51
|
Steady-state auditory evoked fields reflect long-term effects of repetitive transcranial magnetic stimulation in tinnitus. Clin Neurophysiol 2019; 130:1665-1672. [DOI: 10.1016/j.clinph.2019.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/02/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
|
52
|
Kamp D, Engelke C, Wobrock T, Wölwer W, Winterer G, Schmidt-Kraepelin C, Gaebel W, Langguth B, Landgrebe M, Eichhammer P, Frank E, Hajak G, Ohmann C, Verde PE, Rietschel M, Raees A, Honer WG, Malchow B, Schneider-Axmann T, Falkai P, Hasan A, Cordes J. Left prefrontal high-frequency rTMS may improve movement disorder in schizophrenia patients with predominant negative symptoms - A secondary analysis of a sham-controlled, randomized multicenter trial. Schizophr Res 2019; 204:445-447. [PMID: 30249471 DOI: 10.1016/j.schres.2018.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 11/18/2022]
Affiliation(s)
- Daniel Kamp
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| | - Christina Engelke
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| | - Thomas Wobrock
- Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, Göttingen, Germany; Department of Psychiatry and Psychotherapy, County Hospitals Darmstadt-Dieburg, Groß-Umstadt, Germany.
| | - Wolfgang Wölwer
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| | - Georg Winterer
- Clinical Neuroscience Research Group, Experimental and Clinical Research Center (ECRC), Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Christian Schmidt-Kraepelin
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
| | - Michael Landgrebe
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany; Department of Psychiatry, Psychosomatics and Psychotherapy, kbo-Lech-Mangfall-Klinik Agatharied, Agatharied, Germany.
| | - Peter Eichhammer
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
| | - Elmar Frank
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
| | - Göran Hajak
- Department of Psychiatry, Psychosomatics and Psychotherapy, Sozialstiftung Bamberg, Bamberg, Germany.
| | | | - Pablo E Verde
- Coordination Centre for Clinical Trials, Heinrich-Heine University, Düsseldorf, Germany.
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Institute of Central Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Ahmed Raees
- Referat Klinische Studien Management, University Medical Center Göttingen, Germany.
| | - William G Honer
- Department of Genetic Epidemiology in Psychiatry, Institute of Mental Health, The University of British Columbia, Vancouver, BC, Canada.
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany.
| | | | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany.
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany.
| | - Joachim Cordes
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
53
|
Palaniyappan L, Hodgson O, Balain V, Iwabuchi S, Gowland P, Liddle P. Structural covariance and cortical reorganisation in schizophrenia: a MRI-based morphometric study. Psychol Med 2019; 49:412-420. [PMID: 29729682 DOI: 10.1017/s0033291718001010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND In patients with schizophrenia, distributed abnormalities are observed in grey matter volume. A recent hypothesis posits that these distributed changes are indicative of a plastic reorganisation process occurring in response to a functional defect in neuronal information transmission. We investigated the structural covariance across various brain regions in early-stage schizophrenia to determine if indeed the observed patterns of volumetric loss conform to a coordinated pattern of structural reorganisation. METHODS Structural magnetic resonance imaging scans were obtained from 40 healthy adults and 41 age, gender and parental socioeconomic status matched patients with schizophrenia. Volumes of grey matter tissue were estimated at the regional level across 90 atlas-based parcellations. Group-level structural covariance was studied using a graph theoretical framework. RESULTS Patients had distributed reduction in grey matter volume, with high degree of localised covariance (clustering) compared with controls. Patients with schizophrenia had reduced centrality of anterior cingulate and insula but increased centrality of the fusiform cortex, compared with controls. Simulating targeted removal of highly central nodes resulted in significant loss of the overall covariance patterns in patients compared with controls. CONCLUSION Regional volumetric deficits in schizophrenia are not a result of random, mutually independent processes. Our observations support the occurrence of a spatially interconnected reorganisation with the systematic de-escalation of conventional 'hub' regions. This raises the question of whether the morphological architecture in schizophrenia is primed for compensatory functions, albeit with a high risk of inefficiency.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Robarts Research Institute & The Brain and Mind Institute, University of Western Ontario,London,Ontario,Canada
| | - Olha Hodgson
- Translational Neuroimaging in Mental Health,University of Nottingham,UK
| | - Vijender Balain
- Translational Neuroimaging in Mental Health,University of Nottingham,UK
| | - Sarina Iwabuchi
- Translational Neuroimaging in Mental Health,University of Nottingham,UK
| | - Penny Gowland
- Sir Peter Mansfield Imaging Center,University of Nottingham,Nottingham,UK
| | - Peter Liddle
- Translational Neuroimaging in Mental Health,University of Nottingham,UK
| |
Collapse
|
54
|
Almairac F, Duffau H, Herbet G. Contralesional macrostructural plasticity of the insular cortex in patients with glioma: A VBM study. Neurology 2018; 91:e1902-e1908. [PMID: 30305447 DOI: 10.1212/wnl.0000000000006517] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/01/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the homotopic structural plasticity in case of unilateral damage of the insula. METHODS To detect changes in gray matter volumes of the contralesional insula from structural MRIs, we used voxel-based morphometry (VBM) in a sample of 84 patients with a diffuse low-grade glioma invading the left insula (insL group; n = 47) or the right insula (insR group; n = 37). RESULTS The region of interest-based VBM analysis highlighted a large cluster of voxels with gray matter volume increase in the contralesional insula in both patient groups (k = 2,214 voxels for insL and k = 879 voxels for insR, p < 0.05, family-wise error corrected) compared with 24 age-matched healthy controls. Gray matter volume was increased for the entire insula (t 69 = 3.63, p = 0.0016 for insL; t 59 = 3.54, p = 0.0024 for insR, Bonferroni corrected), whereas no significant changes were found in 2 control regions for both patient groups. Furthermore, an increase of 24.6% and 31.6% in the gray matter volume was observed in the insula-related VBM cluster for insL and insR patients, respectively, compared with healthy controls (t 69 = 7.39, p = 2.59 × 10-10 and t 59 = 7.51, p = 3.61 × 10-10). CONCLUSIONS The reported results demonstrate that slow-growing but massive lesion infiltration of the insula induces marked increase of gray matter volume in the contralateral one. Our findings give support for a homotopic reorganization that might be a physiologic basis for the high level of functional compensation observed in patients with glioma.
Collapse
Affiliation(s)
- Fabien Almairac
- From the Department of Neurosurgery (F.A.), Pasteur 2 Hospital, Nice University Medical Center, Université Côte d'Azur; Department of Neurosurgery (H.D., G.H.), Gui de Chauliac Hospital, and Institute for Neurosciences of Montpellier (H.D., G.H.), INSERM 1051, Team "Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors," Saint Eloi Hospital, Montpellier University Medical Center; and University of Montpellier (H.D., G.H.), France
| | - Hugues Duffau
- From the Department of Neurosurgery (F.A.), Pasteur 2 Hospital, Nice University Medical Center, Université Côte d'Azur; Department of Neurosurgery (H.D., G.H.), Gui de Chauliac Hospital, and Institute for Neurosciences of Montpellier (H.D., G.H.), INSERM 1051, Team "Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors," Saint Eloi Hospital, Montpellier University Medical Center; and University of Montpellier (H.D., G.H.), France
| | - Guillaume Herbet
- From the Department of Neurosurgery (F.A.), Pasteur 2 Hospital, Nice University Medical Center, Université Côte d'Azur; Department of Neurosurgery (H.D., G.H.), Gui de Chauliac Hospital, and Institute for Neurosciences of Montpellier (H.D., G.H.), INSERM 1051, Team "Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors," Saint Eloi Hospital, Montpellier University Medical Center; and University of Montpellier (H.D., G.H.), France.
| |
Collapse
|
55
|
Wu GR, Baeken C, Van Schuerbeek P, De Mey J, Bi M, Herremans SC. Accelerated repetitive transcranial magnetic stimulation does not influence grey matter volumes in regions related to alcohol relapse: An open-label exploratory study. Drug Alcohol Depend 2018; 191:210-214. [PMID: 30142603 DOI: 10.1016/j.drugalcdep.2018.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 01/10/2023]
Abstract
The application of repetitive transcranial magnetic stimulation (rTMS) to prevent relapse in alcohol addiction is currently being evaluated. However, how rTMS may influence the related brain processes is far from clear. Here we wanted to investigate whether baseline grey matter volume (GMV) can predict relapse and whether 15 accelerated high-frequency (HF)- rTMS sessions may influence GMV in areas related to relapse. Voxel-based morphometric (VBM) measurements were used to compare baseline GMV of 22 detoxified, hospitalized, alcohol-dependent patients with 22 age and gender matched healthy control subjects. Only patients received 15 accelerated HF-rTMS sessions at the right dorsolateral prefrontal cortex (DLPFC) followed by VBM measurements. Relapse rates were assessed four weeks after the end of the stimulation protocol. At baseline, alcohol-dependent patients overall showed less GMV in diffuse brain areas compared to healthy controls. Relapsers compared to abstainers displayed larger GMV decreases, especially in brain midline structures, insular, hippocampal, and amygdalar areas. Accelerated HF-rTMS treatment had no significant effect on GMV in alcohol-dependent patients, regardless of the relapse state. Although an accelerated HF-rTMS treatment protocol did not influence GMV in alcohol-dependent patients, baseline GMV predicted future relapse.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, University Hospital Ghent, De Pintelaan 185, 9000 Ghent, Belgium; Department of Psychiatry, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Peter Van Schuerbeek
- Department of Radiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Johan De Mey
- Department of Radiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Minghua Bi
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Sarah C Herremans
- Department of Psychiatry and Medical Psychology, University Hospital Ghent, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
56
|
Cespón J, Miniussi C, Pellicciari MC. Interventional programmes to improve cognition during healthy and pathological ageing: Cortical modulations and evidence for brain plasticity. Ageing Res Rev 2018. [PMID: 29522820 DOI: 10.1016/j.arr.2018.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A growing body of evidence suggests that healthy elderly individuals and patients with Alzheimer's disease retain an important potential for neuroplasticity. This review summarizes studies investigating the modulation of neural activity and structural brain integrity in response to interventions involving cognitive training, physical exercise and non-invasive brain stimulation in healthy elderly and cognitively impaired subjects (including patients with mild cognitive impairment (MCI) and Alzheimer's disease). Moreover, given the clinical relevance of neuroplasticity, we discuss how evidence for neuroplasticity can be inferred from the functional and structural brain changes observed after implementing these interventions. We emphasize that multimodal programmes, which combine several types of interventions, improve cognitive function to a greater extent than programmes that use a single interventional approach. We suggest specific methods for weighting the relative importance of cognitive training, physical exercise and non-invasive brain stimulation according to the functional and structural state of the brain of the targeted subject to maximize the cognitive improvements induced by multimodal programmes.
