51
|
Nenciovici L, Allaire-Duquette G, Masson S. Brain activations associated with scientific reasoning: a literature review. Cogn Process 2018; 20:139-161. [DOI: 10.1007/s10339-018-0896-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
|
52
|
Kambara T, Brown EC, Silverstein BH, Nakai Y, Asano E. Neural dynamics of verbal working memory in auditory description naming. Sci Rep 2018; 8:15868. [PMID: 30367077 PMCID: PMC6203730 DOI: 10.1038/s41598-018-33776-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/06/2018] [Indexed: 11/24/2022] Open
Abstract
Auditory naming is suggested to require verbal working memory (WM) operations in addition to speech sound perception during the sentence listening period and semantic/syntactic processing during the subsequent judgement period. We attempted to dissect cortical activations attributable to verbal WM from those otherwise involved in answering auditory sentence questions. We studied 19 patients who underwent electrocorticography recordings and measured high-gamma activity during auditory naming and WM tasks. In the auditory naming task, inferior-precentral high-gamma activity was augmented during sentence listening, and the magnitude of augmentation was independently correlated to that during the WM task maintenance period as well as patient age. High-gamma augmentation during the WM task scanning period accounted for high-gamma variance during the naming task judgement period in some of the left frontal association neocortex regions (most significantly in the middle-frontal, less in the inferior-frontal, and least in the orbitofrontal gyrus). Inferior-frontal high-gamma augmentation was left-hemispheric dominant during naming task judgement but rather symmetric during WM scanning. Left orbitofrontal high-gamma augmentation was evident only during the naming task judgement period but minimal during the WM task scanning period. The inferior-precentral regions may exert WM maintenance during sentence listening, and such maintenance function may be gradually strengthened as the brain matures. The left frontal association neocortex may have a dorsal-to-ventral gradient in functional roles during naming task judgement. Namely, left middle-frontal activation may be well-attributable to WM scanning function, whereas left orbitofrontal activation may be attributable less to WM scanning but more largely to syntactic/semantic processing.
Collapse
Affiliation(s)
- Toshimune Kambara
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
- Postdoctoral Fellowship for Research Abroad, Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, 1020083, Japan
- Department of Psychology, Hiroshima University, Hiroshima, 7398524, Japan
| | - Erik C Brown
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA
| | - Yasuo Nakai
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.
- Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
53
|
Fallon SJ, Mattiesing RM, Dolfen N, Manohar SG, Husain M. Ignoring versus updating in working memory reveal differential roles of attention and feature binding. Cortex 2018; 107:50-63. [PMID: 29402388 PMCID: PMC6181802 DOI: 10.1016/j.cortex.2017.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/02/2017] [Accepted: 12/21/2017] [Indexed: 11/24/2022]
Abstract
Ignoring distracting information and updating current contents are essential components of working memory (WM). Yet, although both require controlling irrelevant information, it is unclear whether they have the same effects on recall and produce the same level of misbinding errors (incorrectly joining the features of different memoranda). Moreover, the likelihood of misbinding may be affected by the feature similarity between the items already encoded into memory and the information that has to be filtered out (ignored) or updated into memory. Here, we investigate these questions. Participants were sequentially presented with two pairs of arrows. The first pair of arrows always had to be encoded into memory, but the second pair either had to be ignored (ignore condition) or allowed to displace the previously encoded items (update condition). To investigate the effect of similarity on recall, we also varied, in a factorial manner, whether the items that had to be ignored or updated were presented in the same or different colours and/or same or different spatial locations to the original memoranda. By applying a computational model, we were able to quantify the levels of misbinding. Ignoring, but not updating, increased overall recall error as well as misbinding rates, even when accounting for the retention period. This indicates that not all manipulations of attention in WM are equal in terms of their effects on recall and misbinding. Misbinding rates in the ignore condition were affected by the colour and spatial congruence of relevant and irrelevant information to a greater extent than in the update condition. This finding suggests that attentional templates are used to evaluate relevant and irrelevant information in different ways during ignoring and updating. Together, the results suggest that differences between the two functions might occur due to higher levels of attentional compartmentalisation - or protection - during updating compared to ignoring.
Collapse
Affiliation(s)
- Sean J Fallon
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | | | - Nina Dolfen
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
54
|
van der Meer D, Hoekstra PJ, van Rooij D, Winkler AM, van Ewijk H, Heslenfeld DJ, Oosterlaan J, Faraone SV, Franke B, Buitelaar JK, Hartman CA. Anxiety modulates the relation between attention-deficit/hyperactivity disorder severity and working memory-related brain activity. World J Biol Psychiatry 2018; 19. [PMID: 28635543 PMCID: PMC5581282 DOI: 10.1080/15622975.2017.1287952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Individuals with attention-deficit/hyperactivity disorder (ADHD) often have heightened levels of anxiety, which has been associated with worse performance on working memory tasks. Knowledge of the neural pathways underlying the combined presence of ADHD and anxiety may aid in a better understanding of their co-occurrence. Therefore, we investigated how anxiety modulates the effect of ADHD severity on neural activity during a visuospatial working memory (VSWM) task. METHODS Neuroimaging data were available for 371 adolescents and young adults participating in the multicentre cohort study NeuroIMAGE (average age 17.1 years). We analysed the effects of ADHD severity, anxiety severity and their interaction on-task accuracy, and on neural activity associated with working memory (VSWM trials minus baseline), and memory load (high memory load trials minus low load trials). RESULTS Anxiety significantly modulated the relation between ADHD severity and neural activity in the cerebellum for the working memory contrast, and bilaterally in the striatum and thalamus for the memory load contrast. CONCLUSIONS We found that ADHD with co-occurring anxiety is associated with lowered neural activity during a VSWM task in regions important for information gating. This fits well with previous theorising on ADHD with co-occurring anxiety, and illustrates the neurobiological heterogeneity of ADHD.
Collapse
Affiliation(s)
- Dennis van der Meer
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands,Corresponding author: ; University of Groningen, University Medical Center Groningen, Department of Psychiatry; P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Pieter J. Hoekstra
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| | - Daan van Rooij
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Anderson M. Winkler
- Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - Hanneke van Ewijk
- Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Dirk J. Heslenfeld
- Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Jaap Oosterlaan
- Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Stephen V. Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, USA
| | - Barbara Franke
- Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Catharina A. Hartman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| |
Collapse
|
55
|
Proverbio AM, Bianco M, De Benedetto F. Distinct neural mechanisms for reading Arabic vs. verbal numbers: An ERP study. Eur J Neurosci 2018; 52:4480-4489. [PMID: 29753306 DOI: 10.1111/ejn.13938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/15/2018] [Accepted: 03/25/2018] [Indexed: 11/30/2022]
Abstract
In this electroencephalogram/event-related potential (EEG/ERP) study, 16 volunteers were asked to compare the numerical equality of 360 pairs of multidigit numbers presented in Arabic or verbal format. Behavioural data showed faster and more accurate responses for digit targets, with a right hand/left hemisphere advantage only for verbal numerals. Occipito-temporal N1, peaking at approximately 180 ms, was strongly left-lateralized during verbal number processing and bilateral during digit processing. A LORETA (low-resolution electromagnetic tomography) source reconstruction performed at the N1 latency stage (155-185 ms) revealed greater brain activation during coding of Arabic than of verbal stimuli. Digit perceptual coding was associated with the activation of the right angular gyrus (rAG), the left fusiform gyrus (FG,BA37), and left and right superior and medial frontal areas. N1 sources for verbal numerals included the left FG (BA37), the precuneus (BA31), the parahippocampal area and a small right prefrontal activation. In addition, verbal numerals elicited a late frontocentral negativity, possibly reflecting stimulus unfamiliarity or complexity. Overall, the data suggest distinct mechanisms for number reading through ciphers (digits) or words. Information about quantity was accessed earlier and more accurately if numbers were in a nonlinguistic code. Indeed, it can be speculated that numerosity processing would involve circuits originally involved in processing space (i.e., rAG/rIPS).
Collapse
Affiliation(s)
| | - Marco Bianco
- Neuro-Mi Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
56
|
Renner E, White JP, Hamilton AFDC, Subiaul F. Neural responses when learning spatial and object sequencing tasks via imitation. PLoS One 2018; 13:e0201619. [PMID: 30075020 PMCID: PMC6075756 DOI: 10.1371/journal.pone.0201619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/18/2018] [Indexed: 11/18/2022] Open
Abstract
Humans often learn new things via imitation. Here we draw on studies of imitation in children to characterise the brain system(s) involved in the imitation of different sequence types using functional magnetic resonance imaging. On each trial, healthy adult participants learned one of two rule types governing the sequencing of three pictures: a motor-spatial rule (in the spatial task) or an object-based rule (in the cognitive task). Sequences were learned via one of three demonstration types: a video of a hand selecting items in the sequence using a joystick (Hand condition), a computer display highlighting each item in order (Ghost condition), or a text-based demonstration of the sequence (Text condition). Participants then used a joystick to execute the learned sequence. Patterns of activation during demonstration observation suggest specialisation for object-based imitation in inferior frontal gyrus, specialisation for spatial sequences in anterior intraparietal sulcus (IPS), and a general preference for imitation in middle IPS. Adult behavioural performance contrasted with that of children in previous studies—indicating that they experienced more difficulty with the cognitive task—while neuroimaging results support the engagement of different neural regions when solving these tasks. Further study is needed on whether children’s differential performance is related to delayed IPS maturation.
