51
|
Liu Z, Chen Q, Lan W, Lu H, Zhang S. SSLDTI: A novel method for drug-target interaction prediction based on self-supervised learning. Artif Intell Med 2024; 149:102778. [PMID: 38462280 DOI: 10.1016/j.artmed.2024.102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/01/2023] [Accepted: 01/14/2024] [Indexed: 03/12/2024]
Abstract
Many computational methods have been proposed to identify potential drug-target interactions (DTIs) to expedite drug development. Graph neural network (GNN) methods are considered to be one of the most effective approaches. However, shallow GNN methods can only aggregate local information from nodes. Also, deep GNN methods may result in over-smoothing while obtaining long-distance neighbourhood information. As a result, existing GNN methods struggle to extract the complete features of the graph. Additionally, the number of known DTIs is insufficient, and there are far more unknown drug-target pairs than known DTIs, leading to class imbalance. This article proposes a model that combines graph autoencoder and self-supervised learning to accurately encode multilevel features of graphs using only a small number of labelled samples. We introduce a positive sample compensation coefficient to the objective function to mitigate the impact of class imbalance. Experiments on two datasets demonstrated that our model outperforms the four baseline methods, and the new DTIs predicted by the SSLDTI model were verified by the DrugBank database.
Collapse
Affiliation(s)
- Zhixian Liu
- School of Electronics and Information Engineering, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning, Guangxi, China.
| | - Wei Lan
- School of Computer, Electronic and Information, Guangxi University, Nanning, Guangxi, China
| | - Huihui Lu
- School of Electronics and Information Engineering, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Shichao Zhang
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China.
| |
Collapse
|
52
|
Qi X, Zhao Y, Qi Z, Hou S, Chen J. Machine Learning Empowering Drug Discovery: Applications, Opportunities and Challenges. Molecules 2024; 29:903. [PMID: 38398653 PMCID: PMC10892089 DOI: 10.3390/molecules29040903] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Drug discovery plays a critical role in advancing human health by developing new medications and treatments to combat diseases. How to accelerate the pace and reduce the costs of new drug discovery has long been a key concern for the pharmaceutical industry. Fortunately, by leveraging advanced algorithms, computational power and biological big data, artificial intelligence (AI) technology, especially machine learning (ML), holds the promise of making the hunt for new drugs more efficient. Recently, the Transformer-based models that have achieved revolutionary breakthroughs in natural language processing have sparked a new era of their applications in drug discovery. Herein, we introduce the latest applications of ML in drug discovery, highlight the potential of advanced Transformer-based ML models, and discuss the future prospects and challenges in the field.
Collapse
Affiliation(s)
- Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215011, China; (Y.Z.); (S.H.); (J.C.)
| | - Yuanchun Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215011, China; (Y.Z.); (S.H.); (J.C.)
| | - Zhuang Qi
- School of Software, Shandong University, Jinan 250101, China;
| | - Siyu Hou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215011, China; (Y.Z.); (S.H.); (J.C.)
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215011, China; (Y.Z.); (S.H.); (J.C.)
| |
Collapse
|
53
|
Qi H, Yu T, Yu W, Liu C. Drug-target affinity prediction with extended graph learning-convolutional networks. BMC Bioinformatics 2024; 25:75. [PMID: 38365583 PMCID: PMC10874073 DOI: 10.1186/s12859-024-05698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND High-performance computing plays a pivotal role in computer-aided drug design, a field that holds significant promise in pharmaceutical research. The prediction of drug-target affinity (DTA) is a crucial stage in this process, potentially accelerating drug development through rapid and extensive preliminary compound screening, while also minimizing resource utilization and costs. Recently, the incorporation of deep learning into DTA prediction and the enhancement of its accuracy have emerged as key areas of interest in the research community. Drugs and targets can be characterized through various methods, including structure-based, sequence-based, and graph-based representations. Despite the progress in structure and sequence-based techniques, they tend to provide limited feature information. Conversely, graph-based approaches have risen to prominence, attracting considerable attention for their comprehensive data representation capabilities. Recent studies have focused on constructing protein and drug molecular graphs using sequences and SMILES, subsequently deriving representations through graph neural networks. However, these graph-based approaches are limited by the use of a fixed adjacent matrix of protein and drug molecular graphs for graph convolution. This limitation restricts the learning of comprehensive feature representations from intricate compound and protein structures, consequently impeding the full potential of graph-based feature representation in DTA prediction. This, in turn, significantly impacts the models' generalization capabilities in the complex realm of drug discovery. RESULTS To tackle these challenges, we introduce GLCN-DTA, a model specifically designed for proficiency in DTA tasks. GLCN-DTA innovatively integrates a graph learning module into the existing graph architecture. This module is designed to learn a soft adjacent matrix, which effectively and efficiently refines the contextual structure of protein and drug molecular graphs. This advancement allows for learning richer structural information from protein and drug molecular graphs via graph convolution, specifically tailored for DTA tasks, compared to the conventional fixed adjacent matrix approach. A series of experiments have been conducted to validate the efficacy of the proposed GLCN-DTA method across diverse scenarios. The results demonstrate that GLCN-DTA possesses advantages in terms of robustness and high accuracy. CONCLUSIONS The proposed GLCN-DTA model enhances DTA prediction performance by introducing a novel framework that synergizes graph learning operations with graph convolution operations, thereby achieving richer representations. GLCN-DTA does not distinguish between different protein classifications, including structurally ordered and intrinsically disordered proteins, focusing instead on improving feature representation. Therefore, its applicability scope may be more effective in scenarios involving structurally ordered proteins, while potentially being limited in contexts with intrinsically disordered proteins.
Collapse
Affiliation(s)
- Haiou Qi
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ting Yu
- Operating Room Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Wenwen Yu
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chenxi Liu
- School of Medicine and Health Management, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
54
|
Dehghan A, Abbasi K, Razzaghi P, Banadkuki H, Gharaghani S. CCL-DTI: contributing the contrastive loss in drug-target interaction prediction. BMC Bioinformatics 2024; 25:48. [PMID: 38291364 PMCID: PMC11264960 DOI: 10.1186/s12859-024-05671-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The Drug-Target Interaction (DTI) prediction uses a drug molecule and a protein sequence as inputs to predict the binding affinity value. In recent years, deep learning-based models have gotten more attention. These methods have two modules: the feature extraction module and the task prediction module. In most deep learning-based approaches, a simple task prediction loss (i.e., categorical cross entropy for the classification task and mean squared error for the regression task) is used to learn the model. In machine learning, contrastive-based loss functions are developed to learn more discriminative feature space. In a deep learning-based model, extracting more discriminative feature space leads to performance improvement for the task prediction module. RESULTS In this paper, we have used multimodal knowledge as input and proposed an attention-based fusion technique to combine this knowledge. Also, we investigate how utilizing contrastive loss function along the task prediction loss could help the approach to learn a more powerful model. Four contrastive loss functions are considered: (1) max-margin contrastive loss function, (2) triplet loss function, (3) Multi-class N-pair Loss Objective, and (4) NT-Xent loss function. The proposed model is evaluated using four well-known datasets: Wang et al. dataset, Luo's dataset, Davis, and KIBA datasets. CONCLUSIONS Accordingly, after reviewing the state-of-the-art methods, we developed a multimodal feature extraction network by combining protein sequences and drug molecules, along with protein-protein interaction networks and drug-drug interaction networks. The results show it performs significantly better than the comparable state-of-the-art approaches.
Collapse
Affiliation(s)
- Alireza Dehghan
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish, 1417614411, Iran
| | - Karim Abbasi
- Laboratory of System Biology, Bioinformatics and Artificial Intelligence in Medicine (LBB&AI), Faculty of Mathematics and Computer Science, Kharazmi University, Tehran, 1417614411, Iran
| | - Parvin Razzaghi
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 4513766731, Iran.
| | - Hossein Banadkuki
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614411, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614411, Iran.
| |
Collapse
|
55
|
Zhang C, Zang T, Zhao T. KGE-UNIT: toward the unification of molecular interactions prediction based on knowledge graph and multi-task learning on drug discovery. Brief Bioinform 2024; 25:bbae043. [PMID: 38348746 PMCID: PMC10939374 DOI: 10.1093/bib/bbae043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
The prediction of molecular interactions is vital for drug discovery. Existing methods often focus on individual prediction tasks and overlook the relationships between them. Additionally, certain tasks encounter limitations due to insufficient data availability, resulting in limited performance. To overcome these limitations, we propose KGE-UNIT, a unified framework that combines knowledge graph embedding (KGE) and multi-task learning, for simultaneous prediction of drug-target interactions (DTIs) and drug-drug interactions (DDIs) and enhancing the performance of each task, even when data availability is limited. Via KGE, we extract heterogeneous features from the drug knowledge graph to enhance the structural features of drug and protein nodes, thereby improving the quality of features. Additionally, employing multi-task learning, we introduce an innovative predictor that comprises the task-aware Convolutional Neural Network-based (CNN-based) encoder and the task-aware attention decoder which can fuse better multimodal features, capture the contextual interactions of molecular tasks and enhance task awareness, leading to improved performance. Experiments on two imbalanced datasets for DTIs and DDIs demonstrate the superiority of KGE-UNIT, achieving high area under the receiver operating characteristics curves (AUROCs) (0.942, 0.987) and area under the precision-recall curve ( AUPRs) (0.930, 0.980) for DTIs and high AUROCs (0.975, 0.989) and AUPRs (0.966, 0.988) for DDIs. Notably, on the LUO dataset where the data were more limited, KGE-UNIT exhibited a more pronounced improvement, with increases of 4.32$\%$ in AUROC and 3.56$\%$ in AUPR for DTIs and 6.56$\%$ in AUROC and 8.17$\%$ in AUPR for DDIs. The scalability of KGE-UNIT is demonstrated through its extension to protein-protein interactions prediction, ablation studies and case studies further validate its effectiveness.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Computer Science, Harbin Institute of Technology, Harbin, 150001, China
| | - Tianyi Zang
- Department of Computer Science, Harbin Institute of Technology, Harbin, 150001, China
| | - Tianyi Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
56
|
Wei J, Lu L, Shen T. Predicting drug-protein interactions by preserving the graph information of multi source data. BMC Bioinformatics 2024; 25:10. [PMID: 38177981 PMCID: PMC10768380 DOI: 10.1186/s12859-023-05620-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
Examining potential drug-target interactions (DTIs) is a pivotal component of drug discovery and repurposing. Recently, there has been a significant rise in the use of computational techniques to predict DTIs. Nevertheless, previous investigations have predominantly concentrated on assessing either the connections between nodes or the consistency of the network's topological structure in isolation. Such one-sided approaches could severely hinder the accuracy of DTI predictions. In this study, we propose a novel method called TTGCN, which combines heterogeneous graph convolutional neural networks (GCN) and graph attention networks (GAT) to address the task of DTI prediction. TTGCN employs a two-tiered feature learning strategy, utilizing GAT and residual GCN (R-GCN) to extract drug and target embeddings from the diverse network, respectively. These drug and target embeddings are then fused through a mean-pooling layer. Finally, we employ an inductive matrix completion technique to forecast DTIs while preserving the network's node connectivity and topological structure. Our approach demonstrates superior performance in terms of area under the curve and area under the precision-recall curve in experimental comparisons, highlighting its significant advantages in predicting DTIs. Furthermore, case studies provide additional evidence of its ability to identify potential DTIs.