Collapse
Affiliation(s)
- Jesús Cespón
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; BCBL, Basque Center on Cognition, Brain and Language, Spain.
| | - Carlo Miniussi
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy
| | | |
Collapse
|
57
|
Effects of Time-Compressed Speech Training on Multiple Functional and Structural Neural Mechanisms Involving the Left Superior Temporal Gyrus. Neural Plast 2018; 2018:6574178. [PMID: 29675038 PMCID: PMC5838482 DOI: 10.1155/2018/6574178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/01/2017] [Indexed: 02/06/2023] Open
Abstract
Time-compressed speech is an artificial form of rapidly presented speech. Training with time-compressed speech (TCSSL) in a second language leads to adaptation toward TCSSL. Here, we newly investigated the effects of 4 weeks of training with TCSSL on diverse cognitive functions and neural systems using the fractional amplitude of spontaneous low-frequency fluctuations (fALFF), resting-state functional connectivity (RSFC) with the left superior temporal gyrus (STG), fractional anisotropy (FA), and regional gray matter volume (rGMV) of young adults by magnetic resonance imaging. There were no significant differences in change of performance of measures of cognitive functions or second language skills after training with TCSSL compared with that of the active control group. However, compared with the active control group, training with TCSSL was associated with increased fALFF, RSFC, and FA and decreased rGMV involving areas in the left STG. These results lacked evidence of a far transfer effect of time-compressed speech training on a wide range of cognitive functions and second language skills in young adults. However, these results demonstrated effects of time-compressed speech training on gray and white matter structures as well as on resting-state intrinsic activity and connectivity involving the left STG, which plays a key role in listening comprehension.
Collapse
|
58
|
Enhanced Reality Showing Long-Lasting Analgesia after Total Knee Arthroplasty: Prospective, Randomized Clinical Trial. Sci Rep 2018; 8:2343. [PMID: 29402908 PMCID: PMC5799299 DOI: 10.1038/s41598-018-20260-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 01/09/2023] Open
Abstract
To overcome the limitation of short-term efficacy of virtual reality (VR), an enhanced reality (ER) analgesia, (combination of the VR, real-time motion capture, mirror therapy [MT]) involving a high degree of patients’ presence or embodiment was explored. Patients, who underwent unilateral total knee arthroplasty (TKA), received ER analgesia. The duration was 5 times a week, for 2 weeks for one group and 5 times a week, for 1 week in the other. Visual Analogue Scale (VAS) at rest and during movement, active knee range of motion (ROM) for flexion and extension were measured repeatedly. After screening 157 patients, 60 were included. Pre-interventional evaluation was performed at 6.7 days and ER was initiated at 12.4 days after surgery. Evaluation was performed at 5, 12, 33 days after the initiation of ER. Analgesia in the 2 week therapy group was effective until the third evaluation (p = 0.000), whereas in the other group, it was effective only until the second evaluation (p = 0.010). Improvement in ROM in the 2 week group was also maintained until the third evaluation (p = 0.037, p = 0.009). It could lay the foundations for the development of safe and long-lasting analgesic tools.
Collapse
|
59
|
Cacace AT, Hu J, Romero S, Xuan Y, Burkard RF, Tyler RS. Glutamate is down-regulated and tinnitus loudness-levels decreased following rTMS over auditory cortex of the left hemisphere: A prospective randomized single-blinded sham-controlled cross-over study. Hear Res 2018; 358:59-73. [DOI: 10.1016/j.heares.2017.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022]
|
60
|
Response to Targeted Cognitive Training Correlates with Change in Thalamic Volume in a Randomized Trial for Early Schizophrenia. Neuropsychopharmacology 2018; 43:590-597. [PMID: 28895568 PMCID: PMC5770762 DOI: 10.1038/npp.2017.213] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/20/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023]
Abstract
Reduced thalamic volume is consistently observed in schizophrenia, and correlates with cognitive impairment. Targeted cognitive training (TCT) of auditory processing in schizophrenia drives improvements in cognition that are believed to result from functional neuroplasticity in prefrontal and auditory cortices. In this study, we sought to determine whether response to TCT is also associated with structural neuroplastic changes in thalamic volume in patients with early schizophrenia (ESZ). Additionally, we examined baseline clinical, cognitive, and neural characteristics predictive of a positive response to TCT. ESZ patients were randomly assigned to undergo either 40 h of TCT (N=22) or a computer games control condition (CG; N=22 s). Participants underwent MRI, clinical, and neurocognitive assessments before and after training (4-month interval). Freesurfer automated segmentation of the subcortical surface was carried out to measure thalamic volume at both time points. Left thalamic volume at baseline correlated with baseline global cognition, while a similar trend was observed in the right thalamus. The relationship between change in cognition and change in left thalamus volume differed between groups, with a significant positive correlation in the TCT group and a negative trend in the CG group. Lower baseline symptoms were related to improvements in cognition and left thalamic volume preservation following TCT. These findings suggest that the cognitive gains induced by TCT in ESZ are associated with structural neuroplasticity in the thalamus. Greater symptom severity at baseline reduced the likelihood of response to TCT both with respect to improved cognition and change in thalamic volume.
Collapse
|
61
|
Rostral anterior cingulate cortex is a structural correlate of repetitive TMS treatment response in depression. Brain Stimul 2018; 11:575-581. [PMID: 29454551 DOI: 10.1016/j.brs.2018.01.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for medication-refractory major depression, yet the mechanisms of action for this intervention are poorly understood. Here we investigate cerebral cortex thickness as a possible biomarker of rTMS treatment response. METHODS Longitudinal change in cortical thickness is evaluated relative to clinical outcomes across 48 participants in 2 cohorts undergoing left dorsolateral prefrontal cortex rTMS as a treatment for depression. RESULTS Our results reveal changes in thickness in a region of the left rostral anterior cingulate cortex that correlate with clinical response, with this region becoming thicker in patients who respond favorably to rTMS and thinner in patients with a less favorable response. Moreover, the baseline cortical thickness in this region correlates with rTMS treatment response - those patients with thinner cortex before treatment tended to have the most clinical improvement. CONCLUSIONS This study is the first analysis of longitudinal cortical thickness change with rTMS as a treatment for depression with similar results across two cohorts. These results support further investigation into the use of structural MRI as a possible biomarker of rTMS treatment response.
Collapse
|
62
|
Structural changes in brain morphology induced by brief periods of repetitive sensory stimulation. Neuroimage 2018; 165:148-157. [DOI: 10.1016/j.neuroimage.2017.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/25/2017] [Accepted: 10/08/2017] [Indexed: 01/29/2023] Open
|
63
|
Taylor KS, Millar PJ, Murai H, Haruki N, Kimmerly DS, Bradley TD, Floras JS. Cortical autonomic network gray matter and sympathetic nerve activity in obstructive sleep apnea. Sleep 2017; 41:4773854. [PMID: 29309669 DOI: 10.1093/sleep/zsx208] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/08/2017] [Indexed: 01/08/2023] Open
Abstract
The sympathetic excitation elicited acutely by obstructive apnea during sleep (OSA) carries over into wakefulness. We hypothesized that OSA induces structural changes in the insula and cingulate, key central autonomic network elements with projections to brainstem sympathetic premotor regions. The aims of this study were to (1) apply two distinct but complementary methods (cortical thickness analysis [CTA] and voxel-based morphometry [VBM]) to compare insula and cingulate gray matter thickness in participants without and with OSA; (2) determine whether oxygen desaturation index (ODI) relates to cortical thickness; and (3) determine whether cortical thickness or volume in these regions predicts muscle sympathetic nerve activity (MSNA) burst incidence (BI). Overnight polysomnography, anatomical magnetic resonance imaging, and MSNA data were acquired in 41 participants with no or mild OSA (n = 19; 59 ± 2 years [Mean ± SE]; six females; apnea-hypopnea index [AHI] 7 ± 1 events per hour) or moderate-to-severe OSA (n = 22; 59 ± 2 years; five females; AHI 31 ± 4 events per hour). Between-group CTA analyses identified cortical thinning within the left dorsal posterior insula and thickening within the left mid-cingulate cortex (LMCC), whereas VBM identified thickening within bilateral thalami (all [p < .05]). CTA revealed inverse relationships between ODI and bilateral dpIC and left posterior cingulate cortex (LPCC) or precuneus thickness. Positive correlations between BI and LMCC gray matter thickness or volume were evident with both methods and between BI and left posterior thalamus volume using VBM. In OSA, the magnitude of insular thinning, although a function of hypoxia severity, does not influence MSNA, whereas cingulate and thalamic thickening relate directly to the intensity of sympathetic discharge during wakefulness.
Collapse
Affiliation(s)
- Keri S Taylor
- Department of Medicine, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Philip J Millar
- Department of Medicine, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Hisayoshi Murai
- Department of Medicine, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nobuhiko Haruki
- Department of Medicine, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Derek S Kimmerly
- Department of Medicine, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,School of Health and Human Performance, Faculty of Health Professions, Dalhousie University, Halifax, Nova Scotia, Canada
| | - T Douglas Bradley
- Department of Medicine, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - John S Floras
- Department of Medicine, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
64
|
Valero-Cabré A, Amengual JL, Stengel C, Pascual-Leone A, Coubard OA. Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights. Neurosci Biobehav Rev 2017; 83:381-404. [DOI: 10.1016/j.neubiorev.2017.10.006] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 01/13/2023]
|
65
|
Lee T, Lim US, Kang DH, Jung HD, Kim H, Choi BH, Kang JH, Yoon SM, Park CS. Near-Normalized Gene Expression Profiles in Bladder With Detrusor Overactivity in Rats With Bladder Outlet Obstruction After Deobstruction. Int Neurourol J 2017; 21:247-258. [PMID: 29298465 PMCID: PMC5756814 DOI: 10.5213/inj.1732774.387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/09/2017] [Indexed: 01/03/2023] Open
Abstract
PURPOSE The pathophysiological role of detrusor overactivity (DO) in the bladder, which is commonly observed in various bladder diseases, is not well understood. DO appears in bladder outlet obstruction (BOO), and may continue even after subsequent deobstruction. DO therefore provides an excellent opportunity to observe molecular biological changes. METHODS In this study, to understand the molecular effects of persistent DO after BOO induction and deobstruction, we performed awake cystometry on female Sprague-Dawley rats divided into 4 groups: a sham group, a BOO group, a deobstructed group with DO after BOO (DDO), and a deobstructed group without DO after BOO (non-DDO). Total RNA was extracted from the bladder samples, and gene expression profiles were compared between the sham and model groups. RESULTS DO was observed in 5 of the 6 rats (83%) in the BOO group, and in 6 of the 13 rats (46%) in the deobstructed group. The non-DDO group showed a significantly greater residual volume than the DDO group. Through a clustering analysis of gene expression profiles, we identified 7,532 common upregulated and downregulated genes, the expression of which changed by more than 2 fold. In the BOO group, 898 upregulated and 2,911 downregulated genes were identified. The non-DDO group showed 3,472 upregulated and 4,025 downregulated genes, whereas in the DDO group, only 145 and 72 genes were upregulated and downregulated, respectively. CONCLUSIONS Abnormal function and gene expression profiles in bladders after BOO were normalized in the BOO rats with DO after deobstruction, whereas in those without DO, abnormal function persisted and the gene expression profile became more abnormal. DO may play a protective role against the stress to the bladder induced by BOO and deobstruction as a form of adaptive neuroplasticity.