Collapse
Affiliation(s)
- Elizabeth Renner
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, United States of America.,Psychology, University of Stirling, Stirling, United Kingdom
| | - Jessica P White
- Department of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Antonia F de C Hamilton
- Department of Psychology, University of Nottingham, Nottingham, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Francys Subiaul
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, United States of America.,Department of Speech, Language, and Hearing Sciences, The George Washington University, Washington, DC, United States of America.,Smithsonian Institution, Washington, DC, United States of America
| |
Collapse
|
57
|
Attentional guidance from two representations of the same or different dimensions in visual working memory. CURRENT PSYCHOLOGY 2018. [DOI: 10.1007/s12144-018-9949-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
58
|
Wang Z, Yan X, Liu Y, Spray GJ, Deng Y, Cao F. Structural and functional abnormality of the putamen in children with developmental dyslexia. Neuropsychologia 2018; 130:26-37. [PMID: 30030195 DOI: 10.1016/j.neuropsychologia.2018.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022]
Abstract
There is currently debate with regards to the role of phonological deficit in Chinese reading difficulty, even though some researchers have suggested that the deficit of phonological processing is also a signature of developmental dyslexia in Chinese, as has been found in alphabetic languages. In this study, we examined the brain mechanisms of phonological deficit in Chinese children with developmental dyslexia (DD) during an auditory rhyming judgment task. First, we examined structural differences in Chinese dyslexia by comparing gray and white matter volume in Chinese children with DD, age-matched controls (AC), and reading-matched controls (RC). Next, we examined whether the regions with an abnormal volume in DD showed deficient functional connectivity with the rest of the brain during a phonological task (i.e. auditory rhyming judgment). We found that both AC and RC had greater gray matter volume (GMV) at the left putamen and right dorsal lateral frontal cortex than DD, suggesting possible neural signatures of developmental dyslexia. Functional connectivity analysis revealed that the left putamen was more connected with the right inferior occipital gyrus (IOG) in AC and RC than in DD, suggesting that automatic orthographic involvement during spoken language processing is more salient in controls, while the left putamen was more connected with the left transverse temporal gyrus (TTG) and left insula in DD than in AC and RC, suggesting the phonological articulation -auditory feedback loop is more involved in DD. These findings suggest that the reduced left putamen might contribute to phonological deficits experienced in DD, since it showed deficient connectivity with the rest of the brain during phonological processing.
Collapse
Affiliation(s)
- Zhao Wang
- Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, and Department of Psychology, Sun Yat-Sen University, Guangzhou, China; Beijing Normal University, Beijing, China; Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, United States
| | - Xin Yan
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, United States
| | - Yanni Liu
- University of Michigan, Ann Arbor, MI, United States
| | - Gregory J Spray
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, United States
| | - Yuan Deng
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Fan Cao
- Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, and Department of Psychology, Sun Yat-Sen University, Guangzhou, China; Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, United States; School of Humanities and Social Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
| |
Collapse
|
59
|
Bielczyk NZ, Walocha F, Ebel PW, Haak KV, Llera A, Buitelaar JK, Glennon JC, Beckmann CF. Thresholding functional connectomes by means of mixture modeling. Neuroimage 2018; 171:402-414. [PMID: 29309896 PMCID: PMC5981009 DOI: 10.1016/j.neuroimage.2018.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022] Open
Abstract
Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject.
Collapse
Affiliation(s)
- Natalia Z Bielczyk
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Geert Groteplein Zuid 10, 6525GA Nijmegen, The Netherlands.
| | - Fabian Walocha
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; University of Osnabrück, Neuer Graben 29/Schloss, 49074 Osnabrück, Germany
| | - Patrick W Ebel
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Radboud University Nijmegen, Comeniuslaan 4, 6525 HP Nijmegen, The Netherlands
| | - Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Geert Groteplein Zuid 10, 6525GA Nijmegen, The Netherlands
| | - Alberto Llera
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Radboud University Nijmegen, Comeniuslaan 4, 6525 HP Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Geert Groteplein Zuid 10, 6525GA Nijmegen, The Netherlands
| | - Jeffrey C Glennon
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Geert Groteplein Zuid 10, 6525GA Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Geert Groteplein Zuid 10, 6525GA Nijmegen, The Netherlands; Oxford Centre for Functional MRI of the Brain, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
60
|
New protocol for dissociating visuospatial working memory ability in reaching space and in navigational space. Behav Res Methods 2018; 50:1602-1613. [DOI: 10.3758/s13428-018-1047-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
61
|
Guntupalli JS, Wheeler KG, Gobbini MI. Disentangling the Representation of Identity from Head View Along the Human Face Processing Pathway. Cereb Cortex 2018; 27:46-53. [PMID: 28051770 PMCID: PMC5939212 DOI: 10.1093/cercor/bhw344] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 10/19/2016] [Indexed: 11/20/2022] Open
Abstract
Neural models of a distributed system for face perception implicate a network of regions in the ventral visual stream for recognition of identity. Here, we report a functional magnetic resonance imaging (fMRI) neural decoding study in humans that shows that this pathway culminates in the right inferior frontal cortex face area (rIFFA) with a representation of individual identities that has been disentangled from variable visual features in different images of the same person. At earlier stages in the pathway, processing begins in early visual cortex and the occipital face area with representations of head view that are invariant across identities, and proceeds to an intermediate level of representation in the fusiform face area in which identity is emerging but still entangled with head view. Three-dimensional, view-invariant representation of identities in the rIFFA may be the critical link to the extended system for face perception, affording activation of person knowledge and emotional responses to familiar faces.
Collapse
Affiliation(s)
- J Swaroop Guntupalli
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA.,Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, USA
| | - Kelsey G Wheeler
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA.,Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, USA
| | - M Ida Gobbini
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA.,Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, USA.,Department of Specialized, Diagnostic, and Experimental Medicine (DIMES), Medical School, University of Bologna, Bologna 40127, Italy
| |
Collapse
|
62
|
Gibbons H, Rammsayer TH. Differential Effects of Prime–Probe Duration on Positive and Negative Location Priming: Evidence for Opponent Facilitatory and Inhibitory Influences in Priming Tasks. ACTA ACUST UNITED AC 2018; 57:61-86. [PMID: 14681004 DOI: 10.1080/02724980343000125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A series of four spatial localization experiments is reported that examined the effects of display duration and presentation mode on positive and negative priming using an attended-repetition and an ignored-repetition paradigm, respectively. Experiment 1 showed larger positive priming with response-dependent than with 150 ms display durations while negative priming remained unaffected. Experiments 2–4 were performed to further elucidate the effects of prime–probe durations. Data suggest largely independent effects of prime and probe duration on priming effects. Manipulation of prime duration affected facilitation due to repetition of the prime distractor location as well as inhibitory effects associated with ignored repetition. Furthermore, anticipated probe duration modulated the effectiveness of inhibition of return. Findings are discussed within a framework proposing two major components of priming effects—a stimulus-driven or automatic component, and a strategic component related to the participant's expectations towards the probe.
Collapse
Affiliation(s)
- Henning Gibbons
- Georg Elias Müller Institute for Psychology, University of Göttingen, Germany.
| | | |
Collapse
|
63
|
Abstract
Although reasoning seems to be inextricably linked to seeing in the “mind's eye”, the evidence is equivocal. In three experiments, sighted, blindfolded sighted, and congenitally totally blind persons solved deductive inferences based on three sorts of relation: (a) visuo-spatial relations that are easy to envisage either visually or spatially, (b) visual relations that are easy to envisage visually but hard to envisage spatially, and (c) control relations that are hard to envisage both visually and spatially. In absolute terms, congenitally totally blind persons performed less accurately and more slowly than the sighted on all such tasks. In relative terms, however, the visual relations in comparison with control relations impeded the reasoning of sighted and blindfolded participants, whereas congenitally totally blind participants performed the same with the different sorts of relation. We conclude that mental images containing visual details that are irrelevant to an inference can even impede the process of reasoning. Persons who are blind from birth—and who thus do not tend to construct visual mental images—are immune to this visual-impedance effect.
Collapse
Affiliation(s)
- Markus Knauff
- Max-Planck-Institut für Biologische Kybernetik, Human Spatial Reasoning Laboratory, Spemannstrasse 38, 72076 Tübingen, Germany.
| | | |
Collapse
|
64
|
Xu KZ, Anderson BA, Emeric EE, Sali AW, Stuphorn V, Yantis S, Courtney SM. Neural Basis of Cognitive Control over Movement Inhibition: Human fMRI and Primate Electrophysiology Evidence. Neuron 2017; 96:1447-1458.e6. [PMID: 29224723 DOI: 10.1016/j.neuron.2017.11.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/21/2017] [Accepted: 11/08/2017] [Indexed: 11/27/2022]
Abstract
Executive control involves the ability to flexibly inhibit or change an action when it is contextually inappropriate. Using the complimentary techniques of human fMRI and monkey electrophysiology in a context-dependent stop signal task, we found a functional double dissociation between the right ventrolateral prefrontal cortex (rVLPFC) and the bi-lateral frontal eye field (FEF). Different regions of rVLPFC were associated with context-based signal meaning versus intention to inhibit a response, while FEF activity corresponded to success or failure of the response inhibition regardless of the stimulus response mapping or the context. These results were validated by electrophysiological recordings in rVLPFC and FEF from one monkey. Inhibition of a planned behavior is therefore likely not governed by a single brain system as had been previously proposed, but instead depends on two distinct neural processes involving different sub-regions of the rVLPFC and their interactions with other motor-related brain regions.
