51
|
Vantaggiato C, Panzeri E, Castelli M, Citterio A, Arnoldi A, Santorelli FM, Liguori R, Scarlato M, Musumeci O, Toscano A, Clementi E, Bassi MT. ZFYVE26/SPASTIZIN and SPG11/SPATACSIN mutations in hereditary spastic paraplegia types AR-SPG15 and AR-SPG11 have different effects on autophagy and endocytosis. Autophagy 2018; 15:34-57. [PMID: 30081747 DOI: 10.1080/15548627.2018.1507438] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ZFYVE26/Spastizin and SPG11/Spatacsin encode 2 large proteins that are mutated in hereditary autosomal-recessive spastic paraplegia/paraparesis (HSP) type 15 (AR-SPG15) and type 11 (AR-SPG11), respectively. We previously have reported that AR-SPG15-related ZFYVE26 mutations lead to autophagy defects with accumulation of immature autophagosomes. ZFYVE26 and SPG11 were found to be part of a complex including the AP5 (adaptor related protein complex 5) and to have a critical role in autophagic lysosomal reformation with identification of autophagic and lysosomal defects in cells with both AR-SPG15- and AR-SPG11-related mutations. In spite of these similarities between the 2 proteins, here we report that ZFYVE26 and SPG11 are differently involved in autophagy and endocytosis. We found that both ZFYVE26 and SPG11 interact with RAB5A and RAB11, 2 proteins regulating endosome trafficking and maturation, but only ZFYVE26 mutations affected RAB protein interactions and activation. ZFYVE26 mutations lead to defects in the fusion between autophagosomes and endosomes, while SPG11 mutations do not affect this step and lead to a milder autophagy defect. We thus demonstrate that ZFYVE26 and SPG11 affect the same cellular physiological processes, albeit at different levels: both proteins have a role in autophagic lysosome reformation, but only ZFYVE26 acts at the intersection between endocytosis and autophagy, thus representing a key player in these 2 processes. Indeed expression of the constitutively active form of RAB5A in cells with AR-SPG15-related mutations partially rescues the autophagy defect. Finally the model we propose demonstrates that autophagy and the endolysosomal pathway are central processes in the pathogenesis of these complicated forms of hereditary spastic paraparesis. Abbreviations: ALR, autophagic lysosome reformation; AP5, adaptor related protein complex 5; AR, autosomal-recessive; HSP, hereditary spastic paraplegia/paraparesis; ATG14, autophagy related 14; BafA, bafilomycin A1; BECN1, beclin 1; EBSS, Earle balanced salt solution; EEA1, early endosome antigen 1; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; GDP, guanosine diphosphate; GFP, green fluorescent protein; GTP, guanosine triphosphate; HSP, hereditary spastic paraplegias; LBPA, lysobisphosphatidic acid; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; MVBs, multivesicular bodies; PIK3C3, phosphatidylinositol 3-kinase, catalytic subunit type 3; PIK3R4, phosphoinositide-3-kinase regulatory subunit 4; PtdIns3P, phosphatidylinositol-3-phosphate; RFP, red fluorescent protein; RUBCN, RUN and cysteine rich domain containing beclin 1 interacting protein; shRNA, short hairpin RNA; SQSTM1/p62, sequestosome 1; TCC: thin corpus callosum; TF, transferrin; UVRAG, UV radiation resistance associated.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- a Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology , Bosisio Parini , Lecco , Italy
| | - Elena Panzeri
- a Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology , Bosisio Parini , Lecco , Italy
| | - Marianna Castelli
- a Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology , Bosisio Parini , Lecco , Italy
| | - Andrea Citterio
- a Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology , Bosisio Parini , Lecco , Italy
| | - Alessia Arnoldi
- a Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology , Bosisio Parini , Lecco , Italy
| | | | - Rocco Liguori
- c Department of Biomedical and Neuromotor Sciences , University of Bologna; IRCCS Institute of Neurological Sciences , Bologna , Italy
| | - Marina Scarlato
- d Dept. of Neurosciences and Institute of Experimental Neurology (INSpe) , San Raffaele Scientific Institute , Milan , Italy
| | - Olimpia Musumeci
- e Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Antonio Toscano
- e Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Emilio Clementi
- a Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology , Bosisio Parini , Lecco , Italy.,f Unit of Clinical Pharmacology, CNR Institute of Neuroscience, Department of Biomedical and Clinical Sciences , University Hospital "Luigi Sacco", Università di Milano , Milan , Italy
| | - Maria Teresa Bassi
- a Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology , Bosisio Parini , Lecco , Italy
| |
Collapse
|
52
|
Koh K, Ishiura H, Beppu M, Shimazaki H, Ichinose Y, Mitsui J, Kuwabara S, Tsuji S, Takiyama Y. Novel mutations in the ALDH18A1 gene in complicated hereditary spastic paraplegia with cerebellar ataxia and cognitive impairment. J Hum Genet 2018; 63:1009-1013. [DOI: 10.1038/s10038-018-0477-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022]
|
53
|
Faber I, Martinez ARM, de Rezende TJR, Martins CR, Martins MP, Lourenço CM, Marques W, Montecchiani C, Orlacchio A, Pedroso JL, Barsottini OGP, Lopes-Cendes Í, França MC. SPG11 mutations cause widespread white matter and basal ganglia abnormalities, but restricted cortical damage. Neuroimage Clin 2018; 19:848-857. [PMID: 29946510 PMCID: PMC6008284 DOI: 10.1016/j.nicl.2018.05.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
SPG11 mutations are the major cause of autosomal recessive Hereditary Spastic Paraplegia. The disease has a wide phenotypic variability indicating many regions of the nervous system besides the corticospinal tract are affected. Despite this, anatomical and phenotypic characterization is restricted. In the present study, we investigate the anatomical abnormalities related to SPG11 mutations and how they relate to clinical and cognitive measures. Moreover, we aim to depict how the disease course influences the regions affected, unraveling different susceptibility of specific neuronal populations. We performed clinical and paraclinical studies encompassing neuropsychological, neuroimaging, and neurophysiological tools in a cohort of twenty-five patients and age matched controls. We assessed cortical thickness (FreeSurfer software), deep grey matter volumes (T1-MultiAtlas tool), white matter microstructural damage (DTI-MultiAtlas) and spinal cord morphometry (Spineseg software) on a 3 T MRI scan. Mean age and disease duration were 29 and 13.2 years respectively. Sixty-four percent of the patients were wheelchair bound while 84% were demented. We were able to unfold a diffuse pattern of white matter integrity loss as well as basal ganglia and spinal cord atrophy. Such findings contrasted with a restricted pattern of cortical thinning (motor, limbic and parietal cortices). Electromyography revealed motor neuronopathy affecting 96% of the probands. Correlations with disease duration pointed towards a progressive degeneration of multiple grey matter structures and spinal cord, but not of the white matter. SPG11-related hereditary spastic paraplegia is characterized by selective neuronal vulnerability, in which a precocious and widespread white matter involvement is later followed by a restricted but clearly progressive grey matter degeneration.