Collapse
Affiliation(s)
- Tack Lee
- Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - U-Sung Lim
- Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Dong Hyuk Kang
- Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Hae-Do Jung
- Department of Urology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Hyunzu Kim
- Department of Anesthesiology and Pain Medicine, Inha University College of Medicine, Incheon, Korea
| | - Bo-Hwa Choi
- Department of Pharmacology, Hypoxia-Related Disease Research Center, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, Korea
| | - Ju-Hee Kang
- Department of Pharmacology, Hypoxia-Related Disease Research Center, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, Korea
| | - Sang-Min Yoon
- Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Chang-Shin Park
- Department of Pharmacology, Hypoxia-Related Disease Research Center, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
66
|
Hayasaka S, Nakamura M, Noda Y, Izuno T, Saeki T, Iwanari H, Hirayasu Y. Lateralized hippocampal volume increase following high-frequency left prefrontal repetitive transcranial magnetic stimulation in patients with major depression. Psychiatry Clin Neurosci 2017. [PMID: 28631869 DOI: 10.1111/pcn.12547] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM Repetitive transcranial magnetic stimulation (rTMS) has been applied as a treatment for patients with treatment-resistant depression in recent years, and a large body of evidence has demonstrated its therapeutic efficacy through stimulating neuronal plasticity. The aim of this study was to investigate structural alterations in the hippocampus (HIPP) and amygdala (AM) following conventional rTMS in patients with depression. METHODS Twenty-eight patients with depression underwent 10 daily 20-Hz left prefrontal rTMS over 2 weeks. The left dorsolateral prefrontal cortex (DLPFC) was identified using magnetic resonance imaging-guided neuronavigation prior to stimulation. Magnetic resonance imaging scans were obtained at baseline and after the completion of rTMS sessions. The therapeutic effects of rTMS were evaluated with the 17-item Hamilton Depression Rating Scale (HAM-D17 ), and the volumes of the HIPP and AM were measured by a manual tracing method. RESULTS Statistical analyses revealed a significant volume increase in the left HIPP (+3.4%) after rTMS but no significant volume change in the AM. No correlation was found between the left HIPP volume increase and clinical improvement, as measured by the HAM-D17 . CONCLUSION The present study demonstrated that conventional left prefrontal rTMS increases the HIPP volume in the stimulated side, indicating a remote neuroplastic effect through the cingulum bundle.
Collapse
Affiliation(s)
- Shunsuke Hayasaka
- Laboratory of Neuromodulation, Kanagawa Psychiatric Center, Yokohama, Japan.,Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan.,ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Motoaki Nakamura
- Laboratory of Neuromodulation, Kanagawa Psychiatric Center, Yokohama, Japan.,Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan.,ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Yoshihiro Noda
- Laboratory of Neuromodulation, Kanagawa Psychiatric Center, Yokohama, Japan.,Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Takuji Izuno
- Laboratory of Neuromodulation, Kanagawa Psychiatric Center, Yokohama, Japan.,Department of Psychiatry, School of Medicine, Showa University, Tokyo, Japan
| | - Takashi Saeki
- Laboratory of Neuromodulation, Kanagawa Psychiatric Center, Yokohama, Japan.,Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | - Hideo Iwanari
- Laboratory of Neuromodulation, Kanagawa Psychiatric Center, Yokohama, Japan
| | - Yoshio Hirayasu
- Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
67
|
Park HJ, Kang HK, Wang M, Jo J, Chung E, Kim S. A pilot study of planar coil based magnetic stimulation using acute hippocampal slice in mice. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:1118-1121. [PMID: 29060071 DOI: 10.1109/embc.2017.8037025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Micromagnetic stimulation using small-sized implantable coils has recently been studied. The main advantage of this method is that it can provide sustainable stimulation performance even if a fibrotic encapsulation layer is formed around the implanted coil by inflammation response, because indirectly induced currents are used to induce neural responses. In previous research, we optimized the geometrical and control parameters used in implantable magnetic stimulation. Based on those results, we fabricated the planar coil and studied the LTP effect in the hippocampal slice by two different magnetic stimulation protocols using the quadripulse stimulation (QPS) pattern. We found that direct magnetic stimulation (DMS) induced insignificant LTP effect and priming magnetic stimulation (PMS) occluded LTP effect after tetanic stimulation, when QPS patterned magnetic stimulation with 1 A current pulse was applied to the planar coil.
Collapse
|
68
|
Poeppl TB, Langguth B, Lehner A, Frodl T, Rupprecht R, Kreuzer PM, Landgrebe M, Schecklmann M. Brain stimulation-induced neuroplasticity underlying therapeutic response in phantom sounds. Hum Brain Mapp 2017; 39:554-562. [PMID: 29064602 DOI: 10.1002/hbm.23864] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022] Open
Abstract
Noninvasive brain stimulation can modify phantom sounds for longer periods by modulating neural activity and putatively inducing regional neuroplastic changes. However, treatment response is limited and there are no good demographic or clinical predictors for treatment outcome. We used state-of-the-art voxel-based morphometry (VBM) to investigate whether transcranial magnetic stimulation-induced neuroplasticity determines therapeutic outcome. Sixty subjects chronically experiencing phantom sounds (i.e., tinnitus) received repetitive transcranial magnetic stimulation (rTMS) of left dorsolateral prefrontal and temporal cortex according to a protocol that has been shown to yield a significantly higher number of treatment responders than sham stimulation and previous stimulation protocols. Structural magnetic resonance imaging was performed before and after rTMS. In VBM whole-brain analyses (P < 0.05, FWE corrected), we assessed longitudinal gray matter changes as well as structural connectivity between the ensuing regions. We observed longitudinal mesoscopic gray matter changes of left dorsolateral prefontal (DLPFC), left operculo-insular, and right inferior temporal cortex (ITC) in responders (N = 22) but not nonresponders (N = 38), as indicated by a group × time interaction and post-hoc tests. These results were neither influenced by age, sex, hearing loss nor by tinnitus laterality, duration, and severity at baseline. Furthermore, we found robust DLPFC-insula and insula-ITC connectivity in responders, while only relatively weak DLPFC-insula connectivity and no insula-ITC connectivity could be demonstrated in nonresponders. Our results reinforce the implication of nonauditory brain regions in phantom sounds and suggest the dependence of therapeutic response on their neuroplastic capabilities. The latter in turn may depend on (differences in) their individual structural connectivity. Hum Brain Mapp 39:554-562, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Timm B Poeppl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Tinnitus Center, University of Regensburg, Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Tinnitus Center, University of Regensburg, Regensburg, Germany
| | - Astrid Lehner
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Tinnitus Center, University of Regensburg, Regensburg, Germany
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Peter M Kreuzer
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Tinnitus Center, University of Regensburg, Regensburg, Germany
| | - Michael Landgrebe
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Lech Mangfall Hospital, Agatharied, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Tinnitus Center, University of Regensburg, Regensburg, Germany
| |
Collapse
|
69
|
Abstract
Fibromyalgia (FMS) is a complex clinical syndrome that includes many symptoms beyond chronic pain. The studies that have addressed brain morphometry in FMS have had very heterogeneous results. Thus, the question of which specific FMS symptoms and clinical features-pain, but also psychological distress, sleep-related problems, health status, and medication intake-impact on brain morphometry remains open. Here, we wanted to determine if brain changes in FMS are "symptom-related" more than "diagnostic-related". We performed an observational study of 46 premenopausal women (23 FMS patients and 23 age-matched healthy participants). Magnetic resonance images were analyzed using voxel-based morphometry and subcortical segmentation. We used multiple regression models to assess the associations between total and local brain volumes and FMS clinical characteristics. Furthermore, we calculated associations between subcortical structures' shapes and volumes and FMS clinical characteristics. Larger psychological distress, anxiety, and sleepiness, and higher analgesic consumption accounted for 38 % of FMS patients' smaller total gray matter volume (GMV). For both groups, local decrements of GMV in the medial orbitofrontal cortex were associated to larger psychological distress. Local increases of GMV were positively related to pain scores (superior frontal gyrus), psychological distress (cerebellum), anxiety (medial orbitofrontal cortex), and sleepiness (frontal superior medial cortex). FMS clinical characteristics were also associated to deformations in subcortical structures and volumes changes. This study reveals that total and local GMV changes in FMS go beyond the traditional "pain matrix" alterations. We demonstrated that brain morphology is altered by pain, but also by clinical characteristics that define the FMS experience.
Collapse
|
70
|
Koppelmans V, Bloomberg JJ, De Dios YE, Wood SJ, Reuter-Lorenz PA, Kofman IS, Riascos R, Mulavara AP, Seidler RD. Brain plasticity and sensorimotor deterioration as a function of 70 days head down tilt bed rest. PLoS One 2017; 12:e0182236. [PMID: 28767698 PMCID: PMC5540603 DOI: 10.1371/journal.pone.0182236] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 07/15/2017] [Indexed: 12/18/2022] Open
Abstract
Background Adverse effects of spaceflight on sensorimotor function have been linked to altered somatosensory and vestibular inputs in the microgravity environment. Whether these spaceflight sequelae have a central nervous system component is unknown. However, experimental studies have shown spaceflight-induced brain structural changes in rodents’ sensorimotor brain regions. Understanding the neural correlates of spaceflight-related motor performance changes is important to ultimately develop tailored countermeasures that ensure mission success and astronauts’ health. Method Head down-tilt bed rest (HDBR) can serve as a microgravity analog because it mimics body unloading and headward fluid shifts of microgravity. We conducted a 70-day 6° HDBR study with 18 right-handed males to investigate how microgravity affects focal gray matter (GM) brain volume. MRI data were collected at 7 time points before, during and post-HDBR. Standing balance and functional mobility were measured pre and post-HDBR. The same metrics were obtained at 4 time points over ~90 days from 12 control subjects, serving as reference data. Results HDBR resulted in widespread increases GM in posterior parietal regions and decreases in frontal areas; recovery was not yet complete by 12 days post-HDBR. Additionally, HDBR led to balance and locomotor performance declines. Increases in a cluster comprising the precuneus, precentral and postcentral gyrus GM correlated with less deterioration or even improvement in standing balance. This association did not survive Bonferroni correction and should therefore be interpreted with caution. No brain or behavior changes were observed in control subjects. Conclusions Our results parallel the sensorimotor deficits that astronauts experience post-flight. The widespread GM changes could reflect fluid redistribution. Additionally, the association between focal GM increase and balance changes suggests that HDBR also may result in neuroplastic adaptation. Future studies are warranted to determine causality and underlying mechanisms.