Collapse
Affiliation(s)
- Kitty Z Xu
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; Pinterest, Inc., San Francisco, CA 94701, USA.
| | - Brian A Anderson
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Erik E Emeric
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Anthony W Sali
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.
| | - Veit Stuphorn
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Steven Yantis
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Susan M Courtney
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
65
|
Im HY, Albohn DN, Steiner TG, Cushing CA, Adams RB, Kveraga K. Differential hemispheric and visual stream contributions to ensemble coding of crowd emotion. Nat Hum Behav 2017; 1:828-842. [PMID: 29226255 DOI: 10.1038/s41562-017-0225-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In crowds, where scrutinizing individual facial expressions is inefficient, humans can make snap judgments about the prevailing mood by reading "crowd emotion". We investigated how the brain accomplishes this feat in a set of behavioral and fMRI studies. Participants were asked to either avoid or approach one of two crowds of faces presented in the left and right visual hemifields. Perception of crowd emotion was improved when crowd stimuli contained goal-congruent cues and was highly lateralized to the right hemisphere. The dorsal visual stream was preferentially activated in crowd emotion processing, with activity in the intraparietal sulcus and superior frontal gyrus predicting perceptual accuracy for crowd emotion perception, whereas activity in the fusiform cortex in the ventral stream predicted better perception of individual facial expressions. Our findings thus reveal significant behavioral differences and differential involvement of the hemispheres and the major visual streams in reading crowd versus individual face expressions.
Collapse
Affiliation(s)
- Hee Yeon Im
- Department of Radiology, Harvard Medical School, Charlestown, MA, 02129, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Department Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Daniel N Albohn
- Department of Psychology, The Pennsylvania State University, State College, PA, 16802, USA
| | - Troy G Steiner
- Department of Psychology, The Pennsylvania State University, State College, PA, 16802, USA
| | - Cody A Cushing
- Athinoula A. Martinos Center for Biomedical Imaging, Department Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Reginald B Adams
- Department of Psychology, The Pennsylvania State University, State College, PA, 16802, USA
| | - Kestutis Kveraga
- Department of Radiology, Harvard Medical School, Charlestown, MA, 02129, USA. .,Athinoula A. Martinos Center for Biomedical Imaging, Department Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
| |
Collapse
|
66
|
Yu X, Yang L, Song R, Jiaerken Y, Yang J, Lou M, Jiang Q, Zhang M. Changes in structure and perfusion of grey matter tissues during recovery from Ischaemic subcortical stroke: a longitudinal MRI study. Eur J Neurosci 2017; 46:2308-2314. [PMID: 28833690 DOI: 10.1111/ejn.13669] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Xinfeng Yu
- Department of Radiology; School of Medicine; The 2nd Affiliated Hospital of Zhejiang University; No.88 Jiefang Road Shangcheng District Hangzhou 310009 China
| | - Linglin Yang
- Department of Neurology; School of Medicine; The 2nd Affiliated Hospital of Zhejiang University; Hangzhou China
| | - Ruirui Song
- Department of Radiology; School of Medicine; The 2nd Affiliated Hospital of Zhejiang University; No.88 Jiefang Road Shangcheng District Hangzhou 310009 China
| | - Yerfan Jiaerken
- Department of Radiology; School of Medicine; The 2nd Affiliated Hospital of Zhejiang University; No.88 Jiefang Road Shangcheng District Hangzhou 310009 China
| | - Jun Yang
- Department of Advanced Application and Research; GE Healthcare; Shanghai China
| | - Min Lou
- Department of Neurology; School of Medicine; The 2nd Affiliated Hospital of Zhejiang University; Hangzhou China
| | - Quan Jiang
- Department of Neurology; Henry Ford Health System; Detroit MI USA
| | - Minming Zhang
- Department of Radiology; School of Medicine; The 2nd Affiliated Hospital of Zhejiang University; No.88 Jiefang Road Shangcheng District Hangzhou 310009 China
| |
Collapse
|
67
|
Girardi G, Nico D. Associative cueing of attention through implicit feature-location binding. Acta Psychol (Amst) 2017; 179:54-60. [PMID: 28715694 DOI: 10.1016/j.actpsy.2017.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/03/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022] Open
Abstract
In order to assess associative learning between two task-irrelevant features in cueing spatial attention, we devised a task in which participants have to make an identity comparison between two sequential visual stimuli. Unbeknownst to them, location of the second stimulus could be predicted by the colour of the first or a concurrent sound. Albeit unnecessary to perform the identity-matching judgment the predictive features thus provided an arbitrary association favouring the spatial anticipation of the second stimulus. A significant advantage was found with faster responses at predicted compared to non-predicted locations. Results clearly demonstrated an associative cueing of attention via a second-order arbitrary feature/location association but with a substantial discrepancy depending on the sensory modality of the predictive feature. With colour as predictive feature, significant advantages emerged only after the completion of three blocks of trials. On the contrary, sound affected responses from the first block of trials and significant advantages were manifest from the beginning of the second. The possible mechanisms underlying the associative cueing of attention in both conditions are discussed.
Collapse
|
68
|
Yang X, Gao M, Shi J, Ye H, Chen S. Modulating the Activity of the DLPFC and OFC Has Distinct Effects on Risk and Ambiguity Decision-Making: A tDCS Study. Front Psychol 2017; 8:1417. [PMID: 28878714 PMCID: PMC5572270 DOI: 10.3389/fpsyg.2017.01417] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/04/2017] [Indexed: 01/06/2023] Open
Abstract
Human beings are constantly exposed to two types of uncertainty situations, risk and ambiguity. Neuroscientific studies suggest that the dorsolateral prefrontal cortex (DLPFC) and the orbital frontal cortex (OFC) play significant roles in human decision making under uncertainty. We applied the transcranial direct current stimulation (tDCS) device to modulate the activity of participants’ DLPFC and OFC separately, comparing the causal relationships between people’s behaviors and the activity of the corresponding brain cortex when confronted with situations of risk and ambiguity. Our experiment employed a pre–post design and a risk/ambiguity decision-making task, from which we could calculate the preferences via an estimation model. We found evidences that modulating the activity of the DLPFC using right anodal/left cathodal tDCS significantly enhanced the participants’ preferences for risk, whereas modulating the activity of the OFC with right anodal/left cathodal tDCS significantly decreased the participants’ preferences for ambiguity. The reverse effects were also observed in the reversed tDCS treatments on the two areas. Our results suggest that decision-making processes under risk and ambiguity are complicated and may be encoded in two distinct circuits in our brains as the DLPFC primarily impacts decisions under risk whereas the OFC affects ambiguity.
Collapse
Affiliation(s)
- Xiaolan Yang
- School of Business and Management, Shanghai International Studies UniversityShanghai, China.,Academy of Financial Research, Zhejiang UniversityHangzhou, China
| | - Mei Gao
- College of Economics, Zhejiang UniversityHangzhou, China
| | - Jinchuan Shi
- Academy of Financial Research, Zhejiang UniversityHangzhou, China
| | - Hang Ye
- Neuro and Behavior EconLab, Zhejiang University of Finance and EconomicsHangzhou, China.,Interdisciplinary Center for Social Sciences, Zhejiang UniversityHangzhou, China
| | - Shu Chen
- College of Economics, Zhejiang UniversityHangzhou, China.,Interdisciplinary Center for Social Sciences, Zhejiang UniversityHangzhou, China
| |
Collapse
|
69
|
Moulton ST, Türkay S, Kosslyn SM. Does a presentation's medium affect its message? PowerPoint, Prezi, and oral presentations. PLoS One 2017; 12:e0178774. [PMID: 28678855 PMCID: PMC5497950 DOI: 10.1371/journal.pone.0178774] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/18/2017] [Indexed: 11/24/2022] Open
Abstract
Despite the prevalence of PowerPoint in professional and educational presentations, surprisingly little is known about how effective such presentations are. All else being equal, are PowerPoint presentations better than purely oral presentations or those that use alternative software tools? To address this question we recreated a real-world business scenario in which individuals presented to a corporate board. Participants (playing the role of the presenter) were randomly assigned to create PowerPoint, Prezi, or oral presentations, and then actually delivered the presentation live to other participants (playing the role of corporate executives). Across two experiments and on a variety of dimensions, participants evaluated PowerPoint presentations comparably to oral presentations, but evaluated Prezi presentations more favorably than both PowerPoint and oral presentations. There was some evidence that participants who viewed different types of presentations came to different conclusions about the business scenario, but no evidence that they remembered or comprehended the scenario differently. We conclude that the observed effects of presentation format are not merely the result of novelty, bias, experimenter-, or software-specific characteristics, but instead reveal a communication preference for using the panning-and-zooming animations that characterize Prezi presentations.
