51
|
El Kirat K, Morandat S, Dufrêne YF. Nanoscale analysis of supported lipid bilayers using atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:750-65. [DOI: 10.1016/j.bbamem.2009.07.026] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/17/2009] [Accepted: 07/23/2009] [Indexed: 12/11/2022]
|
52
|
Casuso I, Scheuring S. Automated setpoint adjustment for biological contact mode atomic force microscopy imaging. NANOTECHNOLOGY 2010; 21:035104. [PMID: 19966388 DOI: 10.1088/0957-4484/21/3/035104] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Contact mode atomic force microscopy (AFM) is the most frequently used AFM imaging mode in biology. It is about 5-10 times faster than oscillating mode imaging (in conventional AFM setups), and provides topographs of biological samples with sub-molecular resolution and at a high signal-to-noise ratio. Unfortunately, contact mode imaging is sensitive to the applied force and intrinsic force drift: inappropriate force applied by the AFM tip damages the soft biological samples. We present a methodology that automatically searches for and maintains high resolution imaging forces. We found that the vertical and lateral vibrations of the probe during scanning are valuable signals for the characterization of the actual applied force by the tip. This allows automated adjustment and correction of the setpoint force during an experiment. A system that permanently performs this methodology steered the AFM towards high resolution imaging forces and imaged purple membrane at molecular resolution and live cells at high signal-to-noise ratio for hours without an operator.
Collapse
Affiliation(s)
- Ignacio Casuso
- Institut Curie, Equipe INSERM Avenir, UMR168-CNRS, Paris, France
| | | |
Collapse
|
53
|
JarosÅawski S, Duquesne K, Sturgis JN, Scheuring S. High-resolution architecture of the outer membrane of the Gram-negative bacteriaRoseobacter denitrificans. Mol Microbiol 2009; 74:1211-22. [DOI: 10.1111/j.1365-2958.2009.06926.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
54
|
Goldsbury CS, Scheuring S, Kreplak L. Introduction to Atomic Force Microscopy (AFM) in Biology. ACTA ACUST UNITED AC 2009; Chapter 17:17.7.1-17.7.19. [DOI: 10.1002/0471140864.ps1707s58] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | - Laurent Kreplak
- Dalhousie University, Department of Physics & Atmospheric Science Halifax Canada
| |
Collapse
|
55
|
Abstract
In this review, I describe the biological applications of the atomic force microscope (AFM). The historical background and the development of the microscope are described. The AFM can operate in many different modes relevant to biological systems including topography, chemical analysis, and forces relevant at the biological length scale (single cell to DNA dimensions and pico to nano Newton forces). A limited number of examples from the literature are described to illustrate some of the many capabilities of this microscope. The aim is to give an introduction of the technique to the inexperienced in this rapidly growing field.
Collapse
Affiliation(s)
- N Gadegaard
- Centre for Cell Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom.
| |
Collapse
|
56
|
Fechner P, Boudier T, Mangenot S, Jaroslawski S, Sturgis JN, Scheuring S. Structural information, resolution, and noise in high-resolution atomic force microscopy topographs. Biophys J 2009; 96:3822-31. [PMID: 19413988 PMCID: PMC2711429 DOI: 10.1016/j.bpj.2009.02.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 12/10/2008] [Accepted: 02/04/2009] [Indexed: 11/22/2022] Open
Abstract
AFM has developed into a powerful tool in structural biology, providing topographs of proteins under close-to-native conditions and featuring an outstanding signal/noise ratio. However, the imaging mechanism exhibits particularities: fast and slow scan axis represent two independent image acquisition axes. Additionally, unknown tip geometry and tip-sample interaction render the contrast transfer function nondefinable. Hence, the interpretation of AFM topographs remained difficult. How can noise and distortions present in AFM images be quantified? How does the number of molecule topographs merged influence the structural information provided by averages? What is the resolution of topographs? Here, we find that in high-resolution AFM topographs, many molecule images are only slightly disturbed by noise, distortions, and tip-sample interactions. To identify these high-quality particles, we propose a selection criterion based on the internal symmetry of the imaged protein. We introduce a novel feature-based resolution analysis and show that AFM topographs of different proteins contain structural information beginning at different resolution thresholds: 10 A (AqpZ), 12 A (AQP0), 13 A (AQP2), and 20 A (light-harvesting-complex-2). Importantly, we highlight that the best single-molecule images are more accurate molecular representations than ensemble averages, because averaging downsizes the z-dimension and "blurs" structural details.
Collapse
Key Words
- 2d, two-dimensional
- 3d, three-dimensional
- acv, auto-correlation value
- afm, atomic force microscopy
- aqp0, aquaporin-0
- aqp2, aquaporin-2
- aqpz, aquaporin-z
- br, bacteriorhodopsin
- ccv, cross-correlation value
- ctf, contrast transfer function
- dpr, differential phase residual
- em, electron microscopy
- frc, fourier ring correlation
- fsc, fourier shell correlation
- is, internal symmetry
- lh2, light-harvesting-complex 2
- rmsd, root mean-square deviation
- sd, standard deviation
- snr, signal/noise ratio
- ssnr, spectral signal/noise ratio
Collapse
Affiliation(s)
- Peter Fechner
- Institut Curie, Équipe Institut National de la Santé et de la Recherche Médicale Avenir, 75248 Paris, France
| | - Thomas Boudier
- Institut de Biologie Intégrative, Institut Fédératif de Recherche 83, Université Pierre et Marie Curie, Paris, France
| | - Stéphanie Mangenot
- Institut Curie, Équipe Institut National de la Santé et de la Recherche Médicale Avenir, 75248 Paris, France
- Université Paris-Sud, 91405 Orsay, France
| | - Szymon Jaroslawski
- Institut Curie, Équipe Institut National de la Santé et de la Recherche Médicale Avenir, 75248 Paris, France
| | - James N. Sturgis
- UPR-9027 Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique–Aix-Marseille Université, 13402 Marseille, France
| | - Simon Scheuring
- Institut Curie, Équipe Institut National de la Santé et de la Recherche Médicale Avenir, 75248 Paris, France
| |
Collapse
|
57
|
Shinozaki Y, Sumitomo K, Tsuda M, Koizumi S, Inoue K, Torimitsu K. Direct observation of ATP-induced conformational changes in single P2X(4) receptors. PLoS Biol 2009; 7:e1000103. [PMID: 19419241 PMCID: PMC2675908 DOI: 10.1371/journal.pbio.1000103] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 03/19/2009] [Indexed: 12/04/2022] Open
Abstract
The ATP-gated P2X4 receptor is a cation channel, which is important in various pathophysiological events. The architecture of the P2X4 receptor in the activated state and how to change its structure in response to ATP binding are not fully understood. Here, we analyze the architecture and ATP-induced structural changes in P2X4 receptors using fast-scanning atomic force microscopy (AFM). AFM images of the membrane-dissociated and membrane-inserted forms of P2X4 receptors and a functional analysis revealed that P2X4 receptors have an upward orientation on mica but lean to one side. Time-lapse imaging of the ATP-induced structural changes in P2X4 receptors revealed two different forms of activated structures under 0 Ca2+ conditions, namely a trimer structure and a pore dilation-like tripartite structure. A dye uptake measurement demonstrated that ATP-activated P2X4 receptors display pore dilation in the absence of Ca2+. With Ca2+, the P2X4 receptors exhibited only a disengaged trimer and no dye uptake was observed. Thus our data provide a new insight into ATP-induced structural changes in P2X4 receptors that correlate with pore dynamics. ATP is not only a source of intracellular energy but can act as an intercellular signal by binding membrane receptors. Purinergic receptors, which bind with nucleotides including ATP are known as P2 receptors and are divided into two types: ion channel-type P2X receptors and metabotropic-type P2Y receptors. P2X receptors are thought to undergo conformational changes in response to ATP binding, leading to the opening of transmembrane channels, through which cations enter the cells. A growing body of evidence shows that P2X receptors control various physiological and pathophysiological cellular responses. However, the receptor structure and the conformational changes it experiences upon stimulation remained to be clarified. Here, we employed an atomic force microscope (AFM) to observe P2X receptor behavior at the single channel level. We chose to analyze the P2X4 receptor, because it is known to increase the transmembrane pore size (i.e., pore dilation) in the absence of extracellular calcium. Activated P2X4 receptor exhibited a trimeric topology with a pore-like structure in the center. When calcium was present the receptor exhibited a trimer without a pore structure at its center. These structural changes corresponded well with the changes of ion permeability of P2X4 receptor. Fast-scanning atomic force microscopy reveals the topology, ATP-induced conformational changes, and Ca2+ regulation of the pore-opening in P2X4 receptors.