Collapse
Affiliation(s)
- Vincent Koppelmans
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | | | - Scott J. Wood
- NASA Johnson Space Center, Houston, TX, United States of America
| | | | | | - Roy Riascos
- The University of Texas Health Science Center, Houston, TX, United States of America
| | | | - Rachael D. Seidler
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neuroscience Program, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
71
|
Hasan A, Wobrock T, Guse B, Langguth B, Landgrebe M, Eichhammer P, Frank E, Cordes J, Wölwer W, Musso F, Winterer G, Gaebel W, Hajak G, Ohmann C, Verde PE, Rietschel M, Ahmed R, Honer WG, Dechent P, Malchow B, Castro MFU, Dwyer D, Cabral C, Kreuzer PM, Poeppl TB, Schneider-Axmann T, Falkai P, Koutsouleris N. Structural brain changes are associated with response of negative symptoms to prefrontal repetitive transcranial magnetic stimulation in patients with schizophrenia. Mol Psychiatry 2017; 22:857-864. [PMID: 27725655 DOI: 10.1038/mp.2016.161] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/06/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
Abstract
Impaired neural plasticity may be a core pathophysiological process underlying the symptomatology of schizophrenia. Plasticity-enhancing interventions, including repetitive transcranial magnetic stimulation (rTMS), may improve difficult-to-treat symptoms; however, efficacy in large clinical trials appears limited. The high variability of rTMS-related treatment response may be related to a comparably large variation in the ability to generate plastic neural changes. The aim of the present study was to determine whether negative symptom improvement in schizophrenia patients receiving rTMS to the left dorsolateral prefrontal cortex (DLPFC) was related to rTMS-related brain volume changes. A total of 73 schizophrenia patients with predominant negative symptoms were randomized to an active (n=34) or sham (n=39) 10-Hz rTMS intervention applied 5 days per week for 3 weeks to the left DLPFC. Local brain volume changes measured by deformation-based morphometry were correlated with changes in negative symptom severity using a repeated-measures analysis of covariance design. Volume gains in the left hippocampal, parahippocampal and precuneal cortices predicted negative symptom improvement in the active rTMS group (all r⩽-0.441, all P⩽0.009), but not the sham rTMS group (all r⩽0.211, all P⩾0.198). Further analyses comparing negative symptom responders (⩾20% improvement) and non-responders supported the primary analysis, again only in the active rTMS group (F(9, 207)=2.72, P=0.005, partial η 2=0.106). Heterogeneity in clinical response of negative symptoms in schizophrenia to prefrontal high-frequency rTMS may be related to variability in capacity for structural plasticity, particularly in the left hippocampal region and the precuneus.
Collapse
Affiliation(s)
- A Hasan
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - T Wobrock
- Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, Göttingen, Germany.,Department of Psychiatry and Psychotherapy, County Hospitals Darmstadt-Dieburg, Groß-Umstadt, Germany
| | - B Guse
- Department of Psychiatry and Psychotherapy, Georg-August-University Göttingen, Göttingen, Germany
| | - B Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - M Landgrebe
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Department of Psychiatry, Psychosomatics and Psychotherapy, kbo-Lech-Mangfall-Klinik Agatharied, Agatharied, Germany
| | - P Eichhammer
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - E Frank
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - J Cordes
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - W Wölwer
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - F Musso
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - G Winterer
- Experimental and Clinical Research Centre, The Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - W Gaebel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - G Hajak
- Department of Psychiatry, Psychosomatics and Psychotherapy, Sozialstiftung Bamberg, Bamberg, Germany
| | - C Ohmann
- European Clinical Research Network, Düsseldorf, Germany
| | - P E Verde
- Coordination Centre for Clinical Trials, Heinrich-Heine University, Düsseldorf, Germany
| | - M Rietschel
- Department of Genetic Epidemiology in Psychiatry, Institute of Central Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - R Ahmed
- Institut für anwendungsorientierte Forschung und klinische Studien GmbH, Göttingen, Germany
| | - W G Honer
- Department of Genetic Epidemiology in Psychiatry, Institute of Mental Health, The University of British Columbia, Vancouver, BC, Canada
| | - P Dechent
- Department of Cognitive Neurology, Georg-August-University Goettingen, Goettingen, Germany
| | - B Malchow
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - M F U Castro
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - D Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - C Cabral
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - P M Kreuzer
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - T B Poeppl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - T Schneider-Axmann
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - P Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - N Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
72
|
Elvsåshagen T, Zak N, Norbom LB, Pedersen PØ, Quraishi SH, Bjørnerud A, Alnæs D, Doan NT, Malt UF, Groote IR, Westlye LT. Evidence for cortical structural plasticity in humans after a day of waking and sleep deprivation. Neuroimage 2017; 156:214-223. [PMID: 28526620 DOI: 10.1016/j.neuroimage.2017.05.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 12/29/2022] Open
Abstract
Sleep is an evolutionarily conserved process required for human health and functioning. Insufficient sleep causes impairments across cognitive domains, and sleep deprivation can have rapid antidepressive effects in mood disorders. However, the neurobiological effects of waking and sleep are not well understood. Recently, animal studies indicated that waking and sleep are associated with substantial cortical structural plasticity. Here, we hypothesized that structural plasticity can be observed after a day of waking and sleep deprivation in the human cerebral cortex. To test this hypothesis, 61 healthy adult males underwent structural magnetic resonance imaging (MRI) at three time points: in the morning after a regular night's sleep, the evening of the same day, and the next morning, either after total sleep deprivation (N=41) or a night of sleep (N=20). We found significantly increased right prefrontal cortical thickness from morning to evening across all participants. In addition, pairwise comparisons in the deprived group between the two morning scans showed significant thinning of mainly bilateral medial parietal cortices after 23h of sleep deprivation, including the precuneus and posterior cingulate cortex. However, there were no significant group (sleep vs. sleep deprived group) by time interactions and we can therefore not rule out that other mechanisms than sleep deprivation per se underlie the bilateral medial parietal cortical thinning observed in the deprived group. Nonetheless, these cortices are thought to subserve wakefulness, are among the brain regions with highest metabolic rate during wake, and are considered some of the most sensitive cortical regions to a variety of insults. Furthermore, greater thinning within the left medial parietal cluster was associated with increased sleepiness after sleep deprivation. Together, these findings add to a growing body of data showing rapid structural plasticity within the human cerebral cortex detectable with MRI. Further studies are needed to clarify whether cortical thinning is one neural substrate of sleepiness after sleep deprivation.
Collapse
Affiliation(s)
- Torbjørn Elvsåshagen
- Department of Neurology, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Nathalia Zak
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn B Norbom
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Per Ø Pedersen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Atle Bjørnerud
- The Intervention Centre, Oslo University Hospital, Oslo, Norway; Department of Physics, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
| | - Nhat Trung Doan
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Research and Education, Oslo University Hospital, Oslo, Norway
| | - Inge R Groote
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway; The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway; Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
73
|
He Q, Turel O, Bechara A. Brain anatomy alterations associated with Social Networking Site (SNS) addiction. Sci Rep 2017; 7:45064. [PMID: 28332625 PMCID: PMC5362930 DOI: 10.1038/srep45064] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/20/2017] [Indexed: 02/05/2023] Open
Abstract
This study relies on knowledge regarding the neuroplasticity of dual-system components that govern addiction and excessive behavior and suggests that alterations in the grey matter volumes, i.e., brain morphology, of specific regions of interest are associated with technology-related addictions. Using voxel based morphometry (VBM) applied to structural Magnetic Resonance Imaging (MRI) scans of twenty social network site (SNS) users with varying degrees of SNS addiction, we show that SNS addiction is associated with a presumably more efficient impulsive brain system, manifested through reduced grey matter volumes in the amygdala bilaterally (but not with structural differences in the Nucleus Accumbens). In this regard, SNS addiction is similar in terms of brain anatomy alterations to other (substance, gambling etc.) addictions. We also show that in contrast to other addictions in which the anterior-/ mid- cingulate cortex is impaired and fails to support the needed inhibition, which manifests through reduced grey matter volumes, this region is presumed to be healthy in our sample and its grey matter volume is positively correlated with one's level of SNS addiction. These findings portray an anatomical morphology model of SNS addiction and point to brain morphology similarities and differences between technology addictions and substance and gambling addictions.
Collapse
Affiliation(s)
- Qinghua He
- Faculty of Psychology, Southwest University, Beibei, Chongqing, China.,Brain and Creativity Institute, Department of Psychology, University of Southern California, Los Angeles, California, USA
| | - Ofir Turel
- Brain and Creativity Institute, Department of Psychology, University of Southern California, Los Angeles, California, USA.,Information Systems and Decision Sciences, California State University, Fullerton, Fullerton, California, USA
| | - Antoine Bechara
- Brain and Creativity Institute, Department of Psychology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
74
|
Short Latency Gray Matter Changes in Voxel-Based Morphometry following High Frequent Visual Stimulation. Neural Plast 2017; 2017:1397801. [PMID: 28293437 PMCID: PMC5331306 DOI: 10.1155/2017/1397801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/11/2017] [Indexed: 12/29/2022] Open
Abstract
Magnetic resonance imaging studies using voxel-based morphometry (VBM) detected structural changes in the human brain within periods of months or weeks. The underlying molecular mechanisms of VBM findings remain unresolved. We showed that simple visual stimulation by an alternating checkerboard leads to instant, short-lasting alterations of the primary and secondary visual cortex detected by VBM. The rapidness of occurrence (i.e., within 10 minutes) rather excludes most of the proposed physiological mechanism such as neural or glial cell genesis/degeneration or synapse turnover. We therefore favour cerebral fluid shifts to be the underlying correlate of the here observed VBM gray matter changes. Fast onset gray matter changes might be one important explanation for the inconsistency of VBM study results that often raise concern in regard to the validity of presented data. This study shows that changes detectable by VBM may occur within a few minutes after physiological stimulation and must be considered in future VBM experiments to avoid misinterpretation of results.
