51
|
Alsaleem M, Carrion V, Weinstock A, Chandrasekharan P. Infantile refractory seizures due to de novo KCNT 1 mutation. BMJ Case Rep 2019; 12:12/10/e231178. [PMID: 31653631 DOI: 10.1136/bcr-2019-231178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We describe a term female infant who presented with multiple seizures early in infancy. The clinical and electrical seizures were refractory to traditional antiepileptic medications. After extensive workup, seizure panel testing revealed KCNT1 gene mutation, which is associated with nocturnal frontal lobe epilepsy and epilepsy of infancy with migrating focal seizures. The infant's condition improved with the combination of traditional as well non-traditional antiepileptic therapy.
Collapse
Affiliation(s)
- Mahdi Alsaleem
- Pediatrics, Children's Mercy Hospital, University of Kansas, Wichita, Kansas, USA
| | - Vivien Carrion
- Pediatrics, University at Buffalo - The State University of New York, Buffalo, New York, USA
| | - Arie Weinstock
- Neurology, University at Buffalo - The State University of New York, Buffalo, New York, USA
| | - Praveen Chandrasekharan
- Pediatrics, University at Buffalo - The State University of New York, Buffalo, New York, USA
| |
Collapse
|
52
|
Kuchenbuch M, Barcia G, Chemaly N, Carme E, Roubertie A, Gibaud M, Van Bogaert P, de Saint Martin A, Hirsch E, Dubois F, Sarret C, Nguyen The Tich S, Laroche C, des Portes V, Billette de Villemeur T, Barthez MA, Auvin S, Bahi-Buisson N, Desguerre I, Kaminska A, Benquet P, Nabbout R. KCNT1 epilepsy with migrating focal seizures shows a temporal sequence with poor outcome, high mortality and SUDEP. Brain 2019; 142:2996-3008. [DOI: 10.1093/brain/awz240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 11/14/2022] Open
Abstract
Data on KCNT1 epilepsy of infancy with migrating focal seizures are heterogeneous and incomplete. Kuchenbuch et al. refine the syndrome phenotype, showing a three-step temporal sequence, poor prognosis with acquired microcephaly, high prevalence of extra-neurological manifestations and early mortality, particularly due to SUDEP. Refining the electro-clinical spectrum should facilitate early diagnosis.
Collapse
Affiliation(s)
- Mathieu Kuchenbuch
- University Rennes, CHU Rennes (Department of Clinical neurophysiology), Inserm, LTSI (Laboratoire de Traitement du Signal et de l’Image), UMR-1099, F-35000 Rennes, France
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
| | - Giulia Barcia
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
- Department of Genetics, Necker Enfants Malades Hospital, Imagine Institute, France
| | - Nicole Chemaly
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
| | - Emilie Carme
- Department of Pediatric Neurology, University of Montpellier, France
| | - Agathe Roubertie
- Department of Pediatric Neurology, University of Montpellier, France
| | - Marc Gibaud
- Department of Pediatric Neurology, Angers University Hospital, France
| | | | | | - Edouard Hirsch
- Department of Pediatric Neurology, Strasbourg University Hospital, France
| | - Fanny Dubois
- Department of Pediatric Neurology, CHU Grenoble Alpes, F-38000 Grenoble, France
| | | | | | - Cecile Laroche
- Department of Pediatric Neurology, Limoges University Hospital, France
| | - Vincent des Portes
- Department of Pediatric Neurology, CNRS UMR 5304, F- 69675 Bron, France
- Lyon-1 University, F-69008 Lyon, France
| | | | | | - Stéphane Auvin
- Université Paris Diderot, Sorbonne Paris Cité, INSERM UMR1141, Paris, France
- AP-HP, Hôpital Robert Debré, Service de Neurologie Pédiatrique, Paris, France
| | - Nadia Bahi-Buisson
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Isabelle Desguerre
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Anna Kaminska
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- AP-HP, Necker-Enfants Malades Hospital, Department of Clinical Neurophysiology, Paris, France
| | - Pascal Benquet
- University Rennes, CHU Rennes (Department of Clinical neurophysiology), Inserm, LTSI (Laboratoire de Traitement du Signal et de l’Image), UMR-1099, F-35000 Rennes, France
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
| |
Collapse
|
53
|
Rodríguez C, Sánchez-Morán I, Álvarez S, Tirado P, Fernández-Mayoralas DM, Calleja-Pérez B, Almeida Á, Fernández-Jaén A. A novel human Cdh1 mutation impairs anaphase promoting complex/cyclosome activity resulting in microcephaly, psychomotor retardation, and epilepsy. J Neurochem 2019; 151:103-115. [PMID: 31318984 PMCID: PMC6851713 DOI: 10.1111/jnc.14828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/24/2023]
Abstract
The Fizzy-related protein 1 (Fzr1) gene encodes Cdh1 protein, a coactivator of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C). Previously, we found that genetic ablation of Fzr1 promotes the death of neural progenitor cells leading to neurogenesis impairment and microcephaly in mouse. To ascertain the possible translation of these findings in humans, we searched for mutations in the Fzr1 gene in 390 whole exomes sequenced in trio in individuals showing neurodevelopmental disorders compatible with a genetic origin. We found a novel missense (p.Asp187Gly) Fzr1 gene mutation (c.560A>G) in a heterozygous state in a 4-year-old boy, born from non-consanguineous Spanish parents, who presents with severe antenatal microcephaly, psychomotor retardation, and refractory epilepsy. Cdh1 protein levels in leucocytes isolated from the patient were significantly lower than those found in his parents. Expression of the Asp187Gly mutant form of Cdh1 in human embryonic kidney 293T cells produced less Cdh1 protein and APC/C activity, resulting in altered cell cycle distribution when compared with cells expressing wild-type Cdh1. Furthermore, ectopic expression of the Asp187Gly mutant form of Cdh1 in cortical progenitor cells in primary culture failed to abolish the enlargement of the replicative phase caused by knockout of endogenous Cdh1. These results indicate that the loss of function of APC/C-Cdh1 caused by Cdh1 Asp187Gly mutation is a new cause of prenatal microcephaly, psychomotor retardation, and severe epilepsy. Read the Editorial Highlight for this article on page 8. Cover Image for this issue: doi: 10.1111/jnc.14524.
Collapse
Affiliation(s)
- Cristina Rodríguez
- Instituto de Investigación Biomédica de Salamanca, Hospital Universitario de Salamanca, CSIC, Universidad de Salamanca, Salamanca, Spain.,Instituto de Biología Funcional y Genómica, CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Irene Sánchez-Morán
- Instituto de Investigación Biomédica de Salamanca, Hospital Universitario de Salamanca, CSIC, Universidad de Salamanca, Salamanca, Spain.,Instituto de Biología Funcional y Genómica, CSIC, Universidad de Salamanca, Salamanca, Spain
| | | | - Pilar Tirado
- Departamento de Neuropediatría, Hospital Universitario La Paz, Madrid, Spain
| | - Daniel M Fernández-Mayoralas
- Departamento de Neurología Infantil, Hospital Universitario Quirónsalud, Universidad Europea de Madrid, Madrid, Spain
| | - Beatriz Calleja-Pérez
- Centro de Salud Doctor Cirajas, Servicio de Atención Primaria de Salud, Madrid, Spain
| | - Ángeles Almeida
- Instituto de Investigación Biomédica de Salamanca, Hospital Universitario de Salamanca, CSIC, Universidad de Salamanca, Salamanca, Spain.,Instituto de Biología Funcional y Genómica, CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Alberto Fernández-Jaén
- Departamento de Neurología Infantil, Hospital Universitario Quirónsalud, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
54
|
The epileptic encephalopathy jungle - from Dr West to the concepts of aetiology-related and developmental encephalopathies. Curr Opin Neurol 2019; 31:216-222. [PMID: 29356691 DOI: 10.1097/wco.0000000000000535] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW We aim to further disentangle the jungle of terminology of epileptic encephalopathy and provide some insights into the current understanding about the aetiology and pathophysiology of this process. We cover also the key features of epilepsy syndromes of infancy and childhood which are considered at high risk of developing an epileptic encephalopathy. RECENT FINDINGS The concept of 'epileptic encephalopathy' has progressively been elaborated by the International League Against Epilepsy according to growing clinical and laboratory evidence. It defines a process of neurological impairment caused by the epileptic activity itself and, therefore, potentially reversible with successful treatment, although to a variable extent. Epileptic activity interfering with neurogenesis, synaptogenesis, and normal network organization as well as triggering neuroinflammation are among the possible pathophysiological mechanisms leading to the neurological compromise. This differs from the newly introduced concept of 'developmental encephalopathy' which applies to where the epilepsy and developmental delay are both because of the underlying aetiology and aggressive antiepileptic treatment may not be helpful. SUMMARY The understanding and use of correct terminology is crucial in clinical practice enabling appropriate expectations of antiepileptic treatment. Further research is needed to elucidate underlying pathophysiological mechanisms, define clear outcome predictors, and find new treatment targets.
Collapse
|
55
|
Yoshitomi S, Takahashi Y, Imai K, Koshimizu E, Miyatake S, Nakashima M, Saitsu H, Matsumoto N, Kato M, Fujita T, Ishii A, Hirose S, Inoue Y. Different types of suppression-burst patterns in patients with epilepsy of infancy with migrating focal seizures (EIMFS). Seizure 2019; 65:118-123. [PMID: 30684875 DOI: 10.1016/j.seizure.2019.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/26/2018] [Accepted: 01/12/2019] [Indexed: 10/27/2022] Open
Abstract
PURPOSE In rare cases, patients with epilepsy of infancy withmigrating focal seizures (EIMFS) exhibit suppression-burst (SB) patterns on electroencephalography (EEG), similar to the findings observed in patients with Ohtahara syndrome and early myoclonic encephalopathy. In this report, we discuss six cases of EIMFS in which patients exhibited two types of SB patterns. METHODS We evaluated six patients with EIMFS who had been admitted to the NHO Shizuoka Institute of Epilepsy and Neurological Disorders between 2011 and 2018. We retrospectively examined clinical characteristics and EEG findings for each patient. In all patients, the first EEG was performed within 1 month after seizure onset. Afterwards, EEG examinations were performed at irregular intervals (ranging from 1 to 5 months). RESULTS Age at seizure onset ranged from 2 days to 3 months. SB was first detected within 1 month of age in two patients, and within the range of 3-14 months in the remaining four patients. Among the latter four patients, SB patterns persisted at the final EEG recording in three patients (34-54 months). In all patients, SB patterns were observed during sleep only. Interhemispheric asynchrony in SB was observed in the two patients who exhibited SB within 1 month of age, while synchronous SB patterns were observed in the remaining four patients. CONCLUSIONS Our findings indicate that EIMFS may be associated with two types of SB patterns (early-onset and late-onset), which can be distinguished based on the stage of emergence and level of synchrony.
Collapse
Affiliation(s)
- Shinsaku Yoshitomi
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Aoi-ku, Shizuoka-shi, Shizuoka, 420-8688, Japan.