Collapse
|
58
|
Atomic force microscopy of biological membranes. Biophys J 2009; 96:329-38. [PMID: 19167286 DOI: 10.1016/j.bpj.2008.09.046] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 09/15/2008] [Indexed: 11/21/2022] Open
Abstract
Atomic force microscopy (AFM) is an ideal method to study the surface topography of biological membranes. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. In addition, the tip can be tethered to the end of a single membrane protein, and forces acting on the tip upon its retraction indicate barriers that occur during the process of protein unfolding. Here we discuss the fundamental limitations of AFM determined by the properties of cantilevers, present aspects of sample preparation, and review results achieved on reconstituted and native biological membranes.
Collapse
|
59
|
Atomic Force Microscopy: A Versatile Tool for Studying Cell Morphology, Adhesion and Mechanics. Cell Mol Bioeng 2008. [DOI: 10.1007/s12195-008-0037-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
60
|
Tang J, Ebner A, Badelt-Lichtblau H, Völlenkle C, Rankl C, Kraxberger B, Leitner M, Wildling L, Gruber HJ, Sleytr UB, Ilk N, Hinterdorfer P. Recognition imaging and highly ordered molecular templating of bacterial S-layer nanoarrays containing affinity-tags. NANO LETTERS 2008; 8:4312-4319. [PMID: 19367846 DOI: 10.1021/nl802092c] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Functional nanoarrays were fabricated using the chimeric bacterial cell surface layer (S-layer) protein rSbpA fused with the affinity tag Strep-tagII and characterized using various atomic force microscopy (AFM) techniques in aqueous environment. The accessibility of Strep-tagII was verified by single-molecule force spectroscopy studies employing Strep-Tactin as specific ligand. Simultaneous topography and recognition imaging (TREC) of the nanoarray yielded high resolution maps of the Strep-tagll binding sites with a positional accuracy of 1.5 nm. The nanoarrays were used as template for constructing highly ordered molecular binding blocks.
Collapse
Affiliation(s)
- Jilin Tang
- Institute of Biophysics, Johannes Kepler University of Linz, 4040 Linz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
The atomic force microscope (AFM) is an important tool for studying biological samples due to its ability to image surfaces under liquids. The AFM operates by physical interaction of a cantilever tip with the molecules on the cell surface. Adhesion forces between the tip and cell surface molecules are detected as cantilever deflections. Thus, the cantilever tip can be used to image live cells with atomic resolution and to probe single molecular events in living cells under physiological conditions. Currently, this is the only technique available that directly provides structural, mechanical, and functional information at high resolution. This unit presents the basic AFM components, modes of operation, useful tips for sample preparation, and a short review of AFM applications in microbiology.
Collapse
Affiliation(s)
- Andreea Trache
- Department of Systems Biology & Translational Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | | |
Collapse
|
62
|
Ebner A, Nikova D, Lange T, Häberle J, Falk S, Dübbers A, Bruns R, Hinterdorfer P, Oberleithner H, Schillers H. Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging. NANOTECHNOLOGY 2008; 19:384017. [PMID: 21832576 DOI: 10.1088/0957-4484/19/38/384017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated chloride (Cl(-)) channel that plays an important role in salt and fluid movement across epithelia. Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR. The most predominant mutation, F508del, disturbs CFTR protein trafficking, resulting in a reduced number of CFTR in the plasma membrane. Recent studies indicate that CFTR is not only found in epithelia but also in human erythrocytes. Although considerable attempts have been made to quantify CFTR in cells, conclusions on numbers of CFTR molecules localized in the plasma membrane have been drawn indirectly. AFM has the power to provide the needed information, since both sub-molecular spatial resolution and direct protein recognition via antibody-antigen interaction can be observed. We performed a quantification study of the CFTR copies in erythrocyte membranes at the single molecule level, and compared the difference between healthy donors and CF patients. We detected that the number of CFTR molecules is reduced by 70% in erythrocytes of cystic fibrosis patients.
Collapse
Affiliation(s)
- Andreas Ebner
- Institute for Biophysics, University of Linz, A-4040 Linz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Affiliation(s)
- Daniel J. Muller
- Biotechnology Center, Technische Universität Dresden, D-01307 Dresden, Germany
| |
Collapse
|
64
|
Avila J, Soares H, Fanarraga ML, Zabala JC. Isolation of microtubules and microtubule proteins. ACTA ACUST UNITED AC 2008; Chapter 3:Unit 3.29. [PMID: 18551420 DOI: 10.1002/0471143030.cb0329s39] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This unit describes various protocols for the isolation and purification of the main constituents of microtubules, chiefly alpha- and beta-tubulin, and the most significant microtubule associated proteins (MAPs), specifically MAP1A, MAP1B, MAP2, and tau. We include a classical isolation method for soluble tubulin heterodimer as the first basic purification protocol. In addition, we show how to analyze the tubulin and MAPs obtained after a phosphocellulose chromatography purification procedure. This unit also details a powerful and simple method to determine the native state of the purified tubulin based on one-dimensional electrophoresis under nondenaturing conditions (UNIT 6.5). The last protocol describes the application of a new technique that allows visualizing the quality of polymerized microtubules based on atomic force microscopy (AFM).
Collapse
Affiliation(s)
- J Avila
- Centro de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
65
|
Goldsbury C, Scheuring S. Introduction to atomic force microscopy (AFM) in biology. ACTA ACUST UNITED AC 2008; Chapter 17:17.7.1-17.7.17. [PMID: 18429225 DOI: 10.1002/0471140864.ps1707s29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The atomic force microscope has the unique capability of imaging biological samples with molecular resolution in buffer solution. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated. Importantly, the measurements are made in buffer solutions, allowing biological samples to stay alive within a physiological-like environment while temporal changes in structure are measured. This overview provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins. The physical principles of the technique and methodological aspects of its practical use and applications are also described.
