51
|
D'Onofrio G, Tramontano F, Dorio AS, Muzi A, Maselli V, Fulgione D, Graziani G, Malanga M, Quesada P. Poly(ADP-ribose) polymerase signaling of topoisomerase 1-dependent DNA damage in carcinoma cells. Biochem Pharmacol 2010; 81:194-202. [PMID: 20875401 DOI: 10.1016/j.bcp.2010.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 10/19/2022]
Abstract
A molecular approach to enhance the antitumour activity of topoisomerase 1 (TOP1) inhibitors relies on the use of chemical inhibitors of poly(ADP-ribose)polymerases (PARP). Poly(ADP-ribosyl)ation is involved in the regulation of many cellular processes such as DNA repair, cell cycle progression and cell death. Recent findings showed that poly(ADP-ribosyl)ated PARP-1 and PARP-2 counteract camptothecin action facilitating resealing of DNA strand breaks. Moreover, repair of DNA strand breaks induced by poisoned TOP1 is slower in the presence of PARP inhibitors, leading to increased toxicity. In the present study we compared the effects of the camptothecin derivative topotecan (TPT), and the PARP inhibitor PJ34, in breast (MCF7) and cervix (HeLa) carcinoma cells either PARP-1 proficient or silenced, both BRCA1/2(+/+) and p53(+/+). HeLa and MCF7 cell lines gave similar results: (i) TPT-dependent cell growth inhibition and cell cycle perturbation were incremented by the presence of PJ34 and a 2 fold increase in toxicity was observed in PARP-1 stably silenced HeLa cells; (ii) higher levels of DNA strand breaks were found in cells subjected to TPT+PJ34 combined treatment; (iii) PARP-1 and -2 modification was evident in TPT-treated cells and was reduced by TPT+PJ34 combined treatment; (iv) concomitantly, a reduction of soluble/active TOP1 was observed. Furthermore, TPT-dependent induction of p53, p21 and apoptosis were found 24-72h after treatment and were increased by PJ34 both in PARP-1 proficient and silenced cells. The characterization of such signaling network can be relevant to a strategy aimed at overcoming acquired chemoresistance to TOP1 inhibitors.
Collapse
Affiliation(s)
- Giovanna D'Onofrio
- Department of Structural and Functional Biology, University Federico II of Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Nain V, Sahi S, Verma A. CPP-ZFN: a potential DNA-targeting anti-malarial drug. Malar J 2010; 9:258. [PMID: 20846404 PMCID: PMC2949742 DOI: 10.1186/1475-2875-9-258] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/16/2010] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Multidrug-resistant Plasmodium is of major concern today. Effective vaccines or successful applications of RNAi-based strategies for the treatment of malaria are currently unavailable. An unexplored area in the field of malaria research is the development of DNA-targeting drugs that can specifically interact with parasitic DNA and introduce deleterious changes, leading to loss of vital genome function and parasite death. PRESENTATION OF THE HYPOTHESIS Advances in the development of zinc finger nuclease (ZFN) with engineered DNA recognition domains allow us to design and develop nuclease of high target sequence specificity with a mega recognition site that typically occurs only once in the genome. Moreover, cell-penetrating peptides (CPP) can cross the cell plasma membrane and deliver conjugated protein, nucleic acid, or any other cargo to the cytoplasm, nucleus, or mitochondria. This article proposes that a drug from the combination of the CPP and ZFN systems can effectively enter the intracellular parasite, introduce deleterious changes in its genome, and eliminate the parasite from the infected cells. TESTING THE HYPOTHESIS Availability of a DNA-binding motif for more than 45 triplets and its modular nature, with freedom to change number of fingers in a ZFN, makes development of customized ZFN against diverse target DNA sequence of any gene feasible. Since the Plasmodium genome is highly AT rich, there is considerable sequence site diversity even for the structurally and functionally conserved enzymes between Plasmodium and humans. CPP can be used to deliver ZFN to the intracellular nucleus of the parasite. Signal-peptide-based heterologous protein translocation to Plasmodium-infected RBCs (iRBCs) and different Plasmodium organelles have been achieved. With successful fusion of CPP with mitochondrial- and nuclear-targeting peptides, fusion of CPP with 1 more Plasmodium cell membrane translocation peptide seems achievable. IMPLICATIONS OF THE HYPOTHESIS Targeting of the Plasmodium genome using ZFN has great potential for the development of anti-malarial drugs. It allows the development of a single drug against all malarial infections, including multidrug-resistant strains. Availability of multiple ZFN target sites in a single gene will provide alternative drug target sites to combat the development of resistance in the future.