Collapse
Key Words
- ACE-R, Addenbrooke's Cognitive Examination Revised
- ALS, amyotrophic lateral sclerosis
- CA, cord area
- CE, cord eccentricity
- CMAP, compound muscle action potential
- CST, corticospinal tract
- Complicated hereditary spastic paraplegia
- DTI, diffusion tensor imaging
- FA, fractional anisotropy
- GM, grey matter
- Grey matter
- HSP, hereditary spastic paraplegia
- LH, left hemisphere
- MD, mean diffusivity
- MOCA, Montreal cognitive assessment
- Motor neuron disorder
- NPI, neuropsychiatric inventory
- PNP, sensory-motor polyneuropathy
- PNS, peripheral nervous system
- RH, right hemisphere
- ROI, region of interest
- SC, spinal cord
- SNAP, sensory nerve action potential
- SPG11
- SPRS, Spastic Paraplegia Rating Scale
- STS, cortex adjacent to the superior temporal sulcus
- Spinal cord
- Thinning of the corpus callosum
- WES, whole exome sequencing
- WM, white matter
- White matter
Collapse
Affiliation(s)
- Ingrid Faber
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | | | | | | | - Wilson Marques
- Department of Neurology, University of São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Celeste Montecchiani
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Scienze Chirurgiche e Biomediche, Università di Perugia, Perugia, Italy
| | - Jose Luiz Pedroso
- Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Íscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
54
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal degenerative disorder of motor neurons that overlaps clinically with frontotemporal dementia (FTD). Investigations of the 10% of ALS cases that are transmitted as dominant traits have revealed numerous gene mutations and variants that either cause these disorders or influence their clinical phenotype. The evolving understanding of the genetic architecture of ALS has illuminated broad themes in the molecular pathophysiology of both familial and sporadic ALS and FTD. These central themes encompass disturbances of protein homeostasis, alterations in the biology of RNA binding proteins, and defects in cytoskeletal dynamics, as well as numerous downstream pathophysiological events. Together, these findings from ALS genetics provide new insight into therapies that target genetically distinct subsets of ALS and FTD.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| |
Collapse
|
55
|
Abstract
PURPOSE OF REVIEW Charcot-Marie-Tooth disease (CMT) and related neuropathies represent a heterogeneous group of hereditary disorders. The present review will discuss the most recent advances in the field. RECENT FINDINGS Knowledge of CMT epidemiology and frequency of the main associated genes is increasing, with an overall prevalence estimated at 10-28/100 000. In the last years, the huge number of newly uncovered genes, thanks to next-generation sequencing techniques, is challenging the current classification of CMT. During the last 18 months other genes have been associated with CMT, such as PMP2, MORC2, NEFH, MME, and DGAT2. For the most common forms of CMT, numerous promising compounds are under study in cellular and animal models, mainly targeting either the protein degradation pathway or the protein overexpression. Consequently, efforts are devoted to develop responsive outcome measures and biomarkers for this overall slowly progressive disorder, with quantitative muscle MRI resulting the most sensitive-to-change measure. SUMMARY This is a rapidly evolving field where better understanding of pathophysiology is paving the way to develop potentially effective treatments, part of which will soon be tested in patients. Intense research is currently devoted to prepare clinical trials and develop responsive outcome measures.
Collapse
|
56
|
Abstract
Lysosomes support diverse cellular functions by acting as sites of macromolecule degradation and nutrient recycling. The degradative abilities of lysosomes are conferred by a lumen that is characterized by an acidic pH and which contains numerous hydrolases that support the breakdown of major cellular macromolecules to yield cellular building blocks (amino acids, nucleic acids, sugars, lipids and metals) that are transported into the cytoplasm for their re-use. In addition to these important hydrolytic and recycling functions, lysosomes also serve as a signaling platform that integrates nutrient and metabolic cues to control signaling via the mTORC1 pathway. Due to their extreme longevity, polarity, demands of neurotransmission and metabolic activity, neurons are particularly sensitive to perturbations in lysosome function. The dependence of neurons on optimal lysosome function is highlighted by insights from human genetics that link lysosome dysfunction to a wide range of both rare and common neurological diseases. How then is lysosome function adapted to the unique demands of neurons? This review will focus on the roles played by lysosomes in distinct neuronal sub-compartments, the regulation of neuronal lysosome sub-cellular localization and the implications of such neuronal lysosome regulation for both physiology and disease.
Collapse
Affiliation(s)
- Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, United States; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, United States.
| |
Collapse
|
57
|
Abstract
PURPOSE OF REVIEW Charcot-Marie-Tooth disease (CMT) is one of the commonest inherited neuromuscular diseases with a population prevalence of 1 in 2500. This review will cover recent advances in the genetics and pathomechanisms of CMT and how these are leading to the development of rational therapies. RECENT FINDINGS Pathomechanistic and therapeutic target advances in CMT include the identification of the ErbB receptor signalling pathway as a therapeutic target in CMT1A and pharmacological modification of the unfolded protein response in CMT1B. In CMT2D, due to mutations in glycyl-tRNA synthetase, vascular endothelial growth factor-mediated stimulation of the Nrp1 receptor has been identified as a therapeutic target. Preclinical advances have been accompanied by the publication of large natural history cohorts and the identification of a sensitive biomarker of disease (muscle MRI) that is able to detect disease progression in CMT1A over 1 year. SUMMARY Advances in next-generation sequencing technology, cell biology and animal models of CMT are paving the way for rational treatments. The combination of robust natural history data and the identification of sensitive biomarkers mean that we are now entering an exciting therapeutic era in the field of the genetic neuropathies.