Collapse
Affiliation(s)
- Jiahao Wei
- School of Mathematical Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Linzhang Lu
- School of Mathematical Sciences, Guizhou Normal University, Guiyang, 550025, China.
- School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China.
| | - Tie Shen
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guizhou, 550001, China.
| |
Collapse
|
57
|
Qu X, Du G, Hu J, Cai Y. Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding. Curr Comput Aided Drug Des 2024; 20:1013-1024. [PMID: 37448360 DOI: 10.2174/1573409919666230713142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/04/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND In this study, we aimed to develop a new end-to-end learning model called Graph-Drug-Target Interaction (DTI), which integrates various types of information in the heterogeneous network data, and to explore automatic learning of the topology-maintaining representations of drugs and targets, thereby effectively contributing to the prediction of DTI. Precise predictions of DTI can guide drug discovery and development. Most machine learning algorithms integrate multiple data sources and combine them with common embedding methods. However, the relationship between the drugs and target proteins is not well reported. Although some existing studies have used heterogeneous network graphs for DTI prediction, there are many limitations in the neighborhood information between the nodes in the heterogeneous network graphs. We studied the drug-drug interaction (DDI) and DTI from DrugBank Version 3.0, protein-protein interaction (PPI) from the human protein reference database Release 9, drug structure similarity from Morgan fingerprints of radius 2 and calculated by RDKit, and protein sequence similarity from Smith-Waterman score. METHODS Our study consists of three major components. First, various drugs and target proteins were integrated, and a heterogeneous network was established based on a series of data sets. Second, the graph neural networks-inspired graph auto-encoding method was used to extract high-order structural information from the heterogeneous networks, thereby revealing the description of nodes (drugs and proteins) and their topological neighbors. Finally, potential DTI prediction was made, and the obtained samples were sent to the classifier for secondary classification. RESULTS The performance of Graph-DTI and all baseline methods was evaluated using the sums of the area under the precision-recall curve (AUPR) and the area under the receiver operating characteristic curve (AUC). The results indicated that Graph-DTI outperformed the baseline methods in both performance results. CONCLUSION Compared with other baseline DTI prediction methods, the results showed that Graph-DTI had better prediction performance. Additionally, in this study, we effectively classified drugs corresponding to different targets and vice versa. The above findings showed that Graph-DTI provided a powerful tool for drug research, development, and repositioning. Graph- DTI can serve as a drug development and repositioning tool more effectively than previous studies that did not use heterogeneous network graph embedding.
Collapse
Affiliation(s)
- Xiaohan Qu
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guoxia Du
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Hu
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongming Cai
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Traditional Chinese Medicine Precision Medicine Big Data Engineering Technology Research Center, Guangzhou, China
| |
Collapse
|
58
|
Pellegrini M. Advances in Network-Based Drug Repositioning. LECTURE NOTES IN COMPUTER SCIENCE 2024:99-114. [DOI: 10.1007/978-3-031-55248-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
59
|
Wang Y, Li L, Shen Y, Zhang Y, Zhang Y, Shang X. Deep Learning Integration with Phenotypic Similarities and Heterogeneous Networks for Drug-Target Interaction Prediction. 2023 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) 2023:2945-2951. [DOI: 10.1109/bibm58861.2023.10385907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Yongtian Wang
- Northwestern Polytechnical University,School of Computer Science,Xi’an,PR China
| | - Li Li
- Northwestern Polytechnical University,School of Computer Science,Xi’an,PR China
| | - Yewei Shen
- Northwestern Polytechnical University,School of Computer Science,Xi’an,PR China
| | - Yizhuo Zhang
- Northwestern Polytechnical University,School of Computer Science,Xi’an,PR China
| | - Yuhe Zhang
- Northwestern Polytechnical University,School of Computer Science,Xi’an,PR China
| | - Xuequn Shang
- Northwestern Polytechnical University,School of Computer Science,Xi’an,PR China
| |
Collapse
|
60
|
Dehghan A, Razzaghi P, Abbasi K, Gharaghani S. TripletMultiDTI: Multimodal representation learning in drug-target interaction prediction with triplet loss function. EXPERT SYSTEMS WITH APPLICATIONS 2023; 232:120754. [DOI: 10.1016/j.eswa.2023.120754] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
61
|
Li Y, Fan Z, Rao J, Chen Z, Chu Q, Zheng M, Li X. An overview of recent advances and challenges in predicting compound-protein interaction (CPI). MEDICAL REVIEW (2021) 2023; 3:465-486. [PMID: 38282802 PMCID: PMC10808869 DOI: 10.1515/mr-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/30/2023] [Indexed: 01/30/2024]
Abstract
Compound-protein interactions (CPIs) are critical in drug discovery for identifying therapeutic targets, drug side effects, and repurposing existing drugs. Machine learning (ML) algorithms have emerged as powerful tools for CPI prediction, offering notable advantages in cost-effectiveness and efficiency. This review provides an overview of recent advances in both structure-based and non-structure-based CPI prediction ML models, highlighting their performance and achievements. It also offers insights into CPI prediction-related datasets and evaluation benchmarks. Lastly, the article presents a comprehensive assessment of the current landscape of CPI prediction, elucidating the challenges faced and outlining emerging trends to advance the field.
Collapse
Affiliation(s)
- Yanbei Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang Province, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhehuan Fan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingxin Rao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyi Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang Province, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinyu Chu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang Province, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingyue Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang Province, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xutong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
62
|
Wang J, Xiao Y, Shang X, Peng J. Predicting drug-target binding affinity with cross-scale graph contrastive learning. Brief Bioinform 2023; 25:bbad516. [PMID: 38221904 PMCID: PMC10788681 DOI: 10.1093/bib/bbad516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024] Open
Abstract
Identifying the binding affinity between a drug and its target is essential in drug discovery and repurposing. Numerous computational approaches have been proposed for understanding these interactions. However, most existing methods only utilize either the molecular structure information of drugs and targets or the interaction information of drug-target bipartite networks. They may fail to combine the molecule-scale and network-scale features to obtain high-quality representations. In this study, we propose CSCo-DTA, a novel cross-scale graph contrastive learning approach for drug-target binding affinity prediction. The proposed model combines features learned from the molecular scale and the network scale to capture information from both local and global perspectives. We conducted experiments on two benchmark datasets, and the proposed model outperformed existing state-of-art methods. The ablation experiment demonstrated the significance and efficacy of multi-scale features and cross-scale contrastive learning modules in improving the prediction performance. Moreover, we applied the CSCo-DTA to predict the novel potential targets for Erlotinib and validated the predicted targets with the molecular docking analysis.
Collapse
Affiliation(s)
- Jingru Wang
- School of Computer Science, Northwestern Polytechnical University, Xi’an, 710072, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi’an, 710072, China
- The National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, Xi’an, 710072, China
| | - Yihang Xiao
- School of Computer Science, Northwestern Polytechnical University, Xi’an, 710072, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi’an, 710072, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi’an, 710072, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi’an, 710072, China
- The National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, Xi’an, 710072, China
| | - Jiajie Peng
- School of Computer Science, Northwestern Polytechnical University, Xi’an, 710072, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi’an, 710072, China
- The National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, Xi’an, 710072, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518000, China
| |
Collapse
|
63
|
Su Y, Hu Z, Wang F, Bin Y, Zheng C, Li H, Chen H, Zeng X. AMGDTI: drug-target interaction prediction based on adaptive meta-graph learning in heterogeneous network. Brief Bioinform 2023; 25:bbad474. [PMID: 38145949 PMCID: PMC10749791 DOI: 10.1093/bib/bbad474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023] Open
Abstract
Prediction of drug-target interactions (DTIs) is essential in medicine field, since it benefits the identification of molecular structures potentially interacting with drugs and facilitates the discovery and reposition of drugs. Recently, much attention has been attracted to network representation learning to learn rich information from heterogeneous data. Although network representation learning algorithms have achieved success in predicting DTI, several manually designed meta-graphs limit the capability of extracting complex semantic information. To address the problem, we introduce an adaptive meta-graph-based method, termed AMGDTI, for DTI prediction. In the proposed AMGDTI, the semantic information is automatically aggregated from a heterogeneous network by training an adaptive meta-graph, thereby achieving efficient information integration without requiring domain knowledge. The effectiveness of the proposed AMGDTI is verified on two benchmark datasets. Experimental results demonstrate that the AMGDTI method overall outperforms eight state-of-the-art methods in predicting DTI and achieves the accurate identification of novel DTIs. It is also verified that the adaptive meta-graph exhibits flexibility and effectively captures complex fine-grained semantic information, enabling the learning of intricate heterogeneous network topology and the inference of potential drug-target relationship.
Collapse
Affiliation(s)
- Yansen Su
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Zhiyang Hu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Fei Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yannan Bin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Chunhou Zheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Haitao Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Haowen Chen
- College of Computer Science and Electronic Engineering, Hunan University, Hunan, 410082, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Hunan, 410082, China
| |
Collapse
|
64
|
Tang R, Sun C, Huang J, Li M, Wei J, Liu J. Predicting Drug-Protein Interactions by Self-Adaptively Adjusting the Topological Structure of the Heterogeneous Network. IEEE J Biomed Health Inform 2023; 27:5675-5684. [PMID: 37672364 DOI: 10.1109/jbhi.2023.3312374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Many powerful computational methods based on graph neural networks (GNNs) have been proposed to predict drug-protein interactions (DPIs). It can effectively reduce laboratory workload and the cost of drug discovery and drug repurposing. However, many clinical functions of drugs and proteins are unknown due to their unobserved indications. Therefore, it is difficult to establish a reliable drug-protein heterogeneous network that can describe the relationships between drugs and proteins based on the available information. To solve this problem, we propose a DPI prediction method that can self-adaptively adjust the topological structure of the heterogeneous networks, and name it SATS. SATS establishes a representation learning module based on graph attention network to carry out the drug-protein heterogeneous network. It can self-adaptively learn the relationships among the nodes based on their attributes and adjust the topological structure of the network according to the training loss of the model. Finally, SATS predicts the interaction propensity between drugs and proteins based on their embeddings. The experimental results show that SATS can effectively improve the topological structure of the network. The performance of SATS outperforms several state-of-the-art DPI prediction methods under various evaluation metrics. These prove that SATS is useful to deal with incomplete data and unreliable networks. The case studies on the top section of the prediction results further demonstrate that SATS is powerful for discovering novel DPIs.