Collapse
Affiliation(s)
- Samuel T. Moulton
- Department of Psychology, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard Initiative for Learning and Teaching, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Selen Türkay
- Harvard Initiative for Learning and Teaching, Harvard University, Cambridge, Massachusetts, United States of America
| | - Stephen M. Kosslyn
- Minerva Schools at the Keck Graduate Institute, San Francisco, California, United States of America
| |
Collapse
|
70
|
Kim NY, Wittenberg E, Nam CS. Behavioral and Neural Correlates of Executive Function: Interplay between Inhibition and Updating Processes. Front Neurosci 2017; 11:378. [PMID: 28713237 PMCID: PMC5492464 DOI: 10.3389/fnins.2017.00378] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/19/2017] [Indexed: 12/05/2022] Open
Abstract
This study investigated the interaction between two executive function processes, inhibition and updating, through analyses of behavioral, neurophysiological, and effective connectivity metrics. Although, many studies have focused on behavioral effects of executive function processes individually, few studies have examined the dynamic causal interactions between these two functions. A total of twenty participants from a local university performed a dual task combing flanker and n-back experimental paradigms, and completed the Operation Span Task designed to measure working memory capacity. We found that both behavioral (accuracy and reaction time) and neurophysiological (P300 amplitude and alpha band power) metrics on the inhibition task (i.e., flanker task) were influenced by the updating load (n-back level) and modulated by working memory capacity. Using independent component analysis, source localization (DIPFIT), and Granger Causality analysis of the EEG time-series data, the present study demonstrated that manipulation of cognitive demand in a dual executive function task influenced the causal neural network. We compared connectivity across three updating loads (n-back levels) and found that experimental manipulation of working memory load enhanced causal connectivity of a large-scale neurocognitive network. This network contains the prefrontal and parietal cortices, which are associated with inhibition and updating executive function processes. This study has potential applications in human performance modeling and assessment of mental workload, such as the design of training materials and interfaces for those performing complex multitasking under stress.
Collapse
Affiliation(s)
| | | | - Chang S. Nam
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State UniversityRaleigh, NC, United States
| |
Collapse
|
71
|
Aydin C. The differential contributions of visual imagery constructs on autobiographical thinking. Memory 2017; 26:189-200. [DOI: 10.1080/09658211.2017.1340483] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cagla Aydin
- Faculty of Arts and Social Sciences, Sabancı University, Istanbul, Turkey
| |
Collapse
|
72
|
Nishida M, Korzeniewska A, Crone NE, Toyoda G, Nakai Y, Ofen N, Brown EC, Asano E. Brain network dynamics in the human articulatory loop. Clin Neurophysiol 2017. [PMID: 28622530 DOI: 10.1016/j.clinph.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The articulatory loop is a fundamental component of language function, involved in the short-term buffer of auditory information followed by its vocal reproduction. We characterized the network dynamics of the human articulatory loop, using invasive recording and stimulation. METHODS We measured high-gamma activity70-110 Hz recorded intracranially when patients with epilepsy either only listened to, or listened to and then reproduced two successive tones by humming. We also conducted network analyses, and analyzed behavioral responses to cortical stimulation. RESULTS Presentation of the initial tone elicited high-gamma augmentation bilaterally in the superior-temporal gyrus (STG) within 40ms, and in the precentral and inferior-frontal gyri (PCG and IFG) within 160ms after sound onset. During presentation of the second tone, high-gamma augmentation was reduced in STG but enhanced in IFG. The task requiring tone reproduction further enhanced high-gamma augmentation in PCG during and after sound presentation. Event-related causality (ERC) analysis revealed dominant flows within STG immediately after sound onset, followed by reciprocal interactions involving PCG and IFG. Measurement of cortico-cortical evoked-potentials (CCEPs) confirmed connectivity between distant high-gamma sites in the articulatory loop. High-frequency stimulation of precentral high-gamma sites in either hemisphere induced speech arrest, inability to control vocalization, or forced vocalization. Vocalization of tones was accompanied by high-gamma augmentation over larger extents of PCG. CONCLUSIONS Bilateral PCG rapidly and directly receives feed-forward signals from STG, and may promptly initiate motor planning including sub-vocal rehearsal for short-term buffering of auditory stimuli. Enhanced high-gamma augmentation in IFG during presentation of the second tone may reflect high-order processing of the tone sequence. SIGNIFICANCE The articulatory loop employs sustained reciprocal propagation of neural activity across a network of cortical sites with strong neurophysiological connectivity.
Collapse
Affiliation(s)
- Masaaki Nishida
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Department of Anesthesiology, Hanyu General Hospital, Hanyu City, Saitama 348-8508, Japan
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA.
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Goichiro Toyoda
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Yasuo Nakai
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Erik C Brown
- Department of Neurosurgery, Oregon Health and Science University, Portland, OR, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|
73
|
Hendrix P, Hans E, Griessenauer CJ, Simgen A, Oertel J, Karbach J. Neurocognitive status in patients with newly-diagnosed brain tumors in good neurological condition: The impact of tumor type, volume, and location. Clin Neurol Neurosurg 2017; 156:55-62. [DOI: 10.1016/j.clineuro.2017.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/07/2017] [Accepted: 03/15/2017] [Indexed: 01/16/2023]
|
74
|
Hulst HE, Goldschmidt T, Nitsche MA, de Wit SJ, van den Heuvel OA, Barkhof F, Paulus W, van der Werf YD, Geurts JJG. rTMS affects working memory performance, brain activation and functional connectivity in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 2017; 88:386-394. [PMID: 27974394 DOI: 10.1136/jnnp-2016-314224] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To investigate the effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) of the right dorsolateral prefrontal cortex (DLPFC) on working memory performance, while measuring task-related brain activation and task-related brain connectivity in patients with multiple sclerosis (MS). METHODS 17 patients with MS and 11 healthy controls (HCs) underwent 3 experimental sessions (baseline, real-rTMS, sham-rTMS), all including an N-back task (3 task loads: N1, N2, N3; control condition: N0) inside the MR scanner. Prior to imaging, real-rTMS (10 Hz) was applied to the right DLPFC. The stimulation site was defined based on individually assessed N-back task activation at baseline and located using neuronavigation. Changes in whole brain functional activation and functional connectivity with the right DLPFC were calculated. RESULTS N-back task accuracy (N2 and N3) improved after real-rTMS (and not after sham-rTMS) compared with baseline (p=0.029 and p=0.015, respectively), only in patients. At baseline, patients with MS, compared with HCs, showed higher task-related frontal activation (left DLPFC, N2>N0), which disappeared after real-rTMS. Task-related (N1>N0) functional connectivity between the right DLPFC and the right caudate nucleus and bilateral (para)cingulate gyrus increased in patients after real-rTMS when compared with sham stimulation. CONCLUSIONS In patients with MS, N-back accuracy improved while frontal hyperactivation (seen at baseline relative to HCs) disappeared after real-rTMS. Together with the changes in functional connectivity after real-rTMS in patients, these findings may represent an rTMS-induced change in network efficiency in patients with MS, shifting patients' brain function towards the healthy situation. This implicates a potentially relevant role for rTMS in cognitive rehabilitation in MS.
Collapse
Affiliation(s)
- H E Hulst
- Department of Anatomy and Neurosciences, Section of Clinical Neuroscience, VUmc MS Center Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - T Goldschmidt
- Department of Anatomy and Neurosciences, Section of Clinical Neuroscience, VUmc MS Center Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - M A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - S J de Wit
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - O A van den Heuvel
- Department of Anatomy and Neurosciences, Section of Clinical Neuroscience, VUmc MS Center Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - F Barkhof
- Department of Radiology and Nuclear Medicine, VUmc MS Center Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - W Paulus
- Department of Clinical Neurophysiology, University of Göttingen, Gottingen, Germany.,Institutes of Neurology and Healthcare Engineering, UCL, London, United Kingdom
| | - Y D van der Werf
- Department of Anatomy and Neurosciences, Section of Clinical Neuroscience, VUmc MS Center Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - J J G Geurts
- Department of Anatomy and Neurosciences, Section of Clinical Neuroscience, VUmc MS Center Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
75
|
Task-irrelevant distractors in the delay period interfere selectively with visual short-term memory for spatial locations. Atten Percept Psychophys 2017; 79:1384-1392. [DOI: 10.3758/s13414-017-1320-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
76
|
Kastner S, Chen Q, Jeong SK, Mruczek REB. A brief comparative review of primate posterior parietal cortex: A novel hypothesis on the human toolmaker. Neuropsychologia 2017; 105:123-134. [PMID: 28159617 DOI: 10.1016/j.neuropsychologia.2017.01.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
The primate visual system contains two major cortical pathways: a ventral-temporal pathway that has been associated with object processing and recognition, and a dorsal-parietal pathway that has been associated with spatial processing and action guidance. Our understanding of the role of the dorsal pathway, in particular, has greatly evolved within the framework of the two-pathway hypothesis since its original conception. Here, we present a comparative review of the primate dorsal pathway in humans and monkeys based on electrophysiological, neuroimaging, neuropsychological, and neuroanatomical studies. We consider similarities and differences across species in terms of the topographic representation of visual space; specificity for eye, reaching, or grasping movements; multi-modal response properties; and the representation of objects and tools. We also review the relative anatomical location of functionally- and topographically-defined regions of the posterior parietal cortex. An emerging theme from this comparative analysis is that non-spatial information is represented to a greater degree, and with increased complexity, in the human dorsal visual system. We propose that non-spatial information in the primate parietal cortex contributes to the perception-to-action system aimed at manipulating objects in peripersonal space. In humans, this network has expanded in multiple ways, including the development of a dorsal object vision system mirroring the complexity of the ventral stream, the integration of object information with parietal working memory systems, and the emergence of tool-specific object representations in the anterior intraparietal sulcus and regions of the inferior parietal lobe. We propose that these evolutionary changes have enabled the emergence of human-specific behaviors, such as the sophisticated use of tools.