Collapse
Affiliation(s)
- Claire Goldsbury
- Cytoskeleton Group, Max Planck Unit for Structural Molecular Biology, Hamburg, Germany
| | | |
Collapse
|
66
|
Affiliation(s)
- Andreas Engel
- Maurice E. Müller Institute for Structural Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland;
| | - Hermann E. Gaub
- Center for Nanoscience and Physics Department, University Munich, 80799 Munich, Germany;
| |
Collapse
|
67
|
Efimov AE, Tonevitsky AG, Dittrich M, Matsko NB. Atomic force microscope (AFM) combined with the ultramicrotome: a novel device for the serial section tomography and AFM/TEM complementary structural analysis of biological and polymer samples. J Microsc 2008; 226:207-17. [PMID: 17535260 DOI: 10.1111/j.1365-2818.2007.01773.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new device (NTEGRA Tomo) that is based on the integration of the scanning probe microscope (SPM) (NT-MDT NTEGRA SPM) and the Ultramicrotome (Leica UC6NT) is presented. This integration enables the direct monitoring of a block face surface immediately following each sectioning cycle of ultramicrotome sectioning procedure. Consequently, this device can be applied for a serial section tomography of the wide range of biological and polymer materials. The automation of the sectioning/scanning cycle allows one to acquire up to 10 consecutive sectioned layer images per hour. It also permits to build a 3-D nanotomography image reconstructed from several tens of layer images within one measurement session. The thickness of the layers can be varied from 20 to 2000 nm, and can be controlled directly by its interference colour in water. Additionally, the NTEGRA Tomo with its nanometer resolution is a valid instrument narrowing and highlighting an area of special interest within volume of the sample. For embedded biological objects the ultimate resolution of SPM mostly depends on the quality of macromolecular preservation of the biomaterial during sample preparation procedure. For most polymer materials it is comparable to transmission electron microscopy (TEM). The NTEGRA Tomo can routinely collect complementary AFM and TEM images. The block face of biological or polymer sample is investigated by AFM, whereas the last ultrathin section is analyzed with TEM after a staining procedure. Using the combination of both of these ultrastructural methods for the analysis of the same particular organelle or polymer constituent leads to a breakthrough in AFM/TEM image interpretation. Finally, new complementary aspects of the object's ultrastructure can be revealed.
Collapse
|
68
|
Müller DJ, Wu N, Palczewski K. Vertebrate membrane proteins: structure, function, and insights from biophysical approaches. Pharmacol Rev 2008; 60:43-78. [PMID: 18321962 PMCID: PMC2561275 DOI: 10.1124/pr.107.07111] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Membrane proteins are key targets for pharmacological intervention because they are vital for cellular function. Here, we analyze recent progress made in the understanding of the structure and function of membrane proteins with a focus on rhodopsin and development of atomic force microscopy techniques to study biological membranes. Membrane proteins are compartmentalized to carry out extra- and intracellular processes. Biological membranes are densely populated with membrane proteins that occupy approximately 50% of their volume. In most cases membranes contain lipid rafts, protein patches, or paracrystalline formations that lack the higher-order symmetry that would allow them to be characterized by diffraction methods. Despite many technical difficulties, several crystal structures of membrane proteins that illustrate their internal structural organization have been determined. Moreover, high-resolution atomic force microscopy, near-field scanning optical microscopy, and other lower resolution techniques have been used to investigate these structures. Single-molecule force spectroscopy tracks interactions that stabilize membrane proteins and those that switch their functional state; this spectroscopy can be applied to locate a ligand-binding site. Recent development of this technique also reveals the energy landscape of a membrane protein, defining its folding, reaction pathways, and kinetics. Future development and application of novel approaches during the coming years should provide even greater insights to the understanding of biological membrane organization and function.
Collapse
Affiliation(s)
- Daniel J Müller
- Biotechnology Center, University of Technology, Dresden, Germany
| | | | | |
Collapse
|
69
|
Tang J, Ebner A, Ilk N, Lichtblau H, Huber C, Zhu R, Pum D, Leitner M, Pastushenko V, Gruber HJ, Sleytr UB, Hinterdorfer P. High-affinity tags fused to s-layer proteins probed by atomic force microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:1324-1329. [PMID: 18001070 DOI: 10.1021/la702276k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Two-dimensional, crystalline bacterial cell surface layers, termed S-layers, are one of the most commonly observed cell surface structures of prokaryotic organisms. In the present study, genetically modified S-layer protein SbpA of Bacillus sphaericus CCM 2177 carrying the short affinity peptide Strep-tag I or Strep-tag II at the C terminus was used to generate a 2D crystalline monomolecular protein lattice on a silicon surface. Because of the genetic modification, the 2D crystals were addressable via Strep-tag through streptavidin molecules. Atomic force microscopy (AFM) was used to investigate the topography of the single-molecules array and the functionality of the fused Strep-tags. In high-resolution imaging under near-physiological conditions, structural details such as protein alignment and spacing were resolved. By applying molecular recognition force microscopy, the Strep-tag moieties were proven to be fully functional and accessible. For this purpose, streptavidin molecules were tethered to AFM tips via approximately 8-nm-long flexible polyethylene glycol (PEG) linkers. These functionalized tips showed specific interactions with 2D protein crystals containing either the Strep-tag I or Strep-tag II, with similar energetic and kinetic behavior in both cases.
Collapse
Affiliation(s)
- Jilin Tang
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Shahin V, Barrera NP. Providing Unique Insight into Cell Biology via Atomic Force Microscopy. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:227-52. [DOI: 10.1016/s0074-7696(07)65006-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
71
|
Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc Natl Acad Sci U S A 2007; 104:20719-24. [PMID: 18077364 PMCID: PMC2410068 DOI: 10.1073/pnas.0708762104] [Citation(s) in RCA: 428] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Indexed: 11/18/2022] Open
Abstract
The permeability and solute transport characteristics of amphiphilic triblock-polymer vesicles containing the bacterial water-channel protein Aquaporin Z (AqpZ) were investigated. The vesicles were made of a block copolymer with symmetric poly-(2-methyloxazoline)-poly-(dimethylsiloxane)-poly-(2-methyloxazoline) (PMOXA(15)-PDMS(110)-PMOXA(15)) repeat units. Light-scattering measurements on pure polymer vesicles subject to an outwardly directed salt gradient in a stopped-flow apparatus indicated that the polymer vesicles were highly impermeable. However, a large enhancement in water productivity (permeability per unit driving force) of up to approximately 800 times that of pure polymer was observed when AqpZ was incorporated. The activation energy (E(a)) of water transport for the protein-polymer vesicles (3.4 kcal/mol) corresponded to that reported for water-channel-mediated water transport in lipid membranes. The solute reflection coefficients of glucose, glycerol, salt, and urea were also calculated, and indicated that these solutes are completely rejected. The productivity of AqpZ-incorporated polymer membranes was at least an order of magnitude larger than values for existing salt-rejecting polymeric membranes. The approach followed here may lead to more productive and sustainable water treatment membranes, whereas the variable levels of permeability obtained with different concentrations of AqpZ may provide a key property for drug delivery applications.