Collapse
Affiliation(s)
- Vikrant Nain
- School of Biotechnology, Gautam Buddha University, Greater Noida-201308, India
| | - Shakti Sahi
- School of Biotechnology, Gautam Buddha University, Greater Noida-201308, India
| | - Anju Verma
- School of Biological Sciences, University of Missouri, Kansas City, MO- 64110, USA
| |
Collapse
|
53
|
Adams BR, Hawkins AJ, Povirk LF, Valerie K. ATM-independent, high-fidelity nonhomologous end joining predominates in human embryonic stem cells. Aging (Albany NY) 2010; 2:582-596. [PMID: 20844317 PMCID: PMC2984607 DOI: 10.18632/aging.100197] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 09/10/2010] [Indexed: 05/28/2023]
Abstract
We recently demonstrated that human embryonic stem cells (hESCs) utilize homologous recombination repair (HRR) as primary means of double-strand break (DSB) repair. We now show that hESCs also use nonhomologous end joining (NHEJ). NHEJ kinetics were several-fold slower in hESCs and neural progenitors (NPs) than in astrocytes derived from hESCs. ATM and DNA-PKcs inhibitors were ineffective or partially effective, respectively, at inhibiting NHEJ in hESCs, whereas progressively more inhibition was seen in NPs and astrocytes. The lack of any major involvement of DNA-PKcs in NHEJ in hESCs was supported by siRNA-mediated DNA-PKcs knockdown. Expression of a truncated XRCC4 decoy or XRCC4 knock-down reduced NHEJ by more than half suggesting that repair is primarily canonical NHEJ. Poly(ADP-ribose) polymerase (PARP) was dispensable for NHEJ suggesting that repair is largely independent of backup NHEJ. Furthermore, as hESCs differentiated a progressive decrease in the accuracy of NHEJ was observed. Altogether, we conclude that NHEJ in hESCs is largely independent of ATM, DNA-PKcs, and PARP but dependent on XRCC4 with repair fidelity several-fold greater than in astrocytes.
Collapse
Affiliation(s)
- Bret R. Adams
- Departments of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Amy J. Hawkins
- Departments of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lawrence F. Povirk
- Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
- the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Kristoffer Valerie
- Departments of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
- the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
54
|
Kumar V, Sinha AK, Makkar HP, Becker K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.11.052] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
55
|
Luo M, He H, Kelley MR, Georgiadis MM. Redox regulation of DNA repair: implications for human health and cancer therapeutic development. Antioxid Redox Signal 2010; 12:1247-69. [PMID: 19764832 PMCID: PMC2864659 DOI: 10.1089/ars.2009.2698] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Redox reactions are known to regulate many important cellular processes. In this review, we focus on the role of redox regulation in DNA repair both in direct regulation of specific DNA repair proteins as well as indirect transcriptional regulation. A key player in the redox regulation of DNA repair is the base excision repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1) in its role as a redox factor. APE1 is reduced by the general redox factor thioredoxin, and in turn reduces several important transcription factors that regulate expression of DNA repair proteins. Finally, we consider the potential for chemotherapeutic development through the modulation of APE1's redox activity and its impact on DNA repair.