Collapse
Affiliation(s)
- S Kastner
- Department of Psychology, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Q Chen
- Department of Psychology, USA; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - S K Jeong
- Department of Psychology, USA; Korea Brain Research Institute, Daegu, South Korea
| | - R E B Mruczek
- Department of Psychology, Worcester State University, Worcester, MA 01520, USA
| |
Collapse
|
77
|
Rabbitt LR, Roberts DM, McDonald CG, Peterson MS. Neural activity reveals perceptual grouping in working memory. Int J Psychophysiol 2017; 113:40-45. [PMID: 28088351 DOI: 10.1016/j.ijpsycho.2017.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/20/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations.
Collapse
Affiliation(s)
- Laura R Rabbitt
- Cognitive and Behavioral Neuroscience Program, Department of Psychology, George Mason University, United States
| | - Daniel M Roberts
- Human Factors and Applied Cognition Program, Department of Psychology, George Mason University, United States
| | - Craig G McDonald
- Cognitive and Behavioral Neuroscience Program, Department of Psychology, George Mason University, United States; Interdepartmental Program in Neuroscience, George Mason University, United States.
| | - Matthew S Peterson
- Cognitive and Behavioral Neuroscience Program, Department of Psychology, George Mason University, United States; Human Factors and Applied Cognition Program, Department of Psychology, George Mason University, United States; Interdepartmental Program in Neuroscience, George Mason University, United States
| |
Collapse
|
78
|
Christophel TB, Klink PC, Spitzer B, Roelfsema PR, Haynes JD. The Distributed Nature of Working Memory. Trends Cogn Sci 2017; 21:111-124. [PMID: 28063661 DOI: 10.1016/j.tics.2016.12.007] [Citation(s) in RCA: 492] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/03/2016] [Accepted: 12/07/2016] [Indexed: 12/25/2022]
Abstract
Studies in humans and non-human primates have provided evidence for storage of working memory contents in multiple regions ranging from sensory to parietal and prefrontal cortex. We discuss potential explanations for these distributed representations: (i) features in sensory regions versus prefrontal cortex differ in the level of abstractness and generalizability; and (ii) features in prefrontal cortex reflect representations that are transformed for guidance of upcoming behavioral actions. We propose that the propensity to produce persistent activity is a general feature of cortical networks. Future studies may have to shift focus from asking where working memory can be observed in the brain to how a range of specialized brain areas together transform sensory information into a delayed behavioral response.
Collapse
Affiliation(s)
- Thomas B Christophel
- Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin, Berlin, Germany; Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin, Berlin, Germany; Clinic for Neurology, Charité Universitätsmedizin, Berlin, Germany.
| | - P Christiaan Klink
- Department of Neuromodulation & Behaviour, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Vision & Cognition, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bernhard Spitzer
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - John-Dylan Haynes
- Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin, Berlin, Germany; Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin, Berlin, Germany; Clinic for Neurology, Charité Universitätsmedizin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt Universität, Berlin, Germany; Cluster of Excellence NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Department of Psychology, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
79
|
Dipoppa M, Szwed M, Gutkin BS. Controlling Working Memory Operations by Selective Gating: The Roles of Oscillations and Synchrony. Adv Cogn Psychol 2016; 12:209-232. [PMID: 28154616 PMCID: PMC5280056 DOI: 10.5709/acp-0199-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 10/18/2016] [Indexed: 11/23/2022] Open
Abstract
Working memory (WM) is a primary cognitive function that corresponds to the ability to update, stably maintain, and manipulate short-term memory (ST M) rapidly to perform ongoing cognitive tasks. A prevalent neural substrate of WM coding is persistent neural activity, the property of neurons to remain active after having been activated by a transient sensory stimulus. This persistent activity allows for online maintenance of memory as well as its active manipulation necessary for task performance. WM is tightly capacity limited. Therefore, selective gating of sensory and internally generated information is crucial for WM function. While the exact neural substrate of selective gating remains unclear, increasing evidence suggests that it might be controlled by modulating ongoing oscillatory brain activity. Here, we review experiments and models that linked selective gating, persistent activity, and brain oscillations, putting them in the more general mechanistic context of WM. We do so by defining several operations necessary for successful WM function and then discussing how such operations may be carried out by mechanisms suggested by computational models. We specifically show how oscillatory mechanisms may provide a rapid and flexible active gating mechanism for WM operations.
Collapse
Affiliation(s)
- Mario Dipoppa
- Institute of Neurology, Faculty of Brain Sciences, University College
London, UK
| | - Marcin Szwed
- Departement of Psychology, Jagiellonian University, Kraków,
Poland
| | - Boris S. Gutkin
- Center for Cognition and Decision Making, NR U HSE , Moscow,
Russia
| |
Collapse
|
80
|
Blacker KJ, Courtney SM. Distinct Neural Substrates for Maintaining Locations and Spatial Relations in Working Memory. Front Hum Neurosci 2016; 10:594. [PMID: 27932963 PMCID: PMC5121279 DOI: 10.3389/fnhum.2016.00594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/09/2016] [Indexed: 01/28/2023] Open
Abstract
Previous work has demonstrated a distinction between maintenance of two types of spatial information in working memory (WM): spatial locations and spatial relations. While a body of work has investigated the neural mechanisms of sensory-based information like spatial locations, little is known about how spatial relations are maintained in WM. In two experiments, we used fMRI to investigate the involvement of early visual cortex in the maintenance of spatial relations in WM. In both experiments, we found less quadrant-specific BOLD activity in visual cortex when a single spatial relation, compared to a single spatial location, was held in WM. Also across both experiments, we found a consistent set of brain regions that were differentially activated during maintenance of locations vs. relations. Maintaining a location, compared to a relation, was associated with greater activity in typical spatial WM regions like posterior parietal cortex and prefrontal regions. Whereas maintaining a relation, compared to a location, was associated with greater activity in the parahippocampal gyrus and precuneus/retrosplenial cortex. Further, in Experiment 2 we manipulated WM load and included trials where participants had to maintain three spatial locations or relations. Under this high load condition, the regions sensitive to locations vs. relations were somewhat different than under low load. We also identified regions that were sensitive to load specifically for location or relation maintenance, as well as overlapping regions sensitive to load more generally. These results suggest that the neural substrates underlying WM maintenance of spatial locations and relations are distinct from one another and that the neural representations of these distinct types of spatial information change with load.
Collapse
Affiliation(s)
- Kara J. Blacker
- Department of Psychological and Brain Sciences, Johns Hopkins University, BaltimoreMD, USA
| | - Susan M. Courtney
- Department of Psychological and Brain Sciences, Johns Hopkins University, BaltimoreMD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, BaltimoreMD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, BaltimoreMD, USA
| |
Collapse
|
81
|
Bostelmann M, Schneider M, Padula MC, Maeder J, Schaer M, Scariati E, Debbané M, Glaser B, Menghetti S, Eliez S. Visual memory profile in 22q11.2 microdeletion syndrome: are there differences in performance and neurobiological substrates between tasks linked to ventral and dorsal visual brain structures? A cross-sectional and longitudinal study. J Neurodev Disord 2016; 8:41. [PMID: 27843501 PMCID: PMC5105283 DOI: 10.1186/s11689-016-9174-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/25/2016] [Indexed: 01/21/2023] Open
Abstract
Background Children affected by the 22q11.2 deletion syndrome (22q11.2DS) have a specific neuropsychological profile with strengths and weaknesses in several cognitive domains. Specifically, previous evidence has shown that patients with 22q11.2DS have more difficulties memorizing faces and visual-object characteristics of stimuli. In contrast, they have better performance in visuo-spatial memory tasks. The first focus of this study was to replicate these results in a larger sample of patients affected with 22q11.2DS and using a range of memory tasks. Moreover, we analyzed if the deficits were related to brain morphology in the structures typically underlying these abilities (ventral and dorsal visual streams). Finally, since the longitudinal development of visual memory is not clearly characterized in 22q11.2DS, we investigated its evolution from childhood to adolescence. Methods Seventy-one patients with 22q11.2DS and 49 control individuals aged between 9 and 16 years completed the Benton Visual Retention Test (BVRT) and specific subtests assessing visual memory from the Children’s Memory Scale (CMS). The BVRT was used to compute spatial and object memory errors. For the CMS, specific subtests were classified into ventral, dorsal, and mixed subtests. Longitudinal data were obtained from a subset of 26 patients and 22 control individuals. Results Cross-sectional results showed that patients with 22q11.2DS were impaired in all visual memory measures, with stronger deficits in visual-object memory and memory of faces, compared to visuo-spatial memory. No correlations between morphological brain impairments and visual memory were found in patients with 22q11.2DS. Longitudinal findings revealed that participants with 22q11.2DS made more object memory errors than spatial memory errors at baseline. This difference was no longer significant at follow-up. Conclusions Individuals with 22q11.2DS have impairments in visual memory abilities, with more pronounced difficulties in memorizing faces and visual-object characteristics. From childhood to adolescence, the visual cognitive profile of patients with 22q11.2DS seems globally stable even though some processes show an evolution with time. We hope that our results will help clinicians and caregivers to better understand the memory difficulties of young individuals with 22q11.2DS. This has a particular importance at school to facilitate recommendations concerning intervention strategies for these young patients.
