51
|
Chew LJ, DeBoy CA. Pharmacological approaches to intervention in hypomyelinating and demyelinating white matter pathology. Neuropharmacology 2016; 110:605-625. [PMID: 26116759 PMCID: PMC4690794 DOI: 10.1016/j.neuropharm.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
White matter disease afflicts both developing and mature central nervous systems. Both cell intrinsic and extrinsic dysregulation result in profound changes in cell survival, axonal metabolism and functional performance. Experimental models of developmental white matter (WM) injury and demyelination have not only delineated mechanisms of signaling and inflammation, but have also paved the way for the discovery of pharmacological approaches to intervention. These reagents have been shown to enhance protection of the mature oligodendrocyte cell, accelerate progenitor cell recruitment and/or differentiation, or attenuate pathological stimuli arising from the inflammatory response to injury. Here we highlight reports of studies in the CNS in which compounds, namely peptides, hormones, and small molecule agonists/antagonists, have been used in experimental animal models of demyelination and neonatal brain injury that affect aspects of excitotoxicity, oligodendrocyte development and survival, and progenitor cell function, and which have been demonstrated to attenuate damage and improve WM protection in experimental models of injury. The molecular targets of these agents include growth factor and neurotransmitter receptors, morphogens and their signaling components, nuclear receptors, as well as the processes of iron transport and actin binding. By surveying the current evidence in non-immune targets of both the immature and mature WM, we aim to better understand pharmacological approaches modulating endogenous oligodendroglia that show potential for success in the contexts of developmental and adult WM pathology. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, USA
| |
Collapse
|
52
|
Fluid Biomarkers of Traumatic Brain Injury and Intended Context of Use. Diagnostics (Basel) 2016; 6:diagnostics6040037. [PMID: 27763536 PMCID: PMC5192512 DOI: 10.3390/diagnostics6040037] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability around the world. The lack of validated biomarkers for TBI is a major impediment to developing effective therapies and improving clinical practice, as well as stimulating much work in this area. In this review, we focus on different settings of TBI management where blood or cerebrospinal fluid (CSF) biomarkers could be utilized for predicting clinically-relevant consequences and guiding management decisions. Requirements that the biomarker must fulfill differ based on the intended context of use (CoU). Specifically, we focus on fluid biomarkers in order to: (1) identify patients who may require acute neuroimaging (cranial computerized tomography (CT) or magnetic resonance imaging (MRI); (2) select patients at risk for secondary brain injury processes; (3) aid in counseling patients about their symptoms at discharge; (4) identify patients at risk for developing postconcussive syndrome (PCS), posttraumatic epilepsy (PTE) or chronic traumatic encephalopathy (CTE); (5) predict outcomes with respect to poor or good recovery; (6) inform counseling as to return to work (RTW) or to play. Despite significant advances already made from biomarker-based studies of TBI, there is an immediate need for further large-scale studies focused on identifying and innovating sensitive and reliable TBI biomarkers. These studies should be designed with the intended CoU in mind.
Collapse
|
53
|
Lovelace MD, Varney B, Sundaram G, Franco NF, Ng ML, Pai S, Lim CK, Guillemin GJ, Brew BJ. Current Evidence for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis. Front Immunol 2016; 7:246. [PMID: 27540379 PMCID: PMC4972824 DOI: 10.3389/fimmu.2016.00246] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
The kynurenine pathway (KP) is the major metabolic pathway of the essential amino acid tryptophan (TRP). Stimulation by inflammatory molecules, such as interferon-γ (IFN-γ), is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites, and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson’s disease, AIDS-related dementia, motor neurone disease, schizophrenia, Huntington’s disease, and brain cancers. In the past decade, evidence of the link between the KP and multiple sclerosis (MS) has rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes, indoleamine 2,3-dioxygenase (IDO-1) and tryptophan dioxygenase (highest expression in hepatic cells), are the principal enzymes triggering activation of the KP to produce kynurenine from TRP. This is in preference to other routes such as serotonin and melatonin production. In neurological disease, degradation of the blood–brain barrier, even if transient, allows the entry of blood monocytes into the brain parenchyma. Similar to microglia and macrophages, these cells are highly responsive to IFN-γ, which upregulates the expression of enzymes, including IDO-1, producing neurotoxic KP metabolites such as quinolinic acid. These metabolites circulate systemically or are released locally in the brain and can contribute to the excitotoxic death of oligodendrocytes and neurons in neurological disease principally by virtue of their agonist activity at N-methyl-d-aspartic acid receptors. The latest evidence is presented and discussed. The enzymes that control the checkpoints in the KP represent an attractive therapeutic target, and consequently several KP inhibitors are currently in clinical trials for other neurological diseases, and hence may make suitable candidates for MS patients. Underpinning these drug discovery endeavors, in recent years, several advances have been made in how KP metabolites are assayed in various biological fluids, and tremendous advancements have been made in how specimens are imaged to determine disease progression and involvement of various cell types and molecules in MS.
Collapse
Affiliation(s)
- Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Bianca Varney
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Gayathri Sundaram
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Nunzio F Franco
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Mei Li Ng
- Faculty of Medicine, Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Saparna Pai
- Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Chai K Lim
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia; Department of Neurology, St Vincent's Hospital, Sydney, NSW, Australia
| |
Collapse
|
54
|
Bogoslovsky T, Wilson D, Chen Y, Hanlon D, Gill J, Jeromin A, Song L, Moore C, Gong Y, Kenney K, Diaz-Arrastia R. Increases of Plasma Levels of Glial Fibrillary Acidic Protein, Tau, and Amyloid β up to 90 Days after Traumatic Brain Injury. J Neurotrauma 2016; 34:66-73. [PMID: 27312416 DOI: 10.1089/neu.2015.4333] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP), microtubule-associated protein tau, and amyloid β peptide (Aβ42) have been proposed as diagnostic and prognostic biomarkers in traumatic brain injury (TBI). Single molecule array (Simoa) is a novel technology that employs highly sensitive immunoassays for accurate measurements of candidate biomarkers found at low concentration in biological fluids. Our objective was to trace the trajectory of tau, GFAP, and Aβ42 levels in plasma from the acute through subacute stages after TBI, compared with controls. Samples from 34 TBI subjects enrolled in the Citicoline Brain Injury Treatment Trial (COBRIT) were studied. Injury severity was assessed by Glasgow Coma Scale (GCS) and admission CT. Glasgow Outcome Scale Extended (GOSE) was assessed 6 months after injury. Plasma was collected within 24 h (Day 0), and 30 and 90 days after the TBI. Plasma collected from 69 healthy volunteers was used for comparison. At every time point, increases were noted in plasma GFAP (p < 0.0001 for all comparisons), tau (p < 0.0001, p < 0.0001, and p = 0.0044, at Days 0, 30, and 90, respectively), and Aβ42 (p < 0.001, p < 0.0001, and p = 0.0203, respectively) in TBI cases compared with controls. The levels were maximal at Day 0 for GFAP and tau and at Day 30 for Aβ42. Area under curve (AUC) analyses for Day 0 GFAP and tau were excellent for discrimination of complicated mild TBI (cmTBI) from controls (0.936 and 0.901, correspondingly). Discriminant component analysis (DCA) for all three biomarkers at Days 0 and 30 differentiated controls from cmTBI (91.1% and 89.7% correctly classified, at each time point). Duration of post-traumatic amnesia (PTA) correlated weakly with tau levels at 30 days (Spearman's r = 0.40; 95% CI 0.0003-0.60, p = 0.044). The Marshall CT Grade on admission correlated weakly with Day 30 tau levels (Spearman's r = 0.41; 95% CI 0.04-0.68, p = 0.027). Day 30 Aβ42 correlated with GOSE (standardized β -0.486, p = 0.042). GFAP, tau and Aβ42 were increased up to 90 days after TBI compared with controls. Total tau levels correlated with clinical and radiological variables of TBI severity. Plasma Aβ42 correlated with clinical outcome. Combination of all three biomarkers at Days 0 and 30 can be used to differentiate controls from cmTBI populations, and may be useful as biomarkers of TBI in both acute and subacute phases.
Collapse
Affiliation(s)
- Tanya Bogoslovsky
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Rockville, Maryland
| | | | - Yao Chen
- 2 Quanterix, Inc , Lexington, Massachusetts
| | | | - Jessica Gill
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Rockville, Maryland.,3 National Institute of Nursing Research, National Institutes of Health , Bethesda, Maryland
| | | | - Linan Song
- 2 Quanterix, Inc , Lexington, Massachusetts
| | - Carol Moore
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Rockville, Maryland
| | - Yunhua Gong
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Rockville, Maryland
| | - Kimbra Kenney
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Rockville, Maryland
| | - Ramon Diaz-Arrastia
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Rockville, Maryland
| |
Collapse
|
55
|
Couttas TA, Kain N, Suchowerska AK, Quek LE, Turner N, Fath T, Garner B, Don AS. Loss of ceramide synthase 2 activity, necessary for myelin biosynthesis, precedes tau pathology in the cortical pathogenesis of Alzheimer's disease. Neurobiol Aging 2016; 43:89-100. [PMID: 27255818 DOI: 10.1016/j.neurobiolaging.2016.03.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/01/2016] [Accepted: 03/27/2016] [Indexed: 01/07/2023]
Abstract
The anatomical progression of neurofibrillary tangle pathology throughout Alzheimer's disease (AD) pathogenesis runs inverse to the pattern of developmental myelination, with the disease preferentially affecting thinly myelinated regions. Myelin is comprised 80% of lipids, and the prototypical myelin lipids, galactosylceramide, and sulfatide are critical for neurological function. We observed severe depletion of galactosylceramide and sulfatide in AD brain tissue, which can be traced metabolically to the loss of their biosynthetic precursor, very long chain ceramide. The synthesis of very long chain ceramides is catalyzed by ceramide synthase 2 (CERS2). We demonstrate a significant reduction in CERS2 activity as early as Braak stage I/II in temporal cortex, and Braak stage III/IV in hippocampus and frontal cortex, indicating that loss of myelin-specific ceramide synthase activity precedes neurofibrillary tangle pathology in cortical regions. These findings open a new vista on AD pathogenesis by demonstrating a defect in myelin lipid biosynthesis at the preclinical stages of the disease. We posit that, over time, this defect contributes significantly to myelin deterioration, synaptic dysfunction, and neurological decline.