Collapse
|
75
|
Schepers IM, Beck AK, Bräuer S, Schwabe K, Abdallat M, Sandmann P, Dengler R, Rieger JW, Krauss JK. Human centromedian-parafascicular complex signals sensory cues for goal-oriented behavior selection. Neuroimage 2017; 152:390-399. [PMID: 28288908 DOI: 10.1016/j.neuroimage.2017.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 01/21/2023] Open
Abstract
Experimental research has shown that the centromedian-parafascicular complex (CM-Pf) of the intralaminar thalamus is activated in attentional orienting and processing of behaviorally relevant stimuli. These observations resulted in the hypothesis that the CM-Pf plays a pivotal role in goal-oriented behavior selection. We here set out to test this hypothesis with electrophysiological recordings from patients with electrodes implanted in CM-Pf for deep brain stimulation (DBS) treatment of chronic neuropathic pain. Six patients participated in (1) an auditory three-class oddball experiment, which required a button press to target tones, but not to standard and deviant tones and in (2) a multi-speaker experiment with a target word that required attention selection and a target image that required response selection. Subjects showed transient neural responses (8-15Hz) to the target tone and the target word. Two subjects additionally showed transient neural responses (15-25Hz) to the target image. All sensory target stimuli were related to an internal goal and required a behavior selection (attention selection, response selection). In group analyses, neural responses were greater to target tones than deviant and standard tones and to target words than other task-relevant words that did not require attention selection. The transient neural responses occurred after the target stimuli but prior to the overt behavioral response. Our results demonstrate that in human subjects the CM-Pf is involved in signaling sensory inputs related to goal-oriented selection of behavior.
Collapse
Affiliation(s)
- Inga M Schepers
- Department of Psychology, Oldenburg University, Germany; Cluster of Excellence Hearing4All, Germany.
| | - Anne-Kathrin Beck
- Department of Neurosurgery, Hannover Medical School, Germany; Cluster of Excellence Hearing4All, Germany
| | - Susann Bräuer
- Department of Psychology, Oldenburg University, Germany; Cluster of Excellence Hearing4All, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Germany; Cluster of Excellence Hearing4All, Germany
| | | | - Pascale Sandmann
- Department of Otorhinolaryngology, University of Cologne, Cologne, Germany
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Hanover, Germany; Cluster of Excellence Hearing4All, Germany
| | - Jochem W Rieger
- Department of Psychology, Oldenburg University, Germany; Cluster of Excellence Hearing4All, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Germany; Cluster of Excellence Hearing4All, Germany
| |
Collapse
|
76
|
Cairó O. Assessing Relevance of External Cognitive Measures. Front Integr Neurosci 2017; 11:3. [PMID: 28270753 PMCID: PMC5319308 DOI: 10.3389/fnint.2017.00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/07/2017] [Indexed: 12/03/2022] Open
Abstract
The arrival of modern brain imaging technologies has provided new opportunities for examining the biological essence of human intelligence as well as the relationship between brain size and cognition. Thanks to these advances, we can now state that the relationship between brain size and intelligence has never been well understood. This view is supported by findings showing that cognition is correlated more with brain tissues than sheer brain size. The complexity of cellular and molecular organization of neural connections actually determines the computational capacity of the brain. In this review article, we determine that while genotypes are responsible for defining the theoretical limits of intelligence, what is primarily responsible for determining whether those limits are reached or exceeded is experience (environmental influence). Therefore, we contend that the gene-environment interplay defines the intelligent quotient of an individual.
Collapse
Affiliation(s)
- Osvaldo Cairó
- Department of Computer Science, Instituto Tecnológico Autónomo de México (ITAM) Mexico City, Mexico
| |
Collapse
|
77
|
The etiopathogenesis of diffuse low-grade gliomas. Crit Rev Oncol Hematol 2016; 109:51-62. [PMID: 28010898 DOI: 10.1016/j.critrevonc.2016.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022] Open
Abstract
The origins of diffuse low-grade gliomas (DLGG) are unknown. Beyond some limited data on their temporal and cellular origins, the mechanisms and risk factors involved are poorly known. First, based on strong relationships between DLGG development and the eloquence of brain regions frequently invaded by these tumors, we propose a "functional theory" to explain the origin of DLGG. Second, the biological pathways involved in DLGG genesis may differ according to tumor location (anatomo-molecular correlations). The cellular and molecular mechanisms of such "molecular theory" will be reviewed. Third, the geographical distribution of diffuse WHO grade II-III gliomas within populations is heterogeneous, suggesting possible environmental risk factors. We will discuss this "environmental theory". Finally, we will summarize the current knowledge on genetic susceptibility in gliomas ("genetic predisposition theory"). These crucial issues illustrate the close relationships between the pathophysiology of gliomagenesis, the anatomo-functional organization of the brain, and personalized management of DLGG patients.
Collapse
|
78
|
Lozeron P, Poujois A, Richard A, Masmoudi S, Meppiel E, Woimant F, Kubis N. Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia. Front Neural Circuits 2016; 10:90. [PMID: 27891079 PMCID: PMC5102895 DOI: 10.3389/fncir.2016.00090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/24/2016] [Indexed: 11/13/2022] Open
Abstract
Dystonias represent a heterogeneous group of movement disorders responsible for sustained muscle contraction, abnormal postures, and muscle twists. It can affect focal or segmental body parts or be generalized. Primary dystonia is the most common form of dystonia but it can also be secondary to metabolic or structural dysfunction, the consequence of a drug's side-effect or of genetic origin. The pathophysiology is still not elucidated. Based on lesion studies, dystonia has been regarded as a pure motor dysfunction of the basal ganglia loop. However, basal ganglia lesions do not consistently produce dystonia and lesions outside basal ganglia can lead to dystonia; mild sensory abnormalities have been reported in the dystonic limb and imaging studies have shown involvement of multiple other brain regions including the cerebellum and the cerebral motor, premotor and sensorimotor cortices. Transcranial magnetic stimulation (TMS) is a non-invasive technique of brain stimulation with a magnetic field applied over the cortex allowing investigation of cortical excitability. Hyperexcitability of contralateral motor cortex has been suggested to be the trigger of focal dystonia. High or low frequency repetitive TMS (rTMS) can induce excitatory or inhibitory lasting effects beyond the time of stimulation and protocols have been developed having either a positive or a negative effect on cortical excitability and associated with prevention of cell death, γ-aminobutyric acid (GABA) interneurons mediated inhibition and brain-derived neurotrophic factor modulation. rTMS studies as a therapeutic strategy of dystonia have been conducted to modulate the cerebral areas involved in the disease. Especially, when applied on the contralateral (pre)-motor cortex or supplementary motor area of brains of small cohorts of dystonic patients, rTMS has shown a beneficial transient clinical effect in association with restrained motor cortex excitability. TMS is currently a valuable tool to improve our understanding of the pathophysiology of dystonia but large controlled studies using sham stimulation are still necessary to delineate the place of rTMS in the therapeutic strategy of dystonia. In this review, we will focus successively on the use of TMS as a tool to better understand pathophysiology, and the use of rTMS as a therapeutic strategy.
Collapse
Affiliation(s)
- Pierre Lozeron
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital LariboisièreParis, France; INSERM UMR965Paris, France; Sorbonne Paris Cité - Université Paris DiderotParis, France
| | - Aurélia Poujois
- Service de Neurologie, AP-HP, Hôpital LariboisièreParis, France; Centre de Référence National de la Maladie de Wilson, Hôpital LariboisièreParis, France
| | - Alexandra Richard
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital LariboisièreParis, France; Sorbonne Paris Cité - Université Paris DiderotParis, France
| | - Sana Masmoudi
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital Lariboisière Paris, France
| | - Elodie Meppiel
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital LariboisièreParis, France; Sorbonne Paris Cité - Université Paris DiderotParis, France
| | - France Woimant
- Service de Neurologie, AP-HP, Hôpital LariboisièreParis, France; Centre de Référence National de la Maladie de Wilson, Hôpital LariboisièreParis, France
| | - Nathalie Kubis
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital LariboisièreParis, France; INSERM UMR965Paris, France; Sorbonne Paris Cité - Université Paris DiderotParis, France
| |
Collapse
|
79
|
Månsson KNT, Salami A, Carlbring P, Boraxbekk CJ, Andersson G, Furmark T. Structural but not functional neuroplasticity one year after effective cognitive behaviour therapy for social anxiety disorder. Behav Brain Res 2016; 318:45-51. [PMID: 27838341 DOI: 10.1016/j.bbr.2016.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 01/05/2023]
Abstract
Effective psychiatric treatments ameliorate excessive anxiety and induce neuroplasticity immediately after the intervention, indicating that emotional components in the human brain are rapidly adaptable. Still, the interplay between structural and functional neuroplasticity is poorly understood, and studies of treatment-induced long-term neuroplasticity are rare. Functional and structural magnetic resonance imaging (using 3T MRI) was performed in 13 subjects with social anxiety disorder on 3 occasions over 1year. All subjects underwent 9 weeks of Internet-delivered cognitive behaviour therapy in a randomized cross-over design and independent assessors used the Clinically Global Impression-Improvement (CGI-I) scale to determine treatment response. Gray matter (GM) volume, assessed with voxel-based morphometry, and functional blood-oxygen level-dependent (BOLD) responsivity to self-referential criticism were compared between treatment responders and non-responders using 2×2 (group×time; pretreatment to follow-up) ANOVA. At 1-year follow-up, 7 (54%) subjects were classified as CGI-I responders. Left amygdala GM volume was more reduced in responders relative to non-responders from pretreatment to 1-year follow-up (Z=3.67, Family-Wise Error corrected p=0.02). In contrast to previous short-term effects, altered BOLD activations to self-referential criticism did not separate responder groups at follow-up. The structure and function of the amygdala changes immediately after effective psychological treatment of social anxiety disorder, but only reduced amygdala GM volume, and not functional activity, is associated with a clinical response 1year after CBT.
Collapse
Affiliation(s)
- Kristoffer N T Månsson
- Department of Behavioural Sciences and Learning, Psychology, Linköping University, Linköping, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet, Stockholm, Sweden; Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Per Carlbring
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - C-J Boraxbekk
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Centre Demographic and Aging Research (CEDAR), Umeå University, Umeå, Sweden; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Gerhard Andersson
- Department of Behavioural Sciences and Learning, Psychology, Linköping University, Linköping, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Furmark
- Department of Psychology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
80
|
Characterization of gray matter atrophy following 6-hydroxydopamine lesion of the nigrostriatal system. Neuroscience 2016; 334:166-179. [PMID: 27506141 DOI: 10.1016/j.neuroscience.2016.07.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The unilaterally-lesioned 6-hydroxydopamine (6-OHDA) rat is one of the most commonly used experimental models of Parkinson's disease (PD). Here we investigated whether magnetic resonance imaging (MRI) that is widely used in human PD research, has the potential to non-invasively detect macroscopic structural brain changes in the 6-OHDA rat in ways translatable to humans. METHODS We measured the gray matter (GM) composition in the unilateral 6-OHDA rat in comparison to sham animals using whole-brain voxel-based morphometry (VBM) - an unbiased MR image analysis technique. The number of nigral dopamine (DA) neurons and the density of their cortical projections were examined post-mortem using immunohistochemistry. RESULTS VBM revealed widespread bilateral changes in gray matter volume (GMV) on a topographic scale in the brains of 6-OHDA rats, compared to sham-operated rats. The greatest changes were in the lesioned hemisphere, which displayed reductions of GMV in motor, cingulate and somatosensory cortex. Histopathological results revealed dopaminergic cell loss in the substantia nigra (SN) and a denervation in the striatum, as well as in the frontal, somatosensory and cingulate cortices. CONCLUSION Unilateral nigrostriatal 6-OHDA lesioning leads to widespread GMV changes, which extend beyond the nigrostriatal system and resemble advanced Parkinsonism. This study highlights the potential of structural MRI, and VBM in particular, for the system-level phenotyping of rodent models of Parkinsonism and provides a methodological framework for future studies in novel rodent models as they become available to the research community.