Collapse
Affiliation(s)
- Meihua Luo
- Department of Pediatrics (Section of Hematology/Oncology), Herman B. Wells Center for Pediatric Research, Indiana University, Indiana
| | - Hongzhen He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana
| | - Mark R. Kelley
- Department of Pediatrics (Section of Hematology/Oncology), Herman B. Wells Center for Pediatric Research, Indiana University, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indiana
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| |
Collapse
|
56
|
Adams BR, Golding SE, Rao RR, Valerie K. Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants. PLoS One 2010; 5:e10001. [PMID: 20368801 PMCID: PMC2848855 DOI: 10.1371/journal.pone.0010001] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/15/2010] [Indexed: 12/23/2022] Open
Abstract
The DNA double-strand break (DSB) is the most toxic form of DNA damage. Studies aimed at characterizing DNA repair during development suggest that homologous recombination repair (HRR) is more critical in pluripotent cells compared to differentiated somatic cells in which nonhomologous end joining (NHEJ) is dominant. We have characterized the DNA damage response (DDR) and quality of DNA double-strand break (DSB) repair in human embryonic stem cells (hESCs), and in vitro-derived neural cells. Resolution of ionizing radiation-induced foci (IRIF) was used as a surrogate for DSB repair. The resolution of γ-H2AX foci occurred at a slower rate in hESCs compared to neural progenitors (NPs) and astrocytes perhaps reflective of more complex DSB repair in hESCs. In addition, the resolution of RAD51 foci, indicative of active homologous recombination repair (HRR), showed that hESCs as well as NPs have high capacity for HRR, whereas astrocytes do not. Importantly, the ATM kinase was shown to be critical for foci formation in astrocytes, but not in hESCs, suggesting that the DDR is different in these cells. Blocking the ATM kinase in astrocytes not only prevented the formation but also completely disassembled preformed repair foci. The ability of hESCs to form IRIF was abrogated with caffeine and siRNAs targeted against ATR, implicating that hESCs rely on ATR, rather than ATM for regulating DSB repair. This relationship dynamically changed as cells differentiated. Interestingly, while the inhibition of the DNA-PKcs kinase (and presumably non-homologous endjoining [NHEJ]) in astrocytes slowed IRIF resolution it did not in hESCs, suggesting that repair in hESCs does not utilize DNA-PKcs. Altogether, our results show that hESCs have efficient DSB repair that is largely ATR-dependent HRR, whereas astrocytes critically depend on ATM for NHEJ, which, in part, is DNA-PKcs-independent.
Collapse
Affiliation(s)
- Bret R. Adams
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sarah E. Golding
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Raj R. Rao
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kristoffer Valerie
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
57
|
Abstract
Homologous recombination (HR) performs crucial functions including DNA repair, segregation of homologous chromosomes, propagation of genetic diversity, and maintenance of telomeres. HR is responsible for the repair of DNA double-strand breaks and DNA interstrand cross-links. The process of HR is initiated at the site of DNA breaks and gaps and involves a search for homologous sequences promoted by Rad51 and auxiliary proteins followed by the subsequent invasion of broken DNA ends into the homologous duplex DNA that then serves as a template for repair. The invasion produces a cross-stranded structure, known as the Holliday junction. Here, we describe the properties of Rad54, an important and versatile HR protein that is evolutionarily conserved in eukaryotes. Rad54 is a motor protein that translocates along dsDNA and performs several important functions in HR. The current review focuses on the recently identified Rad54 activities which contribute to the late phase of HR, especially the branch migration of Holliday junctions.