Collapse
|
65
|
Jin S, Hong Y, Zeng L, Jiang Y, Lin Y, Wei L, Yu Z, Zeng X, Liu X. A general hypergraph learning algorithm for drug multi-task predictions in micro-to-macro biomedical networks. PLoS Comput Biol 2023; 19:e1011597. [PMID: 37956212 PMCID: PMC10681315 DOI: 10.1371/journal.pcbi.1011597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/27/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
The powerful combination of large-scale drug-related interaction networks and deep learning provides new opportunities for accelerating the process of drug discovery. However, chemical structures that play an important role in drug properties and high-order relations that involve a greater number of nodes are not tackled in current biomedical networks. In this study, we present a general hypergraph learning framework, which introduces Drug-Substructures relationship into Molecular interaction Networks to construct the micro-to-macro drug centric heterogeneous network (DSMN), and develop a multi-branches HyperGraph learning model, called HGDrug, for Drug multi-task predictions. HGDrug achieves highly accurate and robust predictions on 4 benchmark tasks (drug-drug, drug-target, drug-disease, and drug-side-effect interactions), outperforming 8 state-of-the-art task specific models and 6 general-purpose conventional models. Experiments analysis verifies the effectiveness and rationality of the HGDrug model architecture as well as the multi-branches setup, and demonstrates that HGDrug is able to capture the relations between drugs associated with the same functional groups. In addition, our proposed drug-substructure interaction networks can help improve the performance of existing network models for drug-related prediction tasks.
Collapse
Affiliation(s)
- Shuting Jin
- School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China
- School of Informatics, Xiamen University, Xiamen, China
- Department of AIDD, Shanghai Yuyao Biotechnology Co., Ltd., Shanghai, China
| | - Yue Hong
- School of Informatics, Xiamen University, Xiamen, China
| | - Li Zeng
- Department of AIDD, Shanghai Yuyao Biotechnology Co., Ltd., Shanghai, China
| | - Yinghui Jiang
- School of Informatics, Xiamen University, Xiamen, China
| | - Yuan Lin
- School of Economics, Innovation, and Technology, Kristiania University College, Bergen, Norway
| | - Leyi Wei
- School of Software, Shandong University, Shandong, China
| | - Zhuohang Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiangxiang Zeng
- School of Information Science and Engineering, Hunan University, Hunan, China
| | - Xiangrong Liu
- School of Informatics, Xiamen University, Xiamen, China
- Zhejiang Lab, Hangzhou, China
| |
Collapse
|
66
|
He C, Qu Y, Yin J, Zhao Z, Ma R, Duan L. Cross-view contrastive representation learning approach to predicting DTIs via integrating multi-source information. Methods 2023; 218:176-188. [PMID: 37586602 DOI: 10.1016/j.ymeth.2023.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
Drug-target interaction (DTI) prediction serves as the foundation of new drug findings and drug repositioning. For drugs/targets, the sequence data contains the biological structural information, while the heterogeneous network contains the biochemical functional information. These two types of information describe different aspects of drugs and targets. Due to the complexity of DTI machinery, it is necessary to learn the representation from multiple perspectives. We hereby try to design a way to leverage information from multi-source data to the maximum extent and find a strategy to fuse them. To address the above challenges, we propose a model, named MOVE (short for integrating multi-source information for predicting DTI via cross-view contrastive learning), for learning comprehensive representations of each drug and target from multi-source data. MOVE extracts information from the sequence view and the network view, then utilizes a fusion module with auxiliary contrastive learning to facilitate the fusion of representations. Experimental results on the benchmark dataset demonstrate that MOVE is effective in DTI prediction.
Collapse
Affiliation(s)
- Chengxin He
- School of Computer Science, Sichuan University, Chengdu 610065, China; Med-X Center for Informatics, Sichuan University, Chengdu 610065, China
| | - Yuening Qu
- School of Computer Science, Sichuan University, Chengdu 610065, China
| | - Jin Yin
- The West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Zhenjiang Zhao
- School of Computer Science, Sichuan University, Chengdu 610065, China
| | - Runze Ma
- School of Computer Science, Sichuan University, Chengdu 610065, China
| | - Lei Duan
- School of Computer Science, Sichuan University, Chengdu 610065, China; Med-X Center for Informatics, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
67
|
Liu L, Zhang Q, Wei Y, Zhao Q, Liao B. A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction. Molecules 2023; 28:6546. [PMID: 37764321 PMCID: PMC10535805 DOI: 10.3390/molecules28186546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The prediction of drug-target interaction (DTI) is crucial to drug discovery. Although the interactions between the drug and target can be accurately verified by traditional biochemical experiments, the determination of DTI through biochemical experiments is a time-consuming, laborious, and expensive process. Therefore, we propose a learning-based framework named BG-DTI for drug-target interaction prediction. Our model combines two main approaches based on biological features and heterogeneous networks to identify interactions between drugs and targets. First, we extract original features from the sequence to encode each drug and target. Later, we further consider the relationships among various biological entities by constructing drug-drug similarity networks and target-target similarity networks. Furthermore, a graph convolutional network and a graph attention network in the graph representation learning module help us learn the features representation of drugs and targets. After obtaining the features from graph representation learning modules, these features are combined into fusion descriptors for drug-target pairs. Finally, we send the fusion descriptors and labels to a random forest classifier for predicting DTI. The evaluation results show that BG-DTI achieves an average AUC of 0.938 and an average AUPR of 0.930, which is better than those of five existing state-of-the-art methods. We believe that BG-DTI can facilitate the development of drug discovery or drug repurposing.
Collapse
Affiliation(s)
- Liwei Liu
- College of Science, Dalian Jiaotong University, Dalian 116028, China; (L.L.); (Q.Z.)
- Key Laboratory of Computational Science and Application of Hainan Province, Hainan Normal University, Haikou 571158, China
| | - Qi Zhang
- College of Science, Dalian Jiaotong University, Dalian 116028, China; (L.L.); (Q.Z.)
| | - Yuxiao Wei
- College of Software, Dalian Jiaotong University, Dalian 116028, China;
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Bo Liao
- Key Laboratory of Computational Science and Application of Hainan Province, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
68
|
Yao K, Wang X, Li W, Zhu H, Jiang Y, Li Y, Tian T, Yang Z, Liu Q, Liu Q. Semi-supervised heterogeneous graph contrastive learning for drug-target interaction prediction. Comput Biol Med 2023; 163:107199. [PMID: 37421738 DOI: 10.1016/j.compbiomed.2023.107199] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/15/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Identification of drug-target interactions (DTIs) is an important step in drug discovery and drug repositioning. In recent years, graph-based methods have attracted great attention and show advantages on predicting potential DTIs. However, these methods face the problem that the known DTIs are very limited and expensive to obtain, which decreases the generalization ability of the methods. Self-supervised contrastive learning is independent of labeled DTIs, which can mitigate the impact of the problem. Therefore, we propose a framework SHGCL-DTI for predicting DTIs, which supplements the classical semi-supervised DTI prediction task with an auxiliary graph contrastive learning module. Specifically, we generate representations for the nodes through the neighbor view and meta-path view, and define positive and negative pairs to maximize the similarity between positive pairs from different views. Subsequently, SHGCL-DTI reconstructs the original heterogeneous network to predict the potential DTIs. The experiments on the public dataset show that SHGCL-DTI has significant improvement in different scenarios, compared with existing state-of-the-art methods. We also demonstrate that the contrastive learning module improves the prediction performance and generalization ability of SHGCL-DTI through ablation study. In addition, we have found several novel predicted DTIs supported by the biological literature. The data and source code are available at: https://github.com/TOJSSE-iData/SHGCL-DTI.
Collapse
Affiliation(s)
- Kainan Yao
- School of Software Engineering, Tongji University, 4800 Caoan Road, Jiading District, Shanghai, 201804, China
| | - Xiaowen Wang
- School of Software Engineering, Tongji University, 4800 Caoan Road, Jiading District, Shanghai, 201804, China
| | - Wannian Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Yangpu District, Shanghai, 200092, China.
| | - Hongming Zhu
- School of Software Engineering, Tongji University, 4800 Caoan Road, Jiading District, Shanghai, 201804, China
| | - Yizhi Jiang
- School of Software Engineering, Tongji University, 4800 Caoan Road, Jiading District, Shanghai, 201804, China
| | - Yulong Li
- School of Software Engineering, Tongji University, 4800 Caoan Road, Jiading District, Shanghai, 201804, China
| | - Tongxuan Tian
- School of Software Engineering, Tongji University, 4800 Caoan Road, Jiading District, Shanghai, 201804, China
| | - Zhaoyi Yang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei, 230001, Anhui, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Yangpu District, Shanghai, 200092, China.
| | - Qin Liu
- School of Software Engineering, Tongji University, 4800 Caoan Road, Jiading District, Shanghai, 201804, China.
| |
Collapse
|
69
|
Zhong J, Cui P, Zhu Y, Xiao Q, Qu Z. DAHNGC: A Graph Convolution Model for Drug-Disease Association Prediction by Using Heterogeneous Network. J Comput Biol 2023; 30:1019-1033. [PMID: 37702623 DOI: 10.1089/cmb.2023.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
In the field of drug development and repositioning, the prediction of drug-disease associations is a critical task. A recently proposed method for predicting drug-disease associations based on graph convolution relies heavily on the features of adjacent nodes within the homogeneous network for characterizing information. However, this method lacks node attribute information from heterogeneous networks, which could hardly provide valuable insights for predicting drug-disease associations. In this study, a novel drug-disease association prediction model called DAHNGC is proposed, which is based on a graph convolutional neural network. This model includes two feature extraction methods that are specifically designed to extract the attribute characteristics of drugs and diseases from both homogeneous and heterogeneous networks. First, the DropEdge technique is added to the graph convolutional neural network to alleviate the oversmoothing problem and obtain the characteristics of the same nodes of drugs or diseases in the homogeneous network. Then, an automatic feature extraction method in the heterogeneous network is designed to obtain the features of drugs or diseases at different nodes. Finally, the obtained features are put into the fully connected network for nonlinear transformation, and the potential drug-disease pairs are obtained by bilinear decoding. Experimental results demonstrate that the DAHNGC model exhibits good predictive performance for drug-disease associations.