Collapse
|
81
|
Colom R, Hua X, Martínez K, Burgaleta M, Román FJ, Gunter JL, Carmona S, Jaeggi SM, Thompson PM. Brain structural changes following adaptive cognitive training assessed by Tensor-Based Morphometry (TBM). Neuropsychologia 2016; 91:77-85. [PMID: 27477628 DOI: 10.1016/j.neuropsychologia.2016.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/11/2016] [Accepted: 07/27/2016] [Indexed: 12/01/2022]
Abstract
Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time building 3D deformation maps. This technique has been applied for tracking brain degeneration in Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we applied TBM to quantify changes in brain structure after completing a challenging adaptive cognitive training program based on the n-back task. Twenty-six young women completed twenty-four training sessions across twelve weeks and they showed, on average, large cognitive improvements. High-resolution MRI scans were obtained before and after training. The computed longitudinal deformation maps were analyzed for answering three questions: (a) Are there differential brain structural changes in the training group as compared with a matched control group? (b) Are these changes related to performance differences in the training program? (c) Are standardized changes in a set of psychological factors (fluid and crystallized intelligence, working memory, and attention control) measured before and after training, related to structural changes in the brain? Results showed (a) greater structural changes for the training group in the temporal lobe, (b) a negative correlation between these changes and performance across training sessions (the greater the structural change, the lower the cognitive performance improvements), and (c) negligible effects regarding the psychological factors measured before and after training.
Collapse
Affiliation(s)
| | - Xue Hua
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, University of Southern California (USC), Marina del Rey, CA, USA
| | - Kenia Martínez
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | - Francisco J Román
- Universidad Autónoma de Madrid, Spain; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, USA
| | | | - Susanna Carmona
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, University of Southern California (USC), Marina del Rey, CA, USA
| |
Collapse
|
82
|
Abstract
OBJECTIVE To investigate the cerebral gray matter volume alterations in unilateral sudden sensorineural hearing loss patients within the acute period by the voxel-based morphometry method, and to determine if hearing impairment is associated with regional gray matter alterations in unilateral sudden sensorineural hearing loss patients. STUDY DESIGN Prospective case study. SETTING Tertiary class A teaching hospital. PATIENTS Thirty-nine patients with left-side unilateral sudden sensorineural hearing loss and 47 patients with right-side unilateral sudden sensorineural hearing loss. INTERVENTION Diagnostic. MAIN OUTCOME MEASURE To compare the regional gray matter of unilateral sudden sensorineural hearing loss patients and healthy control participants. RESULTS Compared with control groups, patients with left side unilateral sudden sensorineural hearing loss had significant gray matter reductions in the right middle temporal gyrus and right superior temporal gyrus, whereas patients with right side unilateral sudden sensorineural hearing loss showed gray matter decreases in the left superior temporal gyrus and left middle temporal gyrus. A significant negative correlation with the duration of the sudden sensorineural hearing loss (R = -0.427, p = 0.012 for left-side unilateral SSNHL and R = -0.412, p = 0.013 for right-side unilateral SSNHL) was also found in these brain areas. There was no region with increased gray matter found in both groups of unilateral sudden sensorineural hearing loss patients. CONCLUSIONS This study confirms that detectable decreased contralateral auditory cortical morphological changes have occurred in unilateral SSNHL patients within the acute period by voxel-based morphometry methods. The gray matter volumes of these brain areas also perform a negative correlation with the duration of the disease, which suggests a gradual brain structural impairment after the progression of the disease.
Collapse
|
83
|
Niddam D, Lee SH, Su YT, Chan RC. Brain structural changes in patients with chronic myofascial pain. Eur J Pain 2016; 21:148-158. [DOI: 10.1002/ejp.911] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2016] [Indexed: 11/08/2022]
Affiliation(s)
- D.M. Niddam
- Brain Research Center; National Yang-Ming University; Taipei Taiwan
- Institute of Brain Science; School of Medicine; National Yang-Ming University; Taipei Taiwan
| | - S.-H. Lee
- Department of Physical Medicine and Rehabilitation; National Yang-Ming University; Taipei Taiwan
- Department of Physical Medicine and Rehabilitation; Taipei Veterans General Hospital; Taipei Taiwan
| | - Y.-T. Su
- Department of Physical Medicine and Rehabilitation; Far Eastern Memorial Hospital; New Taipei City Taiwan
| | - R.-C. Chan
- Department of Physical Medicine and Rehabilitation; National Yang-Ming University; Taipei Taiwan
- Department of Physical Medicine and Rehabilitation; Taipei Veterans General Hospital; Taipei Taiwan
| |
Collapse
|
84
|
Lan MJ, Chhetry BT, Liston C, Mann JJ, Dubin M. Transcranial Magnetic Stimulation of Left Dorsolateral Prefrontal Cortex Induces Brain Morphological Changes in Regions Associated with a Treatment Resistant Major Depressive Episode: An Exploratory Analysis. Brain Stimul 2016; 9:577-83. [PMID: 27017072 DOI: 10.1016/j.brs.2016.02.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/17/2016] [Accepted: 02/24/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (TMS) is an FDA-approved antidepressant treatment but little is known of its mechanism of action. Specifically, downstream effects of TMS remain to be elucidated. OBJECTIVE/HYPOTHESIS This study aims to identify brain structural changes from TMS treatment of a treatment resistant depressive episode through an exploratory analysis. METHODS Twenty-seven subjects in a DSM-IV current major depressive episode and on a stable medication regimen had a 3T magnetic resonance T1 structural scan before and after five weeks of standard TMS treatment to the left dorsolateral prefrontal cortex. Twenty-seven healthy volunteer (HVs) subjects had the same brain MRI acquisition. Voxel-based morphometry was performed using high dimensional non-linear diffusomorphic anatomical registration (DARTEL). RESULTS Six clusters of gray matter volume (GMV) that were lower in pre-treatment MRIs of depressed subjects than in HVs. GMV in four of these regions increased in MDD after TMS treatment by 3.5-11.2%. The four brain regions that changed with treatment were centered in the left anterior cingulate cortex, the left insula, the left superior temporal gyrus and the right angular gyrus. Increases in the anterior cingulate GMV with TMS correlated with improvement in depression severity. CONCLUSIONS To our knowledge, this is the first study of brain structural changes during TMS treatment of depression. The affected brain areas are involved in cognitive appraisal, decision-making and subjective experience of emotion. These effects may have potential relevance for the antidepressant action of TMS.
Collapse
Affiliation(s)
- Martin J Lan
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, USA.
| | - Binod Thapa Chhetry
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medical College, USA; Fell Family Brain and Mind Research Institute, Weill Cornell Medical College, USA
| | - J John Mann
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, USA
| | - Marc Dubin
- Department of Psychiatry, Weill Cornell Medical College, USA; Fell Family Brain and Mind Research Institute, Weill Cornell Medical College, USA
| |
Collapse
|
85
|
Choi H, Cheon GJ, Kim HJ, Choi SH, Kim YI, Kang KW, Chung JK, Kim EE, Lee DS. Gray matter correlates of dopaminergic degeneration in Parkinson's disease: A hybrid PET/MR study using (18) F-FP-CIT. Hum Brain Mapp 2016; 37:1710-21. [PMID: 26846350 DOI: 10.1002/hbm.23130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/14/2016] [Accepted: 01/20/2016] [Indexed: 01/15/2023] Open
Abstract
Dopaminergic degeneration is a hallmark of Parkinson's disease (PD), which causes various symptoms affected by corticostriatal circuits. So far, the relationship between cortical changes and dopamine loss in the striatum is unclear. Here, we evaluate the gray matter (GM) changes in accordance with striatal dopaminergic degeneration in PD using hybrid PET/MR. Sixteen patients with idiopathic PD underwent (18) F-FP-CIT PET/MR. To measure dopaminergic degeneration in PD, binding ratio (BR) of dopamine transporter in striatum was evaluated by (18) F-FP-CIT. Voxel-based morphometry (VBM) was used to evaluate GM density. We obtained voxelwise correlation maps of GM density according to the striatal BR. Voxel-by-voxel correlation between BR maps and GM density maps was done to evaluate region-specific correlation of striatal dopaminergic degeneration. There was a trend of positive correlation between striatal BR and GM density in the cerebellum, parahippocampal gyri, and frontal cortex. A trend of negative correlation between striatal BR and GM density in the medial occipital cortex was found. Voxel-by-voxel correlation revealed that the positive correlation was mainly dependent on anterior striatal BR, while posterior striatal BR mostly showed negative correlation with GM density in occipital and temporal cortices. Decreased GM density related to anterior striatal dopaminergic degeneration might demonstrate degeneration of dopaminergic nonmotor circuits. Furthermore, the negative correlation could be related to the motor circuits of posterior striatum. Our integrated PET/MR study suggests that the widespread structural progressive changes in PD could denote the cortical functional correlates of the degeneration of striatal dopaminergic circuits. Hum Brain Mapp 37:1710-1721, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Han-Joon Kim
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul, Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Center for Nanoparticle Research, Institute for Basic Science, and School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| | - Yong-Il Kim
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - June-Key Chung
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - E Edmund Kim
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Department of Radiological Sciences, University of California, Irvine, CA
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
86
|
Esser RW, Stoeckel MC, Kirsten A, Watz H, Taube K, Lehmann K, Petersen S, Magnussen H, von Leupoldt A. Structural Brain Changes in Patients With COPD. Chest 2016. [PMID: 26203911 DOI: 10.1378/chest.15-0027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Patients with COPD suffer from chronic dyspnea, which is commonly perceived as highly aversive and threatening. Moreover, COPD is often accompanied by disease-specific fears and avoidance of physical activity. However, little is known about structural brain changes in patients with COPD and respective relations with disease duration and disease-specific fears. METHODS This study investigated structural brain changes in patients with COPD and their relation with disease duration, fear of dyspnea, and fear of physical activity. We used voxel-based morphometric analysis of MRI images to measure differences in generalized cortical degeneration and regional gray matter between 30 patients with moderate to severe COPD and 30 matched healthy control subjects. Disease-specific fears were assessed by the COPD anxiety questionnaire. RESULTS Patients with COPD showed no generalized cortical degeneration, but decreased gray matter in posterior cingulate cortex (whole-brain analysis) as well as in anterior and midcingulate cortex, hippocampus, and amygdala (regions-of-interest analyses). Patients' reductions in gray matter in anterior cingulate cortex were negatively correlated with disease duration, fear of dyspnea, and fear of physical activity. Mediation analysis revealed that the relation between disease duration and reduced gray matter of the anterior cingulate was mediated by fear of physical activity. CONCLUSIONS Patients with COPD demonstrated gray matter decreases in brain areas relevant for the processing of dyspnea, fear, and antinociception. These structural brain changes were partly related to longer disease duration and greater disease-specific fears, which might contribute to a less favorable course of the disease.