Collapse
Affiliation(s)
- Manish Kumar
- *Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, 205 North Mathews Avenue, Urbana, IL 61801; and
| | - Mariusz Grzelakowski
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Julie Zilles
- *Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, 205 North Mathews Avenue, Urbana, IL 61801; and
| | - Mark Clark
- *Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, 205 North Mathews Avenue, Urbana, IL 61801; and
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
72
|
Novel combination of atomic force microscopy and epifluorescence microscopy for visualization of leaching bacteria on pyrite. Appl Environ Microbiol 2007; 74:410-5. [PMID: 18039818 DOI: 10.1128/aem.01812-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bioleaching of metal sulfides is an interfacial process comprising the interactions of attached bacterial cells and bacterial extracellular polymeric substances with the surface of a mineral sulfide. Such processes and the associated biofilms can be investigated at high spatial resolution using atomic force microscopy (AFM). Therefore, we visualized biofilms of the meso-acidophilic leaching bacterium Acidithiobacillus ferrooxidans strain A2 on the metal sulfide pyrite with a newly developed combination of AFM with epifluorescence microscopy (EFM). This novel system allowed the imaging of the same sample location with both instruments. The pyrite sample, as fixed on a shuttle stage, was transferred between AFM and EFM devices. By staining the bacterial DNA with a specific fluorescence dye, bacterial cells were labeled and could easily be distinguished from other topographic features occurring in the AFM image. AFM scanning in liquid caused deformation and detachment of cells, but scanning in air had no effect on cell integrity. In summary, we successfully demonstrate that the new microscopic system was applicable for visualizing bioleaching samples. Moreover, the combination of AFM and EFM in general seems to be a powerful tool for investigations of biofilms on opaque materials and will help to advance our knowledge of biological interfacial processes. In principle, the shuttle stage can be transferred to additional instruments, and combinations of AFM and EFM with other surface-analyzing devices can be proposed.
Collapse
|
73
|
Montalvo-Hernández L, Piedra-Ibarra E, Gómez-Silva L, Lira-Carmona R, Acosta-Gallegos JA, Vazquez-Medrano J, Xoconostle-Cázares B, Ruíz-Medrano R. Differential accumulation of mRNAs in drought-tolerant and susceptible common bean cultivars in response to water deficit. THE NEW PHYTOLOGIST 2007; 177:102-113. [PMID: 17961132 DOI: 10.1111/j.1469-8137.2007.02247.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The physiological response to drought was measured in two common bean varieties with contrastive susceptibility to drought stress. A subtractive cDNA library was constructed from the two cultivars, Phaseolus vulgaris'Pinto Villa' (tolerant) and 'Carioca' (susceptible). 18 cDNAs displayed protein-coding genes associated with drought, cold and oxidative stress, signal transduction, plant defense, chloroplast function and unknown function. A cDNA coding for an aquaporin (AQP) was selected for further analyses. The open reading frames (ORFs) of AQPs from 'Pinto Villa' and 'Carioca' were compared and despite their similarity, accumulated differentially in the plant organs, as demonstrated by Northern blot and in situ hybridization. A phylogenetic analysis of the deduced amino acid sequence with other AQPs suggested a tonoplast-located protein. Under drought conditions, the levels of AQP mRNA from the susceptible cultivar decreased to undetectable levels; by contrast, 'Pinto Villa' mRNA was present and restricted the phloem tissue. This would allow 'Pinto Villa' to maintain vascular tissue functions under drought stress.
Collapse
Affiliation(s)
| | - Elías Piedra-Ibarra
- Biotecnología y Bioingeniería, CINVESTAV IPN, Avenue. IPN 2508, San Pedro Zacatenco, 07360 México, DF
- Laboratorio de Fisiología Vegetal, UBIPRO FESI UNAM, Iztacala, Edomex
| | - Lidia Gómez-Silva
- Biotecnología y Bioingeniería, CINVESTAV IPN, Avenue. IPN 2508, San Pedro Zacatenco, 07360 México, DF
| | | | - Jorge A Acosta-Gallegos
- Programa Nacional de Frijol, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Celaya, Mexico, Centro Bajío, México
| | | | | | - Roberto Ruíz-Medrano
- Biotecnología y Bioingeniería, CINVESTAV IPN, Avenue. IPN 2508, San Pedro Zacatenco, 07360 México, DF
| |
Collapse
|
74
|
Oh YJ, Jo W, Yang Y, Park S. Influence of culture conditions on Escherichia coli O157:H7 biofilm formation by atomic force microscopy. Ultramicroscopy 2007; 107:869-74. [PMID: 17544218 DOI: 10.1016/j.ultramic.2007.01.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 01/31/2007] [Indexed: 11/24/2022]
Abstract
Biofilms are complex microbial communities that are resistant against attacks by bacteriophages and removal by drugs and chemicals. In this study, biofilms of Escherichia coli O157:H7, a bacterial pathogen, were investigated using atomic force microscopy (AFM) in terms of the dynamic transition of morphology and surface properties of bacterial cells over the development of biofilms. The physical and topographical properties of biofilms are different, depending on nutrient availability. Compared to biofilms formed in a high nutrient medium, biofilms form faster and a higher number of bacterial cells were recovered on glass surface in a low nutrient medium. We demonstrate that AFM can obtain high-resolution images and the elastic information about biofilms. As E. coli biofilm becomes mature, the magnitude of the force between a tip and the surface of the biofilm gets stronger, suggesting that extracellular polymeric substances (EPSs), sticky components of biofilms, accumulate over the surface of cells upon the initial attachment of bacterial cells to surfaces.
Collapse
Affiliation(s)
- Y J Oh
- Department of Physics and Division of Nano Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | | | | | | |
Collapse
|
75
|
Jarosławski S, Zadek B, Ashcroft F, Vénien-Bryan C, Scheuring S. Direct visualization of KirBac3.1 potassium channel gating by atomic force microscopy. J Mol Biol 2007; 374:500-5. [PMID: 17936299 DOI: 10.1016/j.jmb.2007.09.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/12/2007] [Accepted: 09/17/2007] [Indexed: 11/28/2022]
Abstract
KirBac3.1 belongs to a family of transmembrane potassium (K(+)) channels that permit the selective flow of K-ions across biological membranes and thereby regulate cell excitability. They are crucial for a wide range of biological processes and mutations in their genes cause multiple human diseases. Opening and closing (gating) of Kir channels may occur spontaneously but is modulated by numerous intracellular ligands that bind to the channel itself. These include lipids (such as PIP(2)), G-proteins, nucleotides (such as ATP) and ions (e.g. H(+), Mg(2+), Ca(2+)). We have used high-resolution atomic force microscopy (AFM) to examine KirBac3.1 in two different configurations. AFM imaging of the cytoplasmic surface of KirBac3.1 embedded in a lipid bilayer has allowed visualization of the tetrameric assembly of the ligand-binding domain. In the absence of Mg(2+), the four subunits appeared as four protrusions surrounding a central depression corresponding to the cytoplasmic pore. They did not display 4-fold symmetry, but formed a dimer-of-dimers with 2-fold symmetry. Upon addition of Mg(2+), a marked rearrangement of the intracellular ligand-binding domains was observed: the four protrusions condensed into a single protrusion per tetramer, and there was an accompanying increase in protrusion height. The central cavity within the four intracellular domains also disappeared on addition of Mg(2+), indicating constriction of the cytoplasmic pore. These structural changes are likely transduced to the transmembrane helices, which gate the K(+) channel. This is the first time AFM has been used as an interactive tool to study K(+) channels. It has enabled us to directly measure the conformational changes in the protein surface produced by ligand binding.
