51
|
Mohanlal S, Bindu PS, Sureshbabu S, Kumar S. Variable treatment response in a patient with pyridoxal N phosphate oxidase (PNPO) deficiency- understanding the paradox. Epilepsy Behav Rep 2020; 14:100357. [PMID: 32395712 PMCID: PMC7210397 DOI: 10.1016/j.ebr.2020.100357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/07/2020] [Accepted: 02/29/2020] [Indexed: 11/21/2022] Open
Abstract
A 6-year-old girl presented with history of infantile onset epileptic encephalopathy and developmental delay. She had polymorphic seizures that were refractory to regular anti-seizure medication. Incomplete control of seizures was achieved on starting pyridoxine, riboflavin and thiamine. Clinical exome sequencing done at 4 years revealed PNPO deficiency with a homozygous mutation in the highly conserved exon 3:c.352G > A p.Gly118R region of the gene. Thereafter, pyridoxine was weaned and pyridoxal phosphate was added with resultant refractory status epilepticus, which necessitated our approach to start pyridoxine and stop pyridoxal phosphate. With two antiseizure medication and three vitamins, she had improved seizure control. At 6 years of age an attempt to wean off riboflavin resulted in break through seizures. After restarting riboflavin along with pyridoxal phosphate, pyridoxine in low doses and two antiseizure medications, the child achieved good seizure control. Though partial responsiveness to pyridoxine with gene mutation in the exon 3: c.352G > A p. Gly118R is known, riboflavin dependence and transient worsening of seizures off pyridoxine has not been described to our knowledge. Our case highlights the importance of identifying the precise gene mutationsequence to properly identify variants relative to individual phenotypic expression, treatment responsivness and need for added vitamin supplementation. PNPO (pyridoxal N phosphate oxidase) deficiency is a treatable cause of infantile and neonatal onset epileptic encephalopathy PNPO deficiency is classically responsive to pyridoxal phosphate but other agents like high dose pyridoxine and riboflavin are also useful depending upon the genetic mutation involved. The present report describes a paradoxical worsening which occurred when switched from pyridoxine to pyridoxal phosphate.
Collapse
Affiliation(s)
- Smilu Mohanlal
- Department of Neurology and Paediatric Neurosciences, Aster Malabar Institute of Medical Sciences, Kozhikode, Kerala, India
| | - Parayil Sankaran Bindu
- Mito-Foundation Clinical Fellow, Genetic metabolic disorders service children's hospital, Westmead, NSW, Australia
| | - Sachin Sureshbabu
- Department of Neurology and Paediatric Neurosciences, Aster Malabar Institute of Medical Sciences, Kozhikode, Kerala, India
| | - Suresh Kumar
- Department of Paediatrics, Aster Malabar Institute of Medical Sciences, Kozhikode, Kerala, India
| |
Collapse
|
52
|
Chi W, Iyengar ASR, Albersen M, Bosma M, Verhoeven-Duif NM, Wu CF, Zhuang X. Pyridox (am) ine 5'-phosphate oxidase deficiency induces seizures in Drosophila melanogaster. Hum Mol Genet 2020; 28:3126-3136. [PMID: 31261385 DOI: 10.1093/hmg/ddz143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Pyridox (am) ine 5'-phosphate oxidase (PNPO) is a rate-limiting enzyme in converting dietary vitamin B6 (VB6) to pyridoxal 5'-phosphate (PLP), the biologically active form of VB6 and involved in the synthesis of neurotransmitters including γ-aminobutyric acid (GABA), dopamine, and serotonin. In humans, PNPO mutations have been increasingly identified in neonatal epileptic encephalopathy and more recently also in early-onset epilepsy. Till now, little is known about the neurobiological mechanisms underlying PNPO-deficiency-induced seizures due to the lack of animal models. Previously, we identified a c.95 C>A missense mutation in sugarlethal (sgll)-the Drosophila homolog of human PNPO (hPNPO)-and found mutant (sgll95) flies exhibiting a lethal phenotype on a diet devoid of VB6. Here, we report the establishment of both sgll95 and ubiquitous sgll knockdown (KD) flies as valid animal models of PNPO-deficiency-induced epilepsy. Both sgll95 and sgll KD flies exhibit spontaneous seizures before they die. Electrophysiological recordings reveal that seizures caused by PNPO deficiency have characteristics similar to that in flies treated with the GABA antagonist picrotoxin. Both seizures and lethality are associated with low PLP levels and can be rescued by ubiquitous expression of wild-type sgll or hPNPO, suggesting the functional conservation of the PNPO enzyme between humans and flies. Results from cell type-specific sgll KD further demonstrate that PNPO in the brain is necessary for seizure prevention and survival. Our establishment of the first animal model of PNPO deficiency will lead to better understanding of VB6 biology, the PNPO gene and its mutations discovered in patients, and can be a cost-effective system to test therapeutic strategies.
Collapse
Affiliation(s)
- Wanhao Chi
- Committee on Genetics, Genomics and Systems Biology.,Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Atulya S R Iyengar
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Monique Albersen
- Section Metabolic Diagnostics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, EA, The Netherlands
| | - Marjolein Bosma
- Section Metabolic Diagnostics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, EA, The Netherlands
| | - Nanda M Verhoeven-Duif
- Section Metabolic Diagnostics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, EA, The Netherlands
| | - Chun-Fang Wu
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Xiaoxi Zhuang
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
53
|
Helbig I, Ellis CA. Personalized medicine in genetic epilepsies - possibilities, challenges, and new frontiers. Neuropharmacology 2020; 172:107970. [PMID: 32413583 DOI: 10.1016/j.neuropharm.2020.107970] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/05/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022]
Abstract
Identifying the optimal treatment based on specific characteristics of each patient is the main promise of precision medicine. In the field of epilepsy, the identification of more than 100 causative genes provides the enticing possibility of treatments targeted to specific disease etiologies. These conditions include classical examples, such as the use of vitamin B6 in antiquitin deficiency or the ketogenic diet in GLUT1 deficiency, where the disease mechanism can be directly addressed by the selection of a specific therapeutic compound. For epilepsies caused by channelopathies there have been advances in understanding how the selection of existing medications can be targeted to the functional consequences of genetic alterations. We discuss the examples of the use of sodium channel blockers such as phenytoin and oxcarbazepine in the sodium channelopathies, quinidine in KCNT1-related epilepsies, and strategies in GRIN-related epilepsies as examples of epilepsy precision medicine. Assessing the clinical response to targeted treatments of these conditions has been complicated by genetic and phenotypic heterogeneity, as well as by various neurological and non-neurological comorbidities. Moving forward, the development of standardized outcome measures will be critical to successful precision medicine trials in complex and heterogeneous disorders like the epilepsies. Finally, we address new frontiers in epilepsy precision medicine, including the need to match the growing volume of genetic data with high-throughput functional assays to assess the functional consequences of genetic variants and the ability to extract clinical data at large scale from electronic medical records and apply quantitative methods based on standardized phenotyping language.
Collapse
Affiliation(s)
- Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Colin A Ellis
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
54
|
Clayton PT. The effectiveness of correcting abnormal metabolic profiles. J Inherit Metab Dis 2020; 43:2-13. [PMID: 31222759 PMCID: PMC7041635 DOI: 10.1002/jimd.12139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/12/2023]
Abstract
Inborn errors of metabolism cause disease because of accumulation of a metabolite before the blocked step or deficiency of an essential metabolite downstream of the block. Treatments can be directed at reducing the levels of a toxic metabolite or correcting a metabolite deficiency. Many disorders have been treated successfully first in a single patient because we can measure the metabolites and adjust treatment to get them as close as possible to the normal range. Examples are drawn from Komrower's description of treatment of homocystinuria and the author's trials of treatment in bile acid synthesis disorders (3β-hydroxy-Δ5 -C27 -steroid dehydrogenase deficiency and Δ4 -3-oxosteroid 5β-reductase deficiency), neurotransmitter amine disorders (aromatic L-amino acid decarboxylase [AADC] and tyrosine hydroxylase deficiencies), and vitamin B6 disorders (pyridox(am)ine phosphate oxidase deficiency and pyridoxine-dependent epilepsy [ALDH7A1 deficiency]). Sometimes follow-up shows there are milder and more severe forms of the disease and even variable clinical manifestations but by measuring the metabolites we can adjust the treatment to get the metabolites into the normal range. Biochemical measurements are not subject to placebo effects and will also show if the disorder is improving spontaneously. The hypothesis that can then be tested for clinical outcome is whether getting metabolite(s) into a target range leads to an improvement in an outcome parameter such as abnormal liver function tests, hypokinesia, epilepsy control etc. The metabolite-guided approach to treatment is an example of personalized medicine and is a better way of determining efficacy for disorders of variable severity than a randomized controlled clinical trial.
Collapse
|
55
|
Mir A, Qahtani M, Bashir S. GRIN2A -Related Severe Epileptic Encephalopathy Treated with Memantine: An Example of Precision Medicine. J Pediatr Genet 2019; 9:252-257. [PMID: 32765929 DOI: 10.1055/s-0039-3401028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/04/2019] [Indexed: 01/07/2023]
Abstract
Epileptic spasm (ES) is one of the seizure types which is difficult to treat. Next-generation sequencing has facilitated rapid gene discovery that is linked to ES and GRIN2A being one of them. Genotype-driven precision medicine is on the horizon and is a targeted treatment approach toward the precise molecular cause of the disease. GRIN2A gene encodes for a subunit of N-methyl-D-aspartate (NMDA) receptor and it has been suggested from in vitro studies and few case reports that memantine, a NMDA receptor antagonist, was shown to reduce seizures in patients with GRIN2A mutations. Here, we describe a patient with a novel GRIN2A mutation and severe drug-resistant ES who became seizure free with memantine.
Collapse
Affiliation(s)
- Ali Mir
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Mohammed Qahtani
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia.,Berenson-Allen Center for Non-invasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
56
|
Kwon OK, Ha YS, Lee JN, Kim S, Lee H, Chun SY, Kwon TG, Lee S. Comparative Proteome Profiling and Mutant Protein Identification in Metastatic Prostate Cancer Cells by Quantitative Mass Spectrometry-based Proteogenomics. Cancer Genomics Proteomics 2019; 16:273-286. [PMID: 31243108 DOI: 10.21873/cgp.20132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM Prostate cancer (PCa) is the most frequent cancer found in males worldwide. The aim of this study was to identify new biomarkers using mutated peptides for the prognosis and prediction of advanced PCa, based on proteogenomics. MATERIALS AND METHODS The tryptic peptides were analyzed by tandem mass tag-based quantitative proteomics. Proteogenomics were used to identify mutant peptides as novel biomarkers in advanced PCa. RESULTS Using a human database, increased levels of INTS7 and decreased levels of SH3BGRL were found to be associated with the aggressiveness of PCa. Using proteogenomics and a cancer mutation database, 70 mutant peptides were identified in PCa cell lines. Using parallel reaction monitoring, the expression of seven mutant peptides was found to be altered in tumors, amongst which CAPN2 D22E was the most significantly up-regulated mutant peptide in PCa tissues. CONCLUSION Altered mutant peptides present in PCa tissue could be used as new biomarkers in advanced PCa.