| | - Yukitoshi Takahashi
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Aoi-ku, Shizuoka-shi, Shizuoka, 420-8688, Japan
| | - Katsumi Imai
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Aoi-ku, Shizuoka-shi, Shizuoka, 420-8688, Japan
| | - Eriko Koshimizu
- Yokohama City University Graduate School of Medicine, Department of Human Genetics, 3-9 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Satoko Miyatake
- Yokohama City University Graduate School of Medicine, Department of Human Genetics, 3-9 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Mitsuko Nakashima
- Yokohama City University Graduate School of Medicine, Department of Human Genetics, 3-9 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan; Hamamatsu University School of Medicine, Department of Biochemistry, 1-20-1 Handayama, Higashi-ku, Hamamatsu-shi, Shizuoka, 431-3192, Japan
| | - Hirotomo Saitsu
- Yokohama City University Graduate School of Medicine, Department of Human Genetics, 3-9 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan; Hamamatsu University School of Medicine, Department of Biochemistry, 1-20-1 Handayama, Higashi-ku, Hamamatsu-shi, Shizuoka, 431-3192, Japan
| | - Naomichi Matsumoto
- Yokohama City University Graduate School of Medicine, Department of Human Genetics, 3-9 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Takako Fujita
- Department of Pediatrics School of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka-shi, Fukuoka, 814-0180, Japan
| | - Atsushi Ishii
- Department of Pediatrics School of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka-shi, Fukuoka, 814-0180, Japan
| | - Shinichi Hirose
- Department of Pediatrics School of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka-shi, Fukuoka, 814-0180, Japan
| | - Yushi Inoue
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Aoi-ku, Shizuoka-shi, Shizuoka, 420-8688, Japan
| |
Collapse
|
56
|
Kuchenbuch M, Benquet P, Kaminska A, Roubertie A, Carme E, de Saint Martin A, Hirsch E, Dubois F, Laroche C, Barcia G, Chemaly N, Milh M, Villeneuve N, Sauleau P, Modolo J, Wendling F, Nabbout R. Quantitative analysis and EEG markers of KCNT1 epilepsy of infancy with migrating focal seizures. Epilepsia 2018; 60:20-32. [DOI: 10.1111/epi.14605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Mathieu Kuchenbuch
- CHU Rennes (Department of Pediatric and Clinical Neurophysiology); INSERM; LTSI - UMR 1099; University of Rennes; Rennes France
- INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity; University Paris Descartes, Sorbonne Paris Cité; Paris France
| | - Pascal Benquet
- INSERM; LTSI - UMR 1099; University of Rennes; Rennes France
| | - Anna Kaminska
- INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity; University Paris Descartes, Sorbonne Paris Cité; Paris France
- Reference Center for Rare Epilepsies; Department of Pediatric Neurophysiology; Imagine Institute; Necker-Enfants Malades Hospital; APHP; Paris France
| | - Agathe Roubertie
- Department of Pediatric Neurology; Montpellier University; Montpellier France
| | - Emilie Carme
- Department of Pediatric Neurology; Montpellier University; Montpellier France
| | - Anne de Saint Martin
- Department of Pediatric Neurology; Strasbourg University Hospital; Strasbourg France
| | - Edouard Hirsch
- Department of Pediatric Neurology; Strasbourg University Hospital; Strasbourg France
| | - Fanny Dubois
- Department of Pediatric Neurology; CHU Grenoble Alpes; Grenoble France
| | - Cécile Laroche
- Department of Clinical Genetics; Imagine Institute; Necker Enfants Malades Hospital; Paris France
| | - Giulia Barcia
- INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity; University Paris Descartes, Sorbonne Paris Cité; Paris France
- CHU de Rennes (Department of Neurophysiology); “Behavior and Basal Ganglia” Research Unit, EA4712; University of Rennes; Rennes France
| | - Nicole Chemaly
- INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity; University Paris Descartes, Sorbonne Paris Cité; Paris France
- Reference Center for Rare Epilepsies; Department of Pediatric Neurology; Imagine Institute; Necker-Enfants Malades Hospital; APHP; Paris France
| | - Matthieu Milh
- Pediatric Neurology Department; AP-HM; Timone Children Hospital; Marseille France
| | - Nathalie Villeneuve
- Pediatric Neurology Department; AP-HM; Timone Children Hospital; Marseille France
| | - Paul Sauleau
- CHU de Rennes (Department of Neurophysiology); “Behavior and Basal Ganglia” Research Unit, EA4712; University of Rennes; Rennes France
| | - Julien Modolo
- INSERM; LTSI - UMR 1099; University of Rennes; Rennes France
| | | | - Rima Nabbout
- INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity; University Paris Descartes, Sorbonne Paris Cité; Paris France
- Reference Center for Rare Epilepsies; Department of Pediatric Neurology; Imagine Institute; Necker-Enfants Malades Hospital; APHP; Paris France
| |
Collapse
|
57
|
Numis AL, Nair U, Datta AN, Sands TT, Oldham MS, Patel A, Li M, Gazina E, Petrou S, Cilio MR. Lack of response to quinidine in KCNT1
-related neonatal epilepsy. Epilepsia 2018; 59:1889-1898. [DOI: 10.1111/epi.14551] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Adam L. Numis
- Department of Neurology; University of California San Francisco; San Francisco California
- Department of Pediatrics; University of California San Francisco; San Francisco California
| | - Umesh Nair
- The Florey Institute of Neuroscience & Mental Health; Parkville Victoria Australia
| | - Anita N. Datta
- Department of Pediatrics; University of British Columbia; Vancouver British Columbia Canada
| | | | - Michael S. Oldham
- Department of Neurology; University of California San Francisco; San Francisco California
| | - Akash Patel
- Department of Pediatrics; University of California San Francisco; San Francisco California
| | - Melody Li
- The Florey Institute of Neuroscience & Mental Health; Parkville Victoria Australia
| | - Elena Gazina
- The Florey Institute of Neuroscience & Mental Health; Parkville Victoria Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience & Mental Health; Parkville Victoria Australia
| | - Maria Roberta Cilio
- Department of Neurology; University of California San Francisco; San Francisco California
- Department of Pediatrics; University of California San Francisco; San Francisco California
- Institute of Human Genetics; University of California San Francisco; San Francisco California
| |
Collapse
|
58
|
Pavone P, Corsello G, Ruggieri M, Marino S, Marino S, Falsaperla R. Benign and severe early-life seizures: a round in the first year of life. Ital J Pediatr 2018; 44:54. [PMID: 29764460 PMCID: PMC5952424 DOI: 10.1186/s13052-018-0491-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND At the onset, differentiation between abnormal non-epileptic movements, and epileptic seizures presenting in early life is difficult as is clinical diagnosis and prognostic evaluation of the various seizure disorders presenting at this age. Seizures starting in the first year of life including the neonatal period might have a favorable course, such as in infants presenting with benign familial neonatal epilepsy, febrile seizures simplex or acute symptomatic seizures. However, in some cases, the onset of seizures at birth or in the first months of life have a dramatic evolution with severe cerebral impairment. Seizure disorders starting in early life include the "epileptic encephalopathies", a group of conditions characterized by drug resistant seizures, delayed developmental skills, and intellective disability. This group of disorders includes early infantile epileptic encephalopathy also known as Ohtahara syndrome, early myoclonic encephalopathy, epilepsy of infancy with migrating focal seizures, infantile spasms syndrome (also known as West syndrome), severe myoclonic epilepsy in infancy (also known as Dravet syndrome) and, myoclonic encephalopathies in non-progressive disorder. Here we report on seizures manifesting in the first year of life including the neonatal period. Conditions with a benign course, and those with severe evolution are presented. At this early age, clinical identification of seizures, distinction of each of these disorders, type of treatment and prognosis is particularly challenging. The aim of this report is to present the clinical manifestations of each of these disorders and provide an updated review of the conditions associated with seizures in the first year of life.
Collapse
Affiliation(s)
- Piero Pavone
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, A.U.O. Vittorio Emanuele-Policlinico of Catania, Via Santa Sofia 78, 95100, Catania, Italy.
| | - Giovanni Corsello
- Department of Maternal and Child Health, University of Palermo, Palermo, Italy
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, A.U.O. Vittorio Emanuele-Policlinico of Catania, Via Santa Sofia 78, 95100, Catania, Italy
| | - Silvia Marino
- University-Hospital 'Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | - Simona Marino
- University-Hospital 'Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- University-Hospital 'Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| |
Collapse
|
59
|
Gorman KM, Forman E, Conroy J, Allen NM, Shahwan A, Lynch SA, Ennis S, King MD. Novel SMC1A variant and epilepsy of infancy with migrating focal seizures: Expansion of the phenotype. Epilepsia 2018; 58:1301-1302. [PMID: 28677859 DOI: 10.1111/epi.13794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kathleen M Gorman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's University Hospital, Dublin, Ireland
| | - Eva Forman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's University Hospital, Dublin, Ireland
| | - Judith Conroy
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Nicholas M Allen
- Department of Paediatrics, National University of Ireland Galway and Galway University Hospital, Galway, Ireland
| | - Amre Shahwan
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's University Hospital, Dublin, Ireland
| | - Sally A Lynch
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,Department of Clinical Genetics, Children's University Hospital, Dublin, Ireland
| | - Sean Ennis
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Mary D King
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's University Hospital, Dublin, Ireland.,Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
60
|
McTague A, Nair U, Malhotra S, Meyer E, Trump N, Gazina EV, Papandreou A, Ngoh A, Ackermann S, Ambegaonkar G, Appleton R, Desurkar A, Eltze C, Kneen R, Kumar AV, Lascelles K, Montgomery T, Ramesh V, Samanta R, Scott RH, Tan J, Whitehouse W, Poduri A, Scheffer IE, Chong WKK, Cross JH, Topf M, Petrou S, Kurian MA. Clinical and molecular characterization of KCNT1-related severe early-onset epilepsy. Neurology 2018; 90:e55-e66. [PMID: 29196579 PMCID: PMC5754647 DOI: 10.1212/wnl.0000000000004762] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 09/26/2017] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To characterize the phenotypic spectrum, molecular genetic findings, and functional consequences of pathogenic variants in early-onset KCNT1 epilepsy. METHODS We identified a cohort of 31 patients with epilepsy of infancy with migrating focal seizures (EIMFS) and screened for variants in KCNT1 using direct Sanger sequencing, a multiple-gene next-generation sequencing panel, and whole-exome sequencing. Additional patients with non-EIMFS early-onset epilepsy in whom we identified KCNT1 variants on local diagnostic multiple gene panel testing were also included. When possible, we performed homology modeling to predict the putative effects of variants on protein structure and function. We undertook electrophysiologic assessment of mutant KCNT1 channels in a xenopus oocyte model system. RESULTS We identified pathogenic variants in KCNT1 in 12 patients, 4 of which are novel. Most variants occurred de novo. Ten patients had a clinical diagnosis of EIMFS, and the other 2 presented with early-onset severe nocturnal frontal lobe seizures. Three patients had a trial of quinidine with good clinical response in 1 patient. Computational modeling analysis implicates abnormal pore function (F346L) and impaired tetramer formation (F502V) as putative disease mechanisms. All evaluated KCNT1 variants resulted in marked gain of function with significantly increased channel amplitude and variable blockade by quinidine. CONCLUSIONS Gain-of-function KCNT1 pathogenic variants cause a spectrum of severe focal epilepsies with onset in early infancy. Currently, genotype-phenotype correlations are unclear, although clinical outcome is poor for the majority of cases. Further elucidation of disease mechanisms may facilitate the development of targeted treatments, much needed for this pharmacoresistant genetic epilepsy.
Collapse
Affiliation(s)
- Amy McTague
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK.
| | - Umesh Nair
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Sony Malhotra
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Esther Meyer
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Natalie Trump
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Elena V Gazina
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Apostolos Papandreou
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Adeline Ngoh
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Sally Ackermann
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Gautam Ambegaonkar
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Richard Appleton
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Archana Desurkar
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Christin Eltze
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Rachel Kneen
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Ajith V Kumar
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Karine Lascelles
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Tara Montgomery
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Venkateswaran Ramesh
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Rajib Samanta
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Richard H Scott
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Jeen Tan
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - William Whitehouse
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Annapurna Poduri
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Ingrid E Scheffer
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - W K Kling Chong
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - J Helen Cross
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Maya Topf
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Steven Petrou
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Manju A Kurian
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK.
| |
Collapse
|
61
|
Three Cases of KCNT1 Mutations: Malignant Migrating Partial Seizures in Infancy with Massive Systemic to Pulmonary Collateral Arteries. J Pediatr 2017; 191:270-274. [PMID: 28987752 DOI: 10.1016/j.jpeds.2017.08.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/12/2017] [Accepted: 08/21/2017] [Indexed: 11/23/2022]
Abstract
KCNT1 mutations are gain-of-function mutations in potassium channels resulting in severe infantile epilepsy. Herein we describe 3 infants with malignant migrating partial seizures with KCNT1 mutations accompanied by massive systemic to pulmonary collateral arteries with life-threatening hemoptysis and heart failure.
Collapse
|
62
|
Koutroumanidis M, Arzimanoglou A, Caraballo R, Goyal S, Kaminska A, Laoprasert P, Oguni H, Rubboli G, Tatum W, Thomas P, Trinka E, Vignatelli L, Moshé SL. The role of EEG in the diagnosis and classification of the epilepsy syndromes: a tool for clinical practice by the ILAE Neurophysiology Task Force (Part 2). Epileptic Disord 2017; 19:385-437. [PMID: 29350182 DOI: 10.1684/epd.2017.0952] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The concept of epilepsy syndromes, introduced in 1989, was defined as "clusters of signs and symptoms customarily occurring together". Definition of epilepsy syndromes based on electro-clinical features facilitated clinical practice and, whenever possible, clinical research in homogeneous groups of patients with epilepsies. Progress in the fields of neuroimaging and genetics made it rapidly clear that, although crucial, the electro-clinical description of epilepsy syndromes was not sufficient to allow much needed development of targeted therapies and a better understanding of the underlying pathophysiological mechanisms of seizures. The 2017 ILAE position paper on Classification of the Epilepsies recognized that "as a critical tool for the practicing clinician, epilepsy classification must be relevant and dynamic to changes in thinking". The concept of "epilepsy syndromes" evolved, incorporating issues related to aetiologies and comorbidities. A comprehensive update (and revision where necessary) of the EEG diagnostic criteria in the light of the 2017 revised terminology and concepts was deemed necessary. Part 2 covers the neonatal and paediatric syndromes in accordance with the age of onset. [Published with educational EEG plates at www.epilepticdisorders.com].