Collapse
Affiliation(s)
- Mathilde Bostelmann
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland ; Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Maude Schneider
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland ; Center for Contextual Psychiatry, Department of Neuroscience, KU Leuven, Leuven, Belgium
| | - Maria Carmela Padula
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Johanna Maeder
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Marie Schaer
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland ; Stanford Cognitive and Systems Neuroscience Laboratory, Stanford University School of Medicine, California, USA
| | - Elisa Scariati
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Martin Debbané
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland ; Adolescence Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland ; Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Bronwyn Glaser
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Sarah Menghetti
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stephan Eliez
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland ; Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| |
Collapse
|
82
|
Cappadocia DC, Monaco S, Chen Y, Blohm G, Crawford JD. Temporal Evolution of Target Representation, Movement Direction Planning, and Reach Execution in Occipital–Parietal–Frontal Cortex: An fMRI Study. Cereb Cortex 2016; 27:5242-5260. [DOI: 10.1093/cercor/bhw304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/08/2016] [Indexed: 11/14/2022] Open
|
83
|
Konstantinou N, Constantinidou F, Kanai R. Discrete capacity limits and neuroanatomical correlates of visual short-term memory for objects and spatial locations. Hum Brain Mapp 2016; 38:767-778. [PMID: 27684499 DOI: 10.1002/hbm.23416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/12/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022] Open
Abstract
Working memory is responsible for keeping information in mind when it is no longer in view, linking perception with higher cognitive functions. Despite such crucial role, short-term maintenance of visual information is severely limited. Research suggests that capacity limits in visual short-term memory (VSTM) are correlated with sustained activity in distinct brain areas. Here, we investigated whether variability in the structure of the brain is reflected in individual differences of behavioral capacity estimates for spatial and object VSTM. Behavioral capacity estimates were calculated separately for spatial and object information using a novel adaptive staircase procedure and were found to be unrelated, supporting domain-specific VSTM capacity limits. Voxel-based morphometry (VBM) analyses revealed dissociable neuroanatomical correlates of spatial versus object VSTM. Interindividual variability in spatial VSTM was reflected in the gray matter density of the inferior parietal lobule. In contrast, object VSTM was reflected in the gray matter density of the left insula. These dissociable findings highlight the importance of considering domain-specific estimates of VSTM capacity and point to the crucial brain regions that limit VSTM capacity for different types of visual information. Hum Brain Mapp 38:767-778, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nikos Konstantinou
- Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus.,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Fofi Constantinidou
- Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus.,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Ryota Kanai
- Sackler Centre for Consciousness Science, University of Sussex, Falmer, BN1 9QJ, United Kindgom.,School of Psychology, University of Sussex, Falmer, BN1 9QH, United Kingdom.,Department of Neuroinformatics, Araya Brain Imaging, Tokyo, Japan.,YHouse Inc, New York, New York
| |
Collapse
|
84
|
Miozzo M, Petrova A, Fischer-Baum S, Peressotti F. Serial position encoding of signs. Cognition 2016; 154:69-80. [DOI: 10.1016/j.cognition.2016.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 04/29/2016] [Accepted: 05/15/2016] [Indexed: 10/21/2022]
|
85
|
Delacour J. Object Perception and Recognition: A Model for the Scientific Study of Consciousness. THEORY & PSYCHOLOGY 2016. [DOI: 10.1177/0959354397072007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The main obstacles to the scientific study of consciousness are its subjectivity and its complexity. Object perception and recognition (OPR) can be a useful model in such a study because there is a remarkable agreement between the subjective and objective aspects of OPR; in addition, while OPR is somewhat simpler than other forms of cognition, it adequately represents one characteristic feature of consciousness: intentionality. It thus allows convergent studies of experimental psychology, artificial intelligence and biology, in both humans and animals. Recent advances in the neurophysiology of visual OPR in subhuman primates and its brain imaging in humans provide a vital thread to the neural basis of consciousness, especially of its integrative, unifying character.
Collapse
|
86
|
Göbel A, Heldmann M, Göttlich M, Dirk AL, Brabant G, Münte TF. Effect of Mild Thyrotoxicosis on Performance and Brain Activations in a Working Memory Task. PLoS One 2016; 11:e0161552. [PMID: 27536945 PMCID: PMC4990413 DOI: 10.1371/journal.pone.0161552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/08/2016] [Indexed: 11/18/2022] Open
Abstract
AIMS Disturbed levels of thyroid hormones are associated with neuropsychiatric disorders, including memory impairments. The aim of this study was to evaluate effects of mild induced thyrotoxicosis on working memory and its neural correlates. METHODS Twenty-nine healthy, male subjects with normal thyroid state participated in the study. Functional MRI was acquired during a working memory task (n-back task) before and after ingesting 250 μg L-thyroxin per day for a period of eight weeks. In addition, neuropsychological tests were performed. RESULTS In the hyperthyroid condition the subjects showed slower reaction times, but a higher accuracy in the 0-back version of the memory tasks. Fewer differences between euthyroid and hyperthyroid state were seen for the more difficult conditions of the n-back task. FMRI revealed effects of difficulty in the parahippocampal gyrus, supplementary motor area, prefrontal cortex, anterior cingulate cortex, posterior cerebellum, rolandic operculum and insula (p<0.05, FWE corrected). When comparing euthyroid and hyperthyroid condition in relation to task-induced activation, differences of activation were found in the right prefrontal cortex as well as in the right parahippocampal area. In the psychological assessment, the alerting effect in the Attention Network Task (ANT) and four out of five parameters of the auditory verbal learning test (AVLT) showed an increase from euthyroid to hyperthyroid state. CONCLUSIONS It can be concluded that even a short-term intake of thyroid hormones leads to an activation of brain areas associated with working memory and to an improvement of accuracy of working memory tasks.
Collapse
Affiliation(s)
- Anna Göbel
- Department of Neurology, University of Lübeck, 23538, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, 23538, Lübeck, Germany
| | - Martin Göttlich
- Department of Neurology, University of Lübeck, 23538, Lübeck, Germany
| | - Anna-Luise Dirk
- Department of Internal Medicine I, University of Lübeck, 23538, Lübeck, Germany
| | - Georg Brabant
- Department of Internal Medicine I, University of Lübeck, 23538, Lübeck, Germany
| | - Thomas F. Münte
- Department of Neurology, University of Lübeck, 23538, Lübeck, Germany
- * E-mail:
| |
Collapse
|
87
|
Abstract
This human neuroimaging review aims to determine the degree to which visual memory evokes activity in neural regions that have been associated with visual perception. A visual perception framework is proposed to identify cortical regions associated with modality-specific processing (i.e., visual, auditory, motor, or olfactory), visual domain-specific processing (i.e., “what” versus “where,” or face versus visual context), and visual feature-specific processing (i.e., color, motion, or spatial location). Independent assessments of visual item memory studies and visual working memory studies revealed activity in the appropriate cortical regions associated with each of the three levels of visual perception processing. These results provide compelling evidence that visual memory and visual perception are associated with common neural substrates. Furthermore, as with visual perception, they support the view that visual memory is a constructive process, in which features or components from disparate cortical regions bind together to form a coherent whole.
Collapse
Affiliation(s)
- Scott D Slotnick
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
88
|
Abstract
Working memory (WM) has been thought to include not only short-term memory stores but also executive processes that operate on the contents of memory. The present study examined the involvement of WM in search using a dual-task paradigm in which participants performed visual search while manipulating or simply maintaining information held in WM. Experiments 1a and 2a involved executive WM tasks that required counting backward from a target digit and sorting a string of letters alphabetically, respectively. In both experiments, the search slopes in the dual-task condition were significantly steeper than those in a search-alone condition, indicating that performing the WM manipulation tasks influenced the efficiency of visual search. In contrast, when information was simply maintained in WM (Experiments 1b and 2b), search slopes did not differ between the single- and dual-task conditions. These results suggest that WM resources related to executive functions may be required in visual search.