Collapse
Affiliation(s)
- Timothy A Couttas
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Nupur Kain
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Alexandra K Suchowerska
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Lake-Ee Quek
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Nigel Turner
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Thomas Fath
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Brett Garner
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Anthony S Don
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
56
|
Koss DJ, Robinson L, Drever BD, Plucińska K, Stoppelkamp S, Veselcic P, Riedel G, Platt B. Mutant Tau knock-in mice display frontotemporal dementia relevant behaviour and histopathology. Neurobiol Dis 2016; 91:105-23. [PMID: 26949217 DOI: 10.1016/j.nbd.2016.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022] Open
Abstract
Models of Tau pathology related to frontotemporal dementia (FTD) are essential to determine underlying neurodegenerative pathologies and resulting tauopathy relevant behavioural changes. However, existing models are often limited in their translational value due to Tau overexpression, and the frequent occurrence of motor deficits which prevent comprehensive behavioural assessments. In order to address these limitations, a forebrain-specific (CaMKIIα promoter), human mutated Tau (hTauP301L+R406W) knock-in mouse was generated out of the previously characterised PLB1Triple mouse, and named PLB2Tau. After confirmation of an additional hTau species (~60kDa) in forebrain samples, we identified age-dependent progressive Tau phosphorylation which coincided with the emergence of FTD relevant behavioural traits. In line with the non-cognitive symptomatology of FTD, PLB2Tau mice demonstrated early emerging (~6months) phenotypes of heightened anxiety in the elevated plus maze, depressive/apathetic behaviour in a sucrose preference test and generally reduced exploratory activity in the absence of motor impairments. Investigations of cognitive performance indicated prominent dysfunctions in semantic memory, as assessed by social transmission of food preference, and in behavioural flexibility during spatial reversal learning in a home cage corner-learning task. Spatial learning was only mildly affected and task-specific, with impairments at 12months of age in the corner learning but not in the water maze task. Electroencephalographic (EEG) investigations indicated a vigilance-stage specific loss of alpha power during wakefulness at both parietal and prefrontal recording sites, and site-specific EEG changes during non-rapid eye movement sleep (prefrontal) and rapid eye movement sleep (parietal). Further investigation of hippocampal electrophysiology conducted in slice preparations indicated a modest reduction in efficacy of synaptic transmission in the absence of altered synaptic plasticity. Together, our data demonstrate that the transgenic PLB2Tau mouse model presents with a striking behavioural and physiological face validity relevant for FTD, driven by the low level expression of mutant FTD hTau.
Collapse
Affiliation(s)
- David J Koss
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lianne Robinson
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Benjamin D Drever
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Kaja Plucińska
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Sandra Stoppelkamp
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter Veselcic
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gernot Riedel
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Bettina Platt
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
57
|
Ossola B, Zhao C, Compston A, Pluchino S, Franklin RJM, Spillantini MG. Neuronal expression of pathological tau accelerates oligodendrocyte progenitor cell differentiation. Glia 2016; 64:457-71. [PMID: 26576485 PMCID: PMC5132073 DOI: 10.1002/glia.22940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/19/2015] [Indexed: 12/03/2022]
Abstract
Oligodendrocyte progenitor cell (OPC) differentiation is an important therapeutic target to promote remyelination in multiple sclerosis (MS). We previously reported hyperphosphorylated and aggregated microtubule-associated protein tau in MS lesions, suggesting its involvement in axonal degeneration. However, the influence of pathological tau-induced axonal damage on the potential for remyelination is unknown. Therefore, we investigated OPC differentiation in human P301S tau (P301S-htau) transgenic mice, both in vitro and in vivo following focal demyelination. In 2-month-old P301S-htau mice, which show hyperphosphorylated tau in neurons, we found atrophic axons in the spinal cord in the absence of prominent axonal degeneration. These signs of early axonal damage were associated with microgliosis and an upregulation of IL-1β and TNFα. Following in vivo focal white matter demyelination we found that OPCs differentiated more efficiently in P301S-htau mice than wild type (Wt) mice. We also found an increased level of myelin basic protein within the lesions, which however did not translate into increased remyelination due to higher susceptibility of P301S-htau axons to demyelination-induced degeneration compared to Wt axons. In vitro experiments confirmed higher differentiation capacity of OPCs from P301S-htau mice compared with Wt mice-derived OPCs. Because the OPCs from P301S-htau mice do not ectopically express the transgene, and when isolated from newborn mice behave like Wt mice-derived OPCs, we infer that their enhanced differentiation capacity must have been acquired through microenvironmental priming. Our data suggest the intriguing concept that damaged axons may signal to OPCs and promote their differentiation in the attempt at rescue by remyelination.
Collapse
Affiliation(s)
- Bernardino Ossola
- Department of Clinical Neurosciences, Clifford Allbutt BuildingUniversity of CambridgeCambridge CB2 0AHUnited Kingdom
| | - Chao Zhao
- Department of Clinical Neurosciences, Clifford Allbutt BuildingUniversity of CambridgeCambridge CB2 0AHUnited Kingdom
- Wellcome Trust‐Medical Research Council Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AHUnited Kingdom
| | - Alastair Compston
- Department of Clinical Neurosciences, Clifford Allbutt BuildingUniversity of CambridgeCambridge CB2 0AHUnited Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences, Clifford Allbutt BuildingUniversity of CambridgeCambridge CB2 0AHUnited Kingdom
- Wellcome Trust‐Medical Research Council Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AHUnited Kingdom
- NIHR Biomedical Research CentreCambridgeCB2 0AHUnited Kingdom
| | - Robin J. M. Franklin
- Department of Clinical Neurosciences, Clifford Allbutt BuildingUniversity of CambridgeCambridge CB2 0AHUnited Kingdom
- Wellcome Trust‐Medical Research Council Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AHUnited Kingdom
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, Clifford Allbutt BuildingUniversity of CambridgeCambridge CB2 0AHUnited Kingdom
| |
Collapse
|
58
|
A Potential Alternative against Neurodegenerative Diseases: Phytodrugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8378613. [PMID: 26881043 PMCID: PMC4736801 DOI: 10.1155/2016/8378613] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022]
Abstract
Neurodegenerative diseases (ND) primarily affect the neurons in the human brain secondary to oxidative stress and neuroinflammation. ND are more common and have a disproportionate impact on countries with longer life expectancies and represent the fourth highest source of overall disease burden in the high-income countries. A large majority of the medicinal plant compounds, such as polyphenols, alkaloids, and terpenes, have therapeutic properties. Polyphenols are the most common active compounds in herbs and vegetables consumed by man. The biological bioactivity of polyphenols against neurodegeneration is mainly due to its antioxidant, anti-inflammatory, and antiamyloidogenic effects. Multiple scientific studies support the use of herbal medicine in the treatment of ND; however, relevant aspects are still pending to explore such as metabolic analysis, pharmacokinetics, and brain bioavailability.
Collapse
|
59
|
Furlotti G, Alisi MA, Cazzolla N, Dragone P, Durando L, Magarò G, Mancini F, Mangano G, Ombrato R, Vitiello M, Armirotti A, Capurro V, Lanfranco M, Ottonello G, Summa M, Reggiani A. Hit Optimization of 5-Substituted-N-(piperidin-4-ylmethyl)-1H-indazole-3-carboxamides: Potent Glycogen Synthase Kinase-3 (GSK-3) Inhibitors with in Vivo Activity in Model of Mood Disorders. J Med Chem 2015; 58:8920-37. [PMID: 26486317 DOI: 10.1021/acs.jmedchem.5b01208] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Novel treatments for bipolar disorder with improved efficacy and broader spectrum of activity are urgently needed. Glycogen synthase kinase 3β (GSK-3β) has been suggested to be a key player in the pathophysiology of bipolar disorder. A series of novel GSK-3β inhibitors having the common N-[(1-alkylpiperidin-4-yl)methyl]-1H-indazole-3-carboxamide scaffold were prepared taking advantage of an X-ray cocrystal structure of compound 5 with GSK-3β. We probed different substitutions at the indazole 5-position and at the piperidine-nitrogen to obtain potent ATP-competitive GSK-3β inhibitors with good cell activity. Among the compounds assessed in the in vivo PK experiments, 14i showed, after i.p. dosing, encouraging plasma PK profile and brain exposure, as well as efficacy in a mouse model of mania. Compound 14i was selected for further in vitro/in vivo pharmacological evaluation, in order to elucidate the use of ATP-competitive GSK-3β inhibitors as new tools in the development of new treatments for mood disorders.