Collapse
Affiliation(s)
| | - Alexis Arzimanoglou
- University Hospitals of Lyon (HCL), Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the European Reference Centre EpiCARE, Lyon, France, Epilepsy Unit, Department of Paediatric Neurology, San Juan de Deu Hospital, Member of the European Reference Centre EpiCARE, Barcelona, Spain
| | - Roberto Caraballo
- Hospital J P Garrahan, Neurology, Capital Federal, Buenos Aires, Argentina
| | | | - Anna Kaminska
- APHP, Hopital Necker-Enfants Malades, Department of Clinical Neurophysiology, Paris, France
| | | | - Hirokazu Oguni
- Tokyo Women's Medical University, Department of Pediatrics, Shinjuku-ku, Tokyo, Japan
| | - Guido Rubboli
- Danish Epilepsy Centre, Department of Neurology, Dianalund, Denmark
| | | | - Pierre Thomas
- Hopital Pasteur, Neurology, Hôpital Pasteur 24C, Nice, France
| | - Eugen Trinka
- Paracelsus Medizinische Privatuniversitat, Salzburg, Austria
| | - Luca Vignatelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Solomon L Moshé
- Albert Einstein College of Medicine, Neurology, Neuroscience, and Pediatrics, Bronx, New York, USA
| |
Collapse
|
63
|
Mullen SA, Carney PW, Roten A, Ching M, Lightfoot PA, Churilov L, Nair U, Li M, Berkovic SF, Petrou S, Scheffer IE. Precision therapy for epilepsy due to KCNT1 mutations. Neurology 2017; 90:e67-e72. [DOI: 10.1212/wnl.0000000000004769] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 09/15/2017] [Indexed: 11/15/2022] Open
Abstract
ObjectiveTo evaluate quinidine as a precision therapy for severe epilepsy due to gain of function mutations in the potassium channel gene KCNT1.MethodsA single-center, inpatient, order-randomized, blinded, placebo-controlled, crossover trial of oral quinidine included 6 patients with severe autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) due to KCNT1 mutation. Order was block randomized and blinded. Four-day treatment blocks were used with a 2-day washout between. Dose started at 900 mg over 3 divided doses then, in subsequent participants, was reduced to 600 mg, then 300 mg. Primary outcome was seizure frequency measured on continuous video-EEG in those completing the trial.ResultsProlonged QT interval occurred in the first 2 patients at doses of 900 and 600 mg quinidine per day, respectively, despite serum quinidine levels well below the therapeutic range (0.61 and 0.51 μg/mL, reference range 1.3–5.0 μg/mL). Four patients completed treatment with 300 mg/d without adverse events. Patients completing the trial had very frequent seizures (mean 14 per day, SD 7, median 13, interquartile range 10–18). Seizures per day were nonsignificantly increased by quinidine (median 2, 95% confidence interval −1.5 to +5, p = 0.15) and no patient had a 50% seizure reduction.ConclusionQuinidine did not show efficacy in adults and teenagers with ADNFLE. Dose-limiting cardiac side effects were observed even in the presence of low measured serum quinidine levels. Although small, this trial suggests use of quinidine in ADNFLE is likely to be ineffective coupled with considerable cardiac risks.Clinical trials registrationAustralian Therapeutic Goods Administration Clinical Trial Registry (trial number 2015/0151).Classification of evidenceThis study provides Class II evidence that for persons with severe epilepsy due to gain of function mutations in the potassium channel gene KCNT1, quinidine does not significantly reduce seizure frequency.
Collapse
|
64
|
지나리, Se Hee Kim, 이준수, 강훈철, 이승태, Choi Jong Rak, 고아라, 김흥동. Quinidine Trial in a Patient with Epilepsy of Infancy with Migrating Focal Seizure and KCNT1 Mutation. ACTA ACUST UNITED AC 2017. [DOI: 10.26815/jkcns.2017.25.3.169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
65
|
Hite RK, MacKinnon R. Structural Titration of Slo2.2, a Na +-Dependent K + Channel. Cell 2017; 168:390-399.e11. [PMID: 28111072 DOI: 10.1016/j.cell.2016.12.030] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 01/03/2023]
Abstract
The stable structural conformations that occur along the complete reaction coordinate for ion channel opening have never been observed. In this study, we describe the equilibrium ensemble of structures of Slo2.2, a neuronal Na+-activated K+ channel, as a function of the Na+ concentration. We find that Slo2.2 exists in multiple closed conformations whose relative occupancies are independent of Na+ concentration. An open conformation emerges from an ensemble of closed conformations in a highly Na+-dependent manner, without evidence of Na+-dependent intermediates. In other words, channel opening is a highly concerted, switch-like process. The midpoint of the structural titration matches that of the functional titration. A maximum open conformation probability approaching 1.0 and maximum functional open probability approaching 0.7 imply that, within the class of open channels, there is a subclass that is not permeable to ions.
Collapse
Affiliation(s)
- Richard K Hite
- Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA
| | - Roderick MacKinnon
- Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
66
|
Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD, Wulff H. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacol Rev 2017; 69:1-11. [PMID: 28267675 PMCID: PMC11060434 DOI: 10.1124/pr.116.012864] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Richard W Aldrich
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - K George Chandy
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Stephan Grissmer
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Aguan D Wei
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Heike Wulff
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| |
Collapse
|
67
|
Reif PS, Tsai MH, Helbig I, Rosenow F, Klein KM. Precision medicine in genetic epilepsies: break of dawn? Expert Rev Neurother 2016; 17:381-392. [DOI: 10.1080/14737175.2017.1253476] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Philipp Sebastian Reif
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe-University Frankfurt, Frankfurt, Germany
| | - Meng-Han Tsai
- Division of Brain Function & Epilepsy, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ingo Helbig
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Departments of Brain and Cognitive Sciences, Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe-University Frankfurt, Frankfurt, Germany
- Epilepsy Center Hessen, Department of Neurology, University Hospitals Giessen & Marburg, and Philipps-University Marburg, Marburg, Germany
| | - Karl Martin Klein
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe-University Frankfurt, Frankfurt, Germany
- Epilepsy Center Hessen, Department of Neurology, University Hospitals Giessen & Marburg, and Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
68
|
Gaily E, Lommi M, Lapatto R, Lehesjoki AE. Incidence and outcome of epilepsy syndromes with onset in the first year of life: A retrospective population-based study. Epilepsia 2016; 57:1594-1601. [DOI: 10.1111/epi.13514] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Eija Gaily
- Children's Hospital; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Markus Lommi
- Children's Hospital; University of Helsinki and Helsinki University Hospital; Helsinki Finland
- Folkhälsan Institute of Genetics; Helsinki Finland
| | - Risto Lapatto
- Children's Hospital; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Institute of Genetics; Helsinki Finland
- Neuroscience Center; University of Helsinki; Helsinki Finland
- Research Programs Unit; Molecular Neurology; University of Helsinki; Helsinki Finland
| |
Collapse
|
69
|
Saitsu H, Watanabe M, Akita T, Ohba C, Sugai K, Ong WP, Shiraishi H, Yuasa S, Matsumoto H, Beng KT, Saitoh S, Miyatake S, Nakashima M, Miyake N, Kato M, Fukuda A, Matsumoto N. Impaired neuronal KCC2 function by biallelic SLC12A5 mutations in migrating focal seizures and severe developmental delay. Sci Rep 2016; 6:30072. [PMID: 27436767 PMCID: PMC4951812 DOI: 10.1038/srep30072] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/28/2016] [Indexed: 11/09/2022] Open
Abstract
Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the early-onset epileptic syndromes characterized by migrating polymorphous focal seizures. Whole exome sequencing (WES) in ten sporadic and one familial case of EIMFS revealed compound heterozygous SLC12A5 (encoding the neuronal K(+)-Cl(-) co-transporter KCC2) mutations in two families: c.279 + 1G > C causing skipping of exon 3 in the transcript (p.E50_Q93del) and c.572 C >T (p.A191V) in individuals 1 and 2, and c.967T > C (p.S323P) and c.1243 A > G (p.M415V) in individual 3. Another patient (individual 4) with migrating multifocal seizures and compound heterozygous mutations [c.953G > C (p.W318S) and c.2242_2244del (p.S748del)] was identified by searching WES data from 526 patients and SLC12A5-targeted resequencing data from 141 patients with infantile epilepsy. Gramicidin-perforated patch-clamp analysis demonstrated strongly suppressed Cl(-) extrusion function of E50_Q93del and M415V mutants, with mildly impaired function of A191V and S323P mutants. Cell surface expression levels of these KCC2 mutants were similar to wildtype KCC2. Heterologous expression of two KCC2 mutants, mimicking the patient status, produced a significantly greater intracellular Cl(-) level than with wildtype KCC2, but less than without KCC2. These data clearly demonstrated that partially disrupted neuronal Cl(-) extrusion, mediated by two types of differentially impaired KCC2 mutant in an individual, causes EIMFS.
Collapse
Affiliation(s)
- Hirotomo Saitsu
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Yokohama 236-0004, Japan
| | - Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | - Tenpei Akita
- Department of Neurophysiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | - Chihiro Ohba
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Yokohama 236-0004, Japan
| | - Kenji Sugai
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Winnie Peitee Ong
- Department of Genetics, Hospital Kuala Lumpur, Jalan Pahang, Kuala Lumpur 50586, Malaysia
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, North 15 West 7, Sapporo 060-8638, Japan
| | - Shota Yuasa
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Hiroshi Matsumoto
- Department of Pediatrics, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Khoo Teik Beng
- Department of Pediatrics, Institute of Pediatrics, Hospital Kuala Lumpur, Jalan Pahang, Kuala Lumpur 50586, Malaysia
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Nagoya 467-8601, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Yokohama 236-0004, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Yokohama 236-0004, Japan
| | - Noriko Miyake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Yokohama 236-0004, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, 1-5-8 Hatanodai, Tokyo 142-8666, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Yokohama 236-0004, Japan
| |
Collapse
|
70
|
Mirza N, Vasieva O, Appleton R, Burn S, Carr D, Crooks D, du Plessis D, Duncan R, Farah JO, Josan V, Miyajima F, Mohanraj R, Shukralla A, Sills GJ, Marson AG, Pirmohamed M. An integrative in silico system for predicting dysregulated genes in the human epileptic focus: Application to SLC transporters. Epilepsia 2016; 57:1467-74. [PMID: 27421837 DOI: 10.1111/epi.13473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Many different gene families are currently being investigated for their potential role in epilepsy and in the response to antiepileptic drugs. A common research challenge is identifying the members of a gene family that are most significantly dysregulated within the human epileptic focus, before taking them forward for resource-intensive functional studies. Published data about transcriptomic changes within the human epileptic focus remains incomplete. A need exists for an accurate in silico system for the prediction of dysregulated genes within the epileptic focus. We present such a bioinformatic system. We demonstrate the validity of our approach by applying it to the solute carrier (SLC) gene family. There are >400 known SLCs. SLCs have never been systematically studied in epilepsy. METHODS Using our in silico system, we predicted the SLCs likely to be dysregulated in the epileptic focus. We validated our in silico predictions by identifying ex vivo the SLCs dysregulated in epileptic foci, and determining the overlap between our in silico and ex vivo results. For the ex vivo analysis, we used a custom oligonucleotide microarray containing exon probes for all known SLCs to analyze 24 hippocampal samples obtained from surgery for pharmacoresistant mesial temporal lobe epilepsy and 24 hippocampal samples from normal postmortem controls. RESULTS There was a highly significant (p < 9.99 × 10(-7) ) overlap between the genes identified by our in silico and ex vivo strategies. The SLCs identified were either metal ion exchangers or neurotransmitter transporters, which are likely to play a part in epilepsy by influencing neuronal excitability. SIGNIFICANCE The identified SLCs are most likely to mediate pharmacoresistance in epilepsy by enhancing the intrinsic severity of epilepsy, but further functional work will be needed to fully evaluate their role. Our successful in silico strategy can be adapted in order to prioritize genes relevant to epilepsy from other gene families.
Collapse
Affiliation(s)
- Nasir Mirza
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Olga Vasieva
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Richard Appleton
- The Roald Dahl EEG Unit, Paediatric Neurosciences Foundation, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Sasha Burn
- Department of Neurosurgery, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Daniel Carr
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel Crooks
- Department of Neuropathology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Daniel du Plessis
- Department of Cellular Pathology, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Roderick Duncan
- Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| | - Jibril Osman Farah
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Vivek Josan
- Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Fabio Miyajima
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Rajiv Mohanraj
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Arif Shukralla
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Graeme J Sills
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Anthony G Marson
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
71
|
Usefulness of ketogenic diet in a girl with migrating partial seizures in infancy. Brain Dev 2016; 38:601-4. [PMID: 26785903 DOI: 10.1016/j.braindev.2015.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/25/2015] [Accepted: 12/23/2015] [Indexed: 11/22/2022]
Abstract
Migrating partial seizures in infancy (MPSI) are an age-specific epilepsy syndrome characterized by migrating focal seizures, which are intractable to various antiepileptic drugs and cause severe developmental delay. We report a case of MPSI with heterozygous missense mutation in KCNT1, which was successfully managed by ketogenic diet. At age 2months, the patient developed epilepsy initially manifesting focal seizures with eye deviation and apnea, then evolving to secondarily generalized clonic convulsion. Various antiepileptic drugs including phenytoin, valproic acid, zonisamide, clobazam, levetiracetam, vitamin B6, and carbamazepine were not effective, but high-dose phenobarbital allowed discontinuation of midazolam infusion. Ictal scalp electroencephalogram showed migrating focal seizures. MPSI was suspected and she was transferred to our hospital for further treatment. Potassium bromide (KBr) was partially effective, but the effect was transient. High-dose KBr caused severe adverse effects such as over-sedation and hypercapnia, with no further effects on the seizures. At age 9months, we started a ketogenic diet, which improved seizure frequency and severity without obvious adverse effects, allowing her to be discharged from hospital. Ketogenic diet should be tried in patients with MPSI unresponsive to antiepileptic drugs. In MPSI, the difference in treatment response in patients with and those without KCNT1 mutation remains unknown. Accumulation of case reports would contribute to establish effective treatment options for MPSI.