Collapse
|
89
|
Ventre-Dominey J, Mollion H, Thobois S, Broussolle E. Distinct effects of dopamine vs STN stimulation therapies in associative learning and retention in Parkinson disease. Behav Brain Res 2016; 302:131-41. [PMID: 26778783 DOI: 10.1016/j.bbr.2016.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/24/2015] [Accepted: 01/05/2016] [Indexed: 02/02/2023]
Abstract
Evidence has been provided in Parkinson's disease patients of cognitive impairments including visual memory and learning which can be partially compensated by dopamine medication or subthalamic nucleus stimulation. The effects of these two therapies can differ according to the learning processes involving the dorsal vs ventral part of the striatum. Here we aimed to investigate and compare the outcomes of dopamine vs stimulation treatment in Parkinson patient's ability to acquire and maintain over successive days their performance in visual working memory. Parkinson patients performed conditional associative learning embedded in visual (spatial and non spatial) working memory tasks over two consecutive days either ON or OFF dopaminergic drugs or STN stimulation depending on the group of patients studied. While Parkinson patients were more accurate and faster in memory tasks ON vs OFF stimulation independent of the day of testing, performance in medicated patients differed depending on the medication status during the initial task acquisition. Patients who learnt the task ON medication the first day were able to maintain or even improve their memory performance both OFF and ON medication on the second day after consolidation. These effects were observed only in patients with dopamine replacement with or without motor fluctuations. This enhancement in memory performance after having learnt under dopamine medication and not under STN stimulation was mostly significant in visuo-spatial working memory tasks suggesting that dopamine replacement in the depleted dorsal striatum is essential for retention and consolidation of learnt skill.
Collapse
Affiliation(s)
- Jocelyne Ventre-Dominey
- INSERM Stem Cell and Brain Research Institute U846, Bron, France; Université Lyon 1, Lyon, France.
| | - Hélène Mollion
- Hospices Civils de Lyon, Hopital Neurologique, Centre Mémoire Ressources Recherche, Lyon, France; Université Lyon 1, Lyon, France
| | - Stephane Thobois
- Hospices Civils de Lyon, Hopital Neurologique, Neurologie C, Lyon, France; CNRS, Centre de Neurosciences Cognitives, UMR 5229, Bron, France; Université Lyon 1, Lyon, France
| | - Emmanuel Broussolle
- Hospices Civils de Lyon, Hopital Neurologique, Neurologie C, Lyon, France; CNRS, Centre de Neurosciences Cognitives, UMR 5229, Bron, France; Université Lyon 1, Lyon, France
| |
Collapse
|
90
|
Konstantinou N, Pettemeridou E, Seimenis I, Eracleous E, Papacostas SS, Papanicolaou AC, Constantinidou F. Assessing the Relationship between Neurocognitive Performance and Brain Volume in Chronic Moderate-Severe Traumatic Brain Injury. Front Neurol 2016; 7:29. [PMID: 27014183 PMCID: PMC4785138 DOI: 10.3389/fneur.2016.00029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/24/2016] [Indexed: 11/13/2022] Open
Abstract
Objectives Characterize the scale and pattern of long-term atrophy in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) in chronic moderate–severe traumatic brain injury (TBI) and its relationship to neurocognitive outcomes. Participants The TBI group consisted of 17 males with primary diagnosis of moderate–severe closed head injury. Participants had not received any systematic, post-acute rehabilitation and were recruited on average 8.36 years post-injury. The control group consisted of 15 males matched on age and education. Main measures Neurocognitive battery included widely used tests of verbal memory, visual memory, executive functioning, and attention/organization. GM, WM, and CSF volumes were calculated from segmented T1-weighted anatomical MR images. Voxel-based morphometry was employed to identify brain regions with differences in GM and WM between TBI and control groups. Results Chronic TBI results in significant neurocognitive impairments, and significant loss of GM and WM volume, and significant increase in CSF volume. Brain atrophy is not widespread, but it is rather distributed in a fronto-thalamic network. The extent of volume loss is predictive of performance on the neurocognitive tests. Conclusion Significant brain atrophy and associated neurocognitive impairments during the chronic stages of TBI support the notion that TBI results in a chronic condition with lifelong implications.
Collapse
Affiliation(s)
- Nikos Konstantinou
- Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus; Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Eva Pettemeridou
- Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus; Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Ioannis Seimenis
- Department of Medical Physics, Medical School, Democritus University of Thrace , Alexandroupolis , Greece
| | - Eleni Eracleous
- Medical Diagnostic Center "Ayios Therissos" , Nicosia , Cyprus
| | - Savvas S Papacostas
- Neurology Clinic B, The Cyprus Institute of Neurology and Genetics, The Cyprus School of Molecular Medicine , Nicosia , Cyprus
| | - Andrew C Papanicolaou
- Division of Clinical Neurosciences, Department of Pediatrics, The Le Bonheur Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA; Division of Clinical Neurosciences, Department of Neurobiology and Anatomy, The Le Bonheur Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Fofi Constantinidou
- Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus; Department of Psychology, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
91
|
Ng HBT, Kao KLC, Chan YC, Chew E, Chuang KH, Chen SHA. Modality specificity in the cerebro-cerebellar neurocircuitry during working memory. Behav Brain Res 2016; 305:164-73. [PMID: 26930173 DOI: 10.1016/j.bbr.2016.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 12/20/2022]
Abstract
Previous studies have suggested cerebro-cerebellar circuitry in working memory. The present fMRI study aims to distinguish differential cerebro-cerebellar activation patterns in verbal and visual working memory, and employs a quantitative analysis to deterimine lateralization of the activation patterns observed. Consistent with Chen and Desmond (2005a,b) predictions, verbal working memory activated a cerebro-cerebellar circuitry that comprised left-lateralized language-related brain regions including the inferior frontal and posterior parietal areas, and subcortically, right-lateralized superior (lobule VI) and inferior cerebellar (lobule VIIIA/VIIB) areas. In contrast, a distributed network of bilateral inferior frontal and inferior temporal areas, and bilateral superior (lobule VI) and inferior (lobule VIIB) cerebellar areas, was recruited during visual working memory. Results of the study verified that a distinct cross cerebro-cerebellar circuitry underlies verbal working memory. However, a neural circuitry involving specialized brain areas in bilateral neocortical and bilateral cerebellar hemispheres subserving visual working memory is observed. Findings are discussed in the light of current models of working memory and data from related neuroimaging studies.
Collapse
Affiliation(s)
- H B Tommy Ng
- Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological University, 637332, Singapore
| | - K-L Cathy Kao
- Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological University, 637332, Singapore
| | - Y C Chan
- Division of Neurology, University Medicine Cluster, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Effie Chew
- Division of Neurology, University Medicine Cluster, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - K H Chuang
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - S H Annabel Chen
- Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological University, 637332, Singapore; Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, 637459, Singapore.
| |
Collapse
|
92
|
Choe J, Coffman BA, Bergstedt DT, Ziegler MD, Phillips ME. Transcranial Direct Current Stimulation Modulates Neuronal Activity and Learning in Pilot Training. Front Hum Neurosci 2016; 10:34. [PMID: 26903841 PMCID: PMC4746294 DOI: 10.3389/fnhum.2016.00034] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/19/2016] [Indexed: 01/22/2023] Open
Abstract
Skill acquisition requires distributed learning both within (online) and across (offline) days to consolidate experiences into newly learned abilities. In particular, piloting an aircraft requires skills developed from extensive training and practice. Here, we tested the hypothesis that transcranial direct current stimulation (tDCS) can modulate neuronal function to improve skill learning and performance during flight simulator training of aircraft landing procedures. Thirty-two right-handed participants consented to participate in four consecutive daily sessions of flight simulation training and received sham or anodal high-definition-tDCS to the right dorsolateral prefrontal cortex (DLPFC) or left motor cortex (M1) in a randomized, double-blind experiment. Continuous electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) were collected during flight simulation, n-back working memory, and resting-state assessments. tDCS of the right DLPFC increased midline-frontal theta-band activity in flight and n-back working memory training, confirming tDCS-related modulation of brain processes involved in executive function. This modulation corresponded to a significantly different online and offline learning rates for working memory accuracy and decreased inter-subject behavioral variability in flight and n-back tasks in the DLPFC stimulation group. Additionally, tDCS of left M1 increased parietal alpha power during flight tasks and tDCS to the right DLPFC increased midline frontal theta-band power during n-back and flight tasks. These results demonstrate a modulation of group variance in skill acquisition through an increasing in learned skill consistency in cognitive and real-world tasks with tDCS. Further, tDCS performance improvements corresponded to changes in electrophysiological and blood-oxygenation activity of the DLPFC and motor cortices, providing a stronger link between modulated neuronal function and behavior.
Collapse
Affiliation(s)
| | - Brian A Coffman
- HRL Laboratories LLCMalibu, CA, USA; Department of Psychiatry, The University of PittsburghPittsburgh, PA, USA; Psychology Clinical Neuroscience Center, The University of New MexicoAlbuquerque, NM, USA
| | - Dylan T Bergstedt
- HRL Laboratories LLCMalibu, CA, USA; Department of Sports Medicine, Pepperdine UniversityMalibu, CA, USA
| | - Matthias D Ziegler
- HRL Laboratories LLCMalibu, CA, USA; Advanced Technologies Laboratories, Lockheed MartinArlington, VA, USA
| | | |
Collapse
|
93
|
Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex. Proc Natl Acad Sci U S A 2016; 113:1919-24. [PMID: 26831102 DOI: 10.1073/pnas.1520432113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.