Collapse
|
76
|
Lal R, Lin H, Quist AP. Amyloid beta ion channel: 3D structure and relevance to amyloid channel paradigm. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:1966-75. [PMID: 17553456 PMCID: PMC2692960 DOI: 10.1016/j.bbamem.2007.04.021] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/24/2007] [Accepted: 04/25/2007] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is a protein misfolding disease. Early hypothesis of AD pathology posits that 39-43 AA long misfolded amyloid beta (Abeta) peptide forms a fibrillar structure and induces pathophysiological response by destabilizing cellular ionic homeostasis. Loss of cell ionic homeostasis is believed to be either indirectly due to amyloid beta-induced oxidative stress or directly by its interaction with the cell membrane and/or activating pathways for ion exchange. Significantly though, no Abeta specific cell membrane receptors are known and oxidative stress mediated pathology is only partial and indirect. Most importantly, recent studies strongly indicate that amyloid fibrils may not by themselves cause AD pathology. Subsequently, a competing hypothesis has been proposed wherein amyloid derived diffusible ligands (ADDLs) that are large Abeta oligomers (approximately >60 kDa), mediate AD pathology. No structural details, however, of these large globular units exist nor is there any known suitable mechanism by which they would induce AD pathology. Experimental data indicate that they alter cell viability by non-specifically changing the plasma membrane stability and increasing the overall ionic leakiness. The relevance of this non-specific mechanism for AD-specific pathology seems limited. Here, we provide a viable new paradigm: AD pathology mediated by amyloid ion channels made of small Abeta oligomers (trimers to octamers). This review is focused to 3D structural analysis of the Abeta channel. The presence of amyloid channels is consistent with electrophysiological and cell biology studies summarized in companion reviews in this special issue. They show ion channel-like activity and channel-mediated cell toxicity. Amyloid ion channels with defined gating and pharmacological agents would provide a tangible target for designing therapeutics for AD pathology.
Collapse
Affiliation(s)
- Ratnesh Lal
- Center for Nanomedicine, University of Chicago, 5841 S. Maryland Ave., MC 6076, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
77
|
Scheuring S, Buzhynskyy N, Jaroslawski S, Gonçalves RP, Hite RK, Walz T. Structural models of the supramolecular organization of AQP0 and connexons in junctional microdomains. J Struct Biol 2007; 160:385-94. [PMID: 17869130 DOI: 10.1016/j.jsb.2007.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 06/15/2007] [Accepted: 07/06/2007] [Indexed: 11/24/2022]
Abstract
Membrane proteins perform many essential cellular functions. Over the last years, substantial advances have been made in our understanding of the structure and function of isolated membrane proteins. However, like soluble proteins, many membrane proteins assemble into supramolecular complexes that perform specific functions in specialized membrane domains. Since supramolecular complexes of membrane proteins are difficult to study by conventional approaches, little is known about their composition, organization and assembly. The high signal-to-noise ratio of the images that can be obtained with an atomic force microscope (AFM) makes this instrument a powerful tool to image membrane protein complexes within native membranes. Recently, we have reported high-resolution topographs of junctional microdomains in native eye lens membranes containing two-dimensional (2D) arrays of aquaporin-0 (AQP0) surrounded by connexons. While both proteins are involved in cell adhesion, AQP0 is a specific water channel whereas connexons form cell-cell communication channels with broad substrate specificity. Here, we have performed a detailed analysis of the supramolecular organization of AQP0 tetramers and connexon hexamers in junctional microdomains in the native lens membrane. We present first structural models of these junctional microdomains, which we generated by docking atomic models of AQP0 and connexons into the AFM topographs. The AQP0 2D arrays in the native membrane show the same molecular packing of tetramers seen in highly ordered double-layered 2D crystals obtained through reconstitution of purified AQP0. In contrast, the connexons that surround the AQP0 arrays are only loosely packed. Based on our AFM observations, we propose a mechanism that may explain the supramolecular organization of AQP0 and connexons in junctional domains in native lens membranes.
Collapse
Affiliation(s)
- Simon Scheuring
- Institut Curie, UMR168-CNRS, 26 Rue d'Ulm, 75248 Paris, France.
| | | | | | | | | | | |
Collapse
|
78
|
Bonanni B, Andolfi L, Bizzarri AR, Cannistraro S. Functional Metalloproteins Integrated with Conductive Substrates: Detecting Single Molecules and Sensing Individual Recognition Events. J Phys Chem B 2007; 111:5062-75. [PMID: 17425359 DOI: 10.1021/jp070035m] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the past decade, there has been significant interest in the integration of biomaterials with electronic elements: combining biological functions of biomolecules with nanotechnology offers new perspectives for implementation of ultrasensitive hybrid nanodevices. In particular, great attention has been devoted to redox metalloproteins, since they possess unique characteristics, such as electron-transfer capability, possibility of gating redox activity, and nanometric size, which make them appealing for bioelectronics applications at the nanoscale. The reliable connection of redox proteins to electrodes, aimed at ensuring good electrical contact with the conducting substrate besides preserving protein functionality, is a fundamental step for designing a hybrid nanodevice and calls for a full characterization of the immobilized proteins, possibly at the single-molecule level. Here, we describe how a multitechnique approach, based on several scanning probe microscopy techniques, may provide a comprehensive characterization of different metalloproteins on metal electrodes, disclosing unique information not only about morphological properties of the adsorbed molecules but also about the effectiveness of electrical coupling with the conductive substrate, or even concerning the preserved biorecognition capability upon adsorption. We also show how the success of an immobilization strategy, which is of primary importance for optimal integration of metalloproteins with a metal electrode, can be promptly assessed by means of the proposed approach. Besides the characterization aspect, the complementary employment of the proposed techniques deserves major potentialities for ultrasensitive detection of adsorbed biomolecules. In particular, it is shown how sensing of single metalloproteins may be optimized by monitoring the most appropriate observable. Additionally, we suggest how the combination of several experimental techniques might offer increased versatility, real-time response, and wide applicability as a detection method, once a reproducible correlation among signals coming from different single-molecule techniques is established.
Collapse
Affiliation(s)
- B Bonanni
- Biophysics and Nanoscience Centre, CNISM, and CNR-INFM Facoltà di Scienze, Università della Tuscia, Largo dell'Università, I-01100 Viterbo, Italy
| | | | | | | |
Collapse
|
79
|
Stolz M, Aebi U, Stoffler D. Developing scanning probe–based nanodevices—stepping out of the laboratory into the clinic. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2007; 3:53-62. [PMID: 17379169 DOI: 10.1016/j.nano.2007.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 07/19/2006] [Indexed: 10/23/2022]
Abstract
This report focuses on nanotools based on the scanning force microscope (SFM) for imaging, measuring, and manipulating biological matter at the sub-micron scale. Because pathophysiological processes often occur at the (sub-) cellular scale, the SFM has opened the exciting possibility to spot diseases at a stage before they become symptomatic and cause functional impairments in the affected part of the body. Such presymptomatic detection will be key to developing effective therapies to slow or halt disease progression.
Collapse
Affiliation(s)
- Martin Stolz
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Switzerland
| | | | | |
Collapse
|
80
|
Matsko NB. Atomic force microscopy applied to study macromolecular content of embedded biological material. Ultramicroscopy 2007; 107:95-105. [PMID: 16875783 DOI: 10.1016/j.ultramic.2006.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/18/2006] [Accepted: 05/31/2006] [Indexed: 11/29/2022]
Abstract
We demonstrate that atomic force microscopy represents a powerful tool for the estimation of structural preservation of biological samples embedded in epoxy resin, in terms of their macromolecular distribution and architecture. The comparison of atomic force microscopy (AFM) and transmission electron microscopy (TEM) images of a biosample (Caenorhabditis elegans) prepared following to different types of freeze-substitution protocols (conventional OsO4 fixation, epoxy fixation) led to the conclusion that high TEM stainability of the sample results from a low macromolecular density of the cellular matrix. We propose a novel procedure aimed to obtain AFM and TEM images of the same particular organelle, which strongly facilitates AFM image interpretation and reveals new ultrastructural aspects (mainly protein arrangement) of a biosample in addition to TEM data.