Collapse
Affiliation(s)
- Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Urology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Urology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sunjoo Kim
- BK21 Plus Team for Creative Leader Program for Pharmacomics-based Future, Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Hyesuk Lee
- BK21 Plus Team for Creative Leader Program for Pharmacomics-based Future, Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - So Young Chun
- Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea .,Department of Urology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
57
|
Lugli L, Bariola MC, Ori L, Lucaccioni L, Berardi A, Ferrari F. Further Delineation of Pyridoxine-Responsive Pyridoxine Phosphate Oxidase Deficiency Epilepsy: Report of a New Case and Review of the Literature With Genotype-Phenotype Correlation. J Child Neurol 2019; 34:937-943. [PMID: 31397616 DOI: 10.1177/0883073819863992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, the clinical spectrum of pyridoxine phosphate oxidase (PNPO) deficiency has broadened. There are a growing number of patients with a transient or lasting response to pyridoxine in addition to cases that respond more traditionally to pyridoxal-phosphate. However, among pyridoxine-responsive patients with PNPO gene mutation, there are only a few reports on electroencephalogram (EEG) ictal/interictal patterns, and data regarding the outcomes are inconsistent. We describe a case of neonatal onset epilepsy with missense mutation c(674G>A) p(R225 H) in PNPO gene and pyridoxine responsiveness. Comparing this patient with 24 cases of previously described pyridoxine-responsive pyridoxine phosphate oxidase deficiency epilepsy, we found that patients carrying the missense mutation c(674G>A) p(R225 H) of the PNPO gene might have a more severe epileptic phenotype, possibly because of their lower residual PNPO activity. Indeed, pyridoxine-responsive pyridoxine phosphate oxidase deficiency epilepsy remains a challenge, with neurodevelopmental disabilities occurring in about half of the cases.
Collapse
Affiliation(s)
- Licia Lugli
- Department of Pediatrics, University Hospital, Modena, Italy
| | | | - Luca Ori
- Department of Pediatrics, University Hospital, Modena, Italy
| | | | - Alberto Berardi
- Department of Pediatrics, University Hospital, Modena, Italy
| | | |
Collapse
|
58
|
Ciapaite J, Albersen M, Savelberg SMC, Bosma M, Tessadori F, Gerrits J, Lansu N, Zwakenberg S, Bakkers JPW, Zwartkruis FJT, van Haaften G, Jans JJ, Verhoeven-Duif NM. Pyridox(am)ine 5'-phosphate oxidase (PNPO) deficiency in zebrafish results in fatal seizures and metabolic aberrations. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165607. [PMID: 31759955 DOI: 10.1016/j.bbadis.2019.165607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
Abstract
Pyridox(am)ine 5'-phosphate oxidase (PNPO) catalyzes oxidation of pyridoxine 5'-phosphate (PNP) and pyridoxamine 5'-phosphate (PMP) to pyridoxal 5'-phosphate (PLP), the active form of vitamin B6. PNPO deficiency results in neonatal/infantile seizures and neurodevelopmental delay. To gain insight into this disorder we generated Pnpo deficient (pnpo-/-) zebrafish (CRISPR/Cas9 gene editing). Locomotion analysis showed that pnpo-/- zebrafish develop seizures resulting in only 38% of pnpo-/- zebrafish surviving beyond 20 days post fertilization (dpf). The age of seizure onset varied and survival after the onset was brief. Biochemical profiling at 20 dpf revealed a reduction of PLP and pyridoxal (PL) and accumulation of PMP and pyridoxamine (PM). Amino acids involved in neurotransmission including glutamate, γ-aminobutyric acid (GABA) and glycine were decreased. Concentrations of several, mostly essential, amino acids were increased in pnpo-/- zebrafish suggesting impaired activity of PLP-dependent transaminases involved in their degradation. PLP treatment increased survival at 20 dpf and led to complete normalization of PLP, PL, glutamate, GABA and glycine. However, amino acid profiles only partially normalized and accumulation of PMP and PM persisted. Taken together, our data indicate that not only decreased PLP but also accumulation of PMP may play a role in the clinical phenotype of PNPO deficiency.
Collapse
Affiliation(s)
- Jolita Ciapaite
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands.
| | - Monique Albersen
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Sanne M C Savelberg
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Marjolein Bosma
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Federico Tessadori
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Johan Gerrits
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Nico Lansu
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Susan Zwakenberg
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Jeroen P W Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Medical Physiology, University Medical Center Utrecht, 3584 CM Utrecht, the Netherlands
| | - Fried J T Zwartkruis
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Gijs van Haaften
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Judith J Jans
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Nanda M Verhoeven-Duif
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| |
Collapse
|
59
|
Chen X, Lu T, Wang X, Sun X, Zhang J, Zhou K, Ji X, Sun R, Wang X, Chen M, Ling X. Metabolic alterations associated with polycystic ovary syndrome: A UPLC Q-Exactive based metabolomic study. Clin Chim Acta 2019; 502:280-286. [PMID: 31758934 DOI: 10.1016/j.cca.2019.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/24/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder syndrome of women in reproductive age. Metabolomic studies of the follicular fluid can reveal the potential metabolic pathways related to PCOS. The objection of this study was to explore the changes of metabolites in the follicular fluid of PCOS. METHODS We collected follicular fluid samples of 35 patients with PCOS and 33 controls without PCOS for metabolomic analysis with UPLC Q-Exactive. The identified metabolites were annotated with KEGG and HMDB to determine the disturbances of metabolic pathways in PCOS. Based on the regression model, we conducted the ROC analysis to find the biomarker of PCOS in the follicular fluid. RESULTS Metabolomic analysis identified 21 differential metabolites in PCOS, which revealed that the Vitamin B6 metabolism, phenylalanine metabolism and carnitine synthesis were the key changed pathways. We found that 7β-Hydroxycholesterol was potential biomarker of PCOS based on the ROC analysis. CONCLUSION We identified metabolic alterations and biomarker in the follicular fluid of PCOS, providing novel ways for the diagnosis and treatment of PCOS.
Collapse
Affiliation(s)
- Xiaojiao Chen
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, the Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Jiangsu Province, Nanjing, 210004, China
| | - Ting Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoxiao Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xian Sun
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Junqiang Zhang
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, the Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Jiangsu Province, Nanjing, 210004, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoming Ji
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xiufeng Ling
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, the Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Jiangsu Province, Nanjing, 210004, China.
| |
Collapse
|
60
|
Stevelink R, Pangilinan F, Jansen FE, Braun KPJ, Molloy AM, Brody LC, Koeleman BPC. Assessing the genetic association between vitamin B6 metabolism and genetic generalized epilepsy. Mol Genet Metab Rep 2019; 21:100518. [PMID: 31641590 PMCID: PMC6796782 DOI: 10.1016/j.ymgmr.2019.100518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 01/23/2023] Open
Abstract
Altered vitamin B6 metabolism due to pathogenic variants in the gene PNPO causes early onset epileptic encephalopathy, which can be treated with high doses of vitamin B6. We recently reported that single nucleotide polymorphisms (SNPs) that influence PNPO expression in the brain are associated with genetic generalized epilepsy (GGE). However, it is not known whether any of these GGE-associated SNPs influence vitamin B6 metabolite levels. Such an influence would suggest that vitamin B6 could play a role in GGE therapy. Here, we performed genome-wide association studies (GWAS) to assess the influence of GGE associated genetic variants on measures of vitamin B6 metabolism in blood plasma in 2232 healthy individuals. We also asked if SNPs that influence vitamin B6 were associated with GGE in 3122 affected individuals and 20,244 controls. Our GWAS of vitamin B6 metabolites reproduced a previous association and found a novel genome-wide significant locus. The SNPs in these loci were not associated with GGE. We found that 84 GGE-associated SNPs influence expression levels of PNPO in the brain as well as in blood. However, these SNPs were not associated with vitamin B6 metabolism in plasma. By leveraging polygenic risk scoring (PRS), we found suggestive evidence of higher catabolism and lower levels of the active and transport forms of vitamin B6 in GGE, although these findings require further replication.
Collapse
Affiliation(s)
- Remi Stevelink
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Child Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Faith Pangilinan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Floor E Jansen
- Department of Child Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kees P J Braun
- Department of Child Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Anne M Molloy
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Lawrence C Brody
- National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Bobby P C Koeleman
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
61
|
Chen PY, Tu HC, Schirch V, Safo MK, Fu TF. Pyridoxamine Supplementation Effectively Reverses the Abnormal Phenotypes of Zebrafish Larvae With PNPO Deficiency. Front Pharmacol 2019; 10:1086. [PMID: 31616300 PMCID: PMC6764245 DOI: 10.3389/fphar.2019.01086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/26/2019] [Indexed: 01/09/2023] Open
Abstract
Neonatal epileptic encephalopathy (NEE), as a result of pyridoxine 5′-phosphate oxidase (PNPO) deficiency, is a rare neural disorder characterized by intractable seizures and usually leads to early infant death. The clinical phenotypes do not respond to antiepileptic drugs but are alleviated in most cases by giving large doses of pyridoxal 5′-phosphate (PLP). PLP is the active form of vitamin B6 participating in more than 100 enzymatic pathways. One of the causes of NEE is pathogenic mutations in the gene for human PNPO (hPNPO). PNPO is a key enzyme in converting pyridoxine (PN), the common dietary form of vitamin B6, and some other B6 vitamers to PLP. More than 25 different mutations in hPNPO, which result in reduced catalytic activity, have been described for PNPO-deficiency NEE. To date, no animal model is available to test new therapeutic strategies. In this report, we describe using zebrafish with reduced activity of Pnpo as an animal model. Knocking down zPnpo resulted in developmental anomalies including brain malformation and impaired locomotor activity, similar to the clinical features of PNPO-deficiency NEE. Other anomalies include a defective circulation system. These anomalies were significantly alleviated by co-injecting either zpnpo or hPNPO mRNAs. As expected from clinical observations in humans, supplementing with PLP improved the morphological and behavioral anomalies. PN only showed marginal positive effects, and only in a few anomalies. Remarkably, pyridoxamine (PM), another dietary form of vitamin B6, showed rescue effects even at a lower concentration than PLP, presenting a possible new therapeutic treatment for PNPO-deficiency NEE. Finally, GABA, a neurotransmitter whose biosynthesis depends on a PLP-dependent enzyme, showed some positive rescue effect. These results suggest zebrafish to be a promising PNPO-deficiency model for studying PLP homeostasis and drug therapy in vivo.