Collapse
Affiliation(s)
- Jiancheng Zhong
- School of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Pan Cui
- School of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Yihong Zhu
- School of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Qiu Xiao
- School of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Zuohang Qu
- School of Information Science and Engineering, Hunan Normal University, Changsha, China
| |
Collapse
|
70
|
Williams AH, Zhan CG. Staying Ahead of the Game: How SARS-CoV-2 has Accelerated the Application of Machine Learning in Pandemic Management. BioDrugs 2023; 37:649-674. [PMID: 37464099 DOI: 10.1007/s40259-023-00611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2023] [Indexed: 07/20/2023]
Abstract
In recent years, machine learning (ML) techniques have garnered considerable interest for their potential use in accelerating the rate of drug discovery. With the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, the utilization of ML has become even more crucial in the search for effective antiviral medications. The pandemic has presented the scientific community with a unique challenge, and the rapid identification of potential treatments has become an urgent priority. Researchers have been able to accelerate the process of identifying drug candidates, repurposing existing drugs, and designing new compounds with desirable properties using machine learning in drug discovery. To train predictive models, ML techniques in drug discovery rely on the analysis of large datasets, including both experimental and clinical data. These models can be used to predict the biological activities, potential side effects, and interactions with specific target proteins of drug candidates. This strategy has proven to be an effective method for identifying potential coronavirus disease 2019 (COVID-19) and other disease treatments. This paper offers a thorough analysis of the various ML techniques implemented to combat COVID-19, including supervised and unsupervised learning, deep learning, and natural language processing. The paper discusses the impact of these techniques on pandemic drug development, including the identification of potential treatments, the understanding of the disease mechanism, and the creation of effective and safe therapeutics. The lessons learned can be applied to future outbreaks and drug discovery initiatives.
Collapse
Affiliation(s)
- Alexander H Williams
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- GSK Upper Providence, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
71
|
Chen J, Zhang L, Cheng K, Jin B, Lu X, Che C. Predicting Drug-Target Interaction Via Self-Supervised Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2781-2789. [PMID: 35230952 DOI: 10.1109/tcbb.2022.3153963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent advances in graph representation learning provide new opportunities for computational drug-target interaction (DTI) prediction. However, it still suffers from deficiencies of dependence on manual labels and vulnerability to attacks. Inspired by the success of self-supervised learning (SSL) algorithms, which can leverage input data itself as supervision,we propose SupDTI, a SSL-enhanced drug-target interaction prediction framework based on a heterogeneous network (i.e., drug-protein, drug-drug, and protein-protein interaction network; drug-disease, drug-side-effect, and protein-disease association network; drug-structure and protein-sequence similarity network). Specifically, SupDTI is an end-to-end learning framework consisting of five components. First, localized and globalized graph convolutions are designed to capture the nodes' information from both local and global perspectives, respectively. Then, we develop a variational autoencoder to constrain the nodes' representation to have desired statistical characteristics. Finally, a unified self-supervised learning strategy is leveraged to enhance the nodes' representation, namely, a contrastive learning module is employed to enable the nodes' representation to fit the graph-level representation, followed by a generative learning module which further maximizes the node-level agreement across the global and local views by learning the probabilistic connectivity distribution of the original heterogeneous network. Experimental results show that our model can achieve better prediction performance than state-of-the-art methods.
Collapse
|
72
|
Zhang Y, Hu Y, Han N, Yang A, Liu X, Cai H. A survey of drug-target interaction and affinity prediction methods via graph neural networks. Comput Biol Med 2023; 163:107136. [PMID: 37329615 DOI: 10.1016/j.compbiomed.2023.107136] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/19/2023]
Abstract
The tasks of drug-target interaction (DTI) and drug-target affinity (DTA) prediction play important roles in the field of drug discovery. However, biological experiment-based methods are time-consuming and expensive. Recently, computational-based approaches have accelerated the process of drug-target relationship prediction. Drug and target features are represented in structure-based, sequence-based, and graph-based ways. Although some achievements have been made regarding structure-based representations and sequence-based representations, the acquired feature information is not sufficiently rich. Molecular graph-based representations are some of the more popular approaches, and they have also generated a great deal of interest. In this article, we provide an overview of the DTI prediction and DTA prediction tasks based on graph neural networks (GNNs). We briefly discuss the molecular graphs of drugs, the primary sequences of target proteins, and the graph reSLBpresentations of target proteins. Meanwhile, we conducted experiments on various fundamental datasets to substantiate the plausibility of DTI and DTA utilizing graph neural networks.
Collapse
Affiliation(s)
- Yue Zhang
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, 510665, China.
| | - Yuqing Hu
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Na Han
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Aqing Yang
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Xiaoyong Liu
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Hongmin Cai
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
73
|
Baranova AA, Tyurin AP, Korshun VA, Alferova VA. Sensing of Antibiotic-Bacteria Interactions. Antibiotics (Basel) 2023; 12:1340. [PMID: 37627760 PMCID: PMC10451291 DOI: 10.3390/antibiotics12081340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Sensing of antibiotic-bacteria interactions is an important area of research that has gained significant attention in recent years. Antibiotic resistance is a major public health concern, and it is essential to develop new strategies for detecting and monitoring bacterial responses to antibiotics in order to maintain effective antibiotic development and antibacterial treatment. This review summarizes recent advances in sensing strategies for antibiotic-bacteria interactions, which are divided into two main parts: studies on the mechanism of action for sensitive bacteria and interrogation of the defense mechanisms for resistant ones. In conclusion, this review provides an overview of the present research landscape concerning antibiotic-bacteria interactions, emphasizing the potential for method adaptation and the integration of machine learning techniques in data analysis, which could potentially lead to a transformative impact on mechanistic studies within the field.
Collapse
Affiliation(s)
| | | | | | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (A.P.T.); (V.A.K.)
| |
Collapse
|
74
|
Zhao BW, Su XR, Hu PW, Huang YA, You ZH, Hu L. iGRLDTI: an improved graph representation learning method for predicting drug-target interactions over heterogeneous biological information network. Bioinformatics 2023; 39:btad451. [PMID: 37505483 PMCID: PMC10397422 DOI: 10.1093/bioinformatics/btad451] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023] Open
Abstract
MOTIVATION The task of predicting drug-target interactions (DTIs) plays a significant role in facilitating the development of novel drug discovery. Compared with laboratory-based approaches, computational methods proposed for DTI prediction are preferred due to their high-efficiency and low-cost advantages. Recently, much attention has been attracted to apply different graph neural network (GNN) models to discover underlying DTIs from heterogeneous biological information network (HBIN). Although GNN-based prediction methods achieve better performance, they are prone to encounter the over-smoothing simulation when learning the latent representations of drugs and targets with their rich neighborhood information in HBIN, and thereby reduce the discriminative ability in DTI prediction. RESULTS In this work, an improved graph representation learning method, namely iGRLDTI, is proposed to address the above issue by better capturing more discriminative representations of drugs and targets in a latent feature space. Specifically, iGRLDTI first constructs an HBIN by integrating the biological knowledge of drugs and targets with their interactions. After that, it adopts a node-dependent local smoothing strategy to adaptively decide the propagation depth of each biomolecule in HBIN, thus significantly alleviating over-smoothing by enhancing the discriminative ability of feature representations of drugs and targets. Finally, a Gradient Boosting Decision Tree classifier is used by iGRLDTI to predict novel DTIs. Experimental results demonstrate that iGRLDTI yields better performance that several state-of-the-art computational methods on the benchmark dataset. Besides, our case study indicates that iGRLDTI can successfully identify novel DTIs with more distinguishable features of drugs and targets. AVAILABILITY AND IMPLEMENTATION Python codes and dataset are available at https://github.com/stevejobws/iGRLDTI/.
Collapse
Affiliation(s)
- Bo-Wei Zhao
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Xiao-Rui Su
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Peng-Wei Hu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Yu-An Huang
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China
| | - Lun Hu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| |
Collapse
|
75
|
Kim Y, Cho YR. Predicting Drug-Gene-Disease Associations by Tensor Decomposition for Network-Based Computational Drug Repositioning. Biomedicines 2023; 11:1998. [PMID: 37509637 PMCID: PMC10377142 DOI: 10.3390/biomedicines11071998] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Drug repositioning offers the significant advantage of greatly reducing the cost and time of drug discovery by identifying new therapeutic indications for existing drugs. In particular, computational approaches using networks in drug repositioning have attracted attention for inferring potential associations between drugs and diseases efficiently based on the network connectivity. In this article, we proposed a network-based drug repositioning method to construct a drug-gene-disease tensor by integrating drug-disease, drug-gene, and disease-gene associations and predict drug-gene-disease triple associations through tensor decomposition. The proposed method, which ensembles generalized tensor decomposition (GTD) and multi-layer perceptron (MLP), models drug-gene-disease associations through GTD and learns the features of drugs, genes, and diseases through MLP, providing more flexibility and non-linearity than conventional tensor decomposition. We experimented with drug-gene-disease association prediction using two distinct networks created by chemical structures and ATC codes as drug features. Moreover, we leveraged drug, gene, and disease latent vectors obtained from the predicted triple associations to predict drug-disease, drug-gene, and disease-gene pairwise associations. Our experimental results revealed that the proposed ensemble method was superior for triple association prediction. The ensemble model achieved an AUC of 0.96 in predicting triple associations for new drugs, resulting in an approximately 7% improvement over the performance of existing models. It also showed competitive accuracy for pairwise association prediction compared with previous methods. This study demonstrated that incorporating genetic information leads to notable advancements in drug repositioning.