Collapse
|
58
|
Bock AS, Günther S, Mohr J, Goldberg LV, Jahic A, Klisch C, Hübner CA, Biskup S, Beetz C. A nonstop variant in REEP1 causes peripheral neuropathy by unmasking a 3'UTR-encoded, aggregation-inducing motif. Hum Mutat 2017; 39:193-196. [PMID: 29124833 DOI: 10.1002/humu.23369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
Single-nucleotide variants that abolish the stop codon ("nonstop" alterations) are a unique type of substitution in genomic DNA. Whether they confer instability of the mutant mRNA or result in expression of a C-terminally extended protein depends on the absence or presence of a downstream in-frame stop codon, respectively. Of the predicted protein extensions, only few have been functionally characterized. In a family with autosomal dominant Charcot-Marie-Tooth disease type 2, that is, an axonopathy affecting sensory neurons as well as lower motor neurons, we identified a heterozygous nonstop variant in REEP1. Mutations in this gene have classically been associated with the upper motor neuron disorder hereditary spastic paraplegia (HSP). We show that the C-terminal extension resulting from the nonstop variant triggers self-aggregation of REEP1 and of several reporters. Our findings support the recently proposed concept of 3'UTR-encoded "cryptic amyloidogenic elements." Together with a previous report on an aggregation-prone REEP1 deletion variant in distal hereditary motor neuropathy, they also suggest that toxic gain of REEP1 function, rather than loss-of-function as relevant for HSP, specifically affects lower motor neurons. A search for similar correlations between genotype, phenotype, and effect of mutant protein may help to explain the wide clinical spectra also in other genetically determined disorders.
Collapse
Affiliation(s)
- Andrea S Bock
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Sven Günther
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Julia Mohr
- CeGaT GmbH und Praxis für Humangenetik, Tübingen, Germany
| | - Lisa V Goldberg
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Amir Jahic
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | | | | | - Saskia Biskup
- CeGaT GmbH und Praxis für Humangenetik, Tübingen, Germany
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
59
|
Schneider-Gold C, Dekomien G, Regensburger M, Schneider R, Trampe N, Krogias C, Lukas C, Bellenberg B. Monozygotic twins with a new compound heterozygous SPG11 mutation and different disease expression. J Neurol Sci 2017; 381:265-268. [PMID: 28991695 DOI: 10.1016/j.jns.2017.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/07/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND A pair of monozygotic 22-year-old twins with complicated hereditary spastic paraplegia caused by a novel SPG11 mutation is described. METHODS Genetic testing and thorough clinical examination, magnetic resonance imaging (MRI) and MR-spectroscopy were performed. RESULTS The twins were compound heterozygous for a known frameshift as well as a novel splice site mutation in the SPG11 gene. Clinically the patients showed a similar spectrum of symptoms but different disease presentation. MRI studies including morphometry and regional microstructural analysis by diffusion tensor imaging (DTI) of the corpus callosum (CC) by 3T MRI revealed marked thinning and corresponding increases of radial diffusivity (RD) and apparent diffusion coefficient (ADC) and reduction of the fractional anisotropy (FA) as compared to controls in all CC sections, particularly in the anterior callosal body. There was marked mainly supratentorial white matter reduction and to a lesser extent grey matter reduction in both patients. Involvement of the cortico-spinal tracts was reflected by FA and RD alterations. The more strongly affected patient showed a higher degree of callosal microstructural damage and cervical cord atrophy. CONCLUSIONS This study shows a similar symptom spectrum, but distinct clinical and imaging findings in monozygotic twins suffering from SPG 11, suggesting individual downstream genetic effects and/or non-genetic modifiers.
Collapse
Affiliation(s)
- Christiane Schneider-Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Gudrunstraße 56, D-44791 Bochum, Germany.
| | - Gabriele Dekomien
- Department of Human Genetics, Ruhr-University, Universitätsstraße 150, D-44801 Bochum, Germany.
| | - Martin Regensburger
- Division of Molecular Neurology, University of Erlangen, Schwabachanlage 6, D-91054 Erlangen, Germany.
| | - Ruth Schneider
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Gudrunstraße 56, D-44791 Bochum, Germany.
| | - Nadine Trampe
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Gudrunstraße 56, D-44791 Bochum, Germany.
| | - Christos Krogias
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Gudrunstraße 56, D-44791 Bochum, Germany.
| | - Carsten Lukas
- Department of Radiology and Nuclear Medicine, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstraße 56, D-44791 Bochum, Germany.
| | - Barbara Bellenberg
- Department of Radiology and Nuclear Medicine, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstraße 56, D-44791 Bochum, Germany.
| |
Collapse
|
60
|
Adriaenssens E, Geuens T, Baets J, Echaniz-Laguna A, Timmerman V. Novel insights in the disease biology of mutant small heat shock proteins in neuromuscular diseases. Brain 2017; 140:2541-2549. [PMID: 28969372 DOI: 10.1093/brain/awx187] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/11/2017] [Indexed: 12/12/2022] Open
Abstract
Small heat shock proteins are molecular chaperones that exert diverse cellular functions. To date, mutations in the coding regions of HSPB1 (Hsp27) and HSPB8 (Hsp22) were reported to cause distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. Recently, the clinical spectrum of HSPB1 and HSPB8 mutations was expanded to also include myopathies. Here we provide an update on the molecular genetics and biology of small heat shock protein mutations in neuromuscular diseases.
Collapse
Affiliation(s)
- Elias Adriaenssens
- Peripheral Neuropathy Research Group, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Thomas Geuens
- Peripheral Neuropathy Research Group, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Jonathan Baets
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerpen, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerpen, Belgium
| | - Andoni Echaniz-Laguna
- Department of Neurology, Neuromuscular Disease Center (CERNEST), Strasbourg University Hospital, Strasbourg, France
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
61
|
Rossor AM, Carr AS, Devine H, Chandrashekar H, Pelayo-Negro AL, Pareyson D, Shy ME, Scherer SS, Reilly MM. Peripheral neuropathy in complex inherited diseases: an approach to diagnosis. J Neurol Neurosurg Psychiatry 2017; 88:846-863. [PMID: 28794150 DOI: 10.1136/jnnp-2016-313960] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022]
Abstract
Peripheral neuropathy is a common finding in patients with complex inherited neurological diseases and may be subclinical or a major component of the phenotype. This review aims to provide a clinical approach to the diagnosis of this complex group of patients by addressing key questions including the predominant neurological syndrome associated with the neuropathy, for example, spasticity, the type of neuropathy and the other neurological and non-neurological features of the syndrome. Priority is given to the diagnosis of treatable conditions. Using this approach, we associated neuropathy with one of three major syndromic categories: (1) ataxia, (2) spasticity and (3) global neurodevelopmental impairment. Syndromes that do not fall easily into one of these three categories can be grouped according to the predominant system involved in addition to the neuropathy, for example, cardiomyopathy and neuropathy. We also include a separate category of complex inherited relapsing neuropathy syndromes, some of which may mimic Guillain-Barré syndrome, as many will have a metabolic aetiology and be potentially treatable.