Collapse
Affiliation(s)
- Po-Yuan Chen
- College of Medicine, Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Chi Tu
- College of Medicine, Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan
| | - Verne Schirch
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Martin K Safo
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Tzu-Fun Fu
- College of Medicine, Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
62
|
Abstract
It is increasingly recognized that tissue-specific nutrient deficiencies can exist in the absence of whole-body deficiency and that these deficiencies may result from disease or disease-related physiological processes. Brain and central nervous system tissues require adequate nutrient levels to function. Many nutrients are concentrated in the cerebrospinal fluid relative to the serum in healthy individuals, and other nutrients resist depletion in the presence of whole-body nutrient depletion. The endothelial, epithelial, and arachnoid brain barriers work in concert to selectively transport, concentrate, and maintain levels of the specific nutrients required by the brain while also blocking the passage of blood-borne toxins and pathogens to brain and central nervous system tissues. These barriers preserve nutrient levels within the brain and actively concentrate nutrients within the cerebrospinal fluid and brain. The roles of physical and energetic barriers, including the blood-brain and blood-nerve barriers, in maintaining brain nutrient levels in health and disease are discussed.
Collapse
Affiliation(s)
- Kendra A Tiani
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA;
| | - Patrick J Stover
- College of Agriculture and Life Sciences, Texas A & M University, College Station, Texas 77843-2142, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
63
|
Abstract
Genomic testing has become routine in the diagnosis and management of pediatric patients with epilepsy. In a single test, hundreds to thousands of genes are examined for DNA changes that may not only explain the etiology of the patient's condition but may also inform management and seizure control. Clinical genomic testing has been in clinical practice for less than a decade, and because of this short period of time, the appropriate clinical use and interpretation of genomic testing is still evolving. Compared to the previous era of single-gene testing in epilepsy, which yielded a diagnosis in <5% of cases, many clinical genomic studies of epilepsy have demonstrated a clinically significant diagnosis in 30% or more of patients tested. This review will examine key studies of the past decade and indicate the clinical scenarios in which genomic testing should be considered standard of care.
Collapse
Affiliation(s)
- Drew M Thodeson
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Jason Y Park
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas 75235, USA.,Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas 75235, USA
| |
Collapse
|
64
|
Abstract
Introduction: Vitamin B6 dependent epilepsies are a group of treatable diseases (ALDH7A1 deficiency, PNPO deficiency, PLP binding protein deficiency, hyperprolinaemia type II and hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects) responding to pyridoxine or pyridoxal-5I-phosphate. Areas covered: A critical review was conducted on the therapeutic management of all the reported patients with genetically confirmed diagnoses of diseases affecting vitamin B6 metabolism and presenting with pyridoxine or pyridoxal-5I-phosphate dependent-seizures. Data about safety and efficacy were analyzed as well as the management of supplementation with pyridoxine or pyridoxal-5I-phosphate both in the acute phases and in the maintenance therapies. The authors also analyzed alternative therapeutic strategies for ALDH7A1 deficiency (lysine-restricted diet, arginine supplementation, oligonucleotide antisense therapy, upstream inhibition of aminoadipic semialdehyde synthase). Expert opinion: The administration of pyridoxine or pyridoxal-5I-phosphate should be considered in all intractable seizures also beyond the first year of life. Lysine restricted diet and arginine supplementation should be introduced in all the confirmed ALDH7A1 deficient patients. Pre or post-natal supplementation with pyridoxine should be given in familial cases until an eventual molecular genetic disconfirmation. Minor data about alternative therapies are available for other disorders of vitamin B6 metabolism.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Division of Child Neurology and Infantile Psychiatry, Department of Human Neurosciences, Sapienza University of Rome , Roma , Italy
| | - Serena Cesario
- Division of Child Neurology and Infantile Psychiatry, Department of Human Neurosciences, Sapienza University of Rome , Roma , Italy
| |
Collapse
|
65
|
Mascolo E, Amoroso N, Saggio I, Merigliano C, Vernì F. Pyridoxine/pyridoxamine 5'-phosphate oxidase (Sgll/PNPO) is important for DNA integrity and glucose homeostasis maintenance in Drosophila. J Cell Physiol 2019; 235:504-512. [PMID: 31506944 DOI: 10.1002/jcp.28990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/29/2019] [Indexed: 01/08/2023]
Abstract
Pyridoxine/pyridoxamine 5'-phosphate oxidase (PNPO) and pyridoxal kinase (PDXK) cooperate to produce pyridoxal 5'-phosphate (PLP), the active form of vitamin B6. PDXK phosphorylates pyridoxine, pyridoxamine, and pyridoxal by producing PNP, PMP, and PLP, whereas PNPO oxidizes PNP, PMP, into PLP. We previously demonstrated that PDXK depletion in Drosophila and human cells impacts on glucose metabolism and DNA integrity. Here we characterized sgll, the Drosophila ortholog of PNPO gene, showing that its silencing by RNA interference elicits chromosome aberrations (CABs) in brains and induces diabetic hallmarks such as hyperglycemia and small body size. We showed that in sgllRNAi neuroblasts CABs are largely produced by the genotoxic effect of the advanced glycation end products triggered by high glucose. As in sgllRNAi cells, part of PLP is still produced by PDXK activity, these data suggest that PLP dosage need to be tightly regulated to guarantee glucose homeostasis and DNA integrity.
Collapse
Affiliation(s)
- Elisa Mascolo
- Dipartimento di Biologia e Biotecnologie "C. Darwin,", Sapienza Università di Roma, Rome, Italy
| | - Noemi Amoroso
- Dipartimento di Biologia e Biotecnologie "C. Darwin,", Sapienza Università di Roma, Rome, Italy
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie "C. Darwin,", Sapienza Università di Roma, Rome, Italy.,School of Biological Science, Institute of Structural Biology, Nanyang Technological University, Singapore
| | - Chiara Merigliano
- Dipartimento di Biologia e Biotecnologie "C. Darwin,", Sapienza Università di Roma, Rome, Italy.,University of Southern California, Los Angeles, USA
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie "C. Darwin,", Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
66
|
Wilson MP, Plecko B, Mills PB, Clayton PT. Disorders affecting vitamin B 6 metabolism. J Inherit Metab Dis 2019; 42:629-646. [PMID: 30671974 DOI: 10.1002/jimd.12060] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
Vitamin B6 is present in our diet in many forms, however, only pyridoxal 5'-phosphate (PLP) can function as a cofactor for enzymes. The intestine absorbs nonphosphorylated B6 vitamers, which are converted by specific enzymes to the active PLP form. The role of PLP is enabled by its reactive aldehyde group. Pathways reliant on PLP include amino acid and neurotransmitter metabolism, folate and 1-carbon metabolism, protein and polyamine synthesis, carbohydrate and lipid metabolism, mitochondrial function and erythropoiesis. Besides the role of PLP as a cofactor B6 vitamers also play other cellular roles, for example, as antioxidants, modifying expression and action of steroid hormone receptors, affecting immune function, as chaperones and as an antagonist of Adenosine-5'-triphosphate (ATP) at P2 purinoceptors. Because of the vital role of PLP in neurotransmitter metabolism, particularly synthesis of the inhibitory transmitter γ-aminobutyric acid, it is not surprising that various inborn errors leading to PLP deficiency manifest as B6 -responsive epilepsy, usually of early onset. This includes pyridox(am)ine phosphate oxidase deficiency (a disorder affecting PLP synthesis and recycling), disorders affecting PLP import into the brain (hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects), a disorder of an intracellular PLP-binding protein (PLPBP, previously named PROSC) and disorders where metabolites accumulate that inactivate PLP, for example, ALDH7A1 deficiency and hyperprolinaemia type II. Patients with these disorders can show rapid control of seizures in response to either pyridoxine and/or PLP with a lifelong dependency on supraphysiological vitamin B6 supply. The clinical and biochemical features of disorders leading to B6 -responsive seizures and the treatment of these disorders are described in this review.
Collapse
Affiliation(s)
- Matthew P Wilson
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Barbara Plecko
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, University Childrens' Hospital Graz, Medical University Graz, Graz, Austria
| | - Philippa B Mills
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Peter T Clayton
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
67
|
Functional Nutrients for Epilepsy. Nutrients 2019; 11:nu11061309. [PMID: 31185666 PMCID: PMC6628163 DOI: 10.3390/nu11061309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a common neurological disorder of which seizures are a core symptom. Approximately one third of epileptic patients are resistant to antiepileptic drugs and therefore require alternative therapeutic options. Dietary and nutritional supplements can in some cases replace drugs, but with the exception of ketogenic diets, there are no officially recommended dietary considerations for patients with epilepsy. In this review we summarize a selection of nutritional suggestions that have proved beneficial in treating different types of epilepsy. We describe the types of seizures and epilepsy and follow this with an introduction to basic molecular mechanisms. We then examine several functional nutrients for which there is clinical evidence of therapeutic efficacy in reducing seizures or epilepsy-associated sudden death. We also discuss experimental results that demonstrate possible molecular mechanisms elicited by the administration of various nutrients. The availability of multiple dietary and nutritional candidates that show favorable outcomes in animals implies that assessing the clinical potential of these substances will improve translational medicine, ultimately benefitting epilepsy patients.
Collapse
|
68
|
Matsuura R, Hamano SI, Kubota J, Daida A, Ikemoto S, Hirata Y, Koichihara R. Efficacy and safety of pyridoxal in West syndrome: A retrospective study. Brain Dev 2019; 41:413-419. [PMID: 30528382 DOI: 10.1016/j.braindev.2018.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the efficacy and safety of pyridoxal for treating West syndrome. METHODS We retrospectively investigated pyridoxal's efficacy and safety in 117 patients with West syndrome at Saitama Children's Medical Center from July 1993 to May 2016. Pyridoxal was administered at doses of 10-50 mg/kg/day. We evaluated seizure outcomes and electroencephalographic findings at 4 weeks after pyridoxal therapy. The responders were those with complete cessation of spasms for more than 4 weeks and those with resolution of hypsarrhythmia on EEG at 1-4 weeks after pyridoxal therapy. RESULTS Five of the 117 patients (4.3%) were responders. The median duration between pyridoxal therapy to spasm cessation was 6 (5-13) days. Among the responders, four had hypsarrhythmia resolution, no spasm relapse, and no other seizure types more than 2 years after pyridoxal therapy. One responder had partial seizures and spasm relapse. No serious adverse effects occurred. There were no significant differences in sex, etiologies, complication, other seizure types preceding the spasms, onset age of spasms, age of pyridoxal therapy, treatment lag, initial and maintenance doses of pyridoxal, and adverse effects between pyridoxal responders and non-responders. CONCLUSIONS The efficacy rate of pyridoxal monotherapy as first-line treatment for West syndrome was low. However, pyridoxal therapy showed a rapid response within 1 week and was safe. We consider pyridoxal therapy as a kind of challenge therapy during the evaluation period concerning differential diagnosis and etiologies of West syndrome and immunological risks before adrenocorticotrophic hormone therapy or vigabatrin therapy.