Collapse
Affiliation(s)
- Yoonbee Kim
- Division of Software, Yonsei University Mirae Campus, Wonju-si 26493, Gangwon-do, Republic of Korea
| | - Young-Rae Cho
- Division of Software, Yonsei University Mirae Campus, Wonju-si 26493, Gangwon-do, Republic of Korea
- Division of Digital Healthcare, Yonsei University Mirae Campus, Wonju-si 26493, Gangwon-do, Republic of Korea
| |
Collapse
|
76
|
Arnold A, Alexander J, Liu G, Stokes JM. Applications of machine learning in microbial natural product drug discovery. Expert Opin Drug Discov 2023; 18:1259-1272. [PMID: 37651150 DOI: 10.1080/17460441.2023.2251400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Natural products (NPs) are a desirable source of new therapeutics due to their structural diversity and evolutionarily optimized bioactivities. NPs and their derivatives account for roughly 70% of approved pharmaceuticals. However, the rate at which novel NPs are discovered has decreased. To accelerate the microbial NP discovery process, machine learning (ML) is being applied to numerous areas of NP discovery and development. AREAS COVERED This review explores the utility of ML at various phases of the microbial NP drug discovery pipeline, discussing concrete examples throughout each major phase: genome mining, dereplication, and biological target prediction. Moreover, the authors discuss how ML approaches can be applied to semi-synthetic approaches to drug discovery. EXPERT OPINION Despite the important role that microbial NPs play in the development of novel drugs, their discovery has declined due to challenges associated with the conventional discovery process. ML is positioned to overcome these limitations given its ability to model complex datasets and generalize to novel chemical and sequence space. Unsurprisingly, ML comes with its own limitations that must be considered for its successful implementation. The authors stress the importance of continuing to build high quality and open access NP datasets to further increase the utility of ML in NP discovery.
Collapse
Affiliation(s)
- Autumn Arnold
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, OntarioCanada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton,Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario Canada
| | - Jeremie Alexander
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, OntarioCanada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton,Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario Canada
| | - Gary Liu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, OntarioCanada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton,Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario Canada
| | - Jonathan M Stokes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, OntarioCanada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton,Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario Canada
| |
Collapse
|
77
|
Zabihian A, Sayyad FZ, Hashemi SM, Shami Tanha R, Hooshmand M, Gharaghani S. DEDTI versus IEDTI: efficient and predictive models of drug-target interactions. Sci Rep 2023; 13:9238. [PMID: 37286613 DOI: 10.1038/s41598-023-36438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023] Open
Abstract
Drug repurposing is an active area of research that aims to decrease the cost and time of drug development. Most of those efforts are primarily concerned with the prediction of drug-target interactions. Many evaluation models, from matrix factorization to more cutting-edge deep neural networks, have come to the scene to identify such relations. Some predictive models are devoted to the prediction's quality, and others are devoted to the efficiency of the predictive models, e.g., embedding generation. In this work, we propose new representations of drugs and targets useful for more prediction and analysis. Using these representations, we propose two inductive, deep network models of IEDTI and DEDTI for drug-target interaction prediction. Both of them use the accumulation of new representations. The IEDTI takes advantage of triplet and maps the input accumulated similarity features into meaningful embedding corresponding vectors. Then, it applies a deep predictive model to each drug-target pair to evaluate their interaction. The DEDTI directly uses the accumulated similarity feature vectors of drugs and targets and applies a predictive model on each pair to identify their interactions. We have done a comprehensive simulation on the DTINet dataset as well as gold standard datasets, and the results show that DEDTI outperforms IEDTI and the state-of-the-art models. In addition, we conduct a docking study on new predicted interactions between two drug-target pairs, and the results confirm acceptable drug-target binding affinity between both predicted pairs.
Collapse
Affiliation(s)
- Arash Zabihian
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish, Iran
| | - Faeze Zakaryapour Sayyad
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Seyyed Morteza Hashemi
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Reza Shami Tanha
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Mohsen Hooshmand
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
78
|
Yue Y, McDonald D, Hao L, Lei H, Butler MS, He S. FLONE: fully Lorentz network embedding for inferring novel drug targets. BIOINFORMATICS ADVANCES 2023; 3:vbad066. [PMID: 37275772 PMCID: PMC10235194 DOI: 10.1093/bioadv/vbad066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Motivation To predict drug targets, graph-based machine-learning methods have been widely used to capture the relationships between drug, target and disease entities in drug-disease-target (DDT) networks. However, many methods cannot explicitly consider disease types at inference time and so will predict the same target for a given drug under any disease condition. Meanwhile, DDT networks are usually organized hierarchically carrying interactive relationships between involved entities, but these methods, especially those based on Euclidean embedding cannot fully utilize such topological information, which might lead to sub-optimal results. We hypothesized that, by importing hyperbolic embedding specifically for modeling hierarchical DDT networks, graph-based algorithms could better capture relationships between aforementioned entities, which ultimately improves target prediction performance. Results We formulated the target prediction problem as a knowledge graph completion task explicitly considering disease types. We proposed FLONE, a hyperbolic embedding-based method based on capturing hierarchical topological information in DDT networks. The experimental results on two DDT networks showed that by introducing hyperbolic space, FLONE generates more accurate target predictions than its Euclidean counterparts, which supports our hypothesis. We also devised hyperbolic encoders to fuse external domain knowledge, to make FLONE enable handling samples corresponding to previously unseen drugs and targets for more practical scenarios. Availability and implementation Source code and dataset information are at: https://github.com/arantir123/DDT_triple_prediction. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Yang Yue
- Centre for Computational Biology, School of Computer Science, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - David McDonald
- AIA Insights Ltd., 71-75 Shelton Street, London, Greater London, WC2H 9JQ, UK
| | - Luoying Hao
- Centre for Computational Biology, School of Computer Science, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Huangshu Lei
- YaoPharma Co., Ltd., 100 Xingguang Avenue, Renhe Town, Yubei District, Chongqing, 401121, China
| | - Mark S Butler
- AIA Insights Ltd., 71-75 Shelton Street, London, Greater London, WC2H 9JQ, UK
| | - Shan He
- Centre for Computational Biology, School of Computer Science, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
79
|
Zhang L, Ouyang C, Hu F, Liu Y, Gao Z. Relational Topology-based Heterogeneous Network Embedding for Predicting Drug-Target Interactions. DATA INTELLIGENCE 2023; 5:475-493. [DOI: 10.1162/dint_a_00149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
ABSTRACT
Predicting interactions between drugs and target proteins has become an essential task in the drug discovery process. Although the method of validation via wet-lab experiments has become available, experimental methods for drug-target interaction (DTI) identification remain either time consuming or heavily dependent on domain expertise. Therefore, various computational models have been proposed to predict possible interactions between drugs and target proteins. However, most prediction methods do not consider the topological structures characteristics of the relationship. In this paper, we propose a relational topology-based heterogeneous network embedding method to predict drug-target interactions, abbreviated as RTHNE_ DTI. We first construct a heterogeneous information network based on the interaction between different types of nodes, to enhance the ability of association discovery by fully considering the topology of the network. Then drug and target protein nodes can be represented by the other types of nodes. According to the different topological structure of the relationship between the nodes, we divide the relationship in the heterogeneous network into two categories and model them separately. Extensive experiments on the real-world drug datasets, RTHNE_DTI produces high efficiency and outperforms other state-of-the-art methods. RTHNE_DTI can be further used to predict the interaction between unknown interaction drug-target pairs.
Collapse
Affiliation(s)
- Linlin Zhang
- School of Computer, University of South China, Hengyang, Hunan, 421001, China
| | - Chunping Ouyang
- School of Computer, University of South China, Hengyang, Hunan, 421001, China
- Hunan Medical Big Data International Sci.&Tech, Innovation Cooperation Base
| | - Fuyu Hu
- School of Computer, University of South China, Hengyang, Hunan, 421001, China
| | - Yongbin Liu
- School of Computer, University of South China, Hengyang, Hunan, 421001, China
- Hunan Medical Big Data International Sci.&Tech, Innovation Cooperation Base
| | - Zheng Gao
- Department of Information and Library Science, Indiana University Bloomington Woodlawn Avenue, IN 47408, Bloomington, America
| |
Collapse
|
80
|
Yuan Y, Zhang Y, Meng X, Liu Z, Wang B, Miao R, Zhang R, Su W, Liu L. EDC-DTI: An end-to-end deep collaborative learning model based on multiple information for drug-target interactions prediction. J Mol Graph Model 2023; 122:108498. [PMID: 37126908 DOI: 10.1016/j.jmgm.2023.108498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Innovations in drug-target interactions (DTIs) prediction accelerate the progression of drug development. The introduction of deep learning models has a dramatic impact on DTIs prediction, with a distinct influence on saving time and money in drug discovery. This study develops an end-to-end deep collaborative learning model for DTIs prediction, called EDC-DTI, to identify new targets for existing drugs based on multiple drug-target-related information including homogeneous information and heterogeneous information by the way of deep learning. Our end-to-end model is composed of a feature builder and a classifier. Feature builder consists of two collaborative feature construction algorithms that extract the molecular properties and the topology property of networks, and the classifier consists of a feature encoder and a feature decoder which are designed for feature integration and DTIs prediction, respectively. The feature encoder, mainly based on the improved graph attention network, incorporates heterogeneous information into drug features and target features separately. The feature decoder is composed of multiple neural networks for predictions. Compared with six popular baseline models, EDC-DTI achieves highest predictive performance in the case of low computational costs. Robustness tests demonstrate that EDC-DTI is able to maintain strong predictive performance on sparse datasets. As well, we use the model to predict the most likely targets to interact with Simvastatin (DB00641), Nifedipine (DB01115) and Afatinib (DB08916) as examples. Results show that most of the predictions can be confirmed by literature with clear evidence.
Collapse
Affiliation(s)
- Yongna Yuan
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China.
| | - Yuhao Zhang
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Xiangbo Meng
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Zhenyu Liu
- School of Cyberspace Security, Gansu University of Political Science and Law, Anning West Road, Lanzhou, 730070, Gansu, China
| | - Bohan Wang
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Ruidong Miao
- School of Life Science, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Ruisheng Zhang
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Wei Su
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Lei Liu
- Duzhe Publishing Group Co. Ltd., DuZhe Road, Lanzhou, 730000, Gansu, China
| |
Collapse
|
81
|
Lin X, Quan Z, Wang ZJ, Guo Y, Zeng X, Yu PS. Effectively Identifying Compound-Protein Interaction Using Graph Neural Representation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:932-943. [PMID: 35951570 DOI: 10.1109/tcbb.2022.3198003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Effectively identifying compound-protein interactions (CPIs) is crucial for new drug design, which is an important step in silico drug discovery. Current machine learning methods for CPI prediction mainly use one-demensional (1D) compound/protein strings and/or the specific descriptors. However, they often ignore the fact that molecules are essentially modeled by the molecular graph. We observe that in real-world scenarios, the topological structure information of the molecular graph usually provides an overview of how the atoms are connected, and the local chemical context reveals the functionality of the protein sequence in CPI. These two types of information are complementary to each other and they are both significant for modeling compound-protein pairs. Motivated by this, we propose an end-to-end deep learning framework named GraphCPI, which captures the structural information of compounds and leverages the chemical context of protein sequences for solving the CPI prediction task. Our framework can integrate any popular graph neural networks for learning compounds, and it combines with a convolutional neural network for embedding sequences. To compare our method with classic and state-of-the-art deep learning methods, we conduct extensive experiments based on several widely-used CPI datasets. The experimental results show the feasibility and competitiveness of our proposed method.