Collapse
|
72
|
Abstract
OPINION STATEMENT The mainstay of treatment of epilepsy has been antiepileptic drugs; however, despite the emergence of new agents, a consistent proportion remain drug-resistant. Newer AEDs show promise. However, as it becomes clear that the epilepsies are a group of diseases rather than a single disorder the prospect of targeted treatment in some may become a reality.
Collapse
Affiliation(s)
- Katharina Vezyroglou
- Great Ormond Street Hospital for Children NHS Trust, Great Ormond Street, London, WC1N 3JH, UK
| | - J Helen Cross
- Clinical Neurosciences, 30 Guilford St, London, WC1N 1EH, UK. .,Great Ormond Street Hospital for Children NHS Trust, Great Ormond Street, London, WC1N 3JH, UK.
| |
Collapse
|
73
|
Villa C, Combi R. Potassium Channels and Human Epileptic Phenotypes: An Updated Overview. Front Cell Neurosci 2016; 10:81. [PMID: 27064559 PMCID: PMC4811893 DOI: 10.3389/fncel.2016.00081] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/15/2016] [Indexed: 12/03/2022] Open
Abstract
Potassium (K+) channels are expressed in almost every cells and are ubiquitous in neuronal and glial cell membranes. These channels have been implicated in different disorders, in particular in epilepsy. K+ channel diversity depends on the presence in the human genome of a large number of genes either encoding pore-forming or accessory subunits. More than 80 genes encoding the K+ channels were cloned and they represent the largest group of ion channels regulating the electrical activity of cells in different tissues, including the brain. It is therefore not surprising that mutations in these genes lead to K+ channels dysfunctions linked to inherited epilepsy in humans and non-human model animals. This article reviews genetic and molecular progresses in exploring the pathogenesis of different human epilepsies, with special emphasis on the role of K+ channels in monogenic forms.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca Monza, Italy
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca Monza, Italy
| |
Collapse
|
74
|
Trump N, McTague A, Brittain H, Papandreou A, Meyer E, Ngoh A, Palmer R, Morrogh D, Boustred C, Hurst JA, Jenkins L, Kurian MA, Scott RH. Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis. J Med Genet 2016; 53:310-7. [PMID: 26993267 PMCID: PMC4862068 DOI: 10.1136/jmedgenet-2015-103263] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/22/2015] [Indexed: 11/17/2022]
Abstract
Background We sought to investigate the diagnostic yield and mutation spectrum in previously reported genes for early-onset epilepsy and disorders of severe developmental delay. Methods In 400 patients with these disorders with no known underlying aetiology and no major structural brain anomaly, we analysed 46 genes using a combination of targeted sequencing on an Illumina MiSeq platform and targeted, exon-level microarray copy number analysis. Results We identified causative mutations in 71/400 patients (18%). The diagnostic rate was highest among those with seizure onset within the first two months of life (39%), although overall it was similar in those with and without seizures. The most frequently mutated gene was SCN2A (11 patients, 3%). Other recurrently mutated genes included CDKL5, KCNQ2, SCN8A (six patients each), FOXG1, MECP2, SCN1A, STXBP1 (five patients each), KCNT1, PCDH19, TCF4 (three patients each) and ATP1A3, PRRT2 and SLC9A6 (two patients each). Mutations in EHMT1, GABRB3, LGI1, MBD5, PIGA, UBE3A and ZEB2 were each found in single patients. We found mutations in a number of genes in patients where either the electroclinical features or dysmorphic phenotypes were atypical for the identified gene. In only 11 cases (15%) had the clinician sufficient certainty to specify the mutated gene as the likely cause before testing. Conclusions Our data demonstrate the considerable utility of a gene panel approach in the diagnosis of patients with early-onset epilepsy and severe developmental delay disorders., They provide further insights into the phenotypic spectrum and genotype–phenotype correlations for a number of the causative genes and emphasise the value of exon-level copy number testing in their analysis.
Collapse
Affiliation(s)
- Natalie Trump
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, London, UK
| | - Amy McTague
- Molecular Neurosciences, Developmental Neurosciences Programme, University College London Institute of Child Health, London, UK Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Helen Brittain
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, London, UK
| | - Apostolos Papandreou
- Molecular Neurosciences, Developmental Neurosciences Programme, University College London Institute of Child Health, London, UK Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Esther Meyer
- Molecular Neurosciences, Developmental Neurosciences Programme, University College London Institute of Child Health, London, UK Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Adeline Ngoh
- Molecular Neurosciences, Developmental Neurosciences Programme, University College London Institute of Child Health, London, UK Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Rodger Palmer
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, London, UK
| | - Deborah Morrogh
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, London, UK
| | - Christopher Boustred
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, London, UK
| | - Jane A Hurst
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, London, UK
| | - Lucy Jenkins
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, London, UK
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, University College London Institute of Child Health, London, UK Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Richard H Scott
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, London, UK Genetics and Genomic Medicine Unit, University College London Institute of Child Health, London, UK
| |
Collapse
|
75
|
McTague A, Howell KB, Cross JH, Kurian MA, Scheffer IE. The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol 2016; 15:304-16. [DOI: 10.1016/s1474-4422(15)00250-1] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 10/22/2022]
|
76
|
Lim CX, Ricos MG, Dibbens LM, Heron SE. KCNT1mutations in seizure disorders: the phenotypic spectrum and functional effects. J Med Genet 2016; 53:217-25. [DOI: 10.1136/jmedgenet-2015-103508] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/06/2015] [Indexed: 01/01/2023]
|
77
|
Behr C, Goltzene MA, Kosmalski G, Hirsch E, Ryvlin P. Epidemiology of epilepsy. Rev Neurol (Paris) 2016; 172:27-36. [PMID: 26754036 DOI: 10.1016/j.neurol.2015.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 12/25/2022]
Abstract
Epilepsy is a burden affecting no fewer than 50 million patients worldwide. It is a heterogeneous group of disorders comprising both common and very rare forms, thus rendering its epidemiological investigations rather difficult. Moreover, making an epilepsy diagnosis per se can be challenging due to an evolving system of classification, and its dependency on local habits and culture. Any attempt at meta-analyses must consider such biases when pooling data from different centers and countries. Differentiating a contextual seizure from chronic epilepsy is every epileptologist's daily mission, yet it is also crucial for achieving a proper estimation of the epidemiology of epilepsy. Our present objective was to provide an overview of the epidemiology of both syndromic and non-syndromic epilepsy. Most epileptic syndromes tend to be rare and, thus, the feasibility of epidemiological quantification in populations is also addressed. Regarding its prevalence and cost, epilepsy deserves greater attention than it generally receives, as it appears to continue to be a condition under persistent taboos.
Collapse
Affiliation(s)
- C Behr
- Department of neurology, university hospital of Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France.
| | - M A Goltzene
- Department of neurology, university hospital of Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - G Kosmalski
- Department of pharmacology, university hospital of Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - E Hirsch
- Department of neurology, university hospital of Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - P Ryvlin
- Department of clinical neurosciences, CHUV, champ de l'Air, 21, rue du Bugnon, 1011 Lausanne, Switzerland
| |
Collapse
|
78
|
Myers C, Mefford H. Genetic investigations of the epileptic encephalopathies. PROGRESS IN BRAIN RESEARCH 2016; 226:35-60. [DOI: 10.1016/bs.pbr.2016.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
79
|
Spillane J, Kullmann DM, Hanna MG. Genetic neurological channelopathies: molecular genetics and clinical phenotypes. J Neurol Neurosurg Psychiatry 2016; 87:37-48. [PMID: 26558925 PMCID: PMC4717447 DOI: 10.1136/jnnp-2015-311233] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/13/2015] [Indexed: 01/08/2023]
Abstract
Evidence accumulated over recent years has shown that genetic neurological channelopathies can cause many different neurological diseases. Presentations relating to the brain, spinal cord, peripheral nerve or muscle mean that channelopathies can impact on almost any area of neurological practice. Typically, neurological channelopathies are inherited in an autosomal dominant fashion and cause paroxysmal disturbances of neurological function, although the impairment of function can become fixed with time. These disorders are individually rare, but an accurate diagnosis is important as it has genetic counselling and often treatment implications. Furthermore, the study of less common ion channel mutation-related diseases has increased our understanding of pathomechanisms that is relevant to common neurological diseases such as migraine and epilepsy. Here, we review the molecular genetic and clinical features of inherited neurological channelopathies.
Collapse
Affiliation(s)
- J Spillane
- Royal Free Hospital Foundation Trust London, London, UK MRC Centre for Neuromuscular Disease, UCL, London, UK
| | - D M Kullmann
- MRC Centre for Neuromuscular Disease, UCL, London, UK UCL, Institute of Neurology, London, UK
| | - M G Hanna
- MRC Centre for Neuromuscular Disease, UCL, London, UK UCL, Institute of Neurology, London, UK
| |
Collapse
|
80
|
Gonsales MC, Montenegro MA, Soler CV, Coan AC, Guerreiro MM, Lopes-Cendes I. Recent developments in the genetics of childhood epileptic encephalopathies: impact in clinical practice. ARQUIVOS DE NEURO-PSIQUIATRIA 2015; 73:946-58. [PMID: 26517219 DOI: 10.1590/0004-282x20150122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/20/2015] [Indexed: 01/03/2023]
Abstract
Recent advances in molecular genetics led to the discovery of several genes for childhood epileptic encephalopathies (CEEs). As the knowledge about the genes associated with this group of disorders develops, it becomes evident that CEEs present a number of specific genetic characteristics, which will influence the use of molecular testing for clinical purposes. Among these, there are the presence of marked genetic heterogeneity and the high frequency of de novo mutations. Therefore, the main objectives of this review paper are to present and discuss current knowledge regarding i) new genetic findings in CEEs, ii) phenotype-genotype correlations in different forms of CEEs; and, most importantly, iii) the impact of these new findings in clinical practice. Accompanying this text we have included a comprehensive table, containing the list of genes currently known to be involved in the etiology of CEEs.
Collapse
Affiliation(s)
- Marina C Gonsales
- Instituto Brasileiro de Neurociências e Neurotecnologia, Faculdade de Ciências Médicas, Universidade de Campinas, Campinas, SP, Brazil
| | - Maria Augusta Montenegro
- Instituto Brasileiro de Neurociências e Neurotecnologia, Faculdade de Ciências Médicas, Universidade de Campinas, Campinas, SP, Brazil
| | - Camila V Soler
- Instituto Brasileiro de Neurociências e Neurotecnologia, Faculdade de Ciências Médicas, Universidade de Campinas, Campinas, SP, Brazil
| | - Ana Carolina Coan
- Instituto Brasileiro de Neurociências e Neurotecnologia, Faculdade de Ciências Médicas, Universidade de Campinas, Campinas, SP, Brazil
| | - Marilisa M Guerreiro
- Instituto Brasileiro de Neurociências e Neurotecnologia, Faculdade de Ciências Médicas, Universidade de Campinas, Campinas, SP, Brazil
| | - Iscia Lopes-Cendes
- Instituto Brasileiro de Neurociências e Neurotecnologia, Faculdade de Ciências Médicas, Universidade de Campinas, Campinas, SP, Brazil
| |
Collapse
|
81
|
Cryo-electron microscopy structure of the Slo2.2 Na(+)-activated K(+) channel. Nature 2015; 527:198-203. [PMID: 26436452 PMCID: PMC4886347 DOI: 10.1038/nature14958] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/15/2015] [Indexed: 12/26/2022]
Abstract
Na+-activated K+ channels are members of the Slo family of large conductance K+ channels that are widely expressed in the brain, where their opening regulates neuronal excitability. These channels are fascinating for the biological roles they fulfill as well as for their intriguing biophysical properties, including conductance levels ten times most other K+ channels and gating sensitivity to intracellular Na+. Here we present the structure a complete Na+-activated K+ channel, Slo2.2, in the Na+-free state, determined by cryo-electron microscopy at a nominal resolution of 4.5 Å. The channel is composed of a large cytoplasmic gating ring within which resides the Na+-binding site and a transmembrane domain that closely resembles voltage-gated K+ channels. In the structure, the cytoplasmic domain adopts a closed conformation and the ion conduction pore is also closed. The structure provides a first view of a member of the Slo K+ channel family, which reveals features explaining their high conductance and gating mechanism.
Collapse
|
82
|
Hart AR, Pilling EL, Alix JJP. Neonatal seizures-part 2: Aetiology of acute symptomatic seizures, treatments and the neonatal epilepsy syndromes. Arch Dis Child Educ Pract Ed 2015; 100:226-32. [PMID: 25824891 DOI: 10.1136/archdischild-2014-306388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 02/25/2015] [Indexed: 01/02/2023]
Abstract
Most neonatal epileptic seizures are provoked by an underlying condition or problem-'acute symptomatic seizures'. However, a few neonatal epilepsy syndromes exist, and these are defined by the constellation of seizure types, EEG findings and family history seen. Making an accurate diagnosis of an epilepsy syndrome can help direct investigations, treatment options and provide prognostic information. This article discusses the investigative approach and treatments for neonatal epileptic seizures, including the neonatal epilepsy syndromes.