Collapse
Affiliation(s)
- Guido Furlotti
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Maria Alessandra Alisi
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Nicola Cazzolla
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Patrizia Dragone
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Lucia Durando
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Gabriele Magarò
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Francesca Mancini
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Giorgina Mangano
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Rosella Ombrato
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Marco Vitiello
- Angelini S.p.A., Angelini Research Center , P.le della Stazione s.n.c., Santa Palomba-Pomezia, 00071 Rome, Italy
| | - Andrea Armirotti
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Valeria Capurro
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Massimiliano Lanfranco
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Giuliana Ottonello
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Maria Summa
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| | - Angelo Reggiani
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
60
|
Inducible Expression of a Truncated Form of Tau in Oligodendrocytes Elicits Gait Abnormalities and a Decrease in Myelin: Implications for Selective CNS Degenerative Diseases. Neurochem Res 2015; 40:2188-99. [DOI: 10.1007/s11064-015-1707-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 12/25/2022]
|
61
|
Kynurenines and Multiple Sclerosis: The Dialogue between the Immune System and the Central Nervous System. Int J Mol Sci 2015; 16:18270-82. [PMID: 26287161 PMCID: PMC4581244 DOI: 10.3390/ijms160818270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis is an inflammatory disease of the central nervous system, in which axonal transection takes place in parallel with acute inflammation to various, individual extents. The importance of the kynurenine pathway in the physiological functions and pathological processes of the nervous system has been extensively investigated, but it has additionally been implicated as having a regulatory function in the immune system. Alterations in the kynurenine pathway have been described in both preclinical and clinical investigations of multiple sclerosis. These observations led to the identification of potential therapeutic targets in multiple sclerosis, such as synthetic tryptophan analogs, endogenous tryptophan metabolites (e.g., cinnabarinic acid), structural analogs (laquinimod, teriflunomid, leflunomid and tranilast), indoleamine-2,3-dioxygenase inhibitors (1MT and berberine) and kynurenine-3-monooxygenase inhibitors (nicotinylalanine and Ro 61-8048). The kynurenine pathway is a promising novel target via which to influence the immune system and to achieve neuroprotection, and further research is therefore needed with the aim of developing novel drugs for the treatment of multiple sclerosis and other autoimmune diseases.
Collapse
|
62
|
Frid K, Einstein O, Friedman-Levi Y, Binyamin O, Ben-Hur T, Gabizon R. Aggregation of MBP in chronic demyelination. Ann Clin Transl Neurol 2015; 2:711-21. [PMID: 26273684 PMCID: PMC4531054 DOI: 10.1002/acn3.207] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/26/2015] [Indexed: 12/14/2022] Open
Abstract
Objectives Misfolding of key disease proteins to an insoluble state is associated with most neurodegenerative conditions, such as prion, Parkinson, and Alzheimer’s diseases. In this work, and by studying animal models of multiple sclerosis, we asked whether this is also the case for myelin basic protein (MBP) in the late and neurodegenerative phases of demyelinating diseases. Methods To this effect, we tested whether MBP, an essential myelin component, present prion-like properties in animal models of MS, as is the case for Cuprizone-induced chronic demyelination or chronic phases of Experimental Autoimmune Encephalomyelitis (EAE). Results We show here that while total levels of MBP were not reduced following extensive demyelination, part of these molecules accumulated thereafter as aggregates inside oligodendrocytes or around neuronal cells. In chronic EAE, MBP precipitated concomitantly with Tau, a marker of diverse neurodegenerative conditions, including MS. Most important, analysis of fractions from Triton X-100 floatation gradients suggest that the lipid composition of brain membranes in chronic EAE differs significantly from that of naïve mice, an effect which may relate to oxidative insults and subsequently prevent the appropriate insertion and compaction of new MBP in the myelin sheath, thereby causing its misfolding and aggregation. Interpretation Prion-like aggregation of MBP following chronic demyelination may result from an aberrant lipid composition accompanying this pathological status. Such aggregation of MBP may contribute to neuronal damage that occurs in the progressive phase of MS.
Collapse
Affiliation(s)
- Kati Frid
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Ofira Einstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Yael Friedman-Levi
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Orli Binyamin
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Ruth Gabizon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| |
Collapse
|
63
|
Benson C, Paylor JW, Tenorio G, Winship I, Baker G, Kerr BJ. Voluntary wheel running delays disease onset and reduces pain hypersensitivity in early experimental autoimmune encephalomyelitis (EAE). Exp Neurol 2015; 271:279-90. [PMID: 26033473 DOI: 10.1016/j.expneurol.2015.05.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/23/2015] [Indexed: 01/10/2023]
Abstract
Multiple sclerosis (MS) is classically defined by motor deficits, but it is also associated with the secondary symptoms of pain, depression, and anxiety. Up to this point modifying these secondary symptoms has been difficult. There is evidence that both MS and the animal model experimental autoimmune encephalomyelitis (EAE), commonly used to study the pathophysiology of the disease, can be modulated by exercise. To examine whether limited voluntary wheel running could modulate EAE disease progression and the co-morbid symptoms of pain, mice with EAE were allowed access to running wheels for 1h every day. Allowing only 1h every day of voluntary running led to a significant delay in the onset of clinical signs of the disease. The development of mechanical allodynia was assessed using Von Frey hairs and indicated that wheel running had a modest positive effect on the pain hypersensitivity associated with EAE. These behavioral changes were associated with reduced numbers of cFOS and phosphorylated NR1 positive cells in the dorsal horn of the spinal cord compared to no-run EAE controls. In addition, within the dorsal horn, voluntary wheel running reduced the number of infiltrating CD3(+) T-cells and reduced the overall levels of Iba1 immunoreactivity. Using high performance liquid chromatography (HPLC), we observed that wheel-running lead to significant changes in the spinal cord levels of the antioxidant glutathione. Oxidative stress has separately been shown to contribute to EAE disease progression and neuropathic pain. Together these results indicate that in mice with EAE, voluntary motor activity can delay the onset of clinical signs and reduce pain symptoms associated with the disease.
Collapse
Affiliation(s)
- Curtis Benson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - John W Paylor
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Gustavo Tenorio
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Ian Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Glen Baker
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Pharmacology, University of Alberta, Edmonton, AB T6E 2H7, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada.
| |
Collapse
|
64
|
Marchese M, Cowan D, Head E, Ma D, Karimi K, Ashthorpe V, Kapadia M, Zhao H, Davis P, Sakic B. Autoimmune manifestations in the 3xTg-AD model of Alzheimer's disease. J Alzheimers Dis 2014; 39:191-210. [PMID: 24150111 DOI: 10.3233/jad-131490] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Immune system activation is frequently reported in patients with Alzheimer's disease (AD). However, it remains unknown whether this is a cause, a consequence, or an epiphenomenon of brain degeneration. OBJECTIVE The present study examines whether immunological abnormalities occur in a well-established murine AD model and if so, how they relate temporally to behavioral deficits and neuropathology. METHODS A broad battery of tests was employed to assess behavioral performance and autoimmune/inflammatory markers in 3xTg-AD (AD) mice and wild type controls from 1.5 to 12 months of age. RESULTS Aged AD mice displayed severe manifestations of systemic autoimmune/inflammatory dise6ase, as evidenced by splenomegaly, hepatomegaly, elevated serum levels of anti-nuclear/anti-dsDNA antibodies, low hematocrit, and increased number of double-negative T splenocytes. However, anxiety-related behavior and altered spleen function were evident as early as 2 months of age, thus preceding typical AD-like brain pathology. Moreover, AD mice showed altered olfaction and impaired "cognitive" flexibility in the first 6 months of life, suggesting mild cognitive impairment-like manifestations before general learning/memory impairments emerged at an older age. Interestingly, all of these features were present in 3xTg-AD mice prior to significant amyloid-β or tau pathology. CONCLUSION The results indicate that behavioral deficits in AD mice develop in parallel with systemic autoimmune/inflammatory disease. These changes antedate AD-like neuropathology, thus supporting a causal link between autoimmunity and aberrant behavior. Consequently, 3xTg-AD mice may be a useful model in elucidating the role of immune system in the etiology of AD.
Collapse
Affiliation(s)
- Monica Marchese
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada
| | - David Cowan
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Elizabeth Head
- Department of Molecular & Biomedical Pharmacology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Donglai Ma
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Khalil Karimi
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Minesh Kapadia
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Hui Zhao
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Paulina Davis
- Department of Molecular & Biomedical Pharmacology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Boris Sakic
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
65
|
Large-scale analysis of posttranslational modifications in the hippocampus of patients with Alzheimer’s disease using pI shift and label-free quantification without enrichment. Anal Bioanal Chem 2014; 406:5433-46. [DOI: 10.1007/s00216-014-7933-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/09/2014] [Accepted: 05/28/2014] [Indexed: 01/10/2023]
|
66
|
Matthews PM, Comley R. Advances in the molecular imaging of multiple sclerosis. Expert Rev Clin Immunol 2014; 5:765-77. [DOI: 10.1586/eci.09.66] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
67
|
Abstract
Multiple sclerosis (MS) patients are classified as either having relapsing onset or progressive onset disease, also known as primary progressive MS (PPMS). Relative to relapsing onset patients, PPMS patients are older at disease onset, are equally likely to be men or women, and have more rapid accumulation of disability that does not respond well to treatments used in relapsing onset MS. Although estimates vary, 5-15% of all MS patients have a PPMS disease course. Genetic variance is a proposed determinant of MS disease course. If distinct genes associated with PPMS were identified study of these genes might lead to an understanding of the biology underlying disease progression and neural degeneration that are the hallmarks of PPMS. These genes and their biological pathways might also represent therapeutic targets. This chapter systematically reviews the PPMS genetic literature. Despite the intuitively appealing notion that differences between PPMS and relapsing onset MS are due to genetics, definite differences associated with these phenotypes at the major histocompatibility complex or elsewhere in the genome have not been found. Recent large-scale genome wide screens identified multiple genes associated with MS susceptibility outside the MHC. The genetic variants identified thus far make only weak individual contributions to MS susceptibility. If the genetic effects that contribute to the differences between PPMS and relapsing MS are similar in magnitude to those that distinguish MS from healthy controls then, given the relative scarcity of the PPMS phenotype, very large datasets will be needed to identify PPMS associated genes. International collaborative efforts could provide the means to identify such genes. Alternately, it is possible that factors other than genetics underlie the differences between these clinical phenotypes.