Collapse
Affiliation(s)
- Alexander M Rossor
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Aisling S Carr
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Helen Devine
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Hoskote Chandrashekar
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Ana Lara Pelayo-Negro
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Davide Pareyson
- Unit of Neurological Rare Diseases of Adulthood, Carlo Besta Neurological Institute IRCCS Foundation, Milan, Italy
| | - Michael E Shy
- Department of Neurology, University of Iowa, Iowa City, USA
| | - Steven S Scherer
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
62
|
Nishihara H, Omoto M, Takao M, Higuchi Y, Koga M, Kawai M, Kawano H, Ikeda E, Takashima H, Kanda T. Autopsy case of the C12orf65 mutation in a patient with signs of mitochondrial dysfunction. NEUROLOGY-GENETICS 2017; 3:e171. [PMID: 28804760 PMCID: PMC5532748 DOI: 10.1212/nxg.0000000000000171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/08/2017] [Indexed: 11/16/2022]
Abstract
Objective: To describe the autopsy case of a patient with a homozygous 2-base deletion, c171_172delGA (p.N58fs), in the C12orf65 gene. Methods: We described the clinical history, neuroimaging data, neuropathology, and genetic analysis of the patients with C12orf65 mutations. Results: The patient was a Japanese woman with a history of delayed psychomotor development, primary amenorrhea, and gait disturbance in her 20s. She was hospitalized because of respiratory failure at the age of 60. Pectus excavatum, long fingers and toes, and pes cavus were revealed by physical examination. Her IQ score was 44. Neurologic examination revealed ophthalmoplegia, optic atrophy, dysphagia, distal dominant muscle weakness and atrophy, hyperreflexia at patellar tendon reflex, hyporeflexia at Achilles tendon reflex, and extensor plantar reflexes. At age 60, she died of pneumonia. Lactate levels were elevated in the patient's serum and CSF. T2-weighted brain MRI showed symmetrical hyperintense brainstem lesions. At autopsy, axial sections exposed symmetrical cyst formation with brownish lesions in the upper spinal cord, ventral medulla, pons, dorsal midbrain, and medial hypothalamus. Microscopic analysis of these areas demonstrated mild gliosis with rarefaction. Cell bodies in the choroid plexuses were eosinophilic and swollen. Electron microscopic examination revealed that these cells contained numerous abnormal mitochondria. Whole-exome sequencing revealed the 2-base deletion in C12orf65. Conclusions: We report an autopsy case of the C12orf65 mutation, and findings suggest that mitochondrial dysfunction may underlie the unique clinical presentations.
Collapse
Affiliation(s)
- Hideaki Nishihara
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Masatoshi Omoto
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Masaki Takao
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Yujiro Higuchi
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Michiaki Koga
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Motoharu Kawai
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Hiroo Kawano
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Eiji Ikeda
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Hiroshi Takashima
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience (H.N., M.O., M. Koga, M. Kawai, T.K.), Department of Laboratory Science (H.K.), Department of Pathology (E.I.), Yamaguchi University Graduate School of Medicine, Japan; Department of Neurology and Cerebrovascular Medicine (M.T.), Saitama International Medical Center, Saitama Medical University, Japan; and Department of Neurology and Geriatrics (Y.H., H.T.), Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| |
Collapse
|
63
|
Huang M, Hayward JJ, Corey E, Garrison SJ, Wagner GR, Krotscheck U, Hayashi K, Schweitzer PA, Lust G, Boyko AR, Todhunter RJ. A novel iterative mixed model to remap three complex orthopedic traits in dogs. PLoS One 2017; 12:e0176932. [PMID: 28614352 PMCID: PMC5470659 DOI: 10.1371/journal.pone.0176932] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/19/2017] [Indexed: 12/31/2022] Open
Abstract
Hip dysplasia (HD), elbow dysplasia (ED), and rupture of the cranial (anterior) cruciate ligament (RCCL) are the most common complex orthopedic traits of dogs and all result in debilitating osteoarthritis. We reanalyzed previously reported data: the Norberg angle (a quantitative measure of HD) in 921 dogs, ED in 113 cases and 633 controls, and RCCL in 271 cases and 399 controls and their genotypes at ~185,000 single nucleotide polymorphisms. A novel fixed and random model with a circulating probability unification (FarmCPU) function, with marker-based principal components and a kinship matrix to correct for population stratification, was used. A Bonferroni correction at p<0.01 resulted in a P< 6.96 ×10-8. Six loci were identified; three for HD and three for RCCL. An associated locus at CFA28:34,369,342 for HD was described previously in the same dogs using a conventional mixed model. No loci were identified for RCCL in the previous report but the two loci for ED in the previous report did not reach genome-wide significance using the FarmCPU model. These results were supported by simulation which demonstrated that the FarmCPU held no power advantage over the linear mixed model for the ED sample but provided additional power for the HD and RCCL samples. Candidate genes for HD and RCCL are discussed. When using FarmCPU software, we recommend a resampling test, that a positive control be used to determine the optimum pseudo quantitative trait nucleotide-based covariate structure of the model, and a negative control be used consisting of permutation testing and the identical resampling test as for the non-permuted phenotypes.