Collapse
|
82
|
Zhu Z, Yao Z, Qi G, Mazur N, Yang P, Cong B. Associative learning mechanism for drug‐target interaction prediction. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY 2023. [DOI: 10.1049/cit2.12194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Affiliation(s)
- Zhiqin Zhu
- College of Automation Chongqing University of Posts and Telecommunications Chongqing China
| | - Zheng Yao
- College of Automation Chongqing University of Posts and Telecommunications Chongqing China
| | - Guanqiu Qi
- Computer Information Systems Department State University of New York at Buffalo State Buffalo New York USA
| | - Neal Mazur
- Computer Information Systems Department State University of New York at Buffalo State Buffalo New York USA
| | - Pan Yang
- Department of Cardiovascular Surgery Chongqing General Hospital University of Chinese Academy of Sciences Chongqing China
- Emergency Department The Second Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Baisen Cong
- Data Scientist Diagnostics Digital DH (Shanghai) Diagnostics Co., Ltd. Danaher Company Shanghai China
| |
Collapse
|
83
|
Ren ZH, You ZH, Zou Q, Yu CQ, Ma YF, Guan YJ, You HR, Wang XF, Pan J. DeepMPF: deep learning framework for predicting drug-target interactions based on multi-modal representation with meta-path semantic analysis. J Transl Med 2023; 21:48. [PMID: 36698208 PMCID: PMC9876420 DOI: 10.1186/s12967-023-03876-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Drug-target interaction (DTI) prediction has become a crucial prerequisite in drug design and drug discovery. However, the traditional biological experiment is time-consuming and expensive, as there are abundant complex interactions present in the large size of genomic and chemical spaces. For alleviating this phenomenon, plenty of computational methods are conducted to effectively complement biological experiments and narrow the search spaces into a preferred candidate domain. Whereas, most of the previous approaches cannot fully consider association behavior semantic information based on several schemas to represent complex the structure of heterogeneous biological networks. Additionally, the prediction of DTI based on single modalities cannot satisfy the demand for prediction accuracy. METHODS We propose a multi-modal representation framework of 'DeepMPF' based on meta-path semantic analysis, which effectively utilizes heterogeneous information to predict DTI. Specifically, we first construct protein-drug-disease heterogeneous networks composed of three entities. Then the feature information is obtained under three views, containing sequence modality, heterogeneous structure modality and similarity modality. We proposed six representative schemas of meta-path to preserve the high-order nonlinear structure and catch hidden structural information of the heterogeneous network. Finally, DeepMPF generates highly representative comprehensive feature descriptors and calculates the probability of interaction through joint learning. RESULTS To evaluate the predictive performance of DeepMPF, comparison experiments are conducted on four gold datasets. Our method can obtain competitive performance in all datasets. We also explore the influence of the different feature embedding dimensions, learning strategies and classification methods. Meaningfully, the drug repositioning experiments on COVID-19 and HIV demonstrate DeepMPF can be applied to solve problems in reality and help drug discovery. The further analysis of molecular docking experiments enhances the credibility of the drug candidates predicted by DeepMPF. CONCLUSIONS All the results demonstrate the effectively predictive capability of DeepMPF for drug-target interactions. It can be utilized as a useful tool to prescreen the most potential drug candidates for the protein. The web server of the DeepMPF predictor is freely available at http://120.77.11.78/DeepMPF/ , which can help relevant researchers to further study.
Collapse
Affiliation(s)
- Zhong-Hao Ren
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Zhu-Hong You
- grid.440588.50000 0001 0307 1240School of Computer Science, Northwestern Polytechnical University, Xi’an, 710129 China
| | - Quan Zou
- grid.54549.390000 0004 0369 4060Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Chang-Qing Yu
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Yan-Fang Ma
- grid.417234.70000 0004 1808 3203Department of Galactophore, The Third People’s Hospital of Gansu Province, Lanzhou, 730020 China
| | - Yong-Jian Guan
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Hai-Ru You
- grid.440588.50000 0001 0307 1240School of Computer Science, Northwestern Polytechnical University, Xi’an, 710129 China
| | - Xin-Fei Wang
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Jie Pan
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| |
Collapse
|
84
|
Li M, Cai X, Xu S, Ji H. Metapath-aggregated heterogeneous graph neural network for drug-target interaction prediction. Brief Bioinform 2023; 24:6966534. [PMID: 36592060 DOI: 10.1093/bib/bbac578] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/03/2022] [Accepted: 11/26/2022] [Indexed: 01/03/2023] Open
Abstract
Drug-target interaction (DTI) prediction is an essential step in drug repositioning. A few graph neural network (GNN)-based methods have been proposed for DTI prediction using heterogeneous biological data. However, existing GNN-based methods only aggregate information from directly connected nodes restricted in a drug-related or a target-related network and are incapable of capturing high-order dependencies in the biological heterogeneous graph. In this paper, we propose a metapath-aggregated heterogeneous graph neural network (MHGNN) to capture complex structures and rich semantics in the biological heterogeneous graph for DTI prediction. Specifically, MHGNN enhances heterogeneous graph structure learning and high-order semantics learning by modeling high-order relations via metapaths. Additionally, MHGNN enriches high-order correlations between drug-target pairs (DTPs) by constructing a DTP correlation graph with DTPs as nodes. We conduct extensive experiments on three biological heterogeneous datasets. MHGNN favorably surpasses 17 state-of-the-art methods over 6 evaluation metrics, which verifies its efficacy for DTI prediction. The code is available at https://github.com/Zora-LM/MHGNN-DTI.
Collapse
Affiliation(s)
- Mei Li
- Tianjin Key Laboratory of Network and Data Security Technology, China.,College of Computer Science, Nankai University, 300350, Tianjin, China
| | - Xiangrui Cai
- Tianjin Key Laboratory of Network and Data Security Technology, China.,College of Computer Science, Nankai University, 300350, Tianjin, China
| | - Sihan Xu
- Tianjin Key Laboratory of Network and Data Security Technology, China.,College of Cyber Science, Nankai University, 300350, Tianjin, China
| | - Hua Ji
- Tianjin Key Laboratory of Network and Data Security Technology, China.,College of Computer Science, Nankai University, 300350, Tianjin, China
| |
Collapse
|
85
|
MSResG: Using GAE and Residual GCN to Predict Drug-Drug Interactions Based on Multi-source Drug Features. Interdiscip Sci 2023; 15:171-188. [PMID: 36646843 DOI: 10.1007/s12539-023-00550-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/18/2023]
Abstract
Drug-drug interaction refers to taking the two drugs may produce certain reaction which may be a threat to patients' health, or enhance the efficacy helpful for medical work. Therefore, it is necessary to study and predict it. In fact, traditional experimental methods can be used for drug-drug interaction prediction, but they are time-consuming and costly, so we prefer to use more accurate and convenient calculation methods to predict the unknown drug-drug interaction. In this paper, we proposed a deep learning framework called MSResG that considers multi-sources features of drugs and combines them with Graph Auto-Encoder to predicting. Firstly, the model obtains four feature representations of drugs from the database, namely, chemical substructure, target, pathway and enzyme, and then calculates the Jaccard similarity of the drugs. To balance different drug features, we perform similarity integration by finding the mean value. Then we will be comprehensive similarity network combined with drug interaction network, and encodes and decodes it using the graph auto-encoder based on residual graph convolution network. Encoding is to learn the potential feature vectors of drugs, which contain similar information and interaction information. Decoding is to reconstruct the network to predict unknown drug-drug interaction. The experimental results show that our model has advanced performance and is superior to other existing advanced methods. Case study also shows that MSResG has practical significance.
Collapse
|
86
|
Jamali AA, Kusalik A, Wu FX. NMTF-DTI: A Nonnegative Matrix Tri-factorization Approach With Multiple Kernel Fusion for Drug-Target Interaction Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:586-594. [PMID: 34914594 DOI: 10.1109/tcbb.2021.3135978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Prediction of drug-target interactions (DTIs) plays a significant role in drug development and drug discovery. Although this task requires a large investment in terms of time and cost, especially when it is performed experimentally, the results are not necessarily significant. Computational DTI prediction is a shortcut to reduce the risks of experimental methods. In this study, we propose an effective approach of nonnegative matrix tri-factorization, referred to as NMTF-DTI, to predict the interaction scores between drugs and targets. NMTF-DTI utilizes multiple kernels (similarity measures) for drugs and targets and Laplacian regularization to boost the prediction performance. The performance of NMTF-DTI is evaluated via cross-validation and is compared with existing DTI prediction methods in terms of the area under the receiver operating characteristic (ROC) curve (AUC) and the area under the precision and recall curve (AUPR). We evaluate our method on four gold standard datasets, comparing to other state-of-the-art methods. Cross-validation and a separate, manually created dataset are used to set parameters. The results show that NMTF-DTI outperforms other competing methods. Moreover, the results of a case study also confirm the superiority of NMTF-DTI.
Collapse
|
87
|
Cavasotto CN, Scardino V. Machine Learning Toxicity Prediction: Latest Advances by Toxicity End Point. ACS OMEGA 2022; 7:47536-47546. [PMID: 36591139 PMCID: PMC9798519 DOI: 10.1021/acsomega.2c05693] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/28/2022] [Indexed: 05/29/2023]
Abstract
Machine learning (ML) models to predict the toxicity of small molecules have garnered great attention and have become widely used in recent years. Computational toxicity prediction is particularly advantageous in the early stages of drug discovery in order to filter out molecules with high probability of failing in clinical trials. This has been helped by the increase in the number of large toxicology databases available. However, being an area of recent application, a greater understanding of the scope and applicability of ML methods is still necessary. There are various kinds of toxic end points that have been predicted in silico. Acute oral toxicity, hepatotoxicity, cardiotoxicity, mutagenicity, and the 12 Tox21 data end points are among the most commonly investigated. Machine learning methods exhibit different performances on different data sets due to dissimilar complexity, class distributions, or chemical space covered, which makes it hard to compare the performance of algorithms over different toxic end points. The general pipeline to predict toxicity using ML has already been analyzed in various reviews. In this contribution, we focus on the recent progress in the area and the outstanding challenges, making a detailed description of the state-of-the-art models implemented for each toxic end point. The type of molecular representation, the algorithm, and the evaluation metric used in each research work are explained and analyzed. A detailed description of end points that are usually predicted, their clinical relevance, the available databases, and the challenges they bring to the field are also highlighted.