Collapse
Affiliation(s)
- Bruce A C Cree
- Department of Neurology, University of California, San Francisco, USA.
| |
Collapse
|
68
|
Hampton DW, Serio A, Pryce G, Al-Izki S, Franklin RJM, Giovannoni G, Baker D, Chandran S. Neurodegeneration progresses despite complete elimination of clinical relapses in a mouse model of multiple sclerosis. Acta Neuropathol Commun 2013; 1:84. [PMID: 24364862 PMCID: PMC3895761 DOI: 10.1186/2051-5960-1-84] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/15/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND [corrected] Multiple Sclerosis has two clinical phases reflecting distinct but inter-related pathological processes: focal inflammation drives the relapse-remitting stage and neurodegeneration represents the principal substrate of secondary progression. In contrast to the increasing number of effective anti-inflammatory disease modifying treatments for relapse-remitting disease, the absence of therapies for progressive disease represents a major unmet clinical need. This raises the unanswered question of whether elimination of clinical relapses will prevent subsequent progression and if so how early in the disease course should treatment be initiated. Experimental autoimmune encephalomyelitis in the Biozzi ABH mouse recapitulates the clinical and pathological features of multiple sclerosis including relapse-remitting episodes with inflammatory mediated demyelination and progressive disability with neurodegeneration. To address the relationship between inflammation and neurodegeneration we used an auto-immune tolerance strategy to eliminate clinical relapses in EAE in a manner analogous to the clinical effect of disease modifying treatments. RESULTS By arresting clinical relapses in EAE at two distinct stages, early and late disease, we demonstrate that halting immune driven demyelination even after the first major clinical event is insufficient to prevent long-term neurodegeneration and associated gliosis. Nonetheless, early intervention is partially neuroprotective, whereas later interventions are not. Furthermore early tolerisation is also associated with increased remyelination. CONCLUSIONS These findings are consistent with both a partial uncoupling of inflammation and neurodegeneration and that the regenerative response of remyelination is negatively correlated with inflammation. These findings strongly support the need for early combinatorial treatment of immunomodulatory therapies and neuroprotective treatments to prevent long-term neurodegeneration in multiple sclerosis.
Collapse
Affiliation(s)
- David W Hampton
- Centre for Clinical Brain Sciences, MS Centre, University of Edinburgh Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Andrea Serio
- Centre for Clinical Brain Sciences, MS Centre, University of Edinburgh Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Gareth Pryce
- Neuroimmunology Unit, Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Sarah Al-Izki
- Neuroimmunology Unit, Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Robin JM Franklin
- MRC Cambridge Centre for Stem Cell Biology and Regenerative Medicine and Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Gavin Giovannoni
- Neuroimmunology Unit, Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - David Baker
- Neuroimmunology Unit, Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, MS Centre, University of Edinburgh Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
69
|
Hauser SL, Chan JR, Oksenberg JR. Multiple sclerosis: Prospects and promise. Ann Neurol 2013; 74:317-27. [PMID: 23955638 DOI: 10.1002/ana.24009] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/05/2013] [Indexed: 12/15/2022]
Abstract
We have entered a golden era in multiple sclerosis (MS) research. Two decades ago, our understanding of the disease was largely descriptive and there were no approved therapies to modify the natural history of MS. Today, delineation of immune pathways relevant to MS have been clarified; a comprehensive map of genes that influence risk compiled; clues to environmental triggers identified; noninvasive in vivo monitoring of the MS disease process has been revolutionized by high-field MRI; and many effective therapies for the early, relapsing, component of MS now exist. However, major challenges remain. We still have no useful treatment for progressive MS (the holy grail of MS research), no means to repair injured axons or protect neurons, and extremely limited evidence to guide treatment decisions. Recent advances have set in place a foundation for development of increasingly selective immunotherapy for patients; application of genetic and genomic discoveries to improve therapeutic options; development of remyelination or neuroprotection therapies for progressive MS; and integrating clinical, imaging and genomic data for personalized medicine. MS has now advanced from the backwaters of autoimmune disease research to the front-line, and definitive answers, including cures, are now realistic goals for the next decade. Many of the breakthrough discoveries in MS have also resulted from meaningful interactions across disciplines, and especially from translational and basic scientists working closely with clinicians, highlighting that the clinical value of discoveries are most often revealed when ideas developed in the laboratory are tested at the bedside.
Collapse
Affiliation(s)
- Stephen L Hauser
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | | | | |
Collapse
|
70
|
Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels. PLoS One 2013; 8:e76495. [PMID: 24124567 PMCID: PMC3790693 DOI: 10.1371/journal.pone.0076495] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/29/2013] [Indexed: 12/04/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI), a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE) in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS) as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.
Collapse
|
71
|
Increased carbonylation, protein aggregation and apoptosis in the spinal cord of mice with experimental autoimmune encephalomyelitis. ASN Neuro 2013; 5:e00111. [PMID: 23489322 PMCID: PMC3620690 DOI: 10.1042/an20120088] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/04/2013] [Accepted: 03/14/2013] [Indexed: 01/02/2023] Open
Abstract
Previous work from our laboratory implicated protein carbonylation in the pathophysiology of both MS (multiple sclerosis) and its animal model EAE (experimental autoimmune encephalomyelitis). Subsequent in vitro studies revealed that the accumulation of protein carbonyls, triggered by glutathione deficiency or proteasome inhibition, leads to protein aggregation and neuronal cell death. These findings prompted us to investigate whether their association can be also established in vivo. In the present study, we characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of MOG (myelin-oligodendrocyte glycoprotein)(35-55) peptide-induced EAE in C57BL/6 mice. The results show that protein carbonyls accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. We also show a temporal correlation between protein carbonylation (but not oxidative stress) and apoptosis. Furthermore, carbonyl levels are significantly higher in apoptotic cells than in live cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are present during the course of EAE. The LC3 (microtubule-associated protein light chain 3)-II/LC3-I ratio is significantly reduced in both acute and chronic EAE indicating reduced autophagy and explaining why aggresomes accumulate in this disorder. Taken together, the results of the present study suggest a link between protein oxidation and neuronal/glial cell death in vivo, and also demonstrate impaired proteostasis in this widely used murine model of MS.
Collapse
|
72
|
Szalardy L, Zadori D, Simu M, Bencsik K, Vecsei L, Klivenyi P. Evaluating biomarkers of neuronal degeneration and neuroinflammation in CSF of patients with multiple sclerosis–osteopontin as a potential marker of clinical severity. J Neurol Sci 2013; 331:38-42. [DOI: 10.1016/j.jns.2013.04.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/31/2013] [Accepted: 04/22/2013] [Indexed: 01/26/2023]
|
73
|
Agúndez JAG, García-Martín E, Martínez C, Benito-León J, Millán-Pascual J, Calleja P, Díaz-Sánchez M, Pisa D, Turpín-Fenoll L, Alonso-Navarro H, Ayuso-Peralta L, Torrecillas D, Plaza-Nieto JF, Jiménez-Jiménez FJ. MAPT gene rs1052553 variant is not associated with the risk for multiple sclerosis. Hum Immunol 2013; 74:1705-8. [PMID: 23911736 DOI: 10.1016/j.humimm.2013.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/08/2013] [Accepted: 07/19/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND/OBJECTIVES Some experimental data suggest a possible role of tau protein in the pathogenesis of multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis. The aim of this study was to investigate a possible influence of the SNP rs1052553 in the MAPT gene in the risk for relapsing bout onset (relapsing-remitting and secondary progressive) MS. METHODS We analyzed the allelic and genotype frequency of MAPT rs1052553, which has been associated with some neurodegenerative diseases, in 259 patients with relapsing bout onset MS and 291 healthy controls, using TaqMan Assays. RESULTS MAPT rs1052553 allelic and genotype frequencies did not differ significantly between relapsing bout onset MS patients and controls, and were unrelated with the age of onset of MS or gender. CONCLUSIONS These results suggest that MAPT rs1052553 polymorphism is not related with the risk for relapsing bout onset MS.
Collapse
Affiliation(s)
- José A G Agúndez
- Department of Pharmacology, University of Extremadura, Cáceres, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Nessler J, Bénardais K, Gudi V, Hoffmann A, Salinas Tejedor L, Janßen S, Prajeeth CK, Baumgärtner W, Kavelaars A, Heijnen CJ, van Velthoven C, Hansmann F, Skripuletz T, Stangel M. Effects of murine and human bone marrow-derived mesenchymal stem cells on cuprizone induced demyelination. PLoS One 2013; 8:e69795. [PMID: 23922802 PMCID: PMC3724887 DOI: 10.1371/journal.pone.0069795] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/17/2013] [Indexed: 11/24/2022] Open
Abstract
For the treatment of patients with multiple sclerosis there are no regenerative approaches to enhance remyelination. Mesenchymal stem cells (MSC) have been proposed to exert such regenerative functions. Intravenous administration of human MSC reduced the clinical severity of experimental autoimmune encephalomyelitis (EAE), an animal model mimicking some aspects of multiple sclerosis. However, it is not clear if this effect was achieved by systemic immunomodulation or if there is an active neuroregeneration in the central nervous system (CNS). In order to investigate remyelination and regeneration in the CNS we analysed the effects of intravenously and intranasally applied murine and human bone marrow-derived MSC on cuprizone induced demyelination, a toxic animal model which allows analysis of remyelination without the influence of the peripheral immune system. In contrast to EAE no effects of MSC on de- and remyelination and glial cell reactions were found. In addition, neither murine nor human MSC entered the lesions in the CNS in this toxic model. In conclusion, MSC are not directed into CNS lesions in the cuprizone model where the blood-brain-barrier is intact and thus cannot provide support for regenerative processes.