Collapse
Affiliation(s)
- Roland W Esser
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Cornelia Stoeckel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Kirsten
- Pulmonary Research Institute at LungClinic Grosshansdorf, Airway Research Center North, Member of the German Center for Lung Research, Grosshansdorf, Germany
| | - Henrik Watz
- Pulmonary Research Institute at LungClinic Grosshansdorf, Airway Research Center North, Member of the German Center for Lung Research, Grosshansdorf, Germany
| | | | | | - Sibylle Petersen
- Institute for Health and Behaviour, Research Unit INSIDE, University of Luxembourg, Luxembourg City, Luxembourg
| | - Helgo Magnussen
- Pulmonary Research Institute at LungClinic Grosshansdorf, Airway Research Center North, Member of the German Center for Lung Research, Grosshansdorf, Germany
| | - Andreas von Leupoldt
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Research Group Health Psychology, University of Leuven, Leuven, Belgium.
| |
Collapse
|
87
|
Interhemispheric Plasticity following Intermittent Theta Burst Stimulation in Chronic Poststroke Aphasia. Neural Plast 2016; 2016:4796906. [PMID: 26881111 PMCID: PMC4736997 DOI: 10.1155/2016/4796906] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/01/2015] [Accepted: 11/10/2015] [Indexed: 12/31/2022] Open
Abstract
The effects of noninvasive neurostimulation on brain structure and function in chronic poststroke aphasia are poorly understood. We investigated the effects of intermittent theta burst stimulation (iTBS) applied to residual language-responsive cortex in chronic patients using functional and anatomical MRI data acquired before and after iTBS. Lateralization index (LI) analyses, along with comparisons of inferior frontal gyrus (IFG) activation and connectivity during covert verb generation, were used to assess changes in cortical language function. Voxel-based morphometry (VBM) was used to assess effects on regional grey matter (GM). LI analyses revealed a leftward shift in IFG activity after treatment. While left IFG activation increased, right IFG activation decreased. Changes in right to left IFG connectivity during covert verb generation also decreased after iTBS. Behavioral correlations revealed a negative relationship between changes in right IFG activation and improvements in fluency. While anatomical analyses did not reveal statistically significant changes in grey matter volume, the fMRI results provide evidence for changes in right and left IFG function after iTBS. The negative relationship between post-iTBS changes in right IFG activity during covert verb generation and improvements in fluency suggests that iTBS applied to residual left-hemispheric language areas may reduce contralateral responses related to language production and facilitate recruitment of residual language areas after stroke.
Collapse
|
88
|
Effects of Fast Simple Numerical Calculation Training on Neural Systems. Neural Plast 2016; 2016:5940634. [PMID: 26881117 PMCID: PMC4736604 DOI: 10.1155/2016/5940634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 10/21/2015] [Accepted: 11/02/2015] [Indexed: 11/21/2022] Open
Abstract
Cognitive training, including fast simple numerical calculation (FSNC), has been shown to improve performance on untrained processing speed and executive function tasks in the elderly. However, the effects of FSNC training on cognitive functions in the young and on neural mechanisms remain unknown. We investigated the effects of 1-week intensive FSNC training on cognitive function, regional gray matter volume (rGMV), and regional cerebral blood flow at rest (resting rCBF) in healthy young adults. FSNC training was associated with improvements in performance on simple processing speed, speeded executive functioning, and simple and complex arithmetic tasks. FSNC training was associated with a reduction in rGMV and an increase in resting rCBF in the frontopolar areas and a weak but widespread increase in resting rCBF in an anatomical cluster in the posterior region. These results provide direct evidence that FSNC training alone can improve performance on processing speed and executive function tasks as well as plasticity of brain structures and perfusion. Our results also indicate that changes in neural systems in the frontopolar areas may underlie these cognitive improvements.
Collapse
|
89
|
Zhang D, Ma Y. Repetitive transcranial magnetic stimulation improves both hearing function and tinnitus perception in sudden sensorineural hearing loss patients. Sci Rep 2015; 5:14796. [PMID: 26463446 PMCID: PMC4604476 DOI: 10.1038/srep14796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 09/09/2015] [Indexed: 11/17/2022] Open
Abstract
The occurrence of sudden sensorineural hearing loss (SSHL) affects not only cochlear activity but also neural activity in the central auditory system. Repetitive transcranial magnetic stimulation (rTMS) above the auditory cortex has been reported to improve auditory processing and to reduce the perception of tinnitus, which results from network dysfunction involving both auditory and non-auditory brain regions. SSHL patients who were refractory to standard corticosteroid therapy (SCT) and hyperbaric oxygen (HBO) therapy received 20 sessions of 1 Hz rTMS to the temporoparietal junction ipsilateral to the symptomatic ear (rTMS group). RTMS therapy administered in addition to SCT and HBO therapy resulted in significantly greater recovery of hearing function and improvement of tinnitus perception compared SCT and HBO therapy without rTMS therapy. Additionally, the single photon emission computed tomography (SPECT) measurements obtained in a subgroup of patients suggested that the rTMS therapy could have alleviated the decrease in regional cerebral brain flow (rCBF) in SSHL patients. RTMS appears to be an effective, practical, and safe treatment strategy for SSHL.
Collapse
Affiliation(s)
- Dai Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yuewen Ma
- Department of Rehabilitation Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
90
|
Doucet GE, He X, Sperling M, Sharan A, Tracy JI. Frontal gray matter abnormalities predict seizure outcome in refractory temporal lobe epilepsy patients. NEUROIMAGE-CLINICAL 2015; 9:458-66. [PMID: 26594628 PMCID: PMC4596924 DOI: 10.1016/j.nicl.2015.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 12/20/2022]
Abstract
Developing more reliable predictors of seizure outcome following temporal lobe surgery for intractable epilepsy is an important clinical goal. In this context, we investigated patients with refractory temporal lobe epilepsy (TLE) before and after temporal resection. In detail, we explored gray matter (GM) volume change in relation with seizure outcome, using a voxel-based morphometry (VBM) approach. To do so, this study was divided into two parts. The first one involved group analysis of differences in regional GM volume between the groups (good outcome (GO), e.g., no seizures after surgery; poor outcome (PO), e.g., persistent postoperative seizures; and controls, N = 24 in each group), pre- and post-surgery. The second part of the study focused on pre-surgical data only (N = 61), determining whether the degree of GM abnormalities can predict surgical outcomes. For this second step, GM abnormalities were identified, within each lobe, in each patient when compared with an ad hoc sample of age-matched controls. For the first analysis, the results showed larger GM atrophy, mostly in the frontal lobe, in PO patients, relative to both GO patients and controls, pre-surgery. When comparing pre-to-post changes, we found relative GM gains in the GO but not in the PO patients, mostly in the non-resected hemisphere. For the second analysis, only the frontal lobe displayed reliable prediction of seizure outcome. 81% of the patients showing pre-surgical increased GM volume in the frontal lobe became seizure free, post-surgery; while 77% of the patients with pre-surgical reduced frontal GM volume had refractory seizures, post-surgery. A regression analysis revealed that the proportion of voxels with reduced frontal GM volume was a significant predictor of seizure outcome (p = 0.014). Importantly, having less than 1% of the frontal voxels with GM atrophy increased the likelihood of being seizure-free, post-surgery, by seven times. Overall, our results suggest that using pre-surgical GM abnormalities within the frontal lobe is a reliable predictor of seizure outcome post-surgery in TLE. We believe that this frontal GM atrophy captures seizure burden outside the pre-existing ictal temporal lobe, reflecting either the development of epileptogenesis or the loss of a protective, adaptive force helping to control or limit seizures. This study provides evidence of the potential of VBM-based approaches to predict surgical outcomes in refractory TLE candidates. Gray matter abnormalities within the frontal lobe predicts seizure outcome in TLE. Poor outcome patients suffer from GM atrophy in the frontal lobe, pre-surgery. Good outcome patients show gain of GM in the non-resected hemisphere, post-surgery. Frontal GM atrophy captures seizure burden outside the ictal temporal lobe.
Collapse
Affiliation(s)
- Gaelle E Doucet
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xiaosong He
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Michael Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joseph I Tracy
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
91
|
Raschle NM, Menks WM, Fehlbaum LV, Tshomba E, Stadler C. Structural and Functional Alterations in Right Dorsomedial Prefrontal and Left Insular Cortex Co-Localize in Adolescents with Aggressive Behaviour: An ALE Meta-Analysis. PLoS One 2015; 10:e0136553. [PMID: 26339798 PMCID: PMC4560426 DOI: 10.1371/journal.pone.0136553] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/04/2015] [Indexed: 01/27/2023] Open
Abstract
Recent neuroimaging work has suggested that aggressive behaviour (AB) is associated with structural and functional brain abnormalities in processes subserving emotion processing and regulation. However, most neuroimaging studies on AB to date only contain relatively small sample sizes. To objectively investigate the consistency of previous structural and functional research in adolescent AB, we performed a systematic literature review and two coordinate-based activation likelihood estimation meta-analyses on eight VBM and nine functional neuroimaging studies in a total of 783 participants (408 [224AB/184 controls] and 375 [215 AB/160 controls] for structural and functional analysis respectively). We found 19 structural and eight functional foci of significant alterations in adolescents with AB, mainly located within the emotion processing and regulation network (including orbitofrontal, dorsomedial prefrontal and limbic cortex). A subsequent conjunction analysis revealed that functional and structural alterations co-localize in right dorsomedial prefrontal cortex and left insula. Our results are in line with meta-analytic work as well as structural, functional and connectivity findings to date, all of which make a strong point for the involvement of a network of brain areas responsible for emotion processing and regulation, which is disrupted in AB. Increased knowledge about the behavioural and neuronal underpinnings of AB is crucial for the development of novel and implementation of existing treatment strategies. Longitudinal research studies will have to show whether the observed alterations are a result or primary cause of the phenotypic characteristics in AB.