Collapse
Affiliation(s)
- Nadejda B Matsko
- Electron Microscopy Centre, Institute of Applied Physics, HPM C 15.1, ETH-Hoenggerberg, CH-8093, Zuerich, Switzerland.
| |
Collapse
|
81
|
Tang J, Krajcikova D, Zhu R, Ebner A, Cutting S, Gruber HJ, Barak I, Hinterdorfer P. Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface ofBacillus subtilis spore. J Mol Recognit 2007; 20:483-9. [DOI: 10.1002/jmr.828] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
82
|
Dufrêne YF. Nanoscale exploration of microbial surfaces using the atomic force microscope. Future Microbiol 2006; 1:387-96. [PMID: 17661630 DOI: 10.2217/17460913.1.4.387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Atomic force microscopy (AFM) has recently opened a variety of novel possibilities for imaging and manipulating microbial surfaces in their native environment. While AFM imaging offers a means to visualize surface structures at high resolution and in physiological conditions, AFM force spectroscopy enables researchers to probe a variety of properties, including the unfolding pathways of single-membrane proteins, the elasticity of cell walls and surface macromolecules, and the molecular forces responsible for cell–cell and cell–solid interactions. These nanoscale analyses enable us to answer a number of questions that were difficult to address previously, such as: how does the surface architecture of microbes change as they grow or interact with antibiotics; what is the force required to unfold and extract a single membrane protein; and what are the molecular forces driving the interaction between a pathogen and a host or biomaterial surface? This review will expand on these issues.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Université Catholique de Louvain, Unité de chimie des interfaces/Nanobio team, Croix du Sud 2/18, Louvain-la-Neuve, Belgium.
| |
Collapse
|
83
|
Xu S, Dong M, Rauls E, Otero R, Linderoth TR, Besenbacher F. Coadsorption of guanine and cytosine on graphite: ordered structure based on GC pairing. NANO LETTERS 2006; 6:1434-8. [PMID: 16834424 DOI: 10.1021/nl060563u] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nanostructures formed by coadsorption of the complementary DNA bases guanine (G) and cytosine (C) at a graphite surface in 1-octanol solvent were investigated by in situ scanning tunneling microscopy. The high-resolution observations showed for the first time a well-ordered coadsorption structure, attributed to rows formed from Watson-Crick G-C pairs, which was distinctly different from the structures observed for the individual G/C components. The observed coadsorption structure has been modeled by self-consistent charge density-functional-based tight-binding (SCC-DFTB) calculations, providing information on the intermolecular interactions underlying its formation.
Collapse
Affiliation(s)
- Sailong Xu
- Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, University of Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
84
|
Gonçalves RP, Scheuring S. Manipulating and imaging individual membrane proteins by AFM. SURF INTERFACE ANAL 2006. [DOI: 10.1002/sia.2350] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
85
|
Merino-Montero S, Domènech O, Montero MT, Hernández-Borrell J. Preliminary atomic force microscopy study of two-dimensional crystals of lactose permease from Escherichia coli. Biophys Chem 2006; 119:78-83. [PMID: 16098656 DOI: 10.1016/j.bpc.2005.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 07/15/2005] [Accepted: 07/15/2005] [Indexed: 10/25/2022]
Abstract
Lactose permease (LacY) of Escherichia coli is not only a paradigm for secondary transporters but also for difficulties in two-dimensional (2D) crystallization. In this work we present the progresses achieved in the observation of 2D crystals of wild-type LacY by atomic force microscopy (AFM). Crystals were obtained following reconstitution of LacY in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes. Proteolipid sheets (PLSs) 6.4 nm in height were obtained after spreading the samples onto mica. Observations were carried out in liquid medium and in contact mode (CM-AFM). When the crystalline surfaces of the PLSs were imaged regular packing arrangements were observed. The back-Fourier transformation revealed the existence of various orientations mostly consistent with crystals possessing p2 symmetry and unit-cell dimensions: a=13.15 nm, b=16.74 nm, gamma=116 degrees. The characteristics, size, and shape of the repetitive motif could be compatible with dimers of this protein. These preliminary results are compared and discussed with previously reported 2D crystals observed by electron microscopy.
Collapse
|
86
|
Suhara W, Kobayashi M, Sagara H, Hamada K, Goto T, Fujimoto I, Torimitsu K, Mikoshiba K. Visualization of inositol 1,4,5-trisphosphate receptor by atomic force microscopy. Neurosci Lett 2006; 391:102-7. [PMID: 16198054 DOI: 10.1016/j.neulet.2005.08.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 08/12/2005] [Accepted: 08/21/2005] [Indexed: 10/25/2022]
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) acts as a ligand-gated channel that mediates neuronal signals by releasing Ca(2+) from the endoplasmic reticulum. The three-dimensional (3D) structure of tetrameric IP(3)R has been demonstrated by using electron microscopy (EM) with static specimens; however, the dynamic aspects of the IP(3)R structure have never been visualized in a native environment. Here we attempt to measure the surface topography of IP(3)R in solution using atomic force microscopy (AFM). AFM revealed large protrusions extending approximately 4.3 nm above a flat membrane prepared from Spodoptera frugiperda (Sf9) cells overexpressing mouse type 1 IP(3)R (Sf9-IP(3)R1). The average diameter of the large protrusions was approximately 32 nm. A specific antibody against a cytosolic epitope close to the IP(3)-binding site enabled us to gold-label the Sf9-IP(3)R1 membrane as confirmed by EM. AFM images of the gold-labeled membrane revealed 7.7-nm high protrusions with a diameter of approximately 30 nm, which should be IP(3)R1-antibody complexes. Authentic IP(3)R1 immuno-purified from mouse cerebella had approximately the same dimensions as those of the IP(3)R-like protrusions on the membrane. Altogether, these results suggest that the large protrusions on the Sf9-IP(3)R1 membrane correspond to the cytosolic domain of IP(3)R1. Our study provides the first 3D representation of individual IP(3)R1 particles in an aqueous solution.
Collapse
Affiliation(s)
- Wakako Suhara
- The Division of Neural Signal Information NTT-IMSUT, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Simulation of Atomic Force Microscopy Images of Collagen Molecules on Graphite Surface. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2006. [DOI: 10.1380/ejssnt.2006.294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
88
|
Janovjak H, Kedrov A, Cisneros DA, Sapra KT, Struckmeier J, Muller DJ. Imaging and detecting molecular interactions of single transmembrane proteins. Neurobiol Aging 2005; 27:546-61. [PMID: 16253393 DOI: 10.1016/j.neurobiolaging.2005.03.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2004] [Revised: 03/15/2005] [Accepted: 03/19/2005] [Indexed: 10/25/2022]
Abstract
Single-molecule atomic force microscopy (AFM) provides novel ways to characterize structure-function relationships of native membrane proteins. High-resolution AFM-topographs allow observing substructures of single membrane proteins at sub-nanometer resolution as well as their conformational changes, oligomeric state, molecular dynamics and assembly. Complementary to AFM imaging, single-molecule force spectroscopy experiments allow detecting molecular interactions established within and between membrane proteins. The sensitivity of this method makes it possible to detect the interactions that stabilize secondary structures such as transmembrane alpha-helices, polypeptide loops and segments within. Changes in temperature or protein-protein assembly do not change the position of stable structural segments, but influence their stability established by collective molecular interactions. Such changes alter the probability of proteins to choose a certain unfolding pathway. Recent examples have elucidated unfolding and refolding pathways of membrane proteins as well as their energy landscapes. We review current and future potential of these approaches to reveal insights into membrane protein structure, function, and unfolding as we recognize that they could help answering key questions in the molecular basis of certain neuro-pathological dysfunctions.