Collapse
Affiliation(s)
- Jasmin Nessler
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Karelle Bénardais
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Andrea Hoffmann
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Laura Salinas Tejedor
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Stefanie Janßen
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | | | - Wolfgang Baumgärtner
- Center for Systems Neuroscience, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Annemieke Kavelaars
- Department of Symptom Research, University of Texas, M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Laboratory for Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J. Heijnen
- Department of Symptom Research, University of Texas, M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Laboratory for Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cindy van Velthoven
- Laboratory for Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
75
|
Mediation of Protection and Recovery From Experimental Autoimmune Encephalomyelitis by Macrophages Expressing the Human Voltage-Gated Sodium Channel NaV1.5. J Neuropathol Exp Neurol 2013; 72:489-504. [DOI: 10.1097/nen.0b013e318293eb08] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
76
|
|
77
|
Lymphocytes with cytotoxic activity induce rapid microtubule axonal destabilization independently and before signs of neuronal death. ASN Neuro 2013; 5:e00105. [PMID: 23289514 PMCID: PMC3565378 DOI: 10.1042/an20120087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MS (multiple sclerosis) is the most prevalent autoimmune disease of the CNS (central nervous system) historically characterized as an inflammatory and demyelinating disease. More recently, extensive neuronal pathology has lead to its classification as a neurodegenerative disease as well. While the immune system initiates the autoimmune response it remains unclear how it orchestrates neuronal damage. In our previous studies, using in vitro cultured embryonic neurons, we demonstrated that MBP (myelin basic protein)-specific encephalitogenic CD4 T-cells induce early neuronal damage. In an extension of those studies, here we show that polarized CD4 Th1 and Th17 cells as wells as CD8 T-cells and NK (natural killer) cells induce microtubule destabilization within neurites in a contact-independent manner. Owing to the cytotoxic potential of these immune cells, we isolated the luminal components of lytic granules and determined that they were sufficient to drive microtubule destabilization. Since lytic granules contain cytolytic proteins, we determined that the induction of microtubule destabilization occurred prior to signs of apoptosis. Furthermore, we determined that microtubule destabilization was largely restricted to axons, sparing dendrites. This study demonstrated that lymphocytes with cytolytic activity have the capacity to directly drive MAD (microtubule axonal destabilization) in a bystander manner that is independent of neuronal death.
Collapse
|
78
|
Dell'Acqua ML, Lorenzini L, D'Intino G, Sivilia S, Pasqualetti P, Panetta V, Paradisi M, Filippi MM, Baiguera C, Pizzi M, Giardino L, Rossini PM, Calzà L. Functional and molecular evidence of myelin- and neuroprotection by thyroid hormone administration in experimental allergic encephalomyelitis. Neuropathol Appl Neurobiol 2012; 38:454-70. [PMID: 22007951 DOI: 10.1111/j.1365-2990.2011.01228.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS Recent data in mouse and rat demyelination models indicate that administration of thyroid hormone (TH) has a positive effect on the demyelination/remyelination balance. As axonal pathology has been recognized as an early neuropathological event in multiple sclerosis, and remyelination is considered a pre-eminent neuroprotective strategy, in this study we investigated whether TH administration improves nerve impulse propagation and protects axons. METHODS We followed up the somatosensory evoked potentials (SEPs) in triiodothyronine (T3)-treated and untreated experimental allergic encephalomyelitis (EAE) Dark-Agouti female rats during the electrical stimulation of the tail nerve. T3 treatment started on the 10th day post immunization (DPI) and a pulse administration was continued until the end of the study (33 DPI). SEPs were recorded at baseline (8 DPI) and the day after each hormone/ vehicle administration. RESULTS T3 treatment was associated with better outcome of clinical and neurophysiological parameters. SEPs latencies of the two groups behaved differently, being briefer and closer to control values (=faster impulse propagation) in T3-treated animals. The effect was evident on 24 DPI. In the same groups of animals, we also investigated axonal proteins, showing that T3 administration normalizes neurofilament immunoreactivity in the fasciculus gracilis and tau hyperphosphorylation in the lumbar spinal cord of EAE animals. No sign of plasma hyperthyroidism was found; moreover, the dysregulation of TH nuclear receptor expression observed in the spinal cord of EAE animals was corrected by T3 treatment. CONCLUSIONS T3 supplementation results in myelin sheath protection, nerve conduction preservation and axon protection in this animal model of multiple sclerosis.
Collapse
Affiliation(s)
- M L Dell'Acqua
- Department of Neurology, University Campus Bio-Medico, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Shao X, Carpenter GM, Desmond TJ, Sherman P, Quesada CA, Fawaz M, Brooks AF, Kilbourn MR, Albin RL, Frey KA, Scott PJH. Evaluation of [(11)C]N-Methyl Lansoprazole as a Radiopharmaceutical for PET Imaging of Tau Neurofibrillary Tangles. ACS Med Chem Lett 2012; 3:936-41. [PMID: 24900410 DOI: 10.1021/ml300216t] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/25/2012] [Indexed: 01/27/2023] Open
Abstract
[(11)C]N-Methyl lansoprazole ([(11)C]NML, 3) was synthesized and evaluated as a radiopharmaceutical for quantifying tau neurofibrillary tangle (NFT) burden using positron emission tomography (PET) imaging. [(11)C]NML was synthesized from commercially available lansoprazole in 4.6% radiochemical yield (noncorrected RCY, based upon [(11)C]MeI), 99% radiochemical purity, and 16095 Ci/mmol specific activity (n = 5). Log P was determined to be 2.18. A lack of brain uptake in rodent microPET imaging revealed [(11)C]NML to be a substrate for the rodent permeability-glycoprotein 1 (PGP) transporter, but this could be overcome by pretreating with cyclosporin A to block the PGP. Contrastingly, [(11)C]NML was not found to be a substrate for the primate PGP, and microPET imaging in rhesus revealed [(11)C]NML uptake in the healthy primate brain of ∼1600 nCi/cc maximum at 3 min followed by rapid egress to 500 nCi/cc. Comparative autoradiography between wild-type rats and transgenic rats expressing human tau (hTau +/+) revealed 12% higher uptake of [(11)C]NML in the cortex of brains expressing human tau. Further autoradiography with tau positive brain samples from progressive supranuclear palsy (PSP) patients revealed colocalization of [(11)C]NML with tau NFTs identified using modified Bielschowsky staining. Finally, saturation binding experiments with heparin-induced tau confirmed K d and Bmax values of [(11)C]NML as 700 pM and 0.214 fmol/μg, respectively.
Collapse
Affiliation(s)
- Xia Shao
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor,
Michigan 48109, United States
| | - Garrett M. Carpenter
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor,
Michigan 48109, United States
| | - Timothy J. Desmond
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor,
Michigan 48109, United States
| | - Phillip Sherman
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor,
Michigan 48109, United States
| | - Carole A. Quesada
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor,
Michigan 48109, United States
| | - Maria Fawaz
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor,
Michigan 48109, United States
| | - Allen F. Brooks
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor,
Michigan 48109, United States
| | - Michael R. Kilbourn
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor,
Michigan 48109, United States
| | - Roger L. Albin
- Geriatrics Research, Education, and Clinical Center, VAAAHS, Ann Arbor, Michigan 48105, United States
- Department of Neurology, The University of Michigan Medical School, Ann Arbor,
Michigan 48109, United States
| | - Kirk A. Frey
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor,
Michigan 48109, United States
- Department of Neurology, The University of Michigan Medical School, Ann Arbor,
Michigan 48109, United States
| | - Peter J. H. Scott
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor,
Michigan 48109, United States
- The Interdepartmental Program in Medicinal Chemistry, The University of Michigan, Ann Arbor, Michigan 48109,
United States
| |
Collapse
|
80
|
Abstract
Multiple Sclerosis (MS) is an inflammatory demyelinating neurodegenerative disorder of the brain and spinal cord that causes significant disability in young adults. Although the precise aetiopathogenesis of MS remains unresolved, its pathological hallmarks include inflammation, demyelination, axonal injury (acute and chronic), astrogliosis and variable remyelination. Despite major recent advances in therapeutics for the early stage of the disease there are currently no disease modifying treatments for the progressive stage of disease, whose pathological substrate is axonal degeneration. This represents the great and unmet clinical need in MS. Against this background, human stem cells offer promise both to improve understanding of disease mechanism(s) through in-vitro modeling as well as potentially direct use to supplement and promote remyelination, an endogenous reparative process where entire myelin sheaths are restored to demyelinated axons. Conceptually, stem cells can act directly to myelinate axons or indirectly through different mechanisms to promote endogenous repair; importantly these two mechanisms of action are not mutually exclusive. We propose that discovery of novel methods to invoke or enhance remyelination in MS may be the most effective therapeutic strategy to limit axonal damage and instigate restoration of structure and function in this debilitating condition. Human stem cell derived neurons and glia, including patient specific cells derived through reprogramming, provide an unprecedented experimental system to model MS “in a dish” as well as enable high-throughput drug discovery. Finally, we speculate upon the potential role for stem cell based therapies in MS.