Collapse
Affiliation(s)
- Meng Huang
- Department of Crop and Soil Science, Washington State University, Pullman, Washington, United States of America
| | - Jessica J. Hayward
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Elizabeth Corey
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Susan J. Garrison
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Gabriela R. Wagner
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ursula Krotscheck
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Kei Hayashi
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Peter A. Schweitzer
- Sequencing Core, Biotechnology Resource Center, Cornell University, Ithaca, New York, United States of America
| | - George Lust
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, United States of America
| | - Adam R. Boyko
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Chief Scientific Officer of Embark Veterinary Inc., Austin, Texas, United States of America
| | - Rory J. Todhunter
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
64
|
Abstract
Paediatric motor neuron diseases encompass a group of neurodegenerative diseases characterised by the onset of muscle weakness and atrophy before the age of 18 years, attributable to motor neuron loss across various neuronal networks in the brain and spinal cord. While the genetic underpinnings are diverse, advances in next generation sequencing have transformed diagnostic paradigms. This has reinforced the clinical phenotyping and molecular genetic expertise required to navigate the complexities of such diagnoses. In turn, improved genetic technology and subsequent gene identification have enabled further insights into the mechanisms of motor neuron degeneration and how these diseases form part of a neurodegenerative disorder spectrum. Common pathophysiologies include abnormalities in axonal architecture and function, RNA processing, and protein quality control. This review incorporates an overview of the clinical manifestations, genetics, and pathophysiology of inherited paediatric motor neuron disorders beyond classic SMN1-related spinal muscular atrophy and describes recent advances in next generation sequencing and its clinical application. Specific disease-modifying treatment is becoming a clinical reality in some disorders of the motor neuron highlighting the importance of a timely and specific diagnosis.
Collapse
|
65
|
Estrada-Cuzcano A, Martin S, Chamova T, Synofzik M, Timmann D, Holemans T, Andreeva A, Reichbauer J, De Rycke R, Chang DI, van Veen S, Samuel J, Schöls L, Pöppel T, Mollerup Sørensen D, Asselbergh B, Klein C, Zuchner S, Jordanova A, Vangheluwe P, Tournev I, Schüle R. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain 2017; 140:287-305. [PMID: 28137957 DOI: 10.1093/brain/aww307] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/29/2016] [Accepted: 10/19/2016] [Indexed: 12/23/2022] Open
Abstract
Hereditary spastic paraplegias are heterogeneous neurodegenerative disorders characterized by progressive spasticity of the lower limbs due to degeneration of the corticospinal motor neurons. In a Bulgarian family with three siblings affected by complicated hereditary spastic paraplegia, we performed whole exome sequencing and homozygosity mapping and identified a homozygous p.Thr512Ile (c.1535C > T) mutation in ATP13A2. Molecular defects in this gene have been causally associated with Kufor-Rakeb syndrome (#606693), an autosomal recessive form of juvenile-onset parkinsonism, and neuronal ceroid lipofuscinosis (#606693), a neurodegenerative disorder characterized by the intracellular accumulation of autofluorescent lipopigments. Further analysis of 795 index cases with hereditary spastic paraplegia and related disorders revealed two additional families carrying truncating biallelic mutations in ATP13A2. ATP13A2 is a lysosomal P5-type transport ATPase, the activity of which critically depends on catalytic autophosphorylation. Our biochemical and immunocytochemical experiments in COS-1 and HeLa cells and patient-derived fibroblasts demonstrated that the hereditary spastic paraplegia-associated mutations, similarly to the ones causing Kufor-Rakeb syndrome and neuronal ceroid lipofuscinosis, cause loss of ATP13A2 function due to transcript or protein instability and abnormal intracellular localization of the mutant proteins, ultimately impairing the lysosomal and mitochondrial function. Moreover, we provide the first biochemical evidence that disease-causing mutations can affect the catalytic autophosphorylation activity of ATP13A2. Our study adds complicated hereditary spastic paraplegia (SPG78) to the clinical continuum of ATP13A2-associated neurological disorders, which are commonly hallmarked by lysosomal and mitochondrial dysfunction. The disease presentation in our patients with hereditary spastic paraplegia was dominated by an adult-onset lower-limb predominant spastic paraparesis. Cognitive impairment was present in most of the cases and ranged from very mild deficits to advanced dementia with fronto-temporal characteristics. Nerve conduction studies revealed involvement of the peripheral motor and sensory nerves. Only one of five patients with hereditary spastic paraplegia showed clinical indication of extrapyramidal involvement in the form of subtle bradykinesia and slight resting tremor. Neuroimaging cranial investigations revealed pronounced vermian and hemispheric cerebellar atrophy. Notably, reduced striatal dopamine was apparent in the brain of one of the patients, who had no clinical signs or symptoms of extrapyramidal involvement.
Collapse
Affiliation(s)
- Alejandro Estrada-Cuzcano
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Shaun Martin
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Teodora Chamova
- Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Matthis Synofzik
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Tine Holemans
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Albena Andreeva
- Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Jennifer Reichbauer
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Riet De Rycke
- Inflammation Research Center, VIB, Ghent, Belgium and Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Dae-In Chang
- Inflammation Research Center, VIB, Ghent, Belgium and Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Sarah van Veen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Jean Samuel
- Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Ludger Schöls
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Thorsten Pöppel
- Department of Nuclear Medicine, Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Danny Mollerup Sørensen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Bob Asselbergh
- VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Christine Klein
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium.,Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Stephan Zuchner
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium.,Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium.,Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Ivailo Tournev
- Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria.,Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium.,Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Rebecca Schüle
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany .,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany.,Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| |
Collapse
|
66
|
Parodi L, Fenu S, Stevanin G, Durr A. Hereditary spastic paraplegia: More than an upper motor neuron disease. Rev Neurol (Paris) 2017; 173:352-360. [DOI: 10.1016/j.neurol.2017.03.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/31/2017] [Indexed: 12/11/2022]
|
67
|
Weis J, Claeys KG, Roos A, Azzedine H, Katona I, Schröder JM, Senderek J. Towards a functional pathology of hereditary neuropathies. Acta Neuropathol 2017; 133:493-515. [PMID: 27896434 DOI: 10.1007/s00401-016-1645-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 12/11/2022]
Abstract
A growing number of hereditary neuropathies have been assigned to causative gene defects in recent years. The study of human nerve biopsy samples has contributed substantially to the discovery of many of these neuropathy genes. Genotype-phenotype correlations based on peripheral nerve pathology have provided a comprehensive picture of the consequences of these mutations. Intriguingly, several gene defects lead to distinguishable lesion patterns that can be studied in nerve biopsies. These characteristic features include the loss of certain nerve fiber populations and a large spectrum of distinct structural changes of axons, Schwann cells and other components of peripheral nerves. In several instances the lesion patterns are directly or indirectly linked to the known functions of the mutated gene. The present review is designed to provide an overview on these characteristic patterns. It also considers other aspects important for the manifestation and pathology of hereditary neuropathies including the role of inflammation, effects of chemotherapeutic agents and alterations detectable in skin biopsies.