Collapse
Affiliation(s)
- Harald Janovjak
- Center of Biotechnology, University of Technology and Max-Planck-Institute of Molecular Cell Biology and Genetics, Tatzberg 49, D-01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
89
|
Mancheño JM, Martín-Benito J, Gavilanes JG, Vázquez L. A complementary microscopy analysis of Sticholysin II crystals on lipid films: Atomic force and transmission electron characterizations. Biophys Chem 2005; 119:219-23. [PMID: 16225981 DOI: 10.1016/j.bpc.2005.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 09/20/2005] [Accepted: 09/20/2005] [Indexed: 11/22/2022]
Abstract
A new crystal form of the cytotoxin Sticholysin II (StnII) formed on lipid monolayers of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) has been characterized by transmission electron microscopy (TEM) and by tapping mode atomic force microscopy (AFM) under nearly physiological conditions. Both approaches show the existence of single- and double-layered 2D crystals possessing hexagonal symmetry and unit cell dimensions of a = b =10 nm and gamma = 120 degrees. However, single-layered StnII crystals could only be analysed by TEM and double-layered crystals by AFM. Considering the previously known atomic structure of native StnII and that of a tetrameric assembly, a model is proposed for this new crystal form in which StnII conserves its monomeric state upon interaction with the lipid monolayer. These results are in agreement with the existence of the so called M2 state of the actinoporins.
Collapse
Affiliation(s)
- José M Mancheño
- Dpto. Cristalografía Macromolecular, Instituto Rocasolano (CSIC), Serrano 119, 28006 Madrid, Spain.
| | | | | | | |
Collapse
|
90
|
Silva LP, Azevedo RB, Morais PC, Ventura MM, Freitas SM. Oligomerization states of Bowman-Birk inhibitor by atomic force microscopy and computational approaches. Proteins 2005; 61:642-8. [PMID: 16161117 DOI: 10.1002/prot.20646] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several methods have been applied to study protein-protein interaction from structural and thermodynamic point of view. The present study reveals that atomic force microscopy (AFM), molecular modeling, and docking approaches represent alternative methods offering new strategy to investigate structural aspects in oligomerization process of proteinase inhibitors. The topography of the black-eyed pea trypsin/chymotrypsin inhibitor (BTCI) was recorded by AFM and compared with computational rigid-bodies docking approaches. Multimeric states of BTCI identified from AFM analysis showed globular-ellipsoidal shapes. Monomers, dimers, trimers, and hexamers were the most prominent molecular arrays observed in AFM images as evaluated by molecular volume calculations and corroborated by in silico docking and theoretical approaches. We therefore propose that BTCI adopts stable and well-packed self-assembled states in monomer-dimer-trimer-hexamer equilibrium. Although there are no correlation between specificity and packing efficiency among proteinases and proteinase inhibitors, the AFM and docked BTCI analyses suggest that these assemblies may exist in situ to play their potential function in oligomerization process.
Collapse
Affiliation(s)
- Luciano P Silva
- Laboratory of Morphology and Morphogenesis, Department of Genetics and Morphology, Institute of Biology, University of Brasilia, Brasilia, DF, Brazil.
| | | | | | | | | |
Collapse
|
91
|
Scheuring S, Lévy D, Rigaud JL. Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1712:109-27. [PMID: 15919049 DOI: 10.1016/j.bbamem.2005.04.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/04/2005] [Accepted: 04/15/2005] [Indexed: 11/18/2022]
Abstract
The atomic force microscope has developed into a powerful tool in structural biology allowing information to be acquired at submolecular resolution on the protruding structures of membrane proteins. It is now a complementary technique to X-ray crystallography and electron microscopy for structure determination of individual membrane proteins after extraction, purification and reconstitution into lipid bilayers. Moving on from the structures of individual components of biological membranes, atomic force microscopy has recently been demonstrated to be a unique tool to identify in situ the individual components of multi-protein assemblies and to study the supramolecular architecture of these components allowing the efficient performance of a complex biological function. Here, recent atomic force microscopy studies of native membranes of different photosynthetic bacteria with different polypeptide contents are reviewed. Technology, advantages, feasibilities, restrictions and limits of atomic force microscopy for the acquisition of highly resolved images of up to 10 A lateral resolution under native conditions are discussed. From a biological point of view, the new insights contributed by the images are analysed and discussed in the context of the strongly debated organisation of the interconnected network of membrane-associated chlorophyll-protein complexes composing the photosynthetic apparatus in different species of purple bacteria.
Collapse
Affiliation(s)
- Simon Scheuring
- Institut Curie, UMR-CNRS 168 and LRC-CEA 34V, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
92
|
Schenk AD, Werten PJL, Scheuring S, de Groot BL, Müller SA, Stahlberg H, Philippsen A, Engel A. The 4.5Å Structure of Human AQP2. J Mol Biol 2005; 350:278-89. [PMID: 15922355 DOI: 10.1016/j.jmb.2005.04.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 04/02/2005] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
Located in the principal cells of the collecting duct, aquaporin-2 (AQP2) is responsible for the regulated water reabsorption in the kidney and is indispensable for the maintenance of body water balance. Disregulation or malfunctioning of AQP2 can lead to severe diseases such as nephrogenic diabetes insipidus, congestive heart failure, liver cirrhosis and pre-eclampsia. Here we present the crystallization of recombinantly expressed human AQP2 into two-dimensional protein-lipid arrays and their structural characterization by atomic force microscopy and electron crystallography. These crystals are double-layered sheets that have a diameter of up to 30 microm, diffract to 3 A(-1) and are stacked by contacts between their cytosolic surfaces. The structure determined to 4.5 A resolution in the plane of the membrane reveals the typical aquaporin fold but also a particular structure between the stacked layers that is likely to be related to the cytosolic N and C termini.
Collapse
Affiliation(s)
- Andreas D Schenk
- M. E. Müller Institute for Microscopy, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Ruiz N, Merino S, Viñas M, Domènech O, Montero MT, Hernández-Borrell J. Preliminary studies of the 2D crystallization of Omp1 of Serratia marcescens: observation by atomic force microscopy in native membranes environment and reconstituted in proteolipid sheets. Biophys Chem 2005; 111:1-7. [PMID: 15450369 DOI: 10.1016/j.bpc.2004.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 02/25/2004] [Accepted: 03/05/2004] [Indexed: 11/24/2022]
Abstract
In this work the porin Omp1 of Serratia marcescens was expressed in a porin deficient mutant (Escherichia coli UH302) and its functionality studied following the accumulation of ciprofloxacin in bacteria. The protein was extracted, purified and reconstituted in proteoliposomes of different composition (lipopolysaccharide (LPS), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)). Maximum extraction of the detergent was achieved applying different steps of dialysis and centrifugation. Proteolipid sheets with different composition were spread onto mica and observed by atomic force microscopy. Two-dimensional crystal of Omp1 was not observed in any case due to low resolution achieved. Judging from the images features POPC is the most suitable phospholipid to enhance 2D lattice formation for Omp1.