Collapse
|
81
|
Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 2012; 8:647-56. [PMID: 23007702 DOI: 10.1038/nrneurol.2012.168] [Citation(s) in RCA: 691] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Major progress has been made during the past three decades in understanding the inflammatory process and pathogenetic mechanisms in multiple sclerosis (MS). Consequently, effective anti-inflammatory and immunomodulatory treatments are now available for patients in the relapsing-remitting stage of the disease. This Review summarizes studies on the pathology of progressive MS and discusses new data on the mechanisms underlying its pathogenesis. In progressive MS, as in relapsing-remitting MS, active tissue injury is associated with inflammation, but the inflammatory response in the progressive phase occurs at least partly behind the blood-brain barrier, which makes it more difficult to treat. The other mechanisms that drive disease in patients with primary or secondary progressive MS are currently unresolved, although oxidative stress resulting in mitochondrial injury might participate in the induction of demyelination and neurodegeneration in both the relapsing-remitting and progressive stages of MS. Oxidative stress seems to be mainly driven by inflammation and oxidative burst in microglia; however, its effects might be amplified in patients with progressive MS by age-dependent iron accumulation in the brain and by mitochondrial gene deletions, triggered by the chronic inflammatory process.
Collapse
Affiliation(s)
- Hans Lassmann
- Centre for Brain Research, Medical University of Vienna, Wien, Austria.
| | | | | |
Collapse
|
82
|
Mice devoid of Tau have increased susceptibility to neuronal damage in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 2012; 71:422-33. [PMID: 22487860 DOI: 10.1097/nen.0b013e3182540d2e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The abundant axonal microtubule-associated protein tau regulates microtubule and actin dynamics, thereby contributing to normal neuronal function. We examined whether mice deficient in tau (Tau(-/-)) or with high levels of human tau differ from wild-type (WT) mice in their susceptibility to neuroaxonal injury in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. After sensitization with MOG35-55, there was no difference in clinical disease course between human tau and WT mice, but Tau mice had more severe clinical disease and significantly more axonal damage in spinal cord white matter than those in WT mice. Axonal damage in gray matter correlated with clinical severity in individual mice. By immunoblot analysis, the early microtubule-associated protein-1b was increased 2-fold in the spinal cords of Tau mice with chronic experimental autoimmune encephalomyelitis versus naive Tau mice. This difference was not detected in comparable WT animals, which suggests that there was compensation for the loss of tau in the deficient mice. In addition, levels of the growth arrest-specific protein 7b, a tau-binding protein that is stabilized when bound to tau, were higher in WT than those in Tau(-/-) spinal cord samples. These data indicate that loss of tau exacerbates experimental autoimmune encephalomyelitis and suggest that maintaining tau integrity might reduce the axonal damage that occurs in inflammatory neurodegenerative diseases such as multiple sclerosis.
Collapse
|
83
|
Petratos S, Ozturk E, Azari MF, Kenny R, Lee JY, Magee KA, Harvey AR, McDonald C, Taghian K, Moussa L, Mun Aui P, Siatskas C, Litwak S, Fehlings MG, Strittmatter SM, Bernard CCA. Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. ACTA ACUST UNITED AC 2012; 135:1794-818. [PMID: 22544872 DOI: 10.1093/brain/aws100] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multiple sclerosis involves demyelination and axonal degeneration of the central nervous system. The molecular mechanisms of axonal degeneration are relatively unexplored in both multiple sclerosis and its mouse model, experimental autoimmune encephalomyelitis. We previously reported that targeting the axonal growth inhibitor, Nogo-A, may protect against neurodegeneration in experimental autoimmune encephalomyelitis; however, the mechanism by which this occurs is unclear. We now show that the collapsin response mediator protein 2 (CRMP-2), an important tubulin-associated protein that regulates axonal growth, is phosphorylated and hence inhibited during the progression of experimental autoimmune encephalomyelitis in degenerating axons. The phosphorylated form of CRMP-2 (pThr555CRMP-2) is localized to spinal cord neurons and axons in chronic-active multiple sclerosis lesions. Specifically, pThr555CRMP-2 is implicated to be Nogo-66 receptor 1 (NgR1)-dependent, since myelin oligodendrocyte glycoprotein (MOG)(35-55)-induced NgR1 knock-out (ngr1(-)(/)(-)) mice display a reduced experimental autoimmune encephalomyelitis disease progression, without a deregulation of ngr1(-)(/)(-) MOG(35-55)-reactive lymphocytes and monocytes. The limitation of axonal degeneration/loss in experimental autoimmune encephalomyelitis-induced ngr1(-)(/)(-) mice is associated with lower levels of pThr555CRMP-2 in the spinal cord and optic nerve during experimental autoimmune encephalomyelitis. Furthermore, transduction of retinal ganglion cells with an adeno-associated viral vector encoding a site-specific mutant T555ACRMP-2 construct, limits optic nerve axonal degeneration occurring at peak stage of experimental autoimmune encephalomyelitis. Therapeutic administration of the anti-Nogo(623-640) antibody during the course of experimental autoimmune encephalomyelitis, associated with an improved clinical outcome, is demonstrated to abrogate the protein levels of pThr555CRMP-2 in the spinal cord and improve pathological outcome. We conclude that phosphorylation of CRMP-2 may be downstream of NgR1 activation and play a role in axonal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Blockade of Nogo-A/NgR1 interaction may serve as a viable therapeutic target in multiple sclerosis.
Collapse
Affiliation(s)
- Steven Petratos
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton VIC 3800, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Petzold A, Tozer DJ, Schmierer K. Axonal damage in the making: neurofilament phosphorylation, proton mobility and magnetisation transfer in multiple sclerosis normal appearing white matter. Exp Neurol 2011; 232:234-9. [PMID: 21958956 PMCID: PMC3277890 DOI: 10.1016/j.expneurol.2011.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/06/2011] [Accepted: 09/09/2011] [Indexed: 11/29/2022]
Abstract
Aims Multiple sclerosis (MS) leaves a signature on the phosphorylation and thus proton binding capacity of axonal neurofilament (Nf) proteins. The proton binding capacity in a tissue is the major determinant for exchange between bound and free protons and thus the magnetisation transfer ratio (MTR). This study investigated whether the MTR of non-lesional white matter (NLWM) was related to the brain tissue concentration of neurofilament phosphoforms. Methods Unfixed post-mortem brain slices of 12 MS patients were analysed using MTR, T1 at 1.5 T. Blocks containing NLWM were processed for embedding in paraffin and inspected microscopically. Adjacent tissue was microdissected, homogenised and specific protein levels were quantified by ELISA for the Nf heavy chain (NfH) phosphoforms, glial fibrillary acidic protein (GFAP), S100B and ferritin. Results Averaged hyperphosphorylated NfH (SMI34) but not phosphorylated NfH (SMI35) levels were different between individual patients NLWM. The concentration of hyperphosphorylated NfH-SMI34 correlated with T1 (R = 0.70, p = 0.0114) and — inversely — with MTR (R =−0.73, p = 0.0065). NfH-SMI35 was not correlated to any of the MR indices. Conclusions Post-translational modifications of axonal proteins such as phosphorylation of neurofilaments occur in NLWM and may precede demyelination. The resulting change of proton mobility influences MTR and T1. This permits the in vivo detection of these subtle tissue changes on a proteomic level in patients with MS.
Collapse
Affiliation(s)
- A Petzold
- UCL Institute of Neurology, Department of Neuroinflammation, Queen Square, London WC1N 3BG, UK.
| | | | | |
Collapse
|
85
|
Cannon JR, Greenamyre JT. The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 2011; 124:225-50. [PMID: 21914720 DOI: 10.1093/toxsci/kfr239] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neurodegeneration describes the loss of neuronal structure and function. Numerous neurodegenerative diseases are associated with neurodegeneration. Many are rare and stem from purely genetic causes. However, the prevalence of major neurodegenerative diseases is increasing with improvements in treating major diseases such as cancers and cardiovascular diseases, resulting in an aging population. The neurological consequences of neurodegeneration in patients can have devastating effects on mental and physical functioning. The causes of most cases of prevalent neurodegenerative diseases are unknown. The role of neurotoxicant exposures in neurodegenerative disease has long been suspected, with much effort devoted to identifying causative agents. However, causative factors for a significant number of cases have yet to be identified. In this review, the role of environmental neurotoxicant exposures on neurodegeneration in selected major neurodegenerative diseases is discussed. Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis were chosen because of available data on environmental influences. The special sensitivity the nervous system exhibits to toxicant exposure and unifying mechanisms of neurodegeneration are explored.
Collapse
Affiliation(s)
- Jason R Cannon
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
86
|
Bar-Or A, Rieckmann P, Traboulsee A, Yong VW. Targeting progressive neuroaxonal injury: lessons from multiple sclerosis. CNS Drugs 2011; 25:783-99. [PMID: 21870889 DOI: 10.2165/11587820-000000000-00000] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), are characterized by progressive neuroaxonal injury, suggesting a common pathophysiological pathway. Identification and development of neuroprotective therapies for such diseases has proven a major challenge, particularly because of an already substantial neuroaxonal compromise at the time of initial onset of clinical symptoms. Methods for early identification of neurodegeneration are therefore vital to ensure that neuroprotective therapies are applied as early as possible. Recent investigations have enhanced our understanding of the role of neuroaxonal injury in multiple sclerosis (MS). As MS generally manifests earlier in life and can be diagnosed much earlier in the course of the disease than the above-mentioned 'classic' neurodegenerative diseases, it is possible that MS could be used as a model disease to study degeneration and regeneration of the CNS. The mechanism of neuroaxonal injury in MS is believed to be inflammation-led neurodegeneration; however, the reverse may also be true (i.e. neuroaxonal degeneration may precede inflammation). Animal models of PD, AD and ALS have shown that it is likely that most cases of disease are due to initial inflammation, followed by a degenerative process, providing a parallel between MS and the classic neurodegenerative diseases. Other common factors between MS and the neurodegenerative diseases include iron and mitochondrial dysregulation, abnormalities in α-synuclein and tau protein, and a number of immune mediators. Conventional MRI techniques, using markers such as T2-weighted lesions, gadolinium-enhancing lesions and T1-weighted hypointensities, are readily available and routinely used in clinical practice; however, the utility of these MRI measures to predict disease progression in MS is limited. More recently, MRI techniques that provide more pathology-specific data have been applied in MS studies, including magnetic resonance spectroscopy, magnetization transfer ratio and myelin water imaging. Optical coherence tomography (OCT) is a non-MRI technique that quantifies optic nerve integrity and retinal ganglion cell loss as markers of neuroaxonal injury; more research is needed to evaluate whether information obtained from OCT is a reliable marker of axonal injury and long-term disability in MS. Using these advanced techniques, it may become possible to follow degeneration and regeneration longitudinally in patients with MS and to better differentiate the effects of drugs under investigation. Currently available immune-directed therapies that are approved by the US FDA for the first-line treatment of MS (interferon-β and glatiramer acetate) have been shown to decelerate the inflammatory process in MS; however, such therapy is less effective in preventing the progression of the disease and neuroaxonal injury. The use of MS as a clinical model to study modulation of neuroaxonal injury in the brain could have direct implications for the development of treatment strategies in neurodegenerative diseases such as AD, PD and ALS.