Collapse
Affiliation(s)
- Anthony R Hart
- Department of Paediatric and Neonatal Neurology, Sheffield Children's Hospital NHS Foundation Trust, Ryegate Children's Centre, Sheffield, South Yorkshire, UK Department of Neonatology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Elizabeth L Pilling
- Department of Neonatology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - James J P Alix
- Department of Clinical Neurophysiology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, UK
| |
Collapse
|
83
|
Stödberg T, McTague A, Ruiz AJ, Hirata H, Zhen J, Long P, Farabella I, Meyer E, Kawahara A, Vassallo G, Stivaros SM, Bjursell MK, Stranneheim H, Tigerschiöld S, Persson B, Bangash I, Das K, Hughes D, Lesko N, Lundeberg J, Scott RC, Poduri A, Scheffer IE, Smith H, Gissen P, Schorge S, Reith MEA, Topf M, Kullmann DM, Harvey RJ, Wedell A, Kurian MA. Mutations in SLC12A5 in epilepsy of infancy with migrating focal seizures. Nat Commun 2015; 6:8038. [PMID: 26333769 PMCID: PMC4569694 DOI: 10.1038/ncomms9038] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 07/10/2015] [Indexed: 12/30/2022] Open
Abstract
The potassium-chloride co-transporter KCC2, encoded by SLC12A5, plays a fundamental role in fast synaptic inhibition by maintaining a hyperpolarizing gradient for chloride ions. KCC2 dysfunction has been implicated in human epilepsy, but to date, no monogenic KCC2-related epilepsy disorders have been described. Here we show recessive loss-of-function SLC12A5 mutations in patients with a severe infantile-onset pharmacoresistant epilepsy syndrome, epilepsy of infancy with migrating focal seizures (EIMFS). Decreased KCC2 surface expression, reduced protein glycosylation and impaired chloride extrusion contribute to loss of KCC2 activity, thereby impairing normal synaptic inhibition and promoting neuronal excitability in this early-onset epileptic encephalopathy.
Collapse
Affiliation(s)
- Tommy Stödberg
- Department of Women's and Children's Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
- Neuropediatric Unit, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Amy McTague
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Institute of Child Health, London WC1N 1EH, UK
- Department of Neurology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Arnaud J. Ruiz
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, Graduate School of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258 Kanagawa, Japan
- Center for Frontier Research, National Institute of Genetics, Yata 1111, Mishima, 411-8540 Shizuoka, Japan
- PREST, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Juan Zhen
- Department of Psychiatry, New York University School of Medicine, New York, New York 10016, USA
| | - Philip Long
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK
| | - Irene Farabella
- Institute of Structural and Molecular Biology, Crystallography/Department of Biological Sciences, Birkbeck College, University of London, WC1E 7HX, UK
| | - Esther Meyer
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Atsuo Kawahara
- Laboratory for Developmental Biology, Graduate School of Medical Science, University of Yamanashi, Chuo, 409-3898, Japan
| | - Grace Vassallo
- Department of Neurology, Royal Manchester Children's Hospital, Manchester, M13 9WL, UK
| | - Stavros M. Stivaros
- Academic Department of Radiology, Royal Manchester Children's Hospital, Manchester, M13 9WL, UK
- Imaging Science, School of Population Health, University of Manchester, Manchester, M13 9PL, UK
| | - Magnus K. Bjursell
- Department of Molecular Medicine and Surgery, Science for Life Laboratory, Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Henrik Stranneheim
- Department of Molecular Medicine and Surgery, Science for Life Laboratory, Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Stephanie Tigerschiöld
- Department of Molecular Medicine and Surgery, Science for Life Laboratory, Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Bengt Persson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institutet, SE-171 21 Stockholm, Sweden
| | - Iftikhar Bangash
- EEG Department, Royal Oldham Hospital, OL1 2JH, Oldham, Lancashire, UK
| | - Krishna Das
- Department of Neurology, Great Ormond Street Hospital, London WC1N 3JH, UK
- Young Epilepsy, RH7 6PW, Lingfield, Surrey, UK
| | - Deborah Hughes
- Department of Molecular Neuroscience, UCL Institute of Neurology, WC1N 3BG, London, UK
| | - Nicole Lesko
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Rod C. Scott
- Department of Neurology, Great Ormond Street Hospital, London WC1N 3JH, UK
- Department of Neurological Sciences, University of Vermont College of Medicine, Vermont, VT 05405, USA
- Department of Paediatric Neurology, Fletcher Allen Health Care, Vermont, VT 05401, USA
- Clinical Neurosciences, Developmental Neurosciences Programme, UCL Institute of Child Health, London, WC1N 1EH, London, UK
| | - Annapurna Poduri
- Department of Neurology, Epilepsy Genetics Programme, Boston Children's Hospital, Boston, Massachusetts, Massachusetts 02115, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, Massachusetts 02115, USA
| | - Ingrid E. Scheffer
- Department of Medicine and Paediatrics, University of Melbourne, Austin Health and Royal Children's Hospital, Melbourne, Victoria, VIC 3052, Australia
- Florey Institute, Melbourne, Victoria, VIC 3010, Australia
| | - Holly Smith
- MRC Laboratory for Molecular Cell Biology, UCL, London, WC1E 6BT, UK
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, UCL, London, WC1E 6BT, UK
- Department of Metabolic Medicine, Great Ormond Street Hospital, London, WC1N 3JH, UK
- Genetics and Genomic Medicine, Institute of Child Health, UCL, London, WC1N 1EH, UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Maarten E. A. Reith
- Department of Psychiatry, New York University School of Medicine, New York, New York 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Maya Topf
- Institute of Structural and Molecular Biology, Crystallography/Department of Biological Sciences, Birkbeck College, University of London, WC1E 7HX, UK
| | - Dimitri M. Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Robert J. Harvey
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Science for Life Laboratory, Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Institute of Child Health, London WC1N 1EH, UK
- Department of Neurology, Great Ormond Street Hospital, London WC1N 3JH, UK
| |
Collapse
|
84
|
Abstract
Epilepsy is a group of disorders characterized by recurrent seizures, and is one of the most common neurological conditions. The genetic basis of epilepsy is clear from epidemiological studies and from rare gene discoveries in large families. The three major classes of epilepsy disorders are genetic generalized, focal and encephalopathic epilepsies, with several specific disorders within each class. Advances in genomic technologies that facilitate genome-wide discovery of both common and rare variants have led to a rapid increase in our understanding of epilepsy genetics. Copy number variant and genome-wide association studies have contributed to our understanding of the complex genetic architecture of generalized epilepsy, while genetic insights into the focal epilepsies and epileptic encephalopathies have come primarily from exome sequencing. It is increasingly clear that epilepsy is genetically heterogeneous, and novel gene discoveries have moved the field beyond the known contribution of ion channels to implicate chromatin remodeling, transcriptional regulation and regulation of the mammalian target of rapamycin (mTOR) protein in the etiology of epilepsy. Such discoveries pave the way for new therapeutics, some of which are already being studied. In this review, we discuss the rapid pace of gene discovery in epilepsy, as facilitated by genomic technologies, and highlight several novel genes and potential therapies.
Collapse
Affiliation(s)
- Candace T Myers
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
85
|
Howell KB, McMahon JM, Carvill GL, Tambunan D, Mackay MT, Rodriguez-Casero V, Webster R, Clark D, Freeman JL, Calvert S, Olson HE, Mandelstam S, Poduri A, Mefford HC, Harvey AS, Scheffer IE. SCN2A encephalopathy: A major cause of epilepsy of infancy with migrating focal seizures. Neurology 2015; 85:958-66. [PMID: 26291284 DOI: 10.1212/wnl.0000000000001926] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/15/2015] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE De novo SCN2A mutations have recently been associated with severe infantile-onset epilepsies. Herein, we define the phenotypic spectrum of SCN2A encephalopathy. METHODS Twelve patients with an SCN2A epileptic encephalopathy underwent electroclinical phenotyping. RESULTS Patients were aged 0.7 to 22 years; 3 were deceased. Seizures commenced on day 1-4 in 8, week 2-6 in 2, and after 1 year in 2. Characteristic features included clusters of brief focal seizures with multiple hourly (9 patients), multiple daily (2), or multiple weekly (1) seizures, peaking at maximal frequency within 3 months of onset. Multifocal interictal epileptiform discharges were seen in all. Three of 12 patients had infantile spasms. The epileptic syndrome at presentation was epilepsy of infancy with migrating focal seizures (EIMFS) in 7 and Ohtahara syndrome in 2. Nine patients had improved seizure control with sodium channel blockers including supratherapeutic or high therapeutic phenytoin levels in 5. Eight had severe to profound developmental impairment. Other features included movement disorders (10), axial hypotonia (11) with intermittent or persistent appendicular spasticity, early handedness, and severe gastrointestinal symptoms. Mutations arose de novo in 11 patients; paternal DNA was unavailable in one. CONCLUSIONS Review of our 12 and 34 other reported cases of SCN2A encephalopathy suggests 3 phenotypes: neonatal-infantile-onset groups with severe and intermediate outcomes, and a childhood-onset group. Here, we show that SCN2A is the second most common cause of EIMFS and, importantly, does not always have a poor developmental outcome. Sodium channel blockers, particularly phenytoin, may improve seizure control.