Collapse
Affiliation(s)
- Neus Ruiz
- Laboratori de Microbiologia, Campus de Bellvitge, Universitat de Barcelona E-08907-L'Hospitalet de Llobregat, Spain
| | | | | | | | | | | |
Collapse
|
94
|
Berdyyeva T, Woodworth CD, Sokolov I. Visualization of cytoskeletal elements by the atomic force microscope. Ultramicroscopy 2005; 102:189-98. [PMID: 15639349 DOI: 10.1016/j.ultramic.2004.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 09/13/2004] [Accepted: 09/27/2004] [Indexed: 10/26/2022]
Abstract
We describe a novel application of atomic force microscopy (AFM) to directly visualize cytoskeletal fibers in human foreskin epithelial cells. The nonionic detergent Triton X-100 in a low concentration was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized in either liquid or air-dried ambient conditions. These two types of scanning provide complimentary information. Scanning in liquid visualizes the surface filaments of the cytoskeleton, whereas scanning in air shows both the surface filaments and the total "volume" of the cytoskeletal fibers. The smallest fibers observed were ca. 50 nm in diameter. The lateral resolution of this technique was ca.20 nm, which can be increased to a single nanometer level by choosing sharper AFM tips. Because the AFM is a true 3D technique, we are able to quantify the observed cytoskeleton by its density and volume. The types of fibers can be identified by their size, similar to electron microscopy.
Collapse
Affiliation(s)
- T Berdyyeva
- Department of Physics, Clarkson University, Potsdam, NY 13699, USA
| | | | | |
Collapse
|
95
|
Scherer LJ, Merz L, Constable EC, Housecroft CE, Neuburger M, Hermann BA. Conformational Analysis of Self-Organized Monolayers with Scanning Tunneling Microscopy at Near-Atomic Resolution. J Am Chem Soc 2005; 127:4033-41. [PMID: 15771540 DOI: 10.1021/ja043638+] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the synthesis and a novel approach to the conformational analysis of 2,2'-bipyridines (bpy) bearing aromatic rich Frechet-type dendritic wedges of the first and second generation as substituents. The evaporation of solutions of these new ligands on graphite surfaces under ambient conditions results in the formation of self-organized monolayers. Scanning tunneling microscopy (STM) investigations of the monolayers under ambient conditions (air, 298 K) gave images at submolecular and near-atomic resolution. The analysis of the STM images includes the following processes: (i) identification and reproduction of potential homoconformational domains, (ii) exclusion of improper data using quality criteria for drift and feedback artifacts, (iii) compilation of running averages and checking for averaging artifacts, (iv) analysis of three-dimensional and contour plots, (v) calculation of the HOMO properties of the free molecules, and (vi) final conformational assignment based on all accessible information. Following this procedure, two different conformations could be assigned to domains observed in the monolayers of the first-generation (G1) and second-generation (G2) dendritic compounds. Homoconformational domains are observed side-by-side. The different conformations arise from syn or anti arrangements at the ether substituents. An additional conformational effect is found upon treating the G1 domains with HCl gas, when a partial rearrangement of the bpy from trans to cis occurs, concomitant with protonation.
Collapse
Affiliation(s)
- Lukas J Scherer
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
96
|
Mohanty AK, Wiener MC. Membrane protein expression and production: effects of polyhistidine tag length and position. Protein Expr Purif 2004; 33:311-25. [PMID: 14711520 DOI: 10.1016/j.pep.2003.10.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyhistidine tags enable the facile purification of proteins by immobilized metal affinity chromatography (IMAC). Both the type and position of purification tags can affect significantly properties of a protein such as its expression level, behavior in solution, and its ability to form suitable samples (esp. suitable crystals for X-ray crystallography). We investigated systematically the effects of polyhistidine tag length and position on many properties related to expression and purification of recombinant integral membrane proteins. Specifically, modified Escherichia coli pET expression vectors were built that placed 6- or 10-histidine tags at the N- or C-termini of the subcloned gene. The E. coli water channel AqpZ was subcloned into this suite of vectors and its expression, purification, solution properties, and yield were characterized. These studies show that: (1) all vectors yield similar expression levels, (2) tag length has a greater effect than tag position upon yield, (3) neither tag length nor position affects significantly detergent solubilization of the protein, (4) the length of the tag affects the oligomerization state of the purified protein, and (5) the tag length and position change chromatographic behavior of the detergent-solubilized protein. In addition, substitution of the lysine codon AAA at the second position, previously shown to have some effect upon soluble protein expression levels, did not have a large effect on AqpZ production. We are currently producing approximately 12 mg of purified AqpZ per liter of shake-flask culture, and preliminary crystals that diffract to approximately 5A resolution have been obtained.
Collapse
Affiliation(s)
- Arun K Mohanty
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908-0736, USA
| | | |
Collapse
|
97
|
Affiliation(s)
- Yves F Dufrêne
- Unité de chimie des interfaces, Université catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
98
|
Dufrêne YF, Müller DJ. Microbial Surfaces Investigated Using Atomic Force Microscopy. METHODS IN MICROBIOLOGY 2004. [DOI: 10.1016/s0580-9517(04)34006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
99
|
Abstract
Atomic force microscopy is being used ever more widely in biological imaging, because of its unique ability to provide structural information at the single molecule level and under near-physiological conditions. Detailed topographic images of potential drug targets, such as proteins and DNA, have been produced, and the folding of modular proteins has been studied using single-molecule force spectroscopy. Recently, atomic force microscopy has been used to examine ligand-protein and ligand-DNA interactions, and to begin to determine the architecture of multi-subunit proteins, including a member of the superfamily of ionotropic receptors. Atomic force microscopy is fast becoming a valuable addition to the pharmaceutical industry's toolkit.
Collapse
Affiliation(s)
- J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1PD
| | | |
Collapse
|
100
|
Scheuring S, Francia F, Busselez J, Melandri BA, Rigaud JL, Lévy D. Structural Role of PufX in the Dimerization of the Photosynthetic Core Complex of Rhodobacter sphaeroides. J Biol Chem 2004; 279:3620-6. [PMID: 14581468 DOI: 10.1074/jbc.m310050200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Monomeric and dimeric PufX-containing core complexes have been purified from membranes of wild-type Rhodobacter sphaeroides. Reconstitution of both samples by detergent removal in the presence of lipids leads to the formation of two-dimensional crystals constituted of dimeric core complexes. Two-dimensional crystals were further analyzed by cryoelectron microscopy and atomic force microscopy. A projection map at 26-A resolution reveals that core complexes assemble in an "S"-shaped dimeric complex. Each core complex is composed of one reaction center, 12 light-harvesting 1 alpha/beta-heterodimers, and one PufX protein. The light-harvesting 1 assemblies are open with a gap of density of approximately 30-A width and surround oriented reaction centers. A maximum density is found at the dimer junction. Based on the projection map, a model is proposed, in which the two PufX proteins are located at the dimer junction, consistent with the finding of dimerization of monomeric core complexes upon reconstitution. This localization of PufX in the core complex implies that PufX is the structural key for the dimer complex formation rather than a channel-forming protein for the exchange of ubiquinone/ubiquinol between the reaction center and the cytochrome bc1 complex.
Collapse
Affiliation(s)
- Simon Scheuring
- Institut Curie, UMR-CNRS 168 and LRC-CEA 34V, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|