Collapse
Affiliation(s)
- Claudio N. Cavasotto
- Computational
Drug Design and Biomedical Informatics Laboratory, Instituto de Investigaciones
en Medicina Traslacional (IIMT), CONICET-Universidad
Austral, Pilar, B1629AHJ Buenos Aires, Argentina
- Austral
Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, B1629AHJ Buenos Aires, Argentina
- Facultad
de Ciencias Biomédicas, Facultad de Ingenierá, Universidad Austral, Pilar, B1630FHB Buenos
Aires, Argentina
| | - Valeria Scardino
- Austral
Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, B1629AHJ Buenos Aires, Argentina
- Meton
AI, Inc., Wilmington, Delaware 19801, United
States
| |
Collapse
|
88
|
Sahayasheela VJ, Lankadasari MB, Dan VM, Dastager SG, Pandian GN, Sugiyama H. Artificial intelligence in microbial natural product drug discovery: current and emerging role. Nat Prod Rep 2022; 39:2215-2230. [PMID: 36017693 PMCID: PMC9931531 DOI: 10.1039/d2np00035k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: up to the end of 2022Microorganisms are exceptional sources of a wide array of unique natural products and play a significant role in drug discovery. During the golden era, several life-saving antibiotics and anticancer agents were isolated from microbes; moreover, they are still widely used. However, difficulties in the isolation methods and repeated discoveries of the same molecules have caused a setback in the past. Artificial intelligence (AI) has had a profound impact on various research fields, and its application allows the effective performance of data analyses and predictions. With the advances in omics, it is possible to obtain a wealth of information for the identification, isolation, and target prediction of secondary metabolites. In this review, we discuss drug discovery based on natural products from microorganisms with the help of AI and machine learning.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan.
| | - Manendra B Lankadasari
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vipin Mohan Dan
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - Syed G Dastager
- NCIM Resource Centre, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Pune, Maharashtra, India
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan.
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan
| |
Collapse
|
89
|
Qu Y, He C, Yin J, Zhao Z, Chen J, Duan L. MOVE: Integrating Multi-source Information for Predicting DTI via Cross-view Contrastive Learning. 2022 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) 2022:535-540. [DOI: 10.1109/bibm55620.2022.9995438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Yuening Qu
- Sichuan University,School of Computer Science,Chengdu,China
| | - Chengxin He
- Sichuan University,School of Computer Science,Chengdu,China
| | - Jin Yin
- West China Hospital, Sichuan University,The West China Biomedical Big Data Center,Chengdu,China
| | - Zhenjiang Zhao
- Sichuan University,School of Computer Science,Chengdu,China
| | - Jingyu Chen
- Sichuan University,School of Computer Science,Chengdu,China
| | - Lei Duan
- Sichuan University,School of Computer Science,Chengdu,China
| |
Collapse
|
90
|
Li MM, Huang K, Zitnik M. Graph representation learning in biomedicine and healthcare. Nat Biomed Eng 2022; 6:1353-1369. [PMID: 36316368 PMCID: PMC10699434 DOI: 10.1038/s41551-022-00942-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 08/09/2022] [Indexed: 11/11/2022]
Abstract
Networks-or graphs-are universal descriptors of systems of interacting elements. In biomedicine and healthcare, they can represent, for example, molecular interactions, signalling pathways, disease co-morbidities or healthcare systems. In this Perspective, we posit that representation learning can realize principles of network medicine, discuss successes and current limitations of the use of representation learning on graphs in biomedicine and healthcare, and outline algorithmic strategies that leverage the topology of graphs to embed them into compact vectorial spaces. We argue that graph representation learning will keep pushing forward machine learning for biomedicine and healthcare applications, including the identification of genetic variants underlying complex traits, the disentanglement of single-cell behaviours and their effects on health, the assistance of patients in diagnosis and treatment, and the development of safe and effective medicines.
Collapse
Affiliation(s)
- Michelle M Li
- Bioinformatics and Integrative Genomics Program, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Kexin Huang
- Health Data Science Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Data Science Initiative, Cambridge, MA, USA.
| |
Collapse
|
91
|
Tian Z, Peng X, Fang H, Zhang W, Dai Q, Ye Y. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms. Brief Bioinform 2022; 23:6761042. [PMID: 36242566 DOI: 10.1093/bib/bbac434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
MOTIVATION Discovering the drug-target interactions (DTIs) is a crucial step in drug development such as the identification of drug side effects and drug repositioning. Since identifying DTIs by web-biological experiments is time-consuming and costly, many computational-based approaches have been proposed and have become an efficient manner to infer the potential interactions. Although extensive effort is invested to solve this task, the prediction accuracy still needs to be improved. More especially, heterogeneous network-based approaches do not fully consider the complex structure and rich semantic information in these heterogeneous networks. Therefore, it is still a challenge to predict DTIs efficiently. RESULTS In this study, we develop a novel method via Multiview heterogeneous information network embedding with Hierarchical Attention mechanisms to discover potential Drug-Target Interactions (MHADTI). Firstly, MHADTI constructs different similarity networks for drugs and targets by utilizing their multisource information. Combined with the known DTI network, three drug-target heterogeneous information networks (HINs) with different views are established. Secondly, MHADTI learns embeddings of drugs and targets from multiview HINs with hierarchical attention mechanisms, which include the node-level, semantic-level and graph-level attentions. Lastly, MHADTI employs the multilayer perceptron to predict DTIs with the learned deep feature representations. The hierarchical attention mechanisms could fully consider the importance of nodes, meta-paths and graphs in learning the feature representations of drugs and targets, which makes their embeddings more comprehensively. Extensive experimental results demonstrate that MHADTI performs better than other SOTA prediction models. Moreover, analysis of prediction results for some interested drugs and targets further indicates that MHADTI has advantages in discovering DTIs. AVAILABILITY AND IMPLEMENTATION https://github.com/pxystudy/MHADTI.
Collapse
Affiliation(s)
- Zhen Tian
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Xiangyu Peng
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Haichuan Fang
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Wenjie Zhang
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Qiguo Dai
- School of Computer Science and Engineering, Dalian Minzu University, Dalian,116600, China
| | - Yangdong Ye
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
92
|
Li Y, Sun C, Wei JM, Liu J. Drug-Protein interaction prediction by correcting the effect of incomplete information in heterogeneous information. Bioinformatics 2022; 38:5073-5080. [PMID: 36111859 DOI: 10.1093/bioinformatics/btac629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Large-scale heterogeneous data provide diverse perspectives for predicting drug-protein interactions (DPIs). However, the available information on molecular interactions and clinical associations related to drugs or proteins is incomplete because there may be unproven interactions and associations. This incomplete information in the available data is presented in the form of non-interaction and non-correlation, which may mislead the prediction model. Existing methods fuse incomplete and complete information without considering their integrity, so the negative effects of incomplete information still exist. RESULTS We develop a network-based DPI prediction method named BRWCP, which uses the complete information network to correct the prediction results acquired by the incomplete information network. By integrating relevant heterogeneous information that may be incomplete, the feature similarities of drugs and proteins are obtained. Combining the feature similarities and known DPIs, an incomplete information-based drug-protein heterogeneous network is constructed. Then, a bidirectional random walk with pruning algorithm is adopted in this heterogeneous network to predict potential DPIs. Next, the predicted DPIs are combined with the chemical fingerprint similarity of drugs and amino acid sequence similarity of proteins to construct the complete information network. The bidirectional random walk with pruning algorithm is applied in the new network to obtain the final prediction results until it converges. Experimental results show that BRWCP is superior to several state-of-the-art DPI prediction methods, and case studies further confirm its ability to tap potential DPIs. AVAILABILITY AND IMPLEMENTATION The code and data used in BRWCP are available at https://github.com/lyfdomain/BRWCP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yanfei Li
- College of Computer Science, Nankai University, Tianjin 300071, China.,Institute of Big Data, Nankai University, Tianjin 300071, China
| | - Chang Sun
- College of Computer Science, Nankai University, Tianjin 300071, China.,Institute of Big Data, Nankai University, Tianjin 300071, China
| | - Jin-Mao Wei
- College of Computer Science, Nankai University, Tianjin 300071, China.,Institute of Big Data, Nankai University, Tianjin 300071, China
| | - Jian Liu
- College of Computer Science, Nankai University, Tianjin 300071, China.,Institute of Big Data, Nankai University, Tianjin 300071, China
| |
Collapse
|
93
|
Wang H, Guo F, Du M, Wang G, Cao C. A novel method for drug-target interaction prediction based on graph transformers model. BMC Bioinformatics 2022; 23:459. [PMID: 36329406 PMCID: PMC9635108 DOI: 10.1186/s12859-022-04812-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/23/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Drug-target interactions (DTIs) prediction becomes more and more important for accelerating drug research and drug repositioning. Drug-target interaction network is a typical model for DTIs prediction. As many different types of relationships exist between drug and target, drug-target interaction network can be used for modeling drug-target interaction relationship. Recent works on drug-target interaction network are mostly concentrate on drug node or target node and neglecting the relationships between drug-target. RESULTS We propose a novel prediction method for modeling the relationship between drug and target independently. Firstly, we use different level relationships of drugs and targets to construct feature of drug-target interaction. Then, we use line graph to model drug-target interaction. After that, we introduce graph transformer network to predict drug-target interaction. CONCLUSIONS This method introduces a line graph to model the relationship between drug and target. After transforming drug-target interactions from links to nodes, a graph transformer network is used to accomplish the task of predicting drug-target interactions.