Collapse
Affiliation(s)
- Ryuki Matsuura
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan.
| | - Shin-Ichiro Hamano
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan.
| | - Jun Kubota
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan.
| | - Atsuro Daida
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan.
| | - Satoru Ikemoto
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan.
| | - Yuko Hirata
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan.
| | - Reiko Koichihara
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan.
| |
Collapse
|
69
|
Perucca P, Perucca E. Identifying mutations in epilepsy genes: Impact on treatment selection. Epilepsy Res 2019; 152:18-30. [DOI: 10.1016/j.eplepsyres.2019.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 02/06/2023]
|
70
|
Hassel B, Rogne AG, Hope S. Intellectual Disability Associated With Pyridoxine-Responsive Epilepsies: The Need to Protect Cognitive Development. Front Psychiatry 2019; 10:116. [PMID: 30930802 PMCID: PMC6423912 DOI: 10.3389/fpsyt.2019.00116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/15/2019] [Indexed: 01/03/2023] Open
Abstract
Pyridoxine (vitamin B6)-responsive epilepsies are severe forms of epilepsy that manifest as seizures immediately after birth, sometimes in utero, sometimes months, or years after birth. Seizures may be treated efficiently by life-long supplementation with pyridoxine or its biologically active form, pyridoxal phosphate, but even so patients may become intellectually disabled, for which there currently is no effective treatment. The condition may be caused by mutations in several genes (TNSALP, PIGV, PIGL, PIGO, PNPO, PROSC, ALDH7A1, MOCS2, or ALDH4A1). Mutations in ALDH7A1, MOCS2, and ALDH4A1 entail build-up of reactive aldehydes (α-aminoadipic semialdehyde, γ-glutamic semialdehyde) that may react non-enzymatically with macromolecules of brain cells. Such reactions may alter the function of macromolecules, and they may produce "advanced glycation end products" (AGEs). AGEs trigger inflammation in the brain. This understanding points to aldehyde-quenching, anti-AGE, or anti-inflammatory therapies as possible strategies to protect cognitive development and prevent intellectual disability in affected children. Studies on how aldehydes traverse cell membranes and how they affect brain function could further the development of therapies for patients with pyridoxine-responsive epilepsies.
Collapse
Affiliation(s)
- Bjørnar Hassel
- Department for Neurohabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway.,Norwegian Defence Research Establishment (FFI), Kjeller, Norway
| | - Ane Gretesdatter Rogne
- Department for Neurohabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Sigrun Hope
- Department for Neurohabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
71
|
Calhoun JD, Carvill GL. Unravelling the genetic architecture of autosomal recessive epilepsy in the genomic era. J Neurogenet 2018; 32:295-312. [PMID: 30247086 DOI: 10.1080/01677063.2018.1513509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The technological advancement of next-generation sequencing has greatly accelerated the pace of variant discovery in epilepsy. Despite an initial focus on autosomal dominant epilepsy due to the tractable nature of variant discovery with trios under a de novo model, more and more variants are being reported in families with epilepsies consistent with autosomal recessive (AR) inheritance. In this review, we touch on the classical AR epilepsy variants such as the inborn errors of metabolism and malformations of cortical development. However, we also highlight recently reported genes that are being identified by next-generation sequencing approaches and online 'matchmaking' platforms. Syndromes mainly characterized by seizures and complex neurodevelopmental disorders comorbid with epilepsy are discussed as an example of the wide phenotypic spectrum associated with the AR epilepsies. We conclude with a foray into the future, from the application of whole-genome sequencing to identify elusive epilepsy variants, to the promise of precision medicine initiatives to provide novel targeted therapeutics specific to the individual based on their clinical genetic testing.
Collapse
Affiliation(s)
- Jeffrey D Calhoun
- a Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Gemma L Carvill
- a Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| |
Collapse
|
72
|
Functional identification of the proximal promoter region of human pyridoxine 5′-phosphate oxidase gene. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
73
|
Myers KA, Johnstone DL, Dyment DA. Epilepsy genetics: Current knowledge, applications, and future directions. Clin Genet 2018; 95:95-111. [PMID: 29992546 DOI: 10.1111/cge.13414] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022]
Abstract
The rapid pace of disease gene discovery has resulted in tremendous advances in the field of epilepsy genetics. Clinical testing with comprehensive gene panels, exomes, and genomes are now available and have led to higher diagnostic rates and insights into the underlying disease processes. As such, the contribution to the care of patients by medical geneticists, neurogeneticists and genetic counselors are significant; the dysmorphic examination, the necessary pre- and post-test counseling, the selection of the appropriate next-generation sequencing-based test(s), and the interpretation of sequencing results require a care provider to have a comprehensive working knowledge of the strengths and limitations of the available testing technologies. As the underlying mechanisms of the encephalopathies and epilepsies are better understood, there may be opportunities for the development of novel therapies based on an individual's own specific genotype. Drug screening with in vitro and in vivo models of epilepsy can potentially facilitate new treatment strategies. The future of epilepsy genetics will also probably include other-omic approaches such as transcriptomes, metabolomes, and the expanded use of whole genome sequencing to further improve our understanding of epilepsy and provide better care for those with the disease.
Collapse
Affiliation(s)
- K A Myers
- Department of Pediatrics, University of McGill, Montreal, Canada.,Research Institute of the McGill University Health Centre, Montreal, Canada
| | - D L Johnstone
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - D A Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| |
Collapse
|
74
|
Abstract
PURPOSE OF REVIEW This article provides an update on the clinical presentation and management of neurologic disease related to key nutrient deficiencies. RECENT FINDINGS Major advances have been made in understanding the pathway related to vitamin B12 absorption and distribution. It is now known that deficiencies of vitamin B12 and copper have similar neurologic manifestations. Bariatric surgery is a risk factor for both. Alcoholism is just one of the many causes of thiamine deficiency. Early neurologic complications following bariatric surgery are often due to thiamine deficiency. Encephalopathy in the setting of alcoholism that persists despite thiamine replacement should prompt consideration of niacin deficiency. Pyridoxine deficiency and toxicity both have neurologic sequelae. Vitamin D deficiency and the risk for multiple sclerosis has been an area of ongoing research. SUMMARY Optimal functioning of the nervous system is dependent on a constant supply of certain vitamins and nutrients. This article discusses neurologic manifestations related to deficiency of these key nutrients.
Collapse
|
75
|
Peng J, Pang N, Wang Y, Wang XL, Chen J, Xiong J, Peng P, Zhu CH, Kessi MB, He F, Yin F. Next-generation sequencing improves treatment efficacy and reduces hospitalization in children with drug-resistant epilepsy. CNS Neurosci Ther 2018; 25:14-20. [PMID: 29933521 DOI: 10.1111/cns.12869] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The purposes of this study were three-fold: (i) to determine the contribution of known genes to the causation of a broad-spectrum of pediatric drug-resistant epilepsy (DRE), (ii) to compare the diagnostic yield and cost among different next-generation sequencing (NGS) approaches, and especially (iii) to assess how NGS approaches can benefit patients by improving diagnosis and treatment efficiency. METHODS This study enrolled 273 pediatric DRE patients with no obvious acquired etiology. Seventy-four patients underwent whole-exome sequencing (WES), 141 patients had epilepsy-related gene panel testing, and another 58 patients had clinical WES gene panel testing. We obtained these patients' seizure and hospitalization frequency by periodic follow-up phone calls and outpatient visits. RESULTS Genetic diagnosis was achieved in 86 patients (31.5%) and involved 93 likely disease-causing mutations in 33 genes. In this study, the detection rates of the epilepsy-related gene panel, the clinical WES gene panel, and WES were 32.6% (46/141), 44.8% (26/58), and 17.3% (13/74), respectively. Moreover, 34 patients accepted corrective therapy according to their mutant genes, after which 52.9% (18/34) became seizure-free and 38.2% (13/34) achieved seizure reduction. In the end, patients with either positive or negative genetic results had significantly fewer hospitalization incidents (times/half year) than before (positive genetic results group 0.58 ± 1.14 vs 0.10 ± 0.26; negative genetic results group 0.72 ± 1.65 vs 0.12 ± 0.33). CONCLUSIONS These results offer further proof that NGS approaches represent powerful tools for establishing a definitive diagnosis. Moreover, this study indicated how NGS can improve treatment efficacy and reduce hospitalization in children with DRE.
Collapse
Affiliation(s)
- Jing Peng
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Pang
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Wang
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Le Wang
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Chen
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Xiong
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Pan Peng
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hui Zhu
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Miriam Barakael Kessi
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Fang He
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yin
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
76
|
Balestrini S, Sisodiya SM. Personalized treatment in the epilepsies: challenges and opportunities. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1486189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, and Epilepsy Society, Chalfont-St-Peter, Bucks, United Kingdom
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, and Epilepsy Society, Chalfont-St-Peter, Bucks, United Kingdom
| |
Collapse
|
77
|
Abstract
Neonatal epilepsy genetics is a rapidly expanding field with recent technological advances in genomics leading to an expanding list of genetic disorders associated with neonatal-onset epilepsy. The genetic causes of neonatal epilepsy can be grouped into the following categories: (i) malformations of cortical development, (ii) genetic-metabolic, (iii) genetic-vascular, (iv) genetic-syndromic, and (v) genetic-cellular. Clinically, epilepsy in the neonate shows phenotypic overlap with pathogenic variants in unrelated genes causing similar clinical presentation (locus heterogeneity) and variants in the same gene leading to a wide clinical spectrum ranging from benign familial neonatal seizures to more severe epileptic encephalopathies (variable expressivity). We suggest a diagnostic approach to obtaining a genetic diagnosis with emphasis on clinical features such as electro-clinical phenotype and magnetic resonance imaging findings. Rapid identification of genetic disorders with targeted treatments should be a clinical priority. Achieving a genetic diagnosis can be challenging in a rapidly changing genetic landscape, but is increasingly possible.