Collapse
Affiliation(s)
- Nora Maria Raschle
- Department of Child and Adolescent Psychiatry, Psychiatric University Clinics Basel, Basel, Switzerland
- * E-mail:
| | - Willeke Martine Menks
- Department of Child and Adolescent Psychiatry, Psychiatric University Clinics Basel, Basel, Switzerland
| | - Lynn Valérie Fehlbaum
- Department of Child and Adolescent Psychiatry, Psychiatric University Clinics Basel, Basel, Switzerland
| | - Ebongo Tshomba
- Department of Child and Adolescent Psychiatry, Psychiatric University Clinics Basel, Basel, Switzerland
| | - Christina Stadler
- Department of Child and Adolescent Psychiatry, Psychiatric University Clinics Basel, Basel, Switzerland
| |
Collapse
|
92
|
Bates KA, Rodger J. Repetitive transcranial magnetic stimulation for stroke rehabilitation-potential therapy or misplaced hope? Restor Neurol Neurosci 2015; 33:557-69. [DOI: 10.3233/rnn-130359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
93
|
Gash DM, Deane AS. Neuron-based heredity and human evolution. Front Neurosci 2015; 9:209. [PMID: 26136649 PMCID: PMC4469835 DOI: 10.3389/fnins.2015.00209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/26/2015] [Indexed: 11/22/2022] Open
Abstract
It is widely recognized that human evolution has been driven by two systems of heredity: one DNA-based and the other based on the transmission of behaviorally acquired information via nervous system functions. The genetic system is ancient, going back to the appearance of life on Earth. It is responsible for the evolutionary processes described by Darwin. By comparison, the nervous system is relatively newly minted and in its highest form, responsible for ideation and mind-to-mind transmission of information. Here the informational capabilities and functions of the two systems are compared. While employing quite different mechanisms for encoding, storing and transmission of information, both systems perform these generic hereditary functions. Three additional features of neuron-based heredity in humans are identified: the ability to transfer hereditary information to other members of their population, not just progeny; a selection process for the information being transferred; and a profoundly shorter time span for creation and dissemination of survival-enhancing information in a population. The mechanisms underlying neuron-based heredity involve hippocampal neurogenesis and memory and learning processes modifying and creating new neural assemblages changing brain structure and functions. A fundamental process in rewiring brain circuitry is through increased neural activity (use) strengthening and increasing the number of synaptic connections. Decreased activity in circuitry (disuse) leads to loss of synapses. Use and disuse modifying an organ to bring about new modes of living, habits and functions are processes in line with Neolamarckian concepts of evolution (Packard, 1901). Evidence is presented of bipartite evolutionary processes-Darwinian and Neolamarckian-driving human descent from a common ancestor shared with the great apes.
Collapse
Affiliation(s)
- Don M. Gash
- Department of Anatomy and Neurobiology, College of Medicine, University of KentuckyLexington, KY, USA
| | | |
Collapse
|
94
|
Chervyakov AV, Chernyavsky AY, Sinitsyn DO, Piradov MA. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation. Front Hum Neurosci 2015; 9:303. [PMID: 26136672 PMCID: PMC4468834 DOI: 10.3389/fnhum.2015.00303] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/12/2015] [Indexed: 11/16/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS) has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson’s disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation and long-term depression. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells, and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals). It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.
Collapse
Affiliation(s)
| | - Andrey Yu Chernyavsky
- Moscow Institute of Physics and Technology, Russian Academy of Sciences , Moscow , Russia ; Faculty of Computational Mathematics and Cybernetics, Moscow State University , Moscow , Russia
| | - Dmitry O Sinitsyn
- Research Center of Neurology , Moscow , Russia ; Semenov Institute of Chemical Physics, Russian Academy of Sciences , Moscow , Russia
| | | |
Collapse
|
95
|
Chervyakov AV, Chernyavsky AY, Sinitsyn DO, Piradov MA. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation. Front Hum Neurosci 2015. [PMID: 26136672 DOI: 10.3389/fnhum.2015.00303.e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS) has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson's disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation and long-term depression. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells, and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals). It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.
Collapse
Affiliation(s)
| | - Andrey Yu Chernyavsky
- Moscow Institute of Physics and Technology, Russian Academy of Sciences , Moscow , Russia ; Faculty of Computational Mathematics and Cybernetics, Moscow State University , Moscow , Russia
| | - Dmitry O Sinitsyn
- Research Center of Neurology , Moscow , Russia ; Semenov Institute of Chemical Physics, Russian Academy of Sciences , Moscow , Russia
| | | |
Collapse
|
96
|
Tang AD, Makowiecki K, Bartlett C, Rodger J. Low intensity repetitive transcranial magnetic stimulation does not induce cell survival or regeneration in a mouse optic nerve crush model. PLoS One 2015; 10:e0126949. [PMID: 25993112 PMCID: PMC4438867 DOI: 10.1371/journal.pone.0126949] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/09/2015] [Indexed: 11/29/2022] Open
Abstract
Low intensity repetitive Transcranial Magnetic Stimulation (LI-rTMS), a non-invasive form of brain stimulation, has been shown to induce structural and functional brain plasticity, including short distance axonal sprouting. However, the potential for LI-rTMS to promote axonal regeneration following neurotrauma has not been investigated. This study examined the effect of LI-rTMS on retinal ganglion cell (RGC) survival, axon regeneration and levels of BDNF in an optic nerve crush neurotrauma model. Adult C57Bl/6J mice received a unilateral intraorbital optic nerve crush. Mice received 10 minutes of sham (handling control without stimulation) (n=6) or LI-rTMS (n = 8) daily stimulation for 14 days to the operated eye. Immunohistochemistry was used to assess RGC survival (β-3 Tubulin) and axon regeneration across the injury (GAP43). Additionally, BDNF expression was quantified in a separate cohort by ELISA in the retina and optic nerve of injured (optic nerve crush) (sham n = 5, LI-rTMS n = 5) and non-injured mice (sham n = 5, LI-rTMS n = 5) that received daily stimulation as above for 7 days. Following 14 days of LI-rTMS there was no significant difference in mean RGC survival between sham and treated animals (p>0.05). Also, neither sham nor LI-rTMS animals showed GAP43 positive labelling in the optic nerve, indicating that regeneration did not occur. At 1 week, there was no significant difference in BDNF levels in the retina or optic nerves between sham and LI-rTMS in injured or non-injured mice (p>0.05). Although LI-rTMS has been shown to induce structural and molecular plasticity in the visual system and cerebellum, our results suggest LI-rTMS does not induce neuroprotection or regeneration following a complete optic nerve crush. These results help define the therapeutic capacity and limitations of LI-rTMS in the treatment of neurotrauma.
Collapse
Affiliation(s)
- Alexander D. Tang
- Department of Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Perth, WA, Australia
| | - Kalina Makowiecki
- Department of Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Perth, WA, Australia
| | - Carole Bartlett
- Department of Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Rodger
- Department of Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Perth, WA, Australia
- * E-mail:
| |
Collapse
|
97
|
Soleimani R, Jalali MM, Hasandokht T. Therapeutic impact of repetitive transcranial magnetic stimulation (rTMS) on tinnitus: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol 2015; 273:1663-75. [DOI: 10.1007/s00405-015-3642-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
|
98
|
Vanneste S, Van De Heyning P, De Ridder D. Tinnitus: a large VBM-EEG correlational study. PLoS One 2015; 10:e0115122. [PMID: 25781934 PMCID: PMC4364116 DOI: 10.1371/journal.pone.0115122] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/18/2014] [Indexed: 11/29/2022] Open
Abstract
A surprising fact in voxel-based morphometry (VBM) studies performed in tinnitus is that not one single region is replicated in studies of different centers. The question then rises whether this is related to the low sample size of these studies, the selection of non-representative patient subgroups, or the absence of stratification according to clinical characteristics. Another possibility is that VBM is not a good tool to study functional pathologies such as tinnitus, in contrast to pathologies like Alzheimer's disease where it is known the pathology is related to cell loss. In a large sample of 154 tinnitus patients VBM and QEEG (Quantitative Electroencephalography) was performed and evaluated by a regression analysis. Correlation analyses are performed between VBM and QEEG data. Uncorrected data demonstrated structural differences in grey matter in hippocampal and cerebellar areas related to tinnitus related distress and tinnitus duration. After control for multiple comparisons, only cerebellar VBM changes remain significantly altered. Electrophysiological differences are related to distress, tinnitus intensity, and tinnitus duration in the subgenual anterior cingulate cortex, dorsal anterior cingulate cortex, hippocampus, and parahippocampus, which confirms previous results. The absence of QEEG-VBM correlations suggest functional changes are not reflected by co-occurring structural changes in tinnitus, and the absence of VBM changes (except for the cerebellum) that survive correct statistical analysis in a large study population suggests that VBM might not be very sensitive for studying tinnitus.
Collapse
Affiliation(s)
- Sven Vanneste
- Department of Translational Neuroscience, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- School for Behavioral & Brain Sciences, University of Texas at Dallas, Dallas, Texas, United States of America
| | - Paul Van De Heyning
- Department of Translational Neuroscience, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- ENT Department, University Hospital Antwerp, Antwerp, Belgium
| | - Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
99
|
Prom-Wormley E, Maes HHM, Schmitt JE, Panizzon MS, Xian H, Eyler LT, Franz CE, Lyons MJ, Tsuang MT, Dale AM, Fennema-Notestine C, Kremen WS, Neale MC. Genetic and environmental contributions to the relationships between brain structure and average lifetime cigarette use. Behav Genet 2015; 45:157-70. [PMID: 25690561 DOI: 10.1007/s10519-014-9704-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 12/27/2014] [Indexed: 10/24/2022]
Abstract
Chronic cigarette use has been consistently associated with differences in the neuroanatomy of smokers relative to nonsmokers in case-control studies. However, the etiology underlying the relationships between brain structure and cigarette use is unclear. A community-based sample of male twin pairs ages 51-59 (110 monozygotic pairs, 92 dizygotic pairs) was used to determine the extent to which there are common genetic and environmental influences between brain structure and average lifetime cigarette use. Brain structure was measured by high-resolution structural magnetic resonance imaging, from which subcortical volume and cortical volume, thickness and surface area were derived. Bivariate genetic models were fitted between these measures and average lifetime cigarette use measured as cigarette pack-years. Widespread, negative phenotypic correlations were detected between cigarette pack-years and several cortical as well as subcortical structures. Shared genetic and unique environmental factors contributed to the phenotypic correlations shared between cigarette pack-years and subcortical volume as well as cortical volume and surface area. Brain structures involved in many of the correlations were previously reported to play a role in specific aspects of networks of smoking-related behaviors. These results provide evidence for conducting future research on the etiology of smoking-related behaviors using measures of brain morphology.
Collapse
Affiliation(s)
- Elizabeth Prom-Wormley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Suzuki H, Sumiyoshi A, Matsumoto Y, Duffy BA, Yoshikawa T, Lythgoe MF, Yanai K, Taki Y, Kawashima R, Shimokawa H. Structural abnormality of the hippocampus associated with depressive symptoms in heart failure rats. Neuroimage 2015; 105:84-92. [DOI: 10.1016/j.neuroimage.2014.10.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 08/18/2014] [Accepted: 10/14/2014] [Indexed: 11/30/2022] Open
|