Collapse
Affiliation(s)
- Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Kristl G Claeys
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Neurology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Neurology, University Hospitals Leuven and University of Leuven (KU Leuven), Leuven, Belgium
| | - Andreas Roos
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Hamid Azzedine
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
| | - J Michael Schröder
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Jan Senderek
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Ziemssenstr. 1a, 80336, Munich, Germany.
| |
Collapse
|
68
|
Branchu J, Boutry M, Sourd L, Depp M, Leone C, Corriger A, Vallucci M, Esteves T, Matusiak R, Dumont M, Muriel MP, Santorelli FM, Brice A, El Hachimi KH, Stevanin G, Darios F. Loss of spatacsin function alters lysosomal lipid clearance leading to upper and lower motor neuron degeneration. Neurobiol Dis 2017; 102:21-37. [PMID: 28237315 PMCID: PMC5391847 DOI: 10.1016/j.nbd.2017.02.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/10/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Mutations in SPG11 account for the most common form of autosomal recessive hereditary spastic paraplegia (HSP), characterized by a gait disorder associated with various brain alterations. Mutations in the same gene are also responsible for rare forms of Charcot-Marie-Tooth (CMT) disease and progressive juvenile-onset amyotrophic lateral sclerosis (ALS). To elucidate the physiopathological mechanisms underlying these human pathologies, we disrupted the Spg11 gene in mice by inserting stop codons in exon 32, mimicking the most frequent mutations found in patients. The Spg11 knockout mouse developed early-onset motor impairment and cognitive deficits. These behavioral deficits were associated with progressive brain atrophy with the loss of neurons in the primary motor cortex, cerebellum and hippocampus, as well as with accumulation of dystrophic axons in the corticospinal tract. Spinal motor neurons also degenerated and this was accompanied by fragmentation of neuromuscular junctions and muscle atrophy. This new Spg11 knockout mouse therefore recapitulates the full range of symptoms associated with SPG11 mutations observed in HSP, ALS and CMT patients. Examination of the cellular alterations observed in this model suggests that the loss of spatacsin leads to the accumulation of lipids in lysosomes by perturbing their clearance from these organelles. Altogether, our results link lysosomal dysfunction and lipid metabolism to neurodegeneration and pinpoint a critical role of spatacsin in lipid turnover. Spg11 knockout mouse recapitulates the motor and cognitive symptoms observed in patients. Spg11 knockout mouse presents neurodegeneration in cortex, cerebellum, hippocampus and spinal cord. Loss of spatacsin, the product of Spg11, leads to early lysosomal dysfunction. Loss of spatacsin promotes lipid accumulation in lysosomes.
Collapse
Affiliation(s)
- Julien Branchu
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Maxime Boutry
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Laura Sourd
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Marine Depp
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Céline Leone
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Alexandrine Corriger
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Maeva Vallucci
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Typhaine Esteves
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Raphaël Matusiak
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Magali Dumont
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Marie-Paule Muriel
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Filippo M Santorelli
- Molecular Medicine, IRCCS Stella Maris Foundation, Calambronne, I-56100 Pisa, Italy
| | - Alexis Brice
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Khalid Hamid El Hachimi
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Giovanni Stevanin
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France.
| | - Frédéric Darios
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Inserm, U1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France.
| |
Collapse
|
69
|
Stojkovic T. Hereditary neuropathies: An update. Rev Neurol (Paris) 2016; 172:775-778. [PMID: 27866730 DOI: 10.1016/j.neurol.2016.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022]
Abstract
Hereditary neuropathies are the most common inherited neuromuscular diseases. Charcot-Marie-Tooth (CMT) disease represents the most common form with an average prevalence ranging from 1/2500 to 1/1200, depending on the studies. To date and with the advances of the latest generation sequencing, more than 80 genes have been identified. Although the common clinical phenotype comprises a progressive distal muscle weakness and sensory loss, foot deformities and decreased or absent tendon reflexes, clinical and electrophysiological phenotypes exhibit great variability. Moreover, atypical phenotypes are arising, overlapping with spastic paraplegia, hereditary sensory neuropathies or amyotrophic lateral sclerosis. The causative genes are involved in various biological processes such as myelin development and maintenance, biosynthesis and degradation of proteins, neuronal structural maintenance, axonal transport, endocytosis, membrane dynamics, ion-channel function and the mitochondrial network. An accurate genetic diagnosis is important for appropriate genetic counselling and treatment options. Therapeutic advances, particularly small interfering RNA therapy, are encouraging in hereditary transthyretin amyloid neuropathy.
Collapse
Affiliation(s)
- T Stojkovic
- Centre de référence des maladies neuromusculaires Paris Est, AP-HP, groupe hospitalier Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
70
|
Manole A, Chelban V, Haridy NA, Hamed SA, Berardo A, Reilly MM, Houlden H. Severe axonal neuropathy is a late manifestation of SPG11. J Neurol 2016; 263:2278-2286. [PMID: 27544499 PMCID: PMC5065903 DOI: 10.1007/s00415-016-8254-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 01/22/2023]
Abstract
Complex hereditary spastic paraplegia (HSP) is a clinically heterogeneous group of disorders usually inherited in an autosomal recessive manner. In the past, complex recessive spastic paraplegias have been frequently associated with SPG11 mutations but also with defects in SPG15, SPG7 and a handful of other rare genes. Pleiotropy exists in HSP genes, exemplified in the recent association of SPG11 mutations with CMT2. In this study, we performed whole exome sequence analysis and identified two siblings with novel compound heterozygous frameshift SPG11 mutations. The mutations segregated with disease were not present in control databases and analysis of skin fibroblast derived mRNA indicated that the SPG11 truncated mRNA species were not degraded significantly by non-sense mediated mRNA decay. These siblings had severe early-onset spastic paraplegia but later in their disease developed severe axonal neuropathy, neuropathic pain and blue/black foot discolouration likely caused by a combination of the severe neuropathy with autonomic dysfunction and peripheral oedema. We also identified a similar late-onset axonal neuropathy in a Cypriot SPG11 family. Although neuropathy is occasionally present in SPG11, in our SPG11 patients reported here it was particularly severe, highlighting the association of axonal neuropathy with SPG11 and the late manifestation of axonal peripheral nerve damage.