Collapse
|
78
|
Almannai M, El-Hattab AW. Inborn Errors of Metabolism with Seizures: Defects of Glycine and Serine Metabolism and Cofactor-Related Disorders. Pediatr Clin North Am 2018; 65:279-299. [PMID: 29502914 DOI: 10.1016/j.pcl.2017.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inborn errors of metabolism (IEM) are relatively uncommon causes for seizures in children; however, they should be considered in the differential diagnosis because several IEM are potentially treatable and seizures can be resolved if appropriate treatment is initiated. Clues from clinical presentation, physical examination, laboratory tests, and brain imaging can raise the possibility of IEM. Several IEM can present with seizures, either as the main presenting finding or as a part of a more complex phenotype. These include cofactor-related disorders, glycine and serine metabolism defects, and other disorders.
Collapse
Affiliation(s)
- Mohammed Almannai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children's Hospital, One Baylor Plaza, Houston, TX 77030, USA
| | - Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Tawam Roundabout, Al-Ain 15258, United Arab Emirates.
| |
Collapse
|
79
|
Borst AJ, Tchapyjnikov D. B 6 and Bleeding: A Case Report of a Novel Vitamin Toxicity. Pediatrics 2018; 141:S430-S433. [PMID: 29610166 PMCID: PMC5877127 DOI: 10.1542/peds.2017-2039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2017] [Indexed: 11/24/2022] Open
Abstract
Pyridox(am)ine-5-phosphate oxidase deficiency is an inborn error of vitamin B6 metabolism that is characterized by neonatal seizures, requiring lifelong therapy with pyridoxal-5-phosphate. We present the first case of a patient with pyridox(am)ine-5-phosphate oxidase deficiency and mild hemophilia A, whose bleeding symptoms were exacerbated by the vitamin B6 therapy essential for his epileptic disorder. This report expands the spectrum of known vitamin B6 toxicity and demonstrates a need for vigilance in monitoring for bleeding symptoms in patients requiring pyridoxine or pyridoxal-5-phosphate supplementation.
Collapse
Affiliation(s)
- Alexandra J. Borst
- Division of Pediatric Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Dmitry Tchapyjnikov
- Division of Pediatric Neurology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
80
|
Clayton PT, Mills PB. Micronutrients. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2018. [DOI: 10.1177/2326409818765011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Peter T. Clayton
- Genetics and Genomic Medicine, UCL, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Philippa B. Mills
- Genetics and Genomic Medicine, UCL, Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
81
|
Pyridoxine 5'-phosphate oxidase is a novel therapeutic target and regulated by the TGF-β signalling pathway in epithelial ovarian cancer. Cell Death Dis 2017; 8:3214. [PMID: 29238081 PMCID: PMC5870590 DOI: 10.1038/s41419-017-0050-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Pyridoxine 5'-phosphate oxidase (PNPO) is an enzyme that converts pyridoxine 5'-phosphate into pyridoxal 5'-phosphate (PLP), an active form of vitamin B6 implicated in several types of cancer. However, the role of PNPO and its regulatory mechanism in epithelial ovarian cancer (EOC) are unknown. In the present study, PNPO expression in human ovarian tumour tissue and its association with the clinicopathological features of patients with EOC were examined. Further, the biological function of PNPO in EOC cells and in xenograft was evaluated. We demonstrated for the first time that PNPO was overexpressed in human EOC. Knockdown of PNPO induced EOC cell apoptosis, arrested cell cycle at G2/M phase, decreased cell proliferation, migration and invasion. Xenografts of PNPO-shRNA-expressing cells into the nude mouse attenuated tumour growth. PNPO at mRNA and protein levels in EOC cells was decreased after transforming growth factor-β1 (TGF-β1) treatment. The inhibitory effect of TGF-β1 on PNPO expression was abolished in the presence of SB-431542, a TGF-β type I receptor kinase inhibitor. Moreover, we found that TGF-β1-mediated PNPO expression was at least in part through the upregulation of miR-143-3p. These data indicate a mechanism underlying PNPO regulation by the TGF-β signalling pathway. Furthermore, PLP administration reduced PNPO expression and decreased EOC cell proliferation, suggesting a feedback loop between PLP and PNPO. Thus, our findings reveal that PNPO can serve as a novel tissue biomarker of EOC and may be a potential target for therapeutic intervention.
Collapse
|
82
|
Pena IA, Roussel Y, Daniel K, Mongeon K, Johnstone D, Weinschutz Mendes H, Bosma M, Saxena V, Lepage N, Chakraborty P, Dyment DA, van Karnebeek CDM, Verhoeven-Duif N, Bui TV, Boycott KM, Ekker M, MacKenzie A. Pyridoxine-Dependent Epilepsy in Zebrafish Caused by Aldh7a1 Deficiency. Genetics 2017; 207:1501-1518. [PMID: 29061647 PMCID: PMC5714462 DOI: 10.1534/genetics.117.300137] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/04/2017] [Indexed: 11/25/2022] Open
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare disease characterized by mutations in the lysine degradation gene ALDH7A1 leading to recurrent neonatal seizures, which are uniquely alleviated by high doses of pyridoxine or pyridoxal 5'-phosphate (vitamin B6 vitamers). Despite treatment, neurodevelopmental disabilities are still observed in most PDE patients underlining the need for adjunct therapies. Over 60 years after the initial description of PDE, we report the first animal model for this disease: an aldh7a1-null zebrafish (Danio rerio) displaying deficient lysine metabolism and spontaneous and recurrent seizures in the larval stage (10 days postfertilization). Epileptiform electrographic activity was observed uniquely in mutants as a series of population bursts in tectal recordings. Remarkably, as is the case in human PDE, the seizures show an almost immediate sensitivity to pyridoxine and pyridoxal 5'-phosphate, with a resulting extension of the life span. Lysine supplementation aggravates the phenotype, inducing earlier seizure onset and death. By using mass spectrometry techniques, we further explored the metabolic effect of aldh7a1 knockout. Impaired lysine degradation with accumulation of PDE biomarkers, B6 deficiency, and low γ-aminobutyric acid levels were observed in the aldh7a1-/- larvae, which may play a significant role in the seizure phenotype and PDE pathogenesis. This novel model provides valuable insights into PDE pathophysiology; further research may offer new opportunities for drug discovery to control seizure activity and improve neurodevelopmental outcomes for PDE.
Collapse
Affiliation(s)
- Izabella A Pena
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Yann Roussel
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Kate Daniel
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - Kevin Mongeon
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
| | - Devon Johnstone
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
| | | | - Marjolein Bosma
- Departments of Pediatrics and Clinical Genetics, Academic Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Vishal Saxena
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Nathalie Lepage
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - Pranesh Chakraborty
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
| | - Clara D M van Karnebeek
- Departments of Pediatrics and Clinical Genetics, Academic Medical Centre, 1105 AZ Amsterdam, The Netherlands
- Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver V5Z 4H4, British Columbia, Canada
| | - Nanda Verhoeven-Duif
- Department of Genetics, Center for Molecular Medicine, University Medical Center (UMC), 3584 EA Utrecht, The Netherlands
| | - Tuan Vu Bui
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Alex MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
| |
Collapse
|
83
|
Ramos RJ, Pras-Raves ML, Gerrits J, van der Ham M, Willemsen M, Prinsen H, Burgering B, Jans JJ, Verhoeven-Duif NM. Vitamin B6 is essential for serine de novo biosynthesis. J Inherit Metab Dis 2017; 40:883-891. [PMID: 28801717 DOI: 10.1007/s10545-017-0061-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 11/30/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the metabolically active form of vitamin B6, plays an essential role in brain metabolism as a cofactor in numerous enzyme reactions. PLP deficiency in brain, either genetic or acquired, results in severe drug-resistant seizures that respond to vitamin B6 supplementation. The pathogenesis of vitamin B6 deficiency is largely unknown. To shed more light on the metabolic consequences of vitamin B6 deficiency in brain, we performed untargeted metabolomics in vitamin B6-deprived Neuro-2a cells. Significant alterations were observed in a range of metabolites. The most surprising observation was a decrease of serine and glycine, two amino acids that are known to be elevated in the plasma of vitamin B6 deficient patients. To investigate the cause of the low concentrations of serine and glycine, a metabolic flux analysis on serine biosynthesis was performed. The metabolic flux results showed that the de novo synthesis of serine was significantly reduced in vitamin B6-deprived cells. In addition, formation of glycine and 5-methyltetrahydrofolate was decreased. Thus, vitamin B6 is essential for serine de novo biosynthesis in neuronal cells, and serine de novo synthesis is critical to maintain intracellular serine and glycine. These findings suggest that serine and glycine concentrations in brain may be deficient in patients with vitamin B6 responsive epilepsy. The low intracellular 5-mTHF concentrations observed in vitro may explain the favourable but so far unexplained response of some patients with pyridoxine-dependent epilepsy to folinic acid supplementation.
Collapse
Affiliation(s)
- Rúben J Ramos
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Mia L Pras-Raves
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Johan Gerrits
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Maria van der Ham
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Marcel Willemsen
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Hubertus Prinsen
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Boudewijn Burgering
- Department of Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| | - Judith J Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands.
| | - Nanda M Verhoeven-Duif
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| |
Collapse
|
84
|
Guerriero RM, Patel AA, Walsh B, Baumer FM, Shah AS, Peters JM, Rodan LH, Agrawal PB, Pearl PL, Takeoka M. Systemic Manifestations in Pyridox(am)ine 5'-Phosphate Oxidase Deficiency. Pediatr Neurol 2017; 76:47-53. [PMID: 28985901 PMCID: PMC6008785 DOI: 10.1016/j.pediatrneurol.2017.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/24/2017] [Accepted: 05/28/2017] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Pyridoxine is converted to its biologically active form pyridoxal-5-phosphate (P5P) by the enzyme pyridox(am)ine 5'-phosphate oxidase and serves as a cofactor in nearly 200 reactions in the central nervous system. Pyridox(am)ine 5'-phosphate oxidase deficiency leads to P5P dependent epilepsy, typically a neonatal- or infantile-onset epileptic encephalopathy treatable with P5P or in some cases, pyridoxine. Following identification of retinopathy in a patient with pyridox(am)ine 5'-phosphate oxidase deficiency that was reversible with P5P therapy, we describe the systemic manifestations of pyridox(am)ine 5'-phosphate oxidase deficiency. METHODS A series of six patients with homozygous mutations of PNPO, the gene coding pyridox(am)ine 5'-phosphate oxidase, were evaluated in our center over the course of two years for phenotyping of neurological and systemic manifestations. RESULTS Five of six were born prematurely, three had anemia and failure to thrive, and two had elevated alkaline phosphatase. A movement disorder was observed in two children, and a reversible retinopathy was observed in the most severely affected infant. All patients had neonatal-onset epilepsy and were on a continuum of developmental delay to profound encephalopathy. Electroencephalographic features included background slowing and disorganization, absent sleep features, and multifocal and generalized epileptiform discharges. All the affected probands carried a homozygous PNPO mutation (c.674 G>T, c.686 G>A and c.352G>A). CONCLUSION In addition to the well-described epileptic encephalopathy, pyridox(am)ine 5'-phosphate oxidase deficiency causes a range of neurological and systemic manifestations. A movement disorder, developmental delay, and encephalopathy, as well as retinopathy, anemia, and failure to thrive add to the broadening clinical spectrum of P5P dependent epilepsy.