Collapse
Affiliation(s)
- Amit Bar-Or
- Department of Neurology and Neurosurgery and Microbiology and Immunology, McGill University, Neuroimmunology Unit, Montreal, QC, Canada
| | | | | | | |
Collapse
|
87
|
Multiple sclerosis as a neurodegenerative disease: pathology, mechanisms and therapeutic implications. Curr Opin Neurol 2011; 24:224-9. [PMID: 21455066 DOI: 10.1097/wco.0b013e328346056f] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Multiple sclerosis (MS) treatments targeting the inflammatory nature of the disease have become increasingly effective in recent years. However, our efforts at targeting the progressive disease phase have so far been largely unsuccessful. This has led to the hypothesis that disease mechanisms independent of an adaptive immune response contribute to disease progression and closely resemble neurodegeneration. RECENT FINDINGS Nonfocal, diffuse changes in the MS brain, especially axonal loss and mitochondrial dysfunction, prove better correlates of disability than total lesion load and have been associated with disease progression. Molecular changes in nondemyelinated MS tissue also suggest that alterations in the MS brain are widespread and consist of pro-inflammatory as well as anti-inflammatory responses. However, local lymphocytic inflammation and microglial activation are salient features of the chronic disease, and T-cell-mediated inflammation contributes to tissue damage. In addition, neuroaxonal cytoskeletal alterations have been associated with disease progression. SUMMARY Our knowledge of the molecular mechanisms leading to neuroaxonal damage and demise in MS is steadily increasing. Experimental therapies targeting neuroaxonal ionic imbalances and energy metabolism in part show promising results. A better understanding of the molecular mechanisms underlying chronic progression will substantially aid the development of new treatment strategies.
Collapse
|
88
|
Dean JM, Riddle A, Maire J, Hansen KD, Preston M, Barnes AP, Sherman LS, Back SA. An organotypic slice culture model of chronic white matter injury with maturation arrest of oligodendrocyte progenitors. Mol Neurodegener 2011; 6:46. [PMID: 21729326 PMCID: PMC3163199 DOI: 10.1186/1750-1326-6-46] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/05/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND CNS myelination disturbances commonly occur in chronic white matter lesions in neurodevelopmental and adult neurological disorders. Recent studies support that myelination failure can involve a disrupted cellular repair mechanism where oligodendrocyte (OL) progenitor cells (OPCs) proliferate in lesions with diffuse astrogliosis, but fail to fully differentiate to mature myelinating OLs. There are no in vitro models that reproduce these features of myelination failure. RESULTS Forebrain coronal slices from postnatal day (P) 0.5/1 rat pups were cultured for 1, 5, or 9 days in vitro (DIV). Slices rapidly exhibited diffuse astrogliosis and accumulation of the extracellular matrix glycosaminoglycan hyaluronan (HA), an inhibitor of OPC differentiation and re-myelination. At 1 DIV ~1.5% of Olig2+ OLs displayed caspase-3 activation, which increased to ~11.5% by 9 DIV. At 1 DIV the density of PDGFRα+ and PDGFRα+/Ki67+ OPCs were significantly elevated compared to 0 DIV (P < 0.01). Despite this proliferative response, at 9 DIV ~60% of white matter OLs were late progenitors (preOLs), compared to ~7% in the postnatal day 10 rat (P < 0.0001), consistent with preOL maturation arrest. Addition of HA to slices significantly decreased the density of MBP+ OLs at 9 DIV compared to controls (217 ± 16 vs. 328 ± 17 cells/mm2, respectively; P = 0.0003), supporting an inhibitory role of HA in OL lineage progression in chronic lesions. CONCLUSIONS Diffuse white matter astrogliosis and early OPC proliferation with impaired OL maturation were reproduced in this model of myelination failure. This system may be used to define mechanisms of OPC maturation arrest and myelination failure related to astrogliosis and HA accumulation.
Collapse
Affiliation(s)
- Justin M Dean
- Department of Pediatrics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins. J Neurosci 2011; 31:6053-8. [PMID: 21508230 DOI: 10.1523/jneurosci.5524-09.2011] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI). Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI. However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs or OPCs. Identifying the signaling pathways that inhibit OL differentiation in the injured spinal cord could lead to new therapeutic strategies to enhance remyelination and functional recovery after SCI. In the present study, we show that reactive astrocytes from the injured rat spinal cord or their conditioned media inhibit OL differentiation of adult OPCs with concurrent promotion of astrocyte differentiation. The expression of bone morphogenetic proteins (BMP) is dramatically increased in the reactive astrocytes and their conditioned media. Importantly, blocking BMP activity by BMP receptor antagonist, noggin, reverse the effects of active astrocytes on OPC differentiation by increasing the differentiation of OL from OPCs while decreasing the generation of astrocytes. These data indicate that the upregulated bone morphogenetic proteins in the reactive astrocytes are major factors to inhibit OL differentiation of OPCs and to promote its astrocyte differentiation. These data suggest that manipulation of BMP signaling in the endogenous or grafted NSCs or OPCs may be a useful therapeutic strategy to increase their OL differentiation and remyelination and enhance functional recovery after SCI.
Collapse
|
90
|
Cerebrospinal fluid and blood biomarkers of neuroaxonal damage in multiple sclerosis. Mult Scler Int 2011; 2011:767083. [PMID: 22096642 PMCID: PMC3198600 DOI: 10.1155/2011/767083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/08/2011] [Indexed: 12/20/2022] Open
Abstract
Following emerging evidence that neurodegenerative processes in multiple sclerosis (MS) are present from its early stages, an intensive scientific interest has been directed to biomarkers of neuro-axonal damage in body fluids of MS patients. Recent research has introduced new candidate biomarkers but also elucidated pathogenetic and clinical relevance of the well-known ones. This paper reviews the existing data on blood and cerebrospinal fluid biomarkers of neuroaxonal damage in MS and highlights their relation to clinical parameters, as well as their potential predictive value to estimate future disease course, disability, and treatment response. Strategies for future research in this field are suggested.
Collapse
|
91
|
Galimberti D, Macmurray J, Scalabrini D, Fenoglio C, De Riz M, Comi C, Comings D, Cortini F, Villa C, Serpente M, Cantoni C, Ridolfi E, Fardipoor MH, Leone M, Monaco F, Bresolin N, Scarpini E. GSK3β genetic variability in patients with Multiple Sclerosis. Neurosci Lett 2011; 497:46-8. [PMID: 21527318 DOI: 10.1016/j.neulet.2011.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/09/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
Glycogen synthase kinase-3 beta (GSK3β) is a ubiquitous kinase that is part of multiple signaling pathways. It has neurotrophic/neuroprotective effects by mediating the actions of neurotrophic molecules in the brain, thus providing neuroprotection through modulation of energy metabolism. Notably, it has been demonstrated that GSK3β is involved in Wnt-beta-catenin signaling, which contributes to the inhibition of myelination and remyelination processes in mammals. Three-hundred nineteen patients with MS and 294 age-matched controls were genotyped by allelic discrimination for four common GSK3β variants (rs2199503, rs9826659, rs334558 and rs6438552) tagging about 100% of GSK-3β variability. A statistically significant increased frequency of the rs334558 GG genotype was observed in patients as compared with controls (25.4% versus 17.7%, P=0.02; OR:1.58, 95%CI: 1.07-2.34). Stratifying MS patients according to the disease subtype, a statistically significant difference of rs334558 GG frequency was found between Relapsing Remitting (RR), but not Primary Progressive or Secondary MS, and controls (27.0% versus 17.7%, P=0.01; OR: 1.72, 95%CI: 1.13-2.61). GSK3β rs334558 is a susceptibility factor for MS. As it is located in the promoter region, a possible explanatory mechanism could be an influence of the variant on the gene transcription rate.
Collapse
Affiliation(s)
- Daniela Galimberti
- Department of Neurological Sciences, "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
CSF and serum total-tau and phospho-tau(181P) in MS patients. Open Med (Wars) 2011. [DOI: 10.2478/s11536-011-0003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIn search of biological marker in multiple sclerosis (MS), total-tau and phospho-tau (Thr181) concentrations were established in CSF and serum of 78 patients with MS, using commercially available kits. Serum and CSF concentrations of IgG, IgM, and albumin were assayed simultaneously to calculate quotients and indices of intrathecal synthesis. Serum t-tau detection was strikingly low (23.1%); therefore, this factor was excluded from further analysis. Serum p-tau levels did not correlate with any of indices or quotients. Unexpectedly, CSF t-tau and p-tau showed an inverse relation with MSSS and EDSS, which has not been published elsewhere. Our results do not support utility of serum t-tau and p-tau as surrogate markers for MS.