Collapse
|
94
|
Yang W, Chen Q, Liu P, Cheng H, Cui Q, Wei D, Zhang Q, Qiu J. Abnormal brain activation during directed forgetting of negative memory in depressed patients. J Affect Disord 2016; 190:880-888. [PMID: 26639452 DOI: 10.1016/j.jad.2015.05.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 05/14/2015] [Accepted: 05/14/2015] [Indexed: 10/22/2022]
Abstract
The frequent occurrence of uncontrollable negative thoughts and memories is a troubling aspect of depression. Thus, knowledge on the mechanism underlying intentional forgetting of these thoughts and memories is crucial to develop an effective emotion regulation strategy for depressed individuals. Behavioral studies have demonstrated that depressed participants cannot intentionally forget negative memories. However, the neural mechanism underlying this process remains unclear. In this study, participants completed the directed forgetting task in which they were instructed to remember or forget neutral or negative words. Standard univariate analysis based on the General Linear Model showed that the depressed participants have higher activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), superior parietal gyrus (SPG), and inferior temporal gyrus (ITG) than the healthy individuals. The results indicated that depressed participants recruited more frontal and parietal inhibitory control resources to inhibit the TBF items, but the attempt still failed because of negative bias. We also used the Support Vector Machine to perform multivariate pattern classification based on the brain activation during directed forgetting. The pattern of brain activity in directed forgetting of negative words allowed correct group classification with an overall accuracy of 75% (P=0.012). The brain regions which are critical for this discrimination showed abnormal activation when depressed participants were attempting to forget negative words. These results indicated that the abnormal neural circuitry when depressed individuals tried to forget the negative words might provide neurobiological markers for depression.
Collapse
Affiliation(s)
- Wenjing Yang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Qunlin Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Peiduo Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Hongsheng Cheng
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Qian Cui
- School of Political Science and Public Administration, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Qinglin Zhang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China.
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
95
|
Ardestani A, Shen W, Darvas F, Toga AW, Fuster JM. Modulation of Frontoparietal Neurovascular Dynamics in Working Memory. J Cogn Neurosci 2015; 28:379-401. [PMID: 26679214 DOI: 10.1162/jocn_a_00903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our perception of the world is represented in widespread, overlapping, and interactive neuronal networks of the cerebral cortex. A majority of physiological studies on the subject have focused on oscillatory synchrony as the binding mechanism for representation and transmission of neural information. Little is known, however, about the stability of that synchrony during prolonged cognitive operations that span more than just a few seconds. The present research, in primates, investigated the dynamic patterns of oscillatory synchrony by two complementary recording methods, surface field potentials (SFPs) and near-infrared spectroscopy (NIRS). The signals were first recorded during the resting state to examine intrinsic functional connectivity. The temporal modulation of coactivation was then examined on both signals during performance of working memory (WM) tasks with long delays (memory retention epochs). In both signals, the peristimulus period exhibited characteristic features in frontal and parietal regions. Examination of SFP signals over delays lasting tens of seconds, however, revealed alternations of synchronization and desynchronization. These alternations occurred within the same frequency bands observed in the peristimulus epoch, without a specific correspondence between any definite cognitive process (e.g., WM) and synchrony within a given frequency band. What emerged instead was a correlation between the degree of SFP signal fragmentation (in time, frequency, and brain space) and the complexity and efficiency of the task being performed. In other words, the incidence and extent of SFP transitions between synchronization and desynchronization-rather than the absolute degree of synchrony-augmented in correct task performance compared with incorrect performance or in a control task without WM demand. An opposite relationship was found in NIRS: increasing task complexity induced more uniform, rather than fragmented, NIRS coactivations. These findings indicate that the particular features of neural oscillations cannot be linearly mapped to cognitive functions. Rather, information and the cognitive operations performed on it are primarily reflected in their modulations over time. The increased complexity and fragmentation of electrical frequencies in WM may reflect the activation of hierarchically diverse cognits (cognitive networks) in that condition. Conversely, the homogeneity in coherence of NIRS responses may reflect the cumulative vascular reactions that accompany that neuroelectrical proliferation of frequencies and the longer time constant of the NIRS signal. These findings are directly relevant to the mechanisms mediating cognitive processes and to physiologically based interpretations of functional brain imaging.
Collapse
Affiliation(s)
- Allen Ardestani
- University of California, Los Angeles.,Cedars Sinai Medical Center, Los Angeles, CA
| | - Wei Shen
- University of California, Los Angeles
| | | | | | | |
Collapse
|
96
|
The Virtual Tray of Objects Task as a novel method to electrophysiologically measure visuo-spatial recognition memory. Int J Psychophysiol 2015; 98:477-89. [DOI: 10.1016/j.ijpsycho.2015.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 11/19/2022]
|
97
|
Park CH, Lee HK, Kweon YS, Lee CT, Kim KT, Kim YJ, Lee KU. Emotion-Induced Topological Changes in Functional Brain Networks. Brain Topogr 2015; 29:108-17. [DOI: 10.1007/s10548-015-0449-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 08/20/2015] [Indexed: 01/27/2023]
|
98
|
Hubert-Wallander B, Boynton GM. Not all summary statistics are made equal: Evidence from extracting summaries across time. J Vis 2015; 15:5. [PMID: 26053144 DOI: 10.1167/15.4.5] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Over the past 15 years, a number of behavioral studies have shown that the human visual system can extract the average value of a set of items along a variety of feature dimensions, often with great facility and accuracy. These efficient representations of sets of items are commonly referred to as summary representations, but very little is known about whether their computation constitutes a single unitary process or if it involves different mechanisms in different domains. Here, we asked participants to report the average value of a set of items presented serially over time in four different feature dimensions. We then measured the contribution of different parts of the information stream to the reported summaries. We found that this temporal weighting profile differs greatly across domains. Specifically, summaries of mean object location (Experiment 1) were influenced approximately 2.5 times more by earlier items than by later items. Summaries of mean object size (Experiment 1), mean facial expression (Experiment 2), and mean motion direction (Experiment 3), however, were more influenced by later items. These primacy and recency effects show that summary representations computed across time do not incorporate all items equally. Furthermore, our results support the hypothesis that summary representations operate differently in different feature domains, and may be subserved by distinct mechanisms.
Collapse
|
99
|
Vismer MS, Forcelli PA, Skopin MD, Gale K, Koubeissi MZ. The piriform, perirhinal, and entorhinal cortex in seizure generation. Front Neural Circuits 2015; 9:27. [PMID: 26074779 PMCID: PMC4448038 DOI: 10.3389/fncir.2015.00027] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
Understanding neural network behavior is essential to shed light on epileptogenesis and seizure propagation. The interconnectivity and plasticity of mammalian limbic and neocortical brain regions provide the substrate for the hypersynchrony and hyperexcitability associated with seizure activity. Recurrent unprovoked seizures are the hallmark of epilepsy, and limbic epilepsy is the most common type of medically-intractable focal epilepsy in adolescents and adults that necessitates surgical evaluation. In this review, we describe the role and relationships among the piriform (PIRC), perirhinal (PRC), and entorhinal cortex (ERC) in seizure-generation and epilepsy. The inherent function, anatomy, and histological composition of these cortical regions are discussed. In addition, the neurotransmitters, intrinsic and extrinsic connections, and the interaction of these regions are described. Furthermore, we provide evidence based on clinical research and animal models that suggest that these cortical regions may act as key seizure-trigger zones and, even, epileptogenesis.
Collapse
Affiliation(s)
- Marta S Vismer
- Department of Neurology, The George Washington University Washington, DC, USA
| | | | - Mark D Skopin
- Department of Neurology, The George Washington University Washington, DC, USA
| | - Karen Gale
- Department of Pharmacology, Georgetown University Washington, DC, USA
| | - Mohamad Z Koubeissi
- Department of Neurology, The George Washington University Washington, DC, USA
| |
Collapse
|
100
|
Sanada M, Ikeda K, Hasegawa T. Shape and spatial working memory capacities are mostly independent. Front Psychol 2015; 6:581. [PMID: 26042056 PMCID: PMC4438232 DOI: 10.3389/fpsyg.2015.00581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/21/2015] [Indexed: 11/13/2022] Open
Abstract
Whether visual working memory (WM) consists of a common storage resource or of multiple subsystems has been a controversial issue. Logie (1995) suggested that it can be divided into visual (for color, shape, objects, etc.) and spatial WM (for location). However, a recent study reported evidence against this hypothesis. Using a dual task paradigm, Wood (2011) showed interference between shape and spatial WM capacities, suggesting that they share a common resource limitation. We re-examined this finding controlling possible confounding factors, including the way to present spatial location cues, task order, and type of WM load to be manipulated. The same pattern of results was successfully reproduced, but only in a highly powered experiment (N = 90), and therefore the size of interference was estimated to be quite small (d = 0.24). Thus, these data offer a way to reconcile seemingly contradicting previous findings. On the one hand, some part of the storage system is genuinely shared by shape and spatial WM systems, confirming the report of Wood (2011). On the other hand, the amount of the overlap is only minimal, and therefore the two systems should be regarded as mostly independent from each other, supporting the classical visuo-spatial separation hypothesis.
Collapse
Affiliation(s)
- Motoyuki Sanada
- Department of Cognitive and Behavioral Sciences, Graduate School of Arts and Science, The University of Tokyo Tokyo, Japan ; Japan Society for the Promotion of Science Tokyo, Japan
| | - Koki Ikeda
- Japan Society for the Promotion of Science Tokyo, Japan ; Department of Psychology, Chukyo University Nagoya, Japan
| | - Toshikazu Hasegawa
- Department of Cognitive and Behavioral Sciences, Graduate School of Arts and Science, The University of Tokyo Tokyo, Japan
| |
Collapse
|