Collapse
Affiliation(s)
- Réjean M. Guerriero
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts,Division of Pediatric and Developmental Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri,Communications should be addressed to: Dr. Guerriero; Division of Pediatric and Developmental Neurology; Department of Neurology; Washington University School of Medicine; Campus Box 8111; 660 South Euclid Ave; St. Louis, MO 63110.
| | - Archana A. Patel
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Brian Walsh
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Fiona M. Baumer
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ankoor S. Shah
- Department of Ophthalmology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jurriaan M. Peters
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lance H. Rodan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pankaj B. Agrawal
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts,Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts,Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Phillip L. Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Masanori Takeoka
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
85
|
Accorsi P, Cellini E, Paolantonio CD, Panzarino G, Verrotti A, Giordano L. Pyridoxine responsiveness in pyridox(am)ine-5-phosphate oxidase deficiency: The importance of early treatment. Clin Neurol Neurosurg 2017; 163:90-93. [PMID: 29080399 DOI: 10.1016/j.clineuro.2017.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Patrizia Accorsi
- Child Neurology and Psychiatry Unit, Spedali Civili, Brescia, Italy
| | - Elena Cellini
- Pediatric Neurology Unit, Children's Hospital A. Meyer -University of Florence, Florence, Italy
| | | | | | | | - Lucio Giordano
- Child Neurology and Psychiatry Unit, Spedali Civili, Brescia, Italy
| |
Collapse
|
86
|
Lyu G, Han YL. [Research advances in hereditary epilepsy and precision drug therapy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:1118-1123. [PMID: 29046212 PMCID: PMC7389281 DOI: 10.7499/j.issn.1008-8830.2017.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/27/2017] [Indexed: 06/07/2023]
Abstract
Epilepsy is a common nervous system disease. It has been found that the pathogenesis of epilepsy is associated mutations in various genes, including genes encoding voltage-dependent ion channel, genes encoding ligand-gated ion channel, and solute carrier family genes. Different types of epilepsy caused by different mutations have different responses to drugs, and therefore, diagnosis and medication guidance based on genes are new thoughts for developing therapies. With the application of next-generation sequencing technology, more and more genes will be determined, which helps to further study the pathogenic mechanism of mutant genes and provides a basis for precision drug therapy for epilepsy.
Collapse
Affiliation(s)
- Ge Lyu
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning 530000, China.
| | | |
Collapse
|
87
|
Lyu G, Han YL. [Research advances in hereditary epilepsy and precision drug therapy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:1118-1123. [PMID: 29046212 PMCID: PMC7389281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/27/2017] [Indexed: 11/12/2023]
Abstract
Epilepsy is a common nervous system disease. It has been found that the pathogenesis of epilepsy is associated mutations in various genes, including genes encoding voltage-dependent ion channel, genes encoding ligand-gated ion channel, and solute carrier family genes. Different types of epilepsy caused by different mutations have different responses to drugs, and therefore, diagnosis and medication guidance based on genes are new thoughts for developing therapies. With the application of next-generation sequencing technology, more and more genes will be determined, which helps to further study the pathogenic mechanism of mutant genes and provides a basis for precision drug therapy for epilepsy.
Collapse
Affiliation(s)
- Ge Lyu
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning 530000, China.
| | | |
Collapse
|
88
|
Baud O, Auvin S, Saliba E, Biran V. [Therapeutic management of neonatal arterial cerebral infarction and neuroprotection perspectives]. Arch Pediatr 2017; 24:9S46-9S50. [PMID: 28867038 DOI: 10.1016/s0929-693x(17)30331-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neonatal seizure related to stroke is a common diagnostic feature. Their treatment, although widely debated even today must be initiated in case of status epilepticus, clinical seizures of more than 5 minutes duration or short (> 30 secondes) and repeated clinical seizures (2 or more per hour). The treatment of neonatal seizures is a challenge that remains only partially solved. It should take into account the etiology of seizures, type of brain lesions and clinical/electrical response to treatment after the first line treatment. It is based on using a single anti-epileptic at its maximum dosage, and if needed, on the association with another anti-epileptic drug with a different mechanism of action. Phenobarbital remains the most commonly used drug for initial treatment of neonatal seizures and for which the most clinical experience has been accumulated. The lack of randomized controlled trials makes difficult recommendations about the optimal duration of treatment, but most experts agree that once arrested seizures, the duration of treatment should be as short as possible because of its potential risk on the developing brain. Novel neuroprotective strategies for reducing impact of neonatal stroke or promoting brain repair remain for the moment the concept stage, pre-clinical or parcel clinical data.
Collapse
Affiliation(s)
- O Baud
- AP-HP, néonatalogie, Hôpital universitaire Robert-Debré, 48, boulevard Sérurier, Paris, 7509 France.
| | - S Auvin
- AP-Hp neurologie et maladies métaboliques, Hôpital universitaire Robert-Debré, 48, boulevard Sérurier, Paris, 75019 France
| | - E Saliba
- Centre hospitalier régional universitaire, service de réanimation - néonatalogie, Hôpital d'enfants de Clocheville, 49, boulevard Béranger, Tours, 37044 France
| | - V Biran
- AP-HP, néonatalogie, Hôpital universitaire Robert-Debré, 48, boulevard Sérurier, Paris, 7509 France
| |
Collapse
|
89
|
di Salvo ML, Mastrangelo M, Nogués I, Tolve M, Paiardini A, Carducci C, Mei D, Montomoli M, Tramonti A, Guerrini R, Contestabile R, Leuzzi V. Pyridoxine-5'-phosphate oxidase (Pnpo) deficiency: Clinical and biochemical alterations associated with the C.347g>A (P.·Arg116gln) mutation. Mol Genet Metab 2017; 122:135-142. [PMID: 28818555 DOI: 10.1016/j.ymgme.2017.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Pyridoxal-5'-phosphate oxidase (PNPO) deficiency presents as a severe neonatal encephalopathy responsive to pyridoxal-5'-phosphate (PLP) or pyridoxine. Recent studies widened the phenotype of this condition and detected genetic variants on PNPO gene whose pathogenic role and clinical expression remain to be established. OBJECTIVE This paper aims to characterize the functional effects of the c.347G>A (p.Arg116Gln) mutation in the PNPO gene in order to define its pathogenicity and describe the clinical features of new patients with epilepsy carrying this mutation. METHODS Arg116Gln protein variant was expressed as recombinant protein. The mutant protein was characterized with respect to structural and kinetic properties, thermal stability, binding constants of cofactor (FMN) and product (PLP). We also reviewed clinical data of 3 new patients carrying the mutation. RESULTS The Arg116Gln mutation does not alter the overall enzyme structure and only slightly affects its catalytic efficiency; nevertheless, this mutation affects thermal stability of PNPO, reduces its affinity for FMN and impairs transfer of PLP to PLP-dependent enzymes. Three boys with seizure onset between 8months and 3years of age, carrying the Arg116Gln mutation, are described. These three patients exhibited different seizure types associated with interictal EEG abnormalities and slow background activity. Mild/moderate intellectual disability was observed in 2/3 patients. A dramatic therapeutic response to pyridoxine was observed in the only patient who still had active seizures when starting treatment, while in all three patients interictal EEG discharges and background activity improved after pyridoxine treatment was initiated. CONCLUSIONS The reported data support a pathogenic role of the c.347G>A (p.Arg116Gln) mutation in PNPO deficiency. The later onset of symptoms and the milder epilepsy phenotype of these expand the disease phenotype.
Collapse
Affiliation(s)
- Martino L di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy.
| | - Mario Mastrangelo
- Dipartimento di Pediatria e Neuropsichiatria Infantile, Sapienza Università di Roma, Italy.
| | - Isabel Nogués
- Istituto di Biologia Ambientale e Forestale, Consiglio Nazionale delle Ricerche, Monterotondo Scalo, Roma, Italy.
| | - Manuela Tolve
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Italy
| | - Alessandro Paiardini
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Italy.
| | - Carla Carducci
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Italy.
| | - Davide Mei
- Dipartimento di Neuroscienze, Azienda Ospedaliero-Universitaria Meyer, Università di Firenze, Italy.
| | - Martino Montomoli
- Dipartimento di Neuroscienze, Azienda Ospedaliero-Universitaria Meyer, Università di Firenze, Italy.
| | - Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy.
| | - Renzo Guerrini
- Dipartimento di Neuroscienze, Azienda Ospedaliero-Universitaria Meyer, Università di Firenze, Italy.
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy.
| | - Vincenzo Leuzzi
- Dipartimento di Pediatria e Neuropsichiatria Infantile, Sapienza Università di Roma, Italy.
| |
Collapse
|
90
|
Wilson MP, Footitt EJ, Papandreou A, Uudelepp ML, Pressler R, Stevenson DC, Gabriel C, McSweeney M, Baggot M, Burke D, Stödberg T, Riney K, Schiff M, Heales SJR, Mills KA, Gissen P, Clayton PT, Mills PB. An LC-MS/MS-Based Method for the Quantification of Pyridox(am)ine 5'-Phosphate Oxidase Activity in Dried Blood Spots from Patients with Epilepsy. Anal Chem 2017; 89:8892-8900. [PMID: 28782931 PMCID: PMC5588098 DOI: 10.1021/acs.analchem.7b01358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the development of a rapid, simple, and robust LC-MS/MS-based enzyme assay using dried blood spots (DBS) for the diagnosis of pyridox(am)ine 5'-phosphate oxidase (PNPO) deficiency (OMIM 610090). PNPO deficiency leads to potentially fatal early infantile epileptic encephalopathy, severe developmental delay, and other features of neurological dysfunction. However, upon prompt treatment with high doses of vitamin B6, affected patients can have a normal developmental outcome. Prognosis of these patients is therefore reliant upon a rapid diagnosis. PNPO activity was quantified by measuring pyridoxal 5'-phosphate (PLP) concentrations in a DBS before and after a 30 min incubation with pyridoxine 5'-phosphate (PNP). Samples from 18 PNPO deficient patients (1 day-25 years), 13 children with other seizure disorders receiving B6 supplementation (1 month-16 years), and 37 child hospital controls (5 days-15 years) were analyzed. DBS from the PNPO-deficient samples showed enzyme activity levels lower than all samples from these two other groups as well as seven adult controls; no false positives or negatives were identified. The method was fully validated and is suitable for translation into the clinical diagnostic arena.