Collapse
Affiliation(s)
- Andreea Manole
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Viorica Chelban
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurology, Medical University N. Testemitanu, Chisinau, Republic of Moldova
| | - Nourelhoda A Haridy
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sherifa A Hamed
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University Hospital, Assiut, Egypt
| | - Andrés Berardo
- Instituto de Neurociencias Conci Carpinella, Laboratorio de Neurobiologìa, Instituto de Investigaciónes Medicas "Mercedes y Martín Ferreyra", INIMEC-CONICET-UNC, Córdoba, Argentina
| | - Mary M Reilly
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
71
|
Zhang R, Zhou H, Jiang L, Mao Y, Cui X, Xie B, Cui D, Wang H, Zhang Q, Xu S. MiR-195 dependent roles of mitofusin2 in the mitochondrial dysfunction of hippocampal neurons in SAMP8 mice. Brain Res 2016; 1652:135-143. [PMID: 27693395 DOI: 10.1016/j.brainres.2016.09.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023]
Abstract
Abnormal gene expression, including mRNAs, and microRNAs (miRNA), have been identified in the development of Alzheimer's disease (AD). Although mitofusin2 (mfn2) has been found to be down-regulated in the neurons from hippocampus and cortex in AD patients, little is known about its roles and the regulatory mechanisms in the pathogenesis of AD. This study was performed to investigate the roles of mfn2 protein and its upstream regulatory mechanism in the progression of AD using a senescence accelerated mouse prone-8 (SAMP8) model. The results of quantitative real-time PCR and western blot revealed that mfn2 expression displayed a consistent decrease with aging in the hippocampus of SAMP8 than did age-matched SAMR1 mice. The luciferase activity assay combined with mutational analysis confirmed the binding site of miR-195 to the 3' -untranslated region (3'-UTR) of mfn2 mRNA. Furthermore, miR-195 inhibitor or antigomir induced the higher level expression of mfn2 protein in vitro and in vivo. In addition, exogenous expression of miR-195 decreased the mitochondrial membrane potential (MMP) of the HT-22 cells by targeting mfn2. In conclusion, these results indicated that deregulation of mfn2 might be involved in mitochondrial dysfunction during the progression of AD, and its decreased expression was regulated at least in part by miR-195 in AD mice. The abnormal expression of miR-195 played a potential role in mitochondrial disorder by targeting mfn2 in hippocampus of SAMP8 mice. Therefore, upregulation of mfn2 protein by inhibiting miR-195 might be a potential new therapeutic strategy for treatment of AD.
Collapse
Affiliation(s)
- Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China; Burn Engineering Center of Hebei Province, Shijiazhuang 050031, PR China
| | - Huimin Zhou
- Burn Engineering Center of Hebei Province, Shijiazhuang 050031, PR China; Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China
| | - Yueran Mao
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China
| | - Ximing Cui
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China
| | - Bing Xie
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China; Burn Engineering Center of Hebei Province, Shijiazhuang 050031, PR China
| | - Dongsheng Cui
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China
| | - Hui Wang
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China
| | - Qingfu Zhang
- Burn Engineering Center of Hebei Province, Shijiazhuang 050031, PR China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050031, PR China; Burn Engineering Center of Hebei Province, Shijiazhuang 050031, PR China.
| |
Collapse
|
72
|
Severe muscle wasting and denervation in mice lacking the RNA-binding protein ZFP106. Proc Natl Acad Sci U S A 2016; 113:E4494-503. [PMID: 27418600 PMCID: PMC4978283 DOI: 10.1073/pnas.1608423113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Innervation of skeletal muscle by motor neurons occurs through the neuromuscular junction, a cholinergic synapse essential for normal muscle growth and function. Defects in nerve-muscle signaling cause a variety of neuromuscular disorders with features of ataxia, paralysis, skeletal muscle wasting, and degeneration. Here we show that the nuclear zinc finger protein ZFP106 is highly enriched in skeletal muscle and is required for postnatal maintenance of myofiber innervation by motor neurons. Genetic disruption of Zfp106 in mice results in progressive ataxia and hindlimb paralysis associated with motor neuron degeneration, severe muscle wasting, and premature death by 6 mo of age. We show that ZFP106 is an RNA-binding protein that associates with the core splicing factor RNA binding motif protein 39 (RBM39) and localizes to nuclear speckles adjacent to spliceosomes. Upon inhibition of pre-mRNA synthesis, ZFP106 translocates with other splicing factors to the nucleolus. Muscle and spinal cord of Zfp106 knockout mice displayed a gene expression signature of neuromuscular degeneration. Strikingly, altered splicing of the Nogo (Rtn4) gene locus in skeletal muscle of Zfp106 knockout mice resulted in ectopic expression of NOGO-A, the neurite outgrowth factor that inhibits nerve regeneration and destabilizes neuromuscular junctions. These findings reveal a central role for Zfp106 in the maintenance of nerve-muscle signaling, and highlight the involvement of aberrant RNA processing in neuromuscular disease pathogenesis.
Collapse
|
73
|
Zhang L, McFarland KN, Jiao J, Jiao Y. A case report of SPG11 mutations in a Chinese ARHSP-TCC family. BMC Neurol 2016; 16:87. [PMID: 27256065 PMCID: PMC4891852 DOI: 10.1186/s12883-016-0604-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 05/17/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autosomal recessive hereditary spastic paraplegia (ARHSP) with thin corpus callosum (TCC) is a complicated form of hereditary spastic paraplegia, characterized by progressive spastic paraplegia, weakness of the lower extremities and is usually accompanied by mental retardation. Mutations in the Spastic Paraplegia gene 11 (SPG11) account for a large proportion of ARHSP-TCC cases worldwide. CASE PRESENTATION We describe a Chinese family with ARHSP-TCC. Two daughters of this family presented with a spastic gait and cognitive impairment. Brain imaging of the index patient revealed a thin corpus callosum. We performed detailed physical and auxiliary examinations and were able to exclude acquired causes of spastic paraplegia. To determine the causative mutation, we took a candidate gene approach and screened the coding sequence and some flanking intronic sequence of SPG11 by direct Sanger sequencing. We identified two novel compound heterozygous mutations in SPG11 in affected individuals (c.1551_1552delTT, p.Cys518SerfsTer39 and c.5867-1G > T (IVS30-1G > T), p.Thr1956ArgfsTer15). Bioinformatic analysis predicts that these mutations would lead to a loss of protein function due to the truncation of the SPG11 protein. CONCLUSIONS The results of this case report indicate a broader approach to include screening for SPG11 mutations in ARHSP-TCC patients. Our findings enrich the phenotypic spectrum of SPG11 mutations.