Collapse
|
93
|
Höftberger R, Fink S, Aboul-Enein F, Botond G, Olah J, Berki T, Ovadi J, Lassmann H, Budka H, Kovacs GG. Tubulin polymerization promoting protein (TPPP/p25) as a marker for oligodendroglial changes in multiple sclerosis. Glia 2011; 58:1847-57. [PMID: 20737479 DOI: 10.1002/glia.21054] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Multiple sclerosis (MS) is an idiopathic chronic inflammatory demyelinating disease of the central nervous system with variable extent of remyelination. Remyelination originates from oligodendrocyte (OG) precursor cells, which migrate and differentiate into mature OG. Tubulin polymerization promoting protein (TPPP/p25) is located in mature OG and aggregates in oligodendroglial cytoplasmic inclusions in multiple system atrophy. We developed a novel monoclonal anti-TPPP/p25 antibody to quantify OG in different subtypes and disease stages of MS, and possible degenerative changes in OG. We evaluated autopsy material from 25 MS cases, including acute, primary progressive, secondary progressive, relapsing remitting MS, and five controls. Demyelinated lesions revealed loss of TPPP/p25-positive OG within the plaques. In remyelination, TPPP/p25 was first expressed in OG cytoplasms and later became positive in myelin sheaths. We observed increased numbers of TPPP/p25 immunoreactive OG in the normal appearing white matter (NAWM) in MS patients. In MS cases, the cytoplasmic area of TPPP/p25 immunoreactivity in the OG was higher in the periplaque area when compared with NAWM and the plaque, and TPPP/p25 immunoreactive OG cytoplasmic area inversely correlated with the disease duration. There was a lack of phospho-TDP-43, phospho-tau, α-synuclein, and ubiquitin immunoreactivity in OG with enlarged cytoplasm. Our data suggest impaired differentiation, migration, and activation capacity of OG in later disease stages of MS. Upregulation of TPPP/p25 in the periplaque white matter OG without evidence for inclusion body formation might reflect an activation state. Distinct and increased expression of TPPP/p25 in MS renders it a potential prognostic and diagnostic marker of MS.
Collapse
Affiliation(s)
- Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Stadelmann C, Wegner C, Brück W. Inflammation, demyelination, and degeneration - recent insights from MS pathology. Biochim Biophys Acta Mol Basis Dis 2010; 1812:275-82. [PMID: 20637864 DOI: 10.1016/j.bbadis.2010.07.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 06/30/2010] [Accepted: 07/06/2010] [Indexed: 12/29/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system which responds to anti-inflammatory treatments in the early disease phase. However, the pathogenesis of the progressive disease phase is less well understood, and inflammatory as well as neurodegenerative mechanisms of tissue damage are currently being discussed. This review summarizes current knowledge on the interrelation between inflammation, demyelination, and neurodegeneration derived from the study of human autopsy and biopsy brain tissue and experimental models of MS.
Collapse
|
95
|
Anderson JM, Patani R, Reynolds R, Nicholas R, Compston A, Spillantini MG, Chandran S. Abnormal tau phosphorylation in primary progressive multiple sclerosis. Acta Neuropathol 2010; 119:591-600. [PMID: 20306268 DOI: 10.1007/s00401-010-0671-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 03/07/2010] [Accepted: 03/12/2010] [Indexed: 01/01/2023]
Abstract
Although neurodegeneration is the pathological substrate of progression in multiple sclerosis (MS), the underlying mechanisms remain unresolved. Abnormal phosphorylation of tau, implicated in the aetiopathogenesis of a number of classic neurodegenerative disorders, has also recently been described in secondary progressive MS (SPMS). In contrast to SPMS, primary progressive MS (PPMS) represents a significant subset of patients with accumulating neurological disability from onset. The neuropathological relationship between SPMS and PPMS is unknown. Against this background, we investigated tau phosphorylation status in five cases of PPMS using immunohistochemical and biochemical methods. We report widespread abnormal tau hyperphosphorylation of the classic tau phospho-epitopes occurring in multiple cell types but with a clear immunohistochemical glial bias. In addition, biochemical analysis revealed abnormally phosphorylated insoluble tau in all cases. These findings establish a platform for further study of the role of insoluble tau formation, including determining the relevance of glial tau pathology, in the neurodegenerative phase of MS.
Collapse
Affiliation(s)
- Jane Marian Anderson
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
96
|
Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics. Acta Neuropathol 2010; 119:389-408. [PMID: 20198481 DOI: 10.1007/s00401-010-0658-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/12/2010] [Accepted: 02/13/2010] [Indexed: 12/11/2022]
Abstract
Neuropathological diagnosis of neurodegenerative dementias evolved by adapting the results of neuroanatomy, biochemistry, and cellular and molecular biology. Milestone findings of intra- and extracellular argyrophilic structures, visualizing protein deposition, initiated a protein-based classification. Widespread application of immunohistochemical and biochemical investigations revealed that (1) there are modifications of proteins intrinsic to disease (species that are phosphorylated, nitrated, oligomers, proteinase-resistant, with or without amyloid characteristics; cleavage products), (2) disease forms characterized by the accumulation of a single protein only are rather the exception than the rule, and (3) some modifications of proteins elude present neuropathological diagnostic procedures. In this review, we summarize how neuropathology, together with biochemistry, contributes to disease typing, by demonstrating a spectrum of disorders characterized by the deposition of various modifications of various proteins in various locations. Neuropathology may help to elucidate how brain pathologies alter the detectability of proteins in body fluids by upregulation of physiological forms or entrapment of different proteins. Modifications of at least the five most relevant proteins (amyloid-beta, prion protein, tau, alpha-synuclein, and TDP-43), aided by analysis of further "attracted" proteins, are pivotal to be evaluated simultaneously with different methods. This should complement the detection of biomarkers associated with pathogenetic processes, and also neuroimaging and genetic analysis, in order to obtain a highly personalized diagnostic profile. Defining clusters of patients based on the patterns of protein deposition and immunohistochemically or biochemically detectable modifications of proteins ("codes") may have higher prognostic predictive value, may be useful for monitoring therapy, and may open new avenues for research on pathogenesis.
Collapse
|
97
|
Anderson JM, Patani R, Reynolds R, Nicholas R, Compston A, Spillantini MG, Chandran S. Evidence for abnormal tau phosphorylation in early aggressive multiple sclerosis. Acta Neuropathol 2009; 117:583-9. [PMID: 19288121 DOI: 10.1007/s00401-009-0515-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/25/2022]
Abstract
Although progression in multiple sclerosis is pathologically dominated by neurodegeneration, the underlying mechanism is unknown. Abnormal hyperphosphorylation of tau is implicated in the aetiopathogenesis of some common neurodegenerative disorders. We recently demonstrated the association of insoluble tau with established secondary progressive MS, raising the hypothesis that its accumulation is relevant to disease progression. In order to begin to determine the temporal emergence of abnormal tau with disease progression in MS, we examined tau phosphorylation in cerebral tissue from a rare case of early aggressive MS. We report tau hyperphosphorylation occurring in multiple cell types, with biochemical analysis confirming restriction to the soluble fraction. The absence of sarcosyl-insoluble tau fraction in early disease and its presence in secondary progression raises the possibility that insoluble tau accumulates with disease progression.
Collapse
Affiliation(s)
- Jane Marian Anderson
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
98
|
Association of α-Synuclein Immunoreactivity With Inflammatory Activity in Multiple Sclerosis Lesions. J Neuropathol Exp Neurol 2009; 68:179-89. [DOI: 10.1097/nen.0b013e318196e905] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
99
|
Devine MJ, Lewis PA. Emerging pathways in genetic Parkinson's disease: tangles, Lewy bodies and LRRK2. FEBS J 2009; 275:5748-57. [PMID: 19021752 DOI: 10.1111/j.1742-4658.2008.06707.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The last decade has seen clear links emerge between the genetic determinants and neuropathological hallmarks of parkinsonism and dementia, notably with the discovery of mutations in alpha-synuclein and tau. Following the description of mutations in LRRK2 linked to Parkinson's disease, characterized by variable pathology including either alpha-synuclein or tau deposition, it has been suggested that LRRK2 functions as an upstream regulator of Parkinson's disease pathogenesis. This minireview explores this model, in the context of our current understanding of the biochemistry of LRRK2, alpha-synuclein and tau.
Collapse
Affiliation(s)
- Michael J Devine
- Department of Clinical Neuroscience, Imperial College London, UK
| | | |
Collapse
|
100
|
Abstract
Multiple sclerosis is primarily an inflammatory disorder of the brain and spinal cord in which focal lymphocytic infiltration leads to damage of myelin and axons. Initially, inflammation is transient and remyelination occurs but is not durable. Hence, the early course of disease is characterised by episodes of neurological dysfunction that usually recover. However, over time the pathological changes become dominated by widespread microglial activation associated with extensive and chronic neurodegeneration, the clinical correlate of which is progressive accumulation of disability. Paraclinical investigations show abnormalities that indicate the distribution of inflammatory lesions and axonal loss (MRI); interference of conduction in previously myelinated pathways (evoked electrophysiological potentials); and intrathecal synthesis of oligoclonal antibody (examination by lumbar puncture of the cerebrospinal fluid). Multiple sclerosis is triggered by environmental factors in individuals with complex genetic-risk profiles. Licensed disease modifying agents reduce the frequency of new episodes but do not reverse fixed deficits and have questionable effects on the long-term accumulation of disability and disease progression. We anticipate that future studies in multiple sclerosis will provide a new taxonomy on the basis of mechanisms rather than clinical empiricism, and so inform strategies for improved treatment at all stages of the disease.
Collapse
Affiliation(s)
- Alastair Compston
- Department of Clinical Neurosciences, University of Cambridge Clinical School, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|