Collapse
Affiliation(s)
- Matthew P Wilson
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health , 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | - Apostolos Papandreou
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health , 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Mari-Liis Uudelepp
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health , 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | | | | | | | | | | | - Tommy Stödberg
- Neuropediatric Unit, Karolinska University Hospital , Stockholm SE-171 76, Sweden
| | - Kate Riney
- Neurosciences Unit, The Lady Cilento Children's Hospital , 501 Stanley Street, South Brisbane, Queensland 4101, Australia
| | - Manuel Schiff
- Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital , APHP, Paris 75019, France
| | - Simon J R Heales
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health , 30 Guilford Street, London WC1N 1EH, United Kingdom.,Neurometabolic Unit, National Hospital for Neurology and Neurosurgery , Queen Square, London WC1N 3BG, United Kingdom
| | - Kevin A Mills
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health , 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Paul Gissen
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health , 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Peter T Clayton
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health , 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Philippa B Mills
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health , 30 Guilford Street, London WC1N 1EH, United Kingdom
| |
Collapse
|
91
|
Xue J, Chang X, Zhang Y, Yang Z. Novel phenotypes of pyridox(am)ine-5'-phosphate oxidase deficiency and high prevalence of c.445_448del mutation in Chinese patients. Metab Brain Dis 2017; 32:1081-1087. [PMID: 28349276 DOI: 10.1007/s11011-017-9995-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/13/2017] [Indexed: 01/11/2023]
Abstract
To analyze the clinical and genetic characteristics of Chinese patients with pyridox(am)ine-5'-phosphate oxidase (PNPO) deficiency. The clinical presentations and the responses to treatments were analyzed in 4 patients. Blood and urinary metabolic screenings, electroencephalogram (EEG), brain magnetic resonance imaging (MRI) and epilepsy-related genes detection were performed in all patients. Patient 1 and 2 were identical twin brothers, who were born at 35+5 w gestation with a sign of encephalopathy. Their seizures started within the first day and could not be controlled by pyridoxine or pyridoxal-5'-phosphate (PLP) completely. Patient 3 presented seizures at 5 months, responding well to pyridoxine. Seizures in patient 4 began at 40 days after birth and were controlled by valproic acid and topiramate. EEG showed atypical hypsarrhythmia or multifocal epileptiform discharges in 3 patients, and showed normality in patient 4. MRI showed nonspecific abnormality or normality. Blood metabolic screening showed multiple amino acids level abnormalities in all cases. Urinary metabolic screening showed vanillactic acid prominently elevated in 3 patients. Genetic analysis revealed 5 mutations of PNPO, three of which were novel. The mutation c.445_448del was carried by the twins and patient 3. Assessment of psychomotor development indicated severe delay in 3 patients and borderline to mild delay in patient 3. This is the first time to report patients with PNPO deficiency diagnosed by gene analysis in China. The novel clinical characteristics and novel mutations found here expanded the phenotypes and genotypes of this disease. Further, the frameshift mutation c.445_448del might be high prevalence in PNPO deficiency in Chinese patients.
Collapse
Affiliation(s)
- Jiao Xue
- Department of Pediatrics, Peking University First Hospital, No.1, Xi'anmen Street, Xicheng District, Beijing, 100034, China
| | - Xingzhi Chang
- Department of Pediatrics, Peking University First Hospital, No.1, Xi'anmen Street, Xicheng District, Beijing, 100034, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, No.1, Xi'anmen Street, Xicheng District, Beijing, 100034, China.
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, No.1, Xi'anmen Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
92
|
Tanigawa J, Mimatsu H, Mizuno S, Okamoto N, Fukushi D, Tominaga K, Kidokoro H, Muramatsu Y, Nishi E, Nakamura S, Motooka D, Nomura N, Hayasaka K, Niihori T, Aoki Y, Nabatame S, Hayakawa M, Natsume J, Ozono K, Kinoshita T, Wakamatsu N, Murakami Y. Phenotype-genotype correlations of PIGO deficiency with variable phenotypes from infantile lethality to mild learning difficulties. Hum Mutat 2017; 38:805-815. [PMID: 28337824 DOI: 10.1002/humu.23219] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 01/23/2023]
Abstract
Inherited GPI (glycosylphosphatidylinositol) deficiencies (IGDs), a recently defined group of diseases, show a broad spectrum of symptoms. Hyperphosphatasia mental retardation syndrome, also known as Mabry syndrome, is a type of IGDs. There are at least 26 genes involved in the biosynthesis and transport of GPI-anchored proteins; however, IGDs constitute a rare group of diseases, and correlations between the spectrum of symptoms and affected genes or the type of mutations have not been shown. Here, we report four newly identified and five previously described Japanese families with PIGO (phosphatidylinositol glycan anchor biosynthesis class O) deficiency. We show how the clinical severity of IGDs correlates with flow cytometric analysis of blood, functional analysis using a PIGO-deficient cell line, and the degree of hyperphosphatasia. The flow cytometric analysis and hyperphosphatasia are useful for IGD diagnosis, but the expression level of GPI-anchored proteins and the degree of hyperphosphatasia do not correlate, although functional studies do, with clinical severity. Compared with PIGA (phosphatidylinositol glycan anchor biosynthesis class A) deficiency, PIGO deficiency shows characteristic features, such as Hirschsprung disease, brachytelephalangy, and hyperphosphatasia. This report shows the precise spectrum of symptoms according to the severity of mutations and compares symptoms between different types of IGD.
Collapse
Affiliation(s)
- Junpei Tanigawa
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Haruka Mimatsu
- Division of Neonatology Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Osaka, Japan
| | - Daisuke Fukushi
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Koji Tominaga
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Yukako Muramatsu
- Division of Neonatology Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Eriko Nishi
- Department of Pediatrics, Central Hospital, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Noriko Nomura
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Kiyoshi Hayasaka
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Yamagata, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Shin Nabatame
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masahiro Hayakawa
- Division of Neonatology Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Jun Natsume
- Department of Developmental Disability Medicine and Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute for Microbial Diseases Osaka University, Suita, Osaka, Japan
| | - Nobuaki Wakamatsu
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Yoshiko Murakami
- Department of Immunoregulation, Research Institute for Microbial Diseases Osaka University, Suita, Osaka, Japan
| |
Collapse
|
93
|
Fudge J, Mangel N, Gruissem W, Vanderschuren H, Fitzpatrick TB. Rationalising vitamin B6 biofortification in crop plants. Curr Opin Biotechnol 2017; 44:130-137. [DOI: 10.1016/j.copbio.2016.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
|
94
|
Akiyama T, Akiyama M, Hayashi Y, Shibata T, Hanaoka Y, Toda S, Imai K, Hamano SI, Okanishi T, Yoshinaga H, Kobayashi K. Measurement of pyridoxal 5′-phosphate, pyridoxal, and 4-pyridoxic acid in the cerebrospinal fluid of children. Clin Chim Acta 2017; 466:1-5. [DOI: 10.1016/j.cca.2016.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
|
95
|
Mohamed-Ahmed AHA, Wilson MP, Albuera M, Chen T, Mills PB, Footitt EJ, Clayton PT, Tuleu C. Quality and stability of extemporaneous pyridoxal phosphate preparations used in the treatment of paediatric epilepsy. J Pharm Pharmacol 2017; 69:480-488. [DOI: 10.1111/jphp.12701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/12/2017] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
To assess the pyridoxal 5′-phosphate (PLP) content and stability of extemporaneous PLP liquids prepared from dietary supplements used for the treatment of vitamin B6-dependent epilepsy.
Methods
Pyridoxal 5′-phosphate liquids were prepared in accordance with the guidelines given to patients from marketed 50 mg PLP dietary capsules and tablets. The PLP content and its stability were evaluated under conditions resembling the clinical setting using reverse phase HPLC and mass spectrometry.
Key findings
Pyridoxal 5′-phosphate content in most of the extemporaneously prepared liquids from dietary supplements was found to be different from the expected amount (~16–60 mg). Most of these PLP extemporaneous liquids were stable at room temperature (protected from light) after 24 h but unstable after 4 h when exposed to light. A key photodegradation product of PLP in water was confirmed as 4-pyridoxic acid 5′-phosphate (PAP).
Conclusion
Pyridoxal 5′-phosphate tablets from Solgar® were found to be the most reliable product for the preparation of extemporaneous PLP liquids. This work highlighted the difference between the marketed PLP dietary supplements quality and the importance of proper storage of aqueous PLP. There is a need to develop pharmaceutical forms of PLP that ensure dose accuracy and avoid potentially unsafe impurities with the aim of enhancing safety and compliance.
Collapse
Affiliation(s)
| | - Matthew P Wilson
- Institute of Child Health, University College London, London, UK
| | | | - Ting Chen
- UCL School of Pharmacy, University College London, London, UK
| | - Philippa B Mills
- Institute of Child Health, University College London, London, UK
| | - Emma J Footitt
- Metabolic Medicine Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Peter T Clayton
- Institute of Child Health, University College London, London, UK
| | - Catherine Tuleu
- UCL School of Pharmacy, University College London, London, UK
| |
Collapse
|
96
|
Mei D, Parrini E, Marini C, Guerrini R. The Impact of Next-Generation Sequencing on the Diagnosis and Treatment of Epilepsy in Paediatric Patients. Mol Diagn Ther 2017; 21:357-373. [DOI: 10.1007/s40291-017-0257-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
97
|
Olson HE, Kelly M, LaCoursiere CM, Pinsky R, Tambunan D, Shain C, Ramgopal S, Takeoka M, Libenson MH, Julich K, Loddenkemper T, Marsh ED, Segal D, Koh S, Salman MS, Paciorkowski AR, Yang E, Bergin AM, Sheidley BR, Poduri A. Genetics and genotype-phenotype correlations in early onset epileptic encephalopathy with burst suppression. Ann Neurol 2017; 81:419-429. [PMID: 28133863 DOI: 10.1002/ana.24883] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/19/2016] [Accepted: 01/23/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE We sought to identify genetic causes of early onset epileptic encephalopathies with burst suppression (Ohtahara syndrome and early myoclonic encephalopathy) and evaluate genotype-phenotype correlations. METHODS We enrolled 33 patients with a referral diagnosis of Ohtahara syndrome or early myoclonic encephalopathy without malformations of cortical development. We performed detailed phenotypic assessment including seizure presentation, electroencephalography, and magnetic resonance imaging. We confirmed burst suppression in 28 of 33 patients. Research-based exome sequencing was performed for patients without a previously identified molecular diagnosis from clinical evaluation or a research-based epilepsy gene panel. RESULTS In 17 of 28 (61%) patients with confirmed early burst suppression, we identified variants predicted to be pathogenic in KCNQ2 (n = 10), STXBP1 (n = 2), SCN2A (n = 2), PNPO (n = 1), PIGA (n = 1), and SEPSECS (n = 1). In 3 of 5 (60%) patients without confirmed early burst suppression, we identified variants predicted to be pathogenic in STXBP1 (n = 2) and SCN2A (n = 1). The patient with the homozygous PNPO variant had a low cerebrospinal fluid pyridoxal-5-phosphate level. Otherwise, no early laboratory or clinical features distinguished the cases associated with pathogenic variants in specific genes from each other or from those with no prior genetic cause identified. INTERPRETATION We characterize the genetic landscape of epileptic encephalopathy with burst suppression, without brain malformations, and demonstrate feasibility of genetic diagnosis with clinically available testing in >60% of our cohort, with KCNQ2 implicated in one-third. This electroclinical syndrome is associated with pathogenic variation in SEPSECS. Ann Neurol 2017;81:419-429.