Collapse
Affiliation(s)
- Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, 100029, Beijing, China.,McKnight Brain Institute and the Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610, United States of America
| | - Karen N McFarland
- McKnight Brain Institute and the Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610, United States of America
| | - Jinsong Jiao
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, 100029, Beijing, China
| | - Yujuan Jiao
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, 100029, Beijing, China.
| |
Collapse
|
74
|
Günther S, Elert-Dobkowska E, Soehn AS, Hinreiner S, Yoon G, Heller R, Hellenbroich Y, Hübner CA, Ray PN, Hehr U, Bauer P, Sulek A, Beetz C. High Frequency of Pathogenic Rearrangements in SPG11 and Extensive Contribution of Mutational Hotspots and Founder Alleles. Hum Mutat 2016; 37:703-9. [PMID: 27071356 DOI: 10.1002/humu.23000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/11/2016] [Accepted: 03/29/2016] [Indexed: 12/27/2022]
Abstract
Biallelic loss-of-function mutations in SPG11 cause a wide spectrum of recessively inherited, neurodegenerative disorders including hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis, and Charcot-Marie-Tooth disease. By comprehensive screening of three large cohorts of HSP index patients, we identified 83 alleles with "small" mutations and 13 alleles that carry large genomic rearrangements. Including relevant data from previous studies, we estimate that copy number variants (CNVs) account for ∼19% of pathogenic SPG11 alleles. The breakpoints for all novel and some previously reported CNVs were determined by long-range PCR and sequencing. This revealed several Alu-associated recombination hotspots. We also found evidence for additional mutational mechanisms, including for a two-step event in which an Alu retrotransposition preceded the actual rearrangement. Apparently independent samples with identical breakpoints were analyzed by microsatellite PCRs. The resulting haplotypes suggested the existence of two rearrangement founder alleles. Our findings widen the spectra of mutations and mutational mechanisms in SPG11, underscore the pivotal role played by Alus, and are of high diagnostic relevance for a wide spectrum of clinical phenotypes including the most frequent form of recessive HSP.
Collapse
Affiliation(s)
- Sven Günther
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | | | - Anne S Soehn
- Institute of Medical Genetics and Applied Genomics, University Hospital of Tuebingen, Tuebingen, Germany
| | - Sophie Hinreiner
- Center for Human Genetics, and Department of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Grace Yoon
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Raoul Heller
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | | | | | - Peter N Ray
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ute Hehr
- Center for Human Genetics, and Department of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University Hospital of Tuebingen, Tuebingen, Germany
| | - Anna Sulek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
75
|
Denora PS, Smets K, Zolfanelli F, Ceuterick-de Groote C, Casali C, Deconinck T, Sieben A, Gonzales M, Zuchner S, Darios F, Peeters D, Brice A, Malandrini A, De Jonghe P, Santorelli FM, Stevanin G, Martin JJ, El Hachimi KH. Motor neuron degeneration in spastic paraplegia 11 mimics amyotrophic lateral sclerosis lesions. Brain 2016; 139:1723-34. [PMID: 27016404 PMCID: PMC5839621 DOI: 10.1093/brain/aww061] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/31/2016] [Indexed: 12/12/2022] Open
Abstract
The most common form of autosomal recessive hereditary spastic paraplegia is caused by
mutations in the SPG11/KIAA1840 gene on chromosome 15q.
The nature of the vast majority of SPG11 mutations found to date suggests
a loss-of-function mechanism of the encoded protein, spatacsin. The SPG11 phenotype is, in
most cases, characterized by a progressive spasticity with neuropathy, cognitive
impairment and a thin corpus callosum on brain MRI. Full neuropathological
characterization has not been reported to date despite the description of >100
SPG11 mutations. We describe here the clinical and pathological
features observed in two unrelated females, members of genetically ascertained SPG11
families originating from Belgium and Italy, respectively. We confirm the presence of
lesions of motor tracts in medulla oblongata and spinal cord associated with other lesions
of the central nervous system. Interestingly, we report for the first time pathological
hallmarks of SPG11 in neurons that include intracytoplasmic granular lysosome-like
structures mainly in supratentorial areas, and others in subtentorial areas that are
partially reminiscent of those observed in amyotrophic lateral sclerosis, such as
ubiquitin and p62 aggregates, except that they are never labelled with anti-TDP-43 or
anti-cystatin C. The neuropathological overlap with amyotrophic lateral sclerosis,
associated with some shared clinical manifestations, opens up new fields of investigation
in the physiopathological continuum of motor neuron degeneration.
Collapse
Affiliation(s)
- Paola S Denora
- 1 Ecole Pratique des Hautes Etudes, EPHE, PSL université, laboratoire de neurogénétique, F-75013, Paris, France 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France 5 Department of Genetics and Rare Diseases, IRCCS Bambino Gesu' Children Hospital, Rome, Italy
| | - Katrien Smets
- 6 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Belgium 7 Laboratories of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium 8 Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | | | | | - Carlo Casali
- 11 Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Polo Pontino Rome, Italy
| | - Tine Deconinck
- 6 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Belgium 7 Laboratories of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium
| | - Anne Sieben
- 10 Institute Born-Bunge, University of Antwerp, Belgium 12 Department of Neurology, University Hospital Gent, Belgium
| | - Michael Gonzales
- 13 Department of Human Genetics and Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Stephan Zuchner
- 13 Department of Human Genetics and Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Frédéric Darios
- 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Dirk Peeters
- 14 Department of Neurology, AZ Groeninge, Kortrijk, Belgium
| | - Alexis Brice
- 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France 15 APHP, Département de Génétique, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Alessandro Malandrini
- 16 Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Peter De Jonghe
- 6 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Belgium 7 Laboratories of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium 8 Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Filippo M Santorelli
- 17 Molecular Medicine Laboratory, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Giovanni Stevanin
- 1 Ecole Pratique des Hautes Etudes, EPHE, PSL université, laboratoire de neurogénétique, F-75013, Paris, France 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France 15 APHP, Département de Génétique, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | | | - Khalid H El Hachimi
- 1 Ecole Pratique des Hautes Etudes, EPHE, PSL université, laboratoire de neurogénétique, F-75013, Paris, France 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| |
Collapse
|