Collapse
Affiliation(s)
- Katherine B Howell
- From the Departments of Neurology (K.B.H., M.T.M., V.R.-C., J.L.F., A.S.H., I.E.S.) and Radiology (S.M.), The Royal Children's Hospital, Melbourne; Department of Paediatrics (K.B.H., M.T.M., S.M., A.S.H., I.E.S.), The University of Melbourne; Murdoch Childrens Research Institute (K.B.H., M.T.M., J.L.F., A.S.H.), Melbourne; Epilepsy Research Centre (J.M.M., I.E.S.), Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Paediatrics, University of Washington, Seattle; Epilepsy Genetics Program (D.T., H.E.O., A.P.), Department of Neurology, Harvard Medical School, Boston Children's Hospital, MA; TY Nelson Department of Neurology and Neurosurgery (R.W.), The Children's Hospital at Westmead, Sydney; Department of Neurology (D.C.), Women's and Children's Hospital, Adelaide; Neurosciences Children's Health Queensland (S.C.), Lady Cilento Children's Hospital, Brisbane; and Florey Institute of Neuroscience and Mental Health (S.M., A.S.H., I.E.S.), Melbourne, Australia
| | - Jacinta M McMahon
- From the Departments of Neurology (K.B.H., M.T.M., V.R.-C., J.L.F., A.S.H., I.E.S.) and Radiology (S.M.), The Royal Children's Hospital, Melbourne; Department of Paediatrics (K.B.H., M.T.M., S.M., A.S.H., I.E.S.), The University of Melbourne; Murdoch Childrens Research Institute (K.B.H., M.T.M., J.L.F., A.S.H.), Melbourne; Epilepsy Research Centre (J.M.M., I.E.S.), Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Paediatrics, University of Washington, Seattle; Epilepsy Genetics Program (D.T., H.E.O., A.P.), Department of Neurology, Harvard Medical School, Boston Children's Hospital, MA; TY Nelson Department of Neurology and Neurosurgery (R.W.), The Children's Hospital at Westmead, Sydney; Department of Neurology (D.C.), Women's and Children's Hospital, Adelaide; Neurosciences Children's Health Queensland (S.C.), Lady Cilento Children's Hospital, Brisbane; and Florey Institute of Neuroscience and Mental Health (S.M., A.S.H., I.E.S.), Melbourne, Australia
| | - Gemma L Carvill
- From the Departments of Neurology (K.B.H., M.T.M., V.R.-C., J.L.F., A.S.H., I.E.S.) and Radiology (S.M.), The Royal Children's Hospital, Melbourne; Department of Paediatrics (K.B.H., M.T.M., S.M., A.S.H., I.E.S.), The University of Melbourne; Murdoch Childrens Research Institute (K.B.H., M.T.M., J.L.F., A.S.H.), Melbourne; Epilepsy Research Centre (J.M.M., I.E.S.), Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Paediatrics, University of Washington, Seattle; Epilepsy Genetics Program (D.T., H.E.O., A.P.), Department of Neurology, Harvard Medical School, Boston Children's Hospital, MA; TY Nelson Department of Neurology and Neurosurgery (R.W.), The Children's Hospital at Westmead, Sydney; Department of Neurology (D.C.), Women's and Children's Hospital, Adelaide; Neurosciences Children's Health Queensland (S.C.), Lady Cilento Children's Hospital, Brisbane; and Florey Institute of Neuroscience and Mental Health (S.M., A.S.H., I.E.S.), Melbourne, Australia
| | - Dimira Tambunan
- From the Departments of Neurology (K.B.H., M.T.M., V.R.-C., J.L.F., A.S.H., I.E.S.) and Radiology (S.M.), The Royal Children's Hospital, Melbourne; Department of Paediatrics (K.B.H., M.T.M., S.M., A.S.H., I.E.S.), The University of Melbourne; Murdoch Childrens Research Institute (K.B.H., M.T.M., J.L.F., A.S.H.), Melbourne; Epilepsy Research Centre (J.M.M., I.E.S.), Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Paediatrics, University of Washington, Seattle; Epilepsy Genetics Program (D.T., H.E.O., A.P.), Department of Neurology, Harvard Medical School, Boston Children's Hospital, MA; TY Nelson Department of Neurology and Neurosurgery (R.W.), The Children's Hospital at Westmead, Sydney; Department of Neurology (D.C.), Women's and Children's Hospital, Adelaide; Neurosciences Children's Health Queensland (S.C.), Lady Cilento Children's Hospital, Brisbane; and Florey Institute of Neuroscience and Mental Health (S.M., A.S.H., I.E.S.), Melbourne, Australia
| | - Mark T Mackay
- From the Departments of Neurology (K.B.H., M.T.M., V.R.-C., J.L.F., A.S.H., I.E.S.) and Radiology (S.M.), The Royal Children's Hospital, Melbourne; Department of Paediatrics (K.B.H., M.T.M., S.M., A.S.H., I.E.S.), The University of Melbourne; Murdoch Childrens Research Institute (K.B.H., M.T.M., J.L.F., A.S.H.), Melbourne; Epilepsy Research Centre (J.M.M., I.E.S.), Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Paediatrics, University of Washington, Seattle; Epilepsy Genetics Program (D.T., H.E.O., A.P.), Department of Neurology, Harvard Medical School, Boston Children's Hospital, MA; TY Nelson Department of Neurology and Neurosurgery (R.W.), The Children's Hospital at Westmead, Sydney; Department of Neurology (D.C.), Women's and Children's Hospital, Adelaide; Neurosciences Children's Health Queensland (S.C.), Lady Cilento Children's Hospital, Brisbane; and Florey Institute of Neuroscience and Mental Health (S.M., A.S.H., I.E.S.), Melbourne, Australia
| | - Victoria Rodriguez-Casero
- From the Departments of Neurology (K.B.H., M.T.M., V.R.-C., J.L.F., A.S.H., I.E.S.) and Radiology (S.M.), The Royal Children's Hospital, Melbourne; Department of Paediatrics (K.B.H., M.T.M., S.M., A.S.H., I.E.S.), The University of Melbourne; Murdoch Childrens Research Institute (K.B.H., M.T.M., J.L.F., A.S.H.), Melbourne; Epilepsy Research Centre (J.M.M., I.E.S.), Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Paediatrics, University of Washington, Seattle; Epilepsy Genetics Program (D.T., H.E.O., A.P.), Department of Neurology, Harvard Medical School, Boston Children's Hospital, MA; TY Nelson Department of Neurology and Neurosurgery (R.W.), The Children's Hospital at Westmead, Sydney; Department of Neurology (D.C.), Women's and Children's Hospital, Adelaide; Neurosciences Children's Health Queensland (S.C.), Lady Cilento Children's Hospital, Brisbane; and Florey Institute of Neuroscience and Mental Health (S.M., A.S.H., I.E.S.), Melbourne, Australia
| | - Richard Webster
- From the Departments of Neurology (K.B.H., M.T.M., V.R.-C., J.L.F., A.S.H., I.E.S.) and Radiology (S.M.), The Royal Children's Hospital, Melbourne; Department of Paediatrics (K.B.H., M.T.M., S.M., A.S.H., I.E.S.), The University of Melbourne; Murdoch Childrens Research Institute (K.B.H., M.T.M., J.L.F., A.S.H.), Melbourne; Epilepsy Research Centre (J.M.M., I.E.S.), Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Paediatrics, University of Washington, Seattle; Epilepsy Genetics Program (D.T., H.E.O., A.P.), Department of Neurology, Harvard Medical School, Boston Children's Hospital, MA; TY Nelson Department of Neurology and Neurosurgery (R.W.), The Children's Hospital at Westmead, Sydney; Department of Neurology (D.C.), Women's and Children's Hospital, Adelaide; Neurosciences Children's Health Queensland (S.C.), Lady Cilento Children's Hospital, Brisbane; and Florey Institute of Neuroscience and Mental Health (S.M., A.S.H., I.E.S.), Melbourne, Australia
| | - Damian Clark
- From the Departments of Neurology (K.B.H., M.T.M., V.R.-C., J.L.F., A.S.H., I.E.S.) and Radiology (S.M.), The Royal Children's Hospital, Melbourne; Department of Paediatrics (K.B.H., M.T.M., S.M., A.S.H., I.E.S.), The University of Melbourne; Murdoch Childrens Research Institute (K.B.H., M.T.M., J.L.F., A.S.H.), Melbourne; Epilepsy Research Centre (J.M.M., I.E.S.), Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Paediatrics, University of Washington, Seattle; Epilepsy Genetics Program (D.T., H.E.O., A.P.), Department of Neurology, Harvard Medical School, Boston Children's Hospital, MA; TY Nelson Department of Neurology and Neurosurgery (R.W.), The Children's Hospital at Westmead, Sydney; Department of Neurology (D.C.), Women's and Children's Hospital, Adelaide; Neurosciences Children's Health Queensland (S.C.), Lady Cilento Children's Hospital, Brisbane; and Florey Institute of Neuroscience and Mental Health (S.M., A.S.H., I.E.S.), Melbourne, Australia
| | - Jeremy L Freeman
- From the Departments of Neurology (K.B.H., M.T.M., V.R.-C., J.L.F., A.S.H., I.E.S.) and Radiology (S.M.), The Royal Children's Hospital, Melbourne; Department of Paediatrics (K.B.H., M.T.M., S.M., A.S.H., I.E.S.), The University of Melbourne; Murdoch Childrens Research Institute (K.B.H., M.T.M., J.L.F., A.S.H.), Melbourne; Epilepsy Research Centre (J.M.M., I.E.S.), Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Paediatrics, University of Washington, Seattle; Epilepsy Genetics Program (D.T., H.E.O., A.P.), Department of Neurology, Harvard Medical School, Boston Children's Hospital, MA; TY Nelson Department of Neurology and Neurosurgery (R.W.), The Children's Hospital at Westmead, Sydney; Department of Neurology (D.C.), Women's and Children's Hospital, Adelaide; Neurosciences Children's Health Queensland (S.C.), Lady Cilento Children's Hospital, Brisbane; and Florey Institute of Neuroscience and Mental Health (S.M., A.S.H., I.E.S.), Melbourne, Australia
| | - Sophie Calvert
- From the Departments of Neurology (K.B.H., M.T.M., V.R.-C., J.L.F., A.S.H., I.E.S.) and Radiology (S.M.), The Royal Children's Hospital, Melbourne; Department of Paediatrics (K.B.H., M.T.M., S.M., A.S.H., I.E.S.), The University of Melbourne; Murdoch Childrens Research Institute (K.B.H., M.T.M., J.L.F., A.S.H.), Melbourne; Epilepsy Research Centre (J.M.M., I.E.S.), Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Paediatrics, University of Washington, Seattle; Epilepsy Genetics Program (D.T., H.E.O., A.P.), Department of Neurology, Harvard Medical School, Boston Children's Hospital, MA; TY Nelson Department of Neurology and Neurosurgery (R.W.), The Children's Hospital at Westmead, Sydney; Department of Neurology (D.C.), Women's and Children's Hospital, Adelaide; Neurosciences Children's Health Queensland (S.C.), Lady Cilento Children's Hospital, Brisbane; and Florey Institute of Neuroscience and Mental Health (S.M., A.S.H., I.E.S.), Melbourne, Australia
| | - Heather E Olson
- From the Departments of Neurology (K.B.H., M.T.M., V.R.-C., J.L.F., A.S.H., I.E.S.) and Radiology (S.M.), The Royal Children's Hospital, Melbourne; Department of Paediatrics (K.B.H., M.T.M., S.M., A.S.H., I.E.S.), The University of Melbourne; Murdoch Childrens Research Institute (K.B.H., M.T.M., J.L.F., A.S.H.), Melbourne; Epilepsy Research Centre (J.M.M., I.E.S.), Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Paediatrics, University of Washington, Seattle; Epilepsy Genetics Program (D.T., H.E.O., A.P.), Department of Neurology, Harvard Medical School, Boston Children's Hospital, MA; TY Nelson Department of Neurology and Neurosurgery (R.W.), The Children's Hospital at Westmead, Sydney; Department of Neurology (D.C.), Women's and Children's Hospital, Adelaide; Neurosciences Children's Health Queensland (S.C.), Lady Cilento Children's Hospital, Brisbane; and Florey Institute of Neuroscience and Mental Health (S.M., A.S.H., I.E.S.), Melbourne, Australia
| | - Simone Mandelstam
- From the Departments of Neurology (K.B.H., M.T.M., V.R.-C., J.L.F., A.S.H., I.E.S.) and Radiology (S.M.), The Royal Children's Hospital, Melbourne; Department of Paediatrics (K.B.H., M.T.M., S.M., A.S.H., I.E.S.), The University of Melbourne; Murdoch Childrens Research Institute (K.B.H., M.T.M., J.L.F., A.S.H.), Melbourne; Epilepsy Research Centre (J.M.M., I.E.S.), Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Paediatrics, University of Washington, Seattle; Epilepsy Genetics Program (D.T., H.E.O., A.P.), Department of Neurology, Harvard Medical School, Boston Children's Hospital, MA; TY Nelson Department of Neurology and Neurosurgery (R.W.), The Children's Hospital at Westmead, Sydney; Department of Neurology (D.C.), Women's and Children's Hospital, Adelaide; Neurosciences Children's Health Queensland (S.C.), Lady Cilento Children's Hospital, Brisbane; and Florey Institute of Neuroscience and Mental Health (S.M., A.S.H., I.E.S.), Melbourne, Australia
| | - Annapurna Poduri
- From the Departments of Neurology (K.B.H., M.T.M., V.R.-C., J.L.F., A.S.H., I.E.S.) and Radiology (S.M.), The Royal Children's Hospital, Melbourne; Department of Paediatrics (K.B.H., M.T.M., S.M., A.S.H., I.E.S.), The University of Melbourne; Murdoch Childrens Research Institute (K.B.H., M.T.M., J.L.F., A.S.H.), Melbourne; Epilepsy Research Centre (J.M.M., I.E.S.), Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Paediatrics, University of Washington, Seattle; Epilepsy Genetics Program (D.T., H.E.O., A.P.), Department of Neurology, Harvard Medical School, Boston Children's Hospital, MA; TY Nelson Department of Neurology and Neurosurgery (R.W.), The Children's Hospital at Westmead, Sydney; Department of Neurology (D.C.), Women's and Children's Hospital, Adelaide; Neurosciences Children's Health Queensland (S.C.), Lady Cilento Children's Hospital, Brisbane; and Florey Institute of Neuroscience and Mental Health (S.M., A.S.H., I.E.S.), Melbourne, Australia
| | - Heather C Mefford
- From the Departments of Neurology (K.B.H., M.T.M., V.R.-C., J.L.F., A.S.H., I.E.S.) and Radiology (S.M.), The Royal Children's Hospital, Melbourne; Department of Paediatrics (K.B.H., M.T.M., S.M., A.S.H., I.E.S.), The University of Melbourne; Murdoch Childrens Research Institute (K.B.H., M.T.M., J.L.F., A.S.H.), Melbourne; Epilepsy Research Centre (J.M.M., I.E.S.), Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Paediatrics, University of Washington, Seattle; Epilepsy Genetics Program (D.T., H.E.O., A.P.), Department of Neurology, Harvard Medical School, Boston Children's Hospital, MA; TY Nelson Department of Neurology and Neurosurgery (R.W.), The Children's Hospital at Westmead, Sydney; Department of Neurology (D.C.), Women's and Children's Hospital, Adelaide; Neurosciences Children's Health Queensland (S.C.), Lady Cilento Children's Hospital, Brisbane; and Florey Institute of Neuroscience and Mental Health (S.M., A.S.H., I.E.S.), Melbourne, Australia
| | - A Simon Harvey
- From the Departments of Neurology (K.B.H., M.T.M., V.R.-C., J.L.F., A.S.H., I.E.S.) and Radiology (S.M.), The Royal Children's Hospital, Melbourne; Department of Paediatrics (K.B.H., M.T.M., S.M., A.S.H., I.E.S.), The University of Melbourne; Murdoch Childrens Research Institute (K.B.H., M.T.M., J.L.F., A.S.H.), Melbourne; Epilepsy Research Centre (J.M.M., I.E.S.), Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Paediatrics, University of Washington, Seattle; Epilepsy Genetics Program (D.T., H.E.O., A.P.), Department of Neurology, Harvard Medical School, Boston Children's Hospital, MA; TY Nelson Department of Neurology and Neurosurgery (R.W.), The Children's Hospital at Westmead, Sydney; Department of Neurology (D.C.), Women's and Children's Hospital, Adelaide; Neurosciences Children's Health Queensland (S.C.), Lady Cilento Children's Hospital, Brisbane; and Florey Institute of Neuroscience and Mental Health (S.M., A.S.H., I.E.S.), Melbourne, Australia
| | - Ingrid E Scheffer
- From the Departments of Neurology (K.B.H., M.T.M., V.R.-C., J.L.F., A.S.H., I.E.S.) and Radiology (S.M.), The Royal Children's Hospital, Melbourne; Department of Paediatrics (K.B.H., M.T.M., S.M., A.S.H., I.E.S.), The University of Melbourne; Murdoch Childrens Research Institute (K.B.H., M.T.M., J.L.F., A.S.H.), Melbourne; Epilepsy Research Centre (J.M.M., I.E.S.), Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia; Division of Genetic Medicine (G.L.C., H.C.M.), Department of Paediatrics, University of Washington, Seattle; Epilepsy Genetics Program (D.T., H.E.O., A.P.), Department of Neurology, Harvard Medical School, Boston Children's Hospital, MA; TY Nelson Department of Neurology and Neurosurgery (R.W.), The Children's Hospital at Westmead, Sydney; Department of Neurology (D.C.), Women's and Children's Hospital, Adelaide; Neurosciences Children's Health Queensland (S.C.), Lady Cilento Children's Hospital, Brisbane; and Florey Institute of Neuroscience and Mental Health (S.M., A.S.H., I.E.S.), Melbourne, Australia.