Collapse
Affiliation(s)
- Hongmei Wang
- College of Computer Science and Engineering, Changchun University of Technology, Changchun, China
| | - Fang Guo
- College of Computer Science and Engineering, Changchun University of Technology, Changchun, China
| | - Mengyan Du
- College of Computer Science and Engineering, Changchun University of Technology, Changchun, China
| | - Guishen Wang
- College of Computer Science and Engineering, Changchun University of Technology, Changchun, China.
| | - Chen Cao
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China. .,Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.
| |
Collapse
|
94
|
Li M, Cai X, Li L, Xu S, Ji H. Heterogeneous Graph Attention Network for Drug-Target Interaction Prediction. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT 2022:1166-1176. [DOI: 10.1145/3511808.3557346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Mei Li
- Nankai University, Tianjin, China
| | | | - Linyu Li
- Nankai University, Tianjin, China
| | - Sihan Xu
- Nankai University, Tianjin, China
| | - Hua Ji
- Nankai University, Tianjin, China
| |
Collapse
|
95
|
Drug-Disease Association Prediction Using Heterogeneous Networks for Computational Drug Repositioning. Biomolecules 2022; 12:biom12101497. [PMID: 36291706 PMCID: PMC9599692 DOI: 10.3390/biom12101497] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
Abstract
Drug repositioning, which involves the identification of new therapeutic indications for approved drugs, considerably reduces the time and cost of developing new drugs. Recent computational drug repositioning methods use heterogeneous networks to identify drug–disease associations. This review reveals existing network-based approaches for predicting drug–disease associations in three major categories: graph mining, matrix factorization or completion, and deep learning. We selected eleven methods from the three categories to compare their predictive performances. The experiment was conducted using two uniform datasets on the drug and disease sides, separately. We constructed heterogeneous networks using drug–drug similarities based on chemical structures and ATC codes, ontology-based disease–disease similarities, and drug–disease associations. An improved evaluation metric was used to reflect data imbalance as positive associations are typically sparse. The prediction results demonstrated that methods in the graph mining and matrix factorization or completion categories performed well in the overall assessment. Furthermore, prediction on the drug side had higher accuracy than on the disease side. Selecting and integrating informative drug features in drug–drug similarity measurement are crucial for improving disease-side prediction.
Collapse
|
96
|
Li F, Yin J, Lu M, Mou M, Li Z, Zeng Z, Tan Y, Wang S, Chu X, Dai H, Hou T, Zeng S, Chen Y, Zhu F. DrugMAP: molecular atlas and pharma-information of all drugs. Nucleic Acids Res 2022; 51:D1288-D1299. [PMID: 36243961 PMCID: PMC9825453 DOI: 10.1093/nar/gkac813] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 02/06/2023] Open
Abstract
The efficacy and safety of drugs are widely known to be determined by their interactions with multiple molecules of pharmacological importance, and it is therefore essential to systematically depict the molecular atlas and pharma-information of studied drugs. However, our understanding of such information is neither comprehensive nor precise, which necessitates the construction of a new database providing a network containing a large number of drugs and their interacting molecules. Here, a new database describing the molecular atlas and pharma-information of drugs (DrugMAP) was therefore constructed. It provides a comprehensive list of interacting molecules for >30 000 drugs/drug candidates, gives the differential expression patterns for >5000 interacting molecules among different disease sites, ADME (absorption, distribution, metabolism and excretion)-relevant organs and physiological tissues, and weaves a comprehensive and precise network containing >200 000 interactions among drugs and molecules. With the great efforts made to clarify the complex mechanism underlying drug pharmacokinetics and pharmacodynamics and rapidly emerging interests in artificial intelligence (AI)-based network analyses, DrugMAP is expected to become an indispensable supplement to existing databases to facilitate drug discovery. It is now fully and freely accessible at: https://idrblab.org/drugmap/.
Collapse
Affiliation(s)
| | | | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba–Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba–Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Xinyi Chu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Haibin Dai
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Su Zeng
- Correspondence may also be addressed to Su Zeng.
| | - Yuzong Chen
- Correspondence may also be addressed to Yuzong Chen.
| | - Feng Zhu
- To whom correspondence should be addressed.
| |
Collapse
|
97
|
Zhang Y, Wu M, Wang S, Chen W. EFMSDTI: Drug-target interaction prediction based on an efficient fusion of multi-source data. Front Pharmacol 2022; 13:1009996. [PMID: 36210804 PMCID: PMC9538487 DOI: 10.3389/fphar.2022.1009996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Accurate identification of Drug Target Interactions (DTIs) is of great significance for understanding the mechanism of drug treatment and discovering new drugs for disease treatment. Currently, computational methods of DTIs prediction that combine drug and target multi-source data can effectively reduce the cost and time of drug development. However, in multi-source data processing, the contribution of different source data to DTIs is often not considered. Therefore, how to make full use of the contribution of different source data to predict DTIs for efficient fusion is the key to improving the prediction accuracy of DTIs. In this paper, considering the contribution of different source data to DTIs prediction, a DTIs prediction approach based on an effective fusion of drug and target multi-source data is proposed, named EFMSDTI. EFMSDTI first builds 15 similarity networks based on multi-source information networks classified as topological and semantic graphs of drugs and targets according to their biological characteristics. Then, the multi-networks are fused by selective and entropy weighting based on similarity network fusion (SNF) according to their contribution to DTIs prediction. The deep neural networks model learns the embedding of low-dimensional vectors of drugs and targets. Finally, the LightGBM algorithm based on Gradient Boosting Decision Tree (GBDT) is used to complete DTIs prediction. Experimental results show that EFMSDTI has better performance (AUROC and AUPR are 0.982) than several state-of-the-art algorithms. Also, it has a good effect on analyzing the top 1000 prediction results, while 990 of the first 1000DTIs were confirmed. Code and data are available at https://github.com/meng-jie/EFMSDTI.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, Shandong, China
- College of Computer science and Technology, China University of Petroleum (East China), Qingdao, Shandong, China
- *Correspondence: Yuanyuan Zhang,
| | - Mengjie Wu
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, Shandong, China
| | - Shudong Wang
- College of Computer science and Technology, China University of Petroleum (East China), Qingdao, Shandong, China
| | - Wei Chen
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, Shandong, China
| |
Collapse
|
98
|
Qian Y, Wu J, Zhang Q. CAT-CPI: Combining CNN and transformer to learn compound image features for predicting compound-protein interactions. Front Mol Biosci 2022; 9:963912. [PMID: 36188230 PMCID: PMC9520300 DOI: 10.3389/fmolb.2022.963912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Compound-protein interaction (CPI) prediction is a foundational task for drug discovery, which process is time-consuming and costly. The effectiveness of CPI prediction can be greatly improved using deep learning methods to accelerate drug development. Large number of recent research results in the field of computer vision, especially in deep learning, have proved that the position, geometry, spatial structure and other features of objects in an image can be well characterized. We propose a novel molecular image-based model named CAT-CPI (combining CNN and transformer to predict CPI) for CPI task. We use Convolution Neural Network (CNN) to learn local features of molecular images and then use transformer encoder to capture the semantic relationships of these features. To extract protein sequence feature, we propose to use a k-gram based method and obtain the semantic relationships of sub-sequences by transformer encoder. In addition, we build a Feature Relearning (FR) module to learn interaction features of compounds and proteins. We evaluated CAT-CPI on three benchmark datasets—Human, Celegans, and Davis—and the experimental results demonstrate that CAT-CPI presents competitive performance against state-of-the-art predictors. In addition, we carry out Drug-Drug Interaction (DDI) experiments to verify the strong potential of the methods based on molecular images and FR module.
Collapse
|
99
|
Zhang F, Hu W, Liu Y. GCMM: graph convolution network based on multimodal attention mechanism for drug repurposing. BMC Bioinformatics 2022; 23:372. [PMID: 36100897 PMCID: PMC9469552 DOI: 10.1186/s12859-022-04911-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background The main focus of in silico drug repurposing, which is a promising area for using artificial intelligence in drug discovery, is the prediction of drug–disease relationships. Although many computational models have been proposed recently, it is still difficult to reliably predict drug–disease associations from a variety of sources of data. Results In order to identify potential drug–disease associations, this paper introduces a novel end-to-end model called Graph convolution network based on a multimodal attention mechanism (GCMM). In particular, GCMM incorporates known drug–disease relations, drug–drug chemical similarity, drug–drug therapeutic similarity, disease–disease semantic similarity, and disease–disease target-based similarity into a heterogeneous network. A Graph Convolution Network encoder is used to learn how diseases and drugs are embedded in various perspectives. Additionally, GCMM can enhance performance by applying a multimodal attention layer to assign various levels of value to various features and the inputting of multi-source information. Conclusion 5 fold cross-validation evaluations show that the GCMM outperforms four recently proposed deep-learning models on the majority of the criteria. It shows that GCMM can predict drug–disease relationships reliably and suggests improvement in the desired metrics. Hyper-parameter analysis and exploratory ablation experiments are also provided to demonstrate the necessity of each module of the model and the highest possible level of prediction performance. Additionally, a case study on Alzheimer’s disease (AD). Four of the five medications indicated by GCMM to have the highest potential correlation coefficient with AD have been demonstrated through literature or experimental research, demonstrating the viability of GCMM. All of these results imply that GCMM can provide a strong and effective tool for drug development and repositioning.
Collapse
|
100
|
Liu B, Papadopoulos D, Malliaros FD, Tsoumakas G, Papadopoulos AN. Multiple similarity drug-target interaction prediction with random walks and matrix factorization. Brief Bioinform 2022; 23:6692553. [PMID: 36070659 DOI: 10.1093/bib/bbac353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
The discovery of drug-target interactions (DTIs) is a very promising area of research with great potential. The accurate identification of reliable interactions among drugs and proteins via computational methods, which typically leverage heterogeneous information retrieved from diverse data sources, can boost the development of effective pharmaceuticals. Although random walk and matrix factorization techniques are widely used in DTI prediction, they have several limitations. Random walk-based embedding generation is usually conducted in an unsupervised manner, while the linear similarity combination in matrix factorization distorts individual insights offered by different views. To tackle these issues, we take a multi-layered network approach to handle diverse drug and target similarities, and propose a novel optimization framework, called Multiple similarity DeepWalk-based Matrix Factorization (MDMF), for DTI prediction. The framework unifies embedding generation and interaction prediction, learning vector representations of drugs and targets that not only retain higher order proximity across all hyper-layers and layer-specific local invariance, but also approximate the interactions with their inner product. Furthermore, we develop an ensemble method (MDMF2A) that integrates two instantiations of the MDMF model, optimizing the area under the precision-recall curve (AUPR) and the area under the receiver operating characteristic curve (AUC), respectively. The empirical study on real-world DTI datasets shows that our method achieves statistically significant improvement over current state-of-the-art approaches in four different settings. Moreover, the validation of highly ranked non-interacting pairs also demonstrates the potential of MDMF2A to discover novel DTIs.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Data Engineering and Visual Computing, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Fragkiskos D Malliaros
- Paris-Saclay University, CentraleSupélec, Inria, Centre for Visual Computing (CVN), 91190 Gif-Sur-Yvette, France
| | - Grigorios Tsoumakas
- School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | |
Collapse
|