicin, curcumin, and gingerol as potential candidates against COVID-19-associated proteases. J Biomol Struct Dyn 2020; 40:389-400. [DOI: 10.1080/07391102.2020.1813630] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Babatunde Joseph Oso
- Department of Biochemistry, McPherson University, Seriki Sotayo, Ogun State, Nigeria
| | | | - Ige Francis Olaoye
- Department of Biochemistry, McPherson University, Seriki Sotayo, Ogun State, Nigeria
| |
Collapse
|
77
|
Lin J, Zhou S, Xu JX, Yao WQ, Hao GF, Li YT. Design, Synthesis, and Structure-Activity Relationship of Economical Triazole Sulfonamide Aryl Derivatives with High Fungicidal Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6792-6801. [PMID: 32442369 DOI: 10.1021/acs.jafc.9b07887] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Plant fungal diseases have caused great decreases in crop quality and yield. As one of the considerable agricultural diseases, cucumber downy mildew (CDM) caused by pseudoperonospora cubensis seriously influences the production of cucumber. Amisulbrom is a commercial agricultural fungicide developed by Nissan Chemical, Ltd., for the control of oomycetes diseases that is highly effective against CDM. However, the synthesis of amisulbrom has a high cost because of the introduction of the bromoindole ring. In addition, the continuous use of amisulbrom might increase the risk of resistance development. Hence, there is an imperative to develop active fungicides with new scaffolds but low cost against CDM. In this study, a series of 1,2,4-triazole-1,3-disulfonamide derivatives were designed, synthesized, and screened. Compound 1j showed a comparable fungicidal activity with amisulbrom, but it was low cost and ecofriendly. It has the potential to be developed as a new fungicide candidate against CDM. Further investigations of structure-activity relationship exhibited the structural requirements of 1,2,4-triazole-1,3-disulfonamide and appropriate modification in N-alkyl benzylamine groups with high fungicidal activity. This research will provide powerful guidance for the design of highly active lead compounds with a novel skeleton and low cost.
Collapse
Affiliation(s)
- Jian Lin
- Dongguan HEC Pesticides R&D Co., Ltd., Dongguan 523867, P. R. China
- College of Chemistry Biology and Environmental Engineering, Xiangnan University, Chenzhou 423000, P. R. China
| | - Si Zhou
- Dongguan HEC Pesticides R&D Co., Ltd., Dongguan 523867, P. R. China
| | - Jun-Xing Xu
- Dongguan HEC Pesticides R&D Co., Ltd., Dongguan 523867, P. R. China
| | - Wen-Qiang Yao
- Dongguan HEC Pesticides R&D Co., Ltd., Dongguan 523867, P. R. China
| | - Ge-Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Yi-Tao Li
- Dongguan HEC Pesticides R&D Co., Ltd., Dongguan 523867, P. R. China
| |
Collapse
|
78
|
Yang JF, Yin CY, Wang D, Jia CY, Hao GF, Yang GF. Molecular Determinants Elucidate the Selectivity in Abscisic Acid Receptor and HAB1 Protein Interactions. Front Chem 2020; 8:425. [PMID: 32582630 PMCID: PMC7287503 DOI: 10.3389/fchem.2020.00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/23/2020] [Indexed: 11/22/2022] Open
Abstract
The abscisic acid (ABA), as a pivotal plant hormone, plays a key role in controlling the life cycle and adapting to the environmental stresses. The receptors of ABA are the Pyrabactin resistance/Pyrabactin resistance-like/regulatory component of ABA receptors (PYR/PYL/RCAR, PYLs for simplicity), which regulate the protein phosphatase 2Cs (PP2Cs) in the signal pathway. As an important ABA-mimicking ligand, Pyrabactin shows the activation function to parts of members of PYLs, such as PYR1 and PYL1. Due to the antagonism of Pyrabactin to PYL2, it was used as a probe to discover a part of ABA receptors. Since then, many researchers have been trying to find out the determinants of the selective regulation of PYLs and PP2Cs interaction. However, the roles of residues on the selective regulation of PYR1/PYL2 and PP2Cs interaction induced by Pyrabactin are still ambiguous. This research investigated the selective activation mechanism of Pyrabactin through the sequence alignment, molecular docking, molecular dynamics simulation, and binding free energy calculation. Furthermore, the electrostatic and hydrophobic interaction differences induced by Pyrabactin and agonists were compared. The results indicate that Leu137/Val114, Ser85/Ser89, and Gly86/Gly90 from the pocket and gate of PYR1/PYL2 are the vital residues for the selective activation of Pyrabactin. Meanwhile, the electrostatic interaction between PP2Cs and PYLs complexed with agonists was improved. This mechanism provides strong support for the design of selective agonists and antagonists.
Collapse
Affiliation(s)
- Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.,International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, China
| | - Chun-Yan Yin
- School of Life Science, Wuchang University of Technology, Wuhan, China
| | - Di Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.,International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, China
| | - Chen-Yang Jia
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.,International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, China
| | - Ge-Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.,International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| |
Collapse
|
79
|
Zhang YN, Zhang XQ, Zhang XC, Xu JW, Li LL, Zhu XY, Wang JJ, Wei JY, Mang DZ, Zhang F, Yuan X, Wu XM. Key Amino Acid Residues Influencing Binding Affinities of Pheromone-Binding Protein from Athetis lepigone to Two Sex Pheromones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6092-6103. [PMID: 32392414 DOI: 10.1021/acs.jafc.0c01572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Athetis lepigone is a polyphagous pest found around the world that feeds on maize, wheat, and various other important crops. Although it exhibits a degree of resistance to various chemical insecticides, an effective pest-control method has not yet been developed. The sex pheromone communication system plays an essential role in the mating and reproduction of moths, in which pheromone-binding proteins (PBPs) are crucial genes. In this study, we cloned and purified the protein AlepPBP1 using an E. coli expression system and found it had a higher binding affinity to two sex pheromones of A. lepigone, namely, Z7-12:Ac and Z9-14:Ac (with Ki 0.77 ± 0.10 and 1.10 ± 0.20 μM, respectively), than to other plant volatiles. The binding-mode analysis of protein conformation with equilibrium stabilization was obtained using molecular dynamics (MD) simulation and indicated that hydrophobic interactions involving several nonpolar residues were the main driving force for the binding affinity of AlepPBP1 with sex pheromones. Computational alanine scanning (CAS) was performed to further identify key amino acid residues and validate their binding contributions. Each key residue, including Phe36, Trp37, Val52, and Phe118, was subsequently mutated into alanine using site-directed mutagenesis. Binding assays showed that the efficient binding abilities to Z7-12:Ac (F36A, W37A, and F118A) and Z9-14:Ac (F36A, W37A, V52A, and F118A) were almost lost in the mutated proteins. Our results demonstrated that these key amino acid residues are crucial for determining the binding ability of AlepPBP1 to sex pheromones. These findings provide a basis for the use of AlepPBP1 in the studies as a specific target for the development of novel behavioral antagonists with marked inhibition or mating-disruption abilities using computer-aided drug design (CADD).
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Xiao-Qing Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiao-Chun Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Lu-Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Juan-Juan Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Jun-Yuan Wei
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Ding-Ze Mang
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Fan Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan 250100, P. R. China
| | - Xiaohui Yuan
- Institute of Biomedicine, Jinan University, Guangzhou 510000, P. R. China
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519000, P. R. China
| | - Xiao-Min Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, P. R. China
| |
Collapse
|