| |
Collapse
|
86
|
Mastrangelo M. Novel Genes of Early-Onset Epileptic Encephalopathies: From Genotype to Phenotypes. Pediatr Neurol 2015; 53:119-29. [PMID: 26073591 DOI: 10.1016/j.pediatrneurol.2015.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Early-onset epileptic encephalopathies are severe disorders in which seizure recurrence impairs motor, cognitive, and sensory development. In recent years, next-generation sequencing technologies have led to the detection of several pathogenic new genes. METHODS AND RESULTS A PubMed search was carried out using the entries "early onset epileptic encephalopathies," "early infantile epileptic encephalopathies," and "next generation sequencing." The most relevant articles written on this subject between 2000 and 2015 were selected. Here we summarize the related contents concerning the pathogenic role and the phenotypic features of 20 novel gene-related syndromes involved in the pathogenesis of early-onset epileptic encephalopathy variants. CONCLUSIONS Despite the increasing number of single early-onset epileptic encephalopathy genes, the clinical presentations of these disorders frequently overlap, making it difficult to picture a systematic diagnostic evaluation. In any case, a progressive approach should guide the choice of molecular genetic investigations. It is suggested that clinicians pay particular attention to mutated genes causing potentially treatable conditions in order to take advantage of expert counseling.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Pediatric Neurology Division, Department of Pediatrics, Child Neurology and Psychiatry, "Sapienza-University of Rome", Rome, Italy.
| |
Collapse
|
87
|
Ohba C, Kato M, Takahashi N, Osaka H, Shiihara T, Tohyama J, Nabatame S, Azuma J, Fujii Y, Hara M, Tsurusawa R, Inoue T, Ogata R, Watanabe Y, Togashi N, Kodera H, Nakashima M, Tsurusaki Y, Miyake N, Tanaka F, Saitsu H, Matsumoto N. De novo
KCNT
1
mutations in early‐onset epileptic encephalopathy. Epilepsia 2015; 56:e121-8. [DOI: 10.1111/epi.13072] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 11/25/2022]
Affiliation(s)
- Chihiro Ohba
- Department of Human Genetics Graduate School of Medicine Yokohama City University Yokohama Japan
- Department of Clinical Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| | - Mitsuhiro Kato
- Department of Pediatrics Yamagata University Faculty of Medicine Yamagata Japan
| | - Nobuya Takahashi
- Department of Pediatrics Yamagata University Faculty of Medicine Yamagata Japan
| | - Hitoshi Osaka
- Division of Neurology Clinical Research Institute Kanagawa Children's Medical Center Yokohama Japan
- Department of Pediatrics Jichi Medical School Shimotsuke Tochigi Japan
| | - Takashi Shiihara
- Department of Neurology Gunma Children's Medical Center Shibukawa Japan
| | - Jun Tohyama
- Department of Pediatrics Epilepsy Center Nishi‐Niigata Chuo National Hospital Niigata Japan
| | - Shin Nabatame
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Junji Azuma
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Yuji Fujii
- Department of Pediatrics Hiroshima University Hospital Hiroshima Japan
| | - Munetsugu Hara
- Department of Neonatology Medical Center for Maternal and Child Health St. Mary's Hospital Kurume Japan
- Department of Pediatrics and Child Health Kurume University School of Medicine Kurume Japan
| | - Reimi Tsurusawa
- Department of Pediatrics Fukuoka University Chikushi Hospital Fukuoka Japan
| | - Takahito Inoue
- Department of Pediatrics Fukuoka University Chikushi Hospital Fukuoka Japan
| | - Reina Ogata
- Department of Pediatric Neurology Fukuoka Children's Hospital Fukuoka Japan
| | - Yoriko Watanabe
- Department of Pediatrics and Child Health Kurume University School of Medicine Kurume Japan
| | - Noriko Togashi
- Department of Neurology Miyagi Children's Hospital Sendai Japan
| | - Hirofumi Kodera
- Department of Human Genetics Graduate School of Medicine Yokohama City University Yokohama Japan
| | - Mitsuko Nakashima
- Department of Human Genetics Graduate School of Medicine Yokohama City University Yokohama Japan
| | - Yoshinori Tsurusaki
- Department of Human Genetics Graduate School of Medicine Yokohama City University Yokohama Japan
| | - Noriko Miyake
- Department of Human Genetics Graduate School of Medicine Yokohama City University Yokohama Japan
| | - Fumiaki Tanaka
- Department of Clinical Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| | - Hirotomo Saitsu
- Department of Human Genetics Graduate School of Medicine Yokohama City University Yokohama Japan
| | - Naomichi Matsumoto
- Department of Human Genetics Graduate School of Medicine Yokohama City University Yokohama Japan
| |
Collapse
|
88
|
Møller RS, Heron SE, Larsen LHG, Lim CX, Ricos MG, Bayly MA, van Kempen MJA, Klinkenberg S, Andrews I, Kelley K, Ronen GM, Callen D, McMahon JM, Yendle SC, Carvill GL, Mefford HC, Nabbout R, Poduri A, Striano P, Baglietto MG, Zara F, Smith NJ, Pridmore C, Gardella E, Nikanorova M, Dahl HA, Gellert P, Scheffer IE, Gunning B, Kragh-Olsen B, Dibbens LM. Mutations in KCNT1 cause a spectrum of focal epilepsies. Epilepsia 2015; 56:e114-20. [PMID: 26122718 DOI: 10.1111/epi.13071] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 11/30/2022]
Abstract
Autosomal dominant mutations in the sodium-gated potassium channel subunit gene KCNT1 have been associated with two distinct seizure syndromes, nocturnal frontal lobe epilepsy (NFLE) and malignant migrating focal seizures of infancy (MMFSI). To further explore the phenotypic spectrum associated with KCNT1, we examined individuals affected with focal epilepsy or an epileptic encephalopathy for mutations in the gene. We identified KCNT1 mutations in 12 previously unreported patients with focal epilepsy, multifocal epilepsy, cardiac arrhythmia, and in a family with sudden unexpected death in epilepsy (SUDEP), in addition to patients with NFLE and MMFSI. In contrast to the 100% penetrance so far reported for KCNT1 mutations, we observed incomplete penetrance. It is notable that we report that the one KCNT1 mutation, p.Arg398Gln, can lead to either of the two distinct phenotypes, ADNFLE or MMFSI, even within the same family. This indicates that genotype-phenotype relationships for KCNT1 mutations are not straightforward. We demonstrate that KCNT1 mutations are highly pleiotropic and are associated with phenotypes other than ADNFLE and MMFSI. KCNT1 mutations are now associated with Ohtahara syndrome, MMFSI, and nocturnal focal epilepsy. They may also be associated with multifocal epilepsy and cardiac disturbances.
Collapse
Affiliation(s)
- Rikke S Møller
- Danish Epilepsy Center, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Sarah E Heron
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | | | - Chiao Xin Lim
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Michael G Ricos
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Marta A Bayly
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Marjan J A van Kempen
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sylvia Klinkenberg
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ian Andrews
- Neurology Service, Sydney Children's Hospital, Randwick, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Kensington, New South Wales, Australia
| | - Kent Kelley
- NorthShore University HealthSystem, Evanston, Illinois, U.S.A
| | - Gabriel M Ronen
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - David Callen
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Jacinta M McMahon
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Simone C Yendle
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Gemma L Carvill
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, U.S.A
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, U.S.A
| | - Rima Nabbout
- Department of Pediatric Neurology, Reference Center for Rare Epilepsies, Hospital Necker-Enfants Malades, Paris, France
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, U.S.A
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, G. Gaslini Institute, University of Genoa, Genova, Italy
| | - Maria G Baglietto
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, G. Gaslini Institute, University of Genoa, Genova, Italy
| | - Federico Zara
- Laboratory of Neurogenetics, Department of Neurosciences, G. Gaslini Institute, Genova, Italy
| | - Nicholas J Smith
- Department of Neurology, Women's and Children's Health Network, Adelaide, South Australia, Australia.,School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Clair Pridmore
- Department of Neurology, Women's and Children's Health Network, Adelaide, South Australia, Australia
| | | | - Marina Nikanorova
- Danish Epilepsy Center, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | | | | | - Ingrid E Scheffer
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Boudewijn Gunning
- SEIN - Epilepsy Institutes in the Netherlands Foundation, Zwolle, The Netherlands
| | - Bente Kragh-Olsen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Leanne M Dibbens
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
89
|
Lesca G, Depienne C. Epilepsy genetics: the ongoing revolution. Rev Neurol (Paris) 2015; 171:539-57. [PMID: 26003806 DOI: 10.1016/j.neurol.2015.01.569] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/24/2014] [Accepted: 01/20/2015] [Indexed: 01/04/2023]
Abstract
Epilepsies have long remained refractory to gene identification due to several obstacles, including a highly variable inter- and intrafamilial expressivity of the phenotypes, a high frequency of phenocopies, and a huge genetic heterogeneity. Recent technological breakthroughs, such as array comparative genomic hybridization and next generation sequencing, have been leading, in the past few years, to the identification of an increasing number of genomic regions and genes in which mutations or copy-number variations cause various epileptic disorders, revealing an enormous diversity of pathophysiological mechanisms. The field that has undergone the most striking revolution is that of epileptic encephalopathies, for which most of causing genes have been discovered since the year 2012. Some examples are the continuous spike-and-waves during slow-wave sleep and Landau-Kleffner syndromes for which the recent discovery of the role of GRIN2A mutations has finally confirmed the genetic bases. These new technologies begin to be used for diagnostic applications, and the main challenge now resides in the interpretation of the huge mass of variants detected by these methods. The identification of causative mutations in epilepsies provides definitive confirmation of the clinical diagnosis, allows accurate genetic counselling, and sometimes permits the development of new appropriate and specific antiepileptic therapies. Future challenges include the identification of the genetic or environmental factors that modify the epileptic phenotypes caused by mutations in a given gene and the understanding of the role of somatic mutations in sporadic epilepsies.
Collapse
Affiliation(s)
- G Lesca
- Service de génétique, groupement hospitalier Est, hospices civils de Lyon, 59, boulevard Pinel, 69677 Bron, France; Université Claude-Bernard Lyon 1, 43, boulevard du 11-Novembre-1918, 69100 Villeurbanne, France; CRNL, CNRS UMR 5292, Inserm U1028, bâtiment IMBL, 11, avenue Jean-Capelle, 69621 Villeurbanne cedex, France.
| | - C Depienne
- Département de génétique et cytogénétique, hôpital Pitié-Salpêtrière, AP-HP, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Sorbonne universités, UPMC université Paris 06, 4, place Jussieu, 75005 Paris, France; ICM, CNRS UMR 7225, Inserm U1127, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| |
Collapse
|
90
|
Affiliation(s)
- Francesco Muntoni
- Developmental Neuroscience Programme, UCL Institute of Child Health and Great Ormond Street Hospital for Children, London WC1N 1EH, UK.
| | - J Helen Cross
- Developmental Neuroscience Programme, UCL Institute of Child Health and Great Ormond Street Hospital for Children, London WC1N 1EH, UK
| |
Collapse
|
91
|
Abstract
Voltage- and ligand-gated ion channels form the molecular basis of cellular excitability. With >400 members and accounting for ∼1.5% of the human genome, ion channels are some of the most well studied of all proteins in heterologous expression systems. Yet, ion channels often exhibit unexpected properties in vivo because of their interaction with a variety of signaling/scaffolding proteins. Such interactions can influence the function and localization of ion channels, as well as their coupling to intracellular second messengers and pathways, thus increasing the signaling potential of these ion channels in neurons. Moreover, functions have been ascribed to ion channels that are largely independent of their ion-conducting roles. Molecular and functional dissection of the ion channel proteome/interactome has yielded new insights into the composition of ion channel complexes and how their dysregulation leads to human disease.