Collapse
Affiliation(s)
- Heather E Olson
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - McKenna Kelly
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Christopher M LaCoursiere
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Rebecca Pinsky
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Dimira Tambunan
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Catherine Shain
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA.,Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Sriram Ramgopal
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA.,Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Masanori Takeoka
- Harvard Medical School, Boston, MA.,Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Mark H Libenson
- Harvard Medical School, Boston, MA.,Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Kristina Julich
- Department of Neurology, Boston Children's Hospital, Boston, MA
| | - Tobias Loddenkemper
- Harvard Medical School, Boston, MA.,Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Eric D Marsh
- Neurogenetics Program, Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Devorah Segal
- Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ.,Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY
| | - Susan Koh
- Department of Pediatrics and Neurology, Children's Hospital of Colorado, Aurora, CO
| | - Michael S Salman
- Section of Pediatric Neurology, Winnipeg Children's Hospital and Department of Pediatrics and Child Health, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alex R Paciorkowski
- Departments of Genetics and Neurology, University of Rochester, Rochester, NY
| | - Edward Yang
- Harvard Medical School, Boston, MA.,Department of Radiology, Boston Children's Hospital, Boston, MA
| | - Ann M Bergin
- Harvard Medical School, Boston, MA.,Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Beth Rosen Sheidley
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| |
Collapse
|
98
|
Balestrini S, Sisodiya SM. Pharmacogenomics in epilepsy. Neurosci Lett 2017; 667:27-39. [PMID: 28082152 PMCID: PMC5846849 DOI: 10.1016/j.neulet.2017.01.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/12/2022]
Abstract
Genetic variation can influence response to antiepileptic drug (AED) treatment through various effector processes. Metabolism of many AEDs is mediated by the cytochrome P450 (CYP) family; some of the CYPs have allelic variants that may affect serum AED concentrations. ‘Precision medicine’ focuses on the identification of an underlying genetic aetiology allowing personalised therapeutic choices. Certain human leukocyte antigen, HLA, alleles are associated with an increased risk of idiosyncratic adverse drug reactions. New results are emerging from large-scale multinational efforts, likely imminently to add knowledge of value from a pharmacogenetic perspective.
There is high variability in the response to antiepileptic treatment across people with epilepsy. Genetic factors significantly contribute to such variability. Recent advances in the genetics and neurobiology of the epilepsies are establishing the basis for a new era in the treatment of epilepsy, focused on each individual and their specific epilepsy. Variation in response to antiepileptic drug treatment may arise from genetic variation in a range of gene categories, including genes affecting drug pharmacokinetics, and drug pharmacodynamics, but also genes held to actually cause the epilepsy itself. From a purely pharmacogenetic perspective, there are few robust genetic findings with established evidence in epilepsy. Many findings are still controversial with anecdotal or less secure evidence and need further validation, e.g. variation in genes for transporter systems and antiepileptic drug targets. The increasing use of genetic sequencing and the results of large-scale collaborative projects may soon expand the established evidence. Precision medicine treatments represent a growing area of interest, focussing on reversing or circumventing the pathophysiological effects of specific gene mutations. This could lead to a dramatic improvement of the effectiveness and safety of epilepsy treatments, by targeting the biological mechanisms responsible for epilepsy in each specific individual. Whilst much has been written about epilepsy pharmacogenetics, there does now seem to be building momentum that promises to deliver results of use in clinic.
Collapse
Affiliation(s)
- Simona Balestrini
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, and Epilepsy Society, Chalfont-St-Peter, Bucks, United Kingdom; Neuroscience Department, Polytechnic University of Marche, Ancona, Italy
| | - Sanjay M Sisodiya
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, and Epilepsy Society, Chalfont-St-Peter, Bucks, United Kingdom.
| |
Collapse
|
99
|
Pena IA, MacKenzie A, Van Karnebeek CDM. Current knowledge for pyridoxine-dependent epilepsy: a 2016 update. Expert Rev Endocrinol Metab 2017; 12:5-20. [PMID: 30058881 DOI: 10.1080/17446651.2017.1273107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare genetic condition characterized by intractable and recurrent neonatal seizures that are uniquely alleviated by high doses of pyridoxine (vitamin B6). This recessive disease is caused by mutations in ALDH7A1, a gene encoding Antiquitin, an enzyme central to lysine degradation. This results in the pathogenic accumulation of the lysine intermediates Aminoadipate Semialdehyde (AASA) and its cyclic equilibrium form Piperideine-6-carboxylate (P6C) in body fluids; P6C reacts with pyridoxal-5'-phosphate (PLP, the active form of vitamin B6) causing its inactivation and leading to pyridoxine-dependent seizures. While PDE is responsive to pharmacological dosages of pyridoxine, despite lifelong supplementation, neurodevelopment delays are observed in >75% of PDE cases. Thus, adjunct treatment strategies are emerging to both improve seizure control and moderate the delays in cognition. These adjunctive therapies, lysine restriction and arginine supplementation, separately or in combination (with pyridoxine thus termed 'triple therapy'), have shown promising results and are recommended in all PDE patients. Other new therapeutic strategies currently in preclinical phase of study include antisense therapy and substrate reduction therapy. We present here a comprehensive review of current treatment options as well as PDE phenotype, differential diagnosis, current management and views upon the future of PDE research.
Collapse
Affiliation(s)
- Izabella Agostinho Pena
- a Children's Hospital of Eastern Ontario (CHEO) Research Institute , Ottawa , ON , Canada
- b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , ON , Canada
| | - Alex MacKenzie
- a Children's Hospital of Eastern Ontario (CHEO) Research Institute , Ottawa , ON , Canada
- b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , ON , Canada
| | - Clara D M Van Karnebeek
- c Department of Pediatrics, BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics , University of British Columbia , Vancouver BC , Canada
| |
Collapse
|
100
|
Darin N, Reid E, Prunetti L, Samuelsson L, Husain RA, Wilson M, El Yacoubi B, Footitt E, Chong WK, Wilson LC, Prunty H, Pope S, Heales S, Lascelles K, Champion M, Wassmer E, Veggiotti P, de Crécy-Lagard V, Mills PB, Clayton PT. Mutations in PROSC Disrupt Cellular Pyridoxal Phosphate Homeostasis and Cause Vitamin-B 6-Dependent Epilepsy. Am J Hum Genet 2016; 99:1325-1337. [PMID: 27912044 DOI: 10.1016/j.ajhg.2016.10.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/25/2016] [Indexed: 12/29/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, functions as a cofactor in humans for more than 140 enzymes, many of which are involved in neurotransmitter synthesis and degradation. A deficiency of PLP can present, therefore, as seizures and other symptoms that are treatable with PLP and/or pyridoxine. Deficiency of PLP in the brain can be caused by inborn errors affecting B6 vitamer metabolism or by inactivation of PLP, which can occur when compounds accumulate as a result of inborn errors of other pathways or when small molecules are ingested. Whole-exome sequencing of two children from a consanguineous family with pyridoxine-dependent epilepsy revealed a homozygous nonsense mutation in proline synthetase co-transcribed homolog (bacterial), PROSC, which encodes a PLP-binding protein of hitherto unknown function. Subsequent sequencing of 29 unrelated indivduals with pyridoxine-responsive epilepsy identified four additional children with biallelic PROSC mutations. Pre-treatment cerebrospinal fluid samples showed low PLP concentrations and evidence of reduced activity of PLP-dependent enzymes. However, cultured fibroblasts showed excessive PLP accumulation. An E.coli mutant lacking the PROSC homolog (ΔYggS) is pyridoxine sensitive; complementation with human PROSC restored growth whereas hPROSC encoding p.Leu175Pro, p.Arg241Gln, and p.Ser78Ter did not. PLP, a highly reactive aldehyde, poses a problem for cells, which is how to supply enough PLP for apoenzymes while maintaining free PLP concentrations low enough to avoid unwanted reactions with other important cellular nucleophiles. Although the mechanism involved is not fully understood, our studies suggest that PROSC is involved in intracellular homeostatic regulation of PLP, supplying this cofactor to apoenzymes while minimizing any toxic side reactions.
Collapse
Affiliation(s)
- Niklas Darin
- Department of Pediatrics, University of Gothenburg and Sahlgrenska University Hospital, 41685 Gothenburg, Sweden
| | - Emma Reid
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Laurence Prunetti
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| | - Lena Samuelsson
- Department of Clinical Genetics, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Ralf A Husain
- Centre for Inborn Metabolic Disorders, Department of Neuropediatrics, Jena University Hospital, 07740 Jena, Germany
| | - Matthew Wilson
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Basma El Yacoubi
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| | - Emma Footitt
- Department of Metabolic Medicine, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| | - W K Chong
- Department of Radiology, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| | - Louise C Wilson
- Department of Clinical Genetics, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| | - Helen Prunty
- Department of Chemical Pathology, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| | - Simon Pope
- Neurometabolic Unit, National Hospital, Queen Square, London WC1N 3BG, UK
| | - Simon Heales
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Department of Chemical Pathology, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK; Neurometabolic Unit, National Hospital, Queen Square, London WC1N 3BG, UK
| | - Karine Lascelles
- Department of Neuroscience, Evelina London Children's Hospital, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Mike Champion
- Department of Inherited Metabolic Disease, Evelina London Children's Hospital, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | | | - Pierangelo Veggiotti
- Department of Child Neurology and Psychiatry, C. Mondino National Neurological Institute, Mondino 2, 27100 Pavia, Italy; Brain and Behaviour Department, University of Pavia, Strada Nuova, 65 Pavia, Italy
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences and Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| | - Philippa B Mills
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK.
| | - Peter T Clayton
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK.
| |
Collapse
|