Collapse
|
92
|
Abstract
Epileptic encephalopathies represent a group of devastating epileptic disorders that appear early in life and are characterized by pharmacoresistant generalized or focal seizures, persistent severe EEG abnormalities, and cognitive dysfunction or decline. The ictal and interictal epileptic discharges are age-specific and are either the main cause or contribute to cognitive deterioration in the idiopathic or symptomatic group respectively. Despite choosing the most appropriate anti-seizure drugs for the seizure-type and syndrome the results are often disappointing and polytherapy and/or alternative therapy becomes unavoidable. In those cases, consideration should be given to the quality of life of the child and carers. In this review we will discuss the clinical and EEG characteristics, evolution and management of age-related epileptic encephalopathies, recognized by the International League Against Epilepsy.
Collapse
|
93
|
A novel KCNT1 mutation in a Japanese patient with epilepsy of infancy with migrating focal seizures. Hum Genome Var 2014; 1:14027. [PMID: 27081515 PMCID: PMC4777018 DOI: 10.1038/hgv.2014.27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/20/2014] [Accepted: 10/20/2014] [Indexed: 11/24/2022] Open
Abstract
Epilepsy of infancy with migrating focal seizures (EIFMS) is a rare, early-onset epileptic encephalopathy characterized by polymorphous focal seizures. De novo mutations of KCNT1 have been identified in cases of this disorder. We encountered a sporadic patient with EIFMS, who suffered tonic convulsions at the age of 9 days. Using Sanger sequencing, we identified a de novo missense mutation of the same amino acid affected by a previously identified mutation, c.1420C>T (p.Arg474Cys).
Collapse
|
94
|
Kim GE, Kronengold J, Barcia G, Quraishi IH, Martin HC, Blair E, Taylor JC, Dulac O, Colleaux L, Nabbout R, Kaczmarek LK. Human slack potassium channel mutations increase positive cooperativity between individual channels. Cell Rep 2014; 9:1661-1672. [PMID: 25482562 DOI: 10.1016/j.celrep.2014.11.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/06/2014] [Accepted: 11/10/2014] [Indexed: 11/24/2022] Open
Abstract
Disease-causing mutations in ion channels generally alter intrinsic gating properties such as activation, inactivation, and voltage dependence. We examined nine different mutations of the KCNT1 (Slack) Na(+)-activated K(+) channel that give rise to three distinct forms of epilepsy. All produced many-fold increases in current amplitude compared to the wild-type channel. This could not be accounted for by increases in the intrinsic open probability of individual channels. Rather, greatly increased opening was a consequence of cooperative interactions between multiple channels in a patch. The degree of cooperative gating was much greater for all of the mutant channels than for the wild-type channel, and could explain increases in current even in a mutant with reduced unitary conductance. We also found that the same mutation gave rise to different forms of epilepsy in different individuals. Our findings indicate that a major consequence of these mutations is to alter channel-channel interactions.
Collapse
Affiliation(s)
- Grace E Kim
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Jack Kronengold
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Giulia Barcia
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Imran H Quraishi
- Comprehensive Epilepsy Center, Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Hilary C Martin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Edward Blair
- Oxford University Hospitals Trust, Oxford OX3 9DU, UK
| | - Jenny C Taylor
- Oxford Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Olivier Dulac
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Laurence Colleaux
- INSERM U781, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Rima Nabbout
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
95
|
Kim GE, Kaczmarek LK. Emerging role of the KCNT1 Slack channel in intellectual disability. Front Cell Neurosci 2014; 8:209. [PMID: 25120433 PMCID: PMC4112808 DOI: 10.3389/fncel.2014.00209] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 07/10/2014] [Indexed: 01/15/2023] Open
Abstract
The sodium-activated potassium KNa channels Slack and Slick are encoded by KCNT1 and KCNT2, respectively. These channels are found in neurons throughout the brain, and are responsible for a delayed outward current termed I KNa. These currents integrate into shaping neuronal excitability, as well as adaptation in response to maintained stimulation. Abnormal Slack channel activity may play a role in Fragile X syndrome, the most common cause for intellectual disability and inherited autism. Slack channels interact directly with the fragile X mental retardation protein (FMRP) and I KNa is reduced in animal models of Fragile X syndrome that lack FMRP. Human Slack mutations that alter channel activity can also lead to intellectual disability, as has been found for several childhood epileptic disorders. Ongoing research is elucidating the relationship between mutant Slack channel activity, development of early onset epilepsies and intellectual impairment. This review describes the emerging role of Slack channels in intellectual disability, coupled with an overview of the physiological role of neuronal I KNa currents.
Collapse
Affiliation(s)
- Grace E Kim
- Departments of Pharmacology and Cellular & Molecular Physiology, Yale University School of Medicine New Haven, CT, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology and Cellular & Molecular Physiology, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
96
|
Bearden D, Strong A, Ehnot J, DiGiovine M, Dlugos D, Goldberg EM. Targeted treatment of migrating partial seizures of infancy with quinidine. Ann Neurol 2014; 76:457-61. [DOI: 10.1002/ana.24229] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/17/2022]
Affiliation(s)
- David Bearden
- Division of Neurology; Children's Hospital of Philadelphia; Philadelphia PA
| | - Alanna Strong
- Perelman School of Medicine, University of Pennsylvania; Philadelphia PA
| | - Jessica Ehnot
- Department of Pharmacy; Upstate Golisano Children's Hospital; New York NY
| | - Marissa DiGiovine
- Division of Neurology; Children's Hospital of Philadelphia; Philadelphia PA
| | - Dennis Dlugos
- Division of Neurology; Children's Hospital of Philadelphia; Philadelphia PA
| | - Ethan M. Goldberg
- Division of Neurology; Children's Hospital of Philadelphia; Philadelphia PA
| |
Collapse
|
97
|
Martin HC, Kim GE, Pagnamenta AT, Murakami Y, Carvill GL, Meyer E, Copley RR, Rimmer A, Barcia G, Fleming MR, Kronengold J, Brown MR, Hudspith KA, Broxholme J, Kanapin A, Cazier JB, Kinoshita T, Nabbout R, Bentley D, McVean G, Heavin S, Zaiwalla Z, McShane T, Mefford HC, Shears D, Stewart H, Kurian MA, Scheffer IE, Blair E, Donnelly P, Kaczmarek LK, Taylor JC. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum Mol Genet 2014; 23:3200-11. [PMID: 24463883 PMCID: PMC4030775 DOI: 10.1093/hmg/ddu030] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/20/2014] [Indexed: 11/13/2022] Open
Abstract
In severe early-onset epilepsy, precise clinical and molecular genetic diagnosis is complex, as many metabolic and electro-physiological processes have been implicated in disease causation. The clinical phenotypes share many features such as complex seizure types and developmental delay. Molecular diagnosis has historically been confined to sequential testing of candidate genes known to be associated with specific sub-phenotypes, but the diagnostic yield of this approach can be low. We conducted whole-genome sequencing (WGS) on six patients with severe early-onset epilepsy who had previously been refractory to molecular diagnosis, and their parents. Four of these patients had a clinical diagnosis of Ohtahara Syndrome (OS) and two patients had severe non-syndromic early-onset epilepsy (NSEOE). In two OS cases, we found de novo non-synonymous mutations in the genes KCNQ2 and SCN2A. In a third OS case, WGS revealed paternal isodisomy for chromosome 9, leading to identification of the causal homozygous missense variant in KCNT1, which produced a substantial increase in potassium channel current. The fourth OS patient had a recessive mutation in PIGQ that led to exon skipping and defective glycophosphatidyl inositol biosynthesis. The two patients with NSEOE had likely pathogenic de novo mutations in CBL and CSNK1G1, respectively. Mutations in these genes were not found among 500 additional individuals with epilepsy. This work reveals two novel genes for OS, KCNT1 and PIGQ. It also uncovers unexpected genetic mechanisms and emphasizes the power of WGS as a clinical tool for making molecular diagnoses, particularly for highly heterogeneous disorders.
Collapse
Affiliation(s)
- Hilary C Martin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Grace E Kim
- Departments of Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Alistair T Pagnamenta
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK, NIHR Biomedical Research Centre, Oxford, UK
| | - Yoshiko Murakami
- Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Gemma L Carvill
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | - Esther Meyer
- Neurosciences Unit, UCL-Institute of Child Health, London, UK, Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Richard R Copley
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK, NIHR Biomedical Research Centre, Oxford, UK
| | - Andrew Rimmer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Giulia Barcia
- Department of Paediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Paris, France
| | - Matthew R Fleming
- Departments of Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Jack Kronengold
- Departments of Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Maile R Brown
- Departments of Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Karl A Hudspith
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK, NIHR Biomedical Research Centre, Oxford, UK
| | - John Broxholme
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alexander Kanapin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Rima Nabbout
- Department of Paediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Paris, France
| | | | - Gil McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sinéad Heavin
- Departments of Medicine and Paediatrics, Florey Institute, The University of Melbourne, Austin Health and Royal Children's Hospital, Melbourne, VIC, Australia
| | - Zenobia Zaiwalla
- Department of Clinical Neurophysiology, John Radcliffe Hospital, Oxford, UK
| | - Tony McShane
- Department of Paediatrics, Children's Hospital Oxford, John Radcliffe Hospital, Oxford, UK
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | - Deborah Shears
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Helen Stewart
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Manju A Kurian
- Neurosciences Unit, UCL-Institute of Child Health, London, UK
| | - Ingrid E Scheffer
- Departments of Medicine and Paediatrics, Florey Institute, The University of Melbourne, Austin Health and Royal Children's Hospital, Melbourne, VIC, Australia
| | - Edward Blair
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Peter Donnelly
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Leonard K Kaczmarek
- Departments of Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Jenny C Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK, NIHR Biomedical Research Centre, Oxford, UK,
| |
Collapse
|
98
|
Milligan CJ, Li M, Gazina EV, Heron SE, Nair U, Trager C, Reid CA, Venkat A, Younkin DP, Dlugos DJ, Petrovski S, Goldstein DB, Dibbens LM, Scheffer IE, Berkovic SF, Petrou S. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann Neurol 2014; 75:581-90. [PMID: 24591078 DOI: 10.1002/ana.24128] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Mutations in KCNT1 have been implicated in autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) and epilepsy of infancy with migrating focal seizures (EIMFS). More recently, a whole exome sequencing study of epileptic encephalopathies identified an additional de novo mutation in 1 proband with EIMFS. We aim to investigate the electrophysiological and pharmacological characteristics of hKCNT1 mutations and examine developmental expression levels. METHODS Here we use a Xenopus laevis oocyte-based automated 2-electrode voltage clamp assay. The effects of quinidine (100 and 300 μM) are also tested. Using quantitative reverse transcriptase polymerase chain reaction, the relative levels of mouse brain mKcnt1 mRNA expression are determined. RESULTS We demonstrate that KCNT1 mutations implicated in epilepsy cause a marked increase in function. Importantly, there is a significant group difference in gain of function between mutations associated with ADNFLE and EIMFS. Finally, exposure to quinidine significantly reduces this gain of function for all mutations studied. INTERPRETATION These results establish direction for a targeted therapy and potentially exemplify a translational paradigm for in vitro studies informing novel therapies in a neuropsychiatric disease.
Collapse
Affiliation(s)
- Carol J Milligan
- Ion Channels and Disease Group, Epilepsy Division, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Wilmshurst JM, Berg AT, Lagae L, Newton CR, Cross JH. The challenges and innovations for therapy in children with epilepsy. Nat Rev Neurol 2014; 10:249-60. [PMID: 24709890 DOI: 10.1038/nrneurol.2014.58] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Major advances have been made in the diagnosis, evaluation and management of children with epilepsy over the past 15 years. There has been a marked increase in genetic diagnoses of a number of key childhood-onset epilepsy syndromes, such as Dravet syndrome, which has been linked to mutations in the SCN1A gene. The reorganization and reclassification of epilepsies, devised by the International League Against Epilepsy, has stimulated specialists to reassess their diagnostic practices; however, many studies have not addressed the global issues in treating children with epilepsy-specifically, the challenges of diagnosis through to optimal, and appropriate, therapeutic management. Also, Class I evidence-based data that are needed as a foundation for the development of treatment guidelines worldwide are lacking. Epilepsy is common, and the impact of this disease crosses age ranges and should be managed at all levels of care from community to quaternary care. In this Review, existing data and new therapeutic management approaches are discussed with the aim of highlighting the incidence of standard practices that may not be based on clinical evidence.
Collapse
Affiliation(s)
- Jo M Wilmshurst
- Red Cross War Memorial Children's Hospital, University of Cape Town, Rondebosch 7700, South Africa
| | - Anne T Berg
- Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL 60611, USA
| | - Lieven Lagae
- Department of Pediatric Neurology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Charles R Newton
- Centre for Geographic Medicine Research-Coast, Kenya Medical Research Institute, PO Box 230, Kilifi 80108, Kenya
| | - J Helen Cross
- UCL Institute of Child Health, 4/5 Long Yard, London WC1N 3LU, UK
| |
Collapse
|
100
|
Lack of pathogenic mutations in six patients with MMPSI. Epilepsy Res 2014; 108:340-4. [DOI: 10.1016/j.eplepsyres.2013.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 10/11/2013] [Accepted: 11/03/2013] [Indexed: 11/19/2022]
|