Collapse
Affiliation(s)
- Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | | | | | |
Collapse
|
58
|
Wang H, Zhang X, Wang P, Yu X, Essers J, Chen D, Kanaar R, Takeda S, Wang Y. Characteristics of DNA-binding proteins determine the biological sensitivity to high-linear energy transfer radiation. Nucleic Acids Res 2010; 38:3245-51. [PMID: 20150414 PMCID: PMC2879532 DOI: 10.1093/nar/gkq069] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Non-homologous end-joining (NHEJ) and homologous recombination repair (HRR), contribute to repair ionizing radiation (IR)-induced DNA double-strand breaks (DSBs). Mre11 binding to DNA is the first step for activating HRR and Ku binding to DNA is the first step for initiating NHEJ. High-linear energy transfer (LET) IR (such as high energy charged particles) killing more cells at the same dose as compared with low-LET IR (such as X or γ rays) is due to inefficient NHEJ. However, these phenomena have not been demonstrated at the animal level and the mechanism by which high-LET IR does not affect the efficiency of HRR remains unclear. In this study, we showed that although wild-type and HRR-deficient mice or DT40 cells are more sensitive to high-LET IR than to low-LET IR, NHEJ deficient mice or DT40 cells are equally sensitive to high- and low-LET IR. We also showed that Mre11 and Ku respond differently to shorter DNA fragments in vitro and to the DNA from high-LET irradiated cells in vivo. These findings provide strong evidence that the different DNA DSB binding properties of Mre11 and Ku determine the different efficiencies of HRR and NHEJ to repair high-LET radiation induced DSBs.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Molina O, Blanco J, Vidal F. Deletions and duplications of the 15q11-q13 region in spermatozoa from Prader-Willi syndrome fathers. Mol Hum Reprod 2010; 16:320-8. [PMID: 20083560 DOI: 10.1093/molehr/gaq005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a genomic disorder mostly caused by deletions of 15q11-q13 region (70%). It has been suggested that the particular genomic architecture of 15q11-q13 region, characterized to be flanked by low copy repeats, could predispose it to Non-Allelic Homologous Recombination (NAHR). However, no studies in gametes of fathers of PWS individuals have been published to date. The objective of the study was to assess the incidence of 15q11-q13 deletions and duplications in spermatozoa from PWS fathers and to appraise the value of the data obtained for the estimation of the risk of recurrence for the syndrome. Semen samples from 16 fathers of PWS individuals and 10 control donors, were processed by triple-color fluorescence in situ hybridization. A customized combination of probes was used to discriminate between normal, deleted and duplicated sperm genotypes. A minimum of 10,000 sperm were scored for every single sample. A significant increase in the frequency of 15q11-q13 deletions and duplications were observed in PWS fathers (0.90 +/- 0.14%) compared with control donors (0.47 +/- 0.07%). Ten out of 16 individuals contributed to this population increase (P < 0.01), suggesting a predisposition for 15q11-q13 reorganizations. Statistical differences were observed in the frequency of 15q11-q13 deletions and duplications in fathers of PWS individuals (0.59 versus 0.31%; P = 0.001), indicating that intra-chromatid NAHR exchanges also substantially contribute to the rearrangements. Results demonstrated the increased susceptibility of some fathers of PWS individuals to generate 15q11-q13 deletions, suggesting that the screening of anomalies in sperm should be advisable as a valuable complement for genetic counseling.
Collapse
Affiliation(s)
- O Molina
- Unitat de Biologia Cel.lular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
60
|
Brugmans L, Verkaik NS, Kunen M, van Drunen E, Williams BR, Petrini JHJ, Kanaar R, Essers J, van Gent DC. NBS1 cooperates with homologous recombination to counteract chromosome breakage during replication. DNA Repair (Amst) 2009; 8:1363-70. [PMID: 19782649 DOI: 10.1016/j.dnarep.2009.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/03/2009] [Accepted: 09/05/2009] [Indexed: 12/25/2022]
Abstract
Nijmegen breakage syndrome (NBS) is characterized by genome instability and cancer predisposition. NBS patients contain a mutation in the NBS1 gene, which encodes the NBS1 component of the DNA double-strand break (DSB) response complex MRE11/RAD50/NBS1. To investigate the NBS phenotype in more detail, we combined the mouse mimic of the most common patient mutation (Nbs1(Delta B/DeltaB)) with a Rad54 null mutation, which diminishes homologous recombination. Double mutant cells were particularly sensitive to treatments that cause single strand breaks (SSBs), presumably because these SSBs can be converted into detrimental DSBs upon passage of a replication fork. The persistent presence of nuclear RAD51 foci and increased levels of chromatid type breaks in metaphase spreads indicated that replication-associated DSBs are repaired inefficiently in the double mutant cells. We conclude that Nbs1 and Rad54 function cooperatively, but in separate pathways to counteract this type of DNA damage and discuss mechanistic implications of these findings.
Collapse
Affiliation(s)
- Linda Brugmans
- Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Jeong SW, Jung HJ, Rahman MM, Hwang JN, Seo YR. Protective effects of selenomethionine against ionizing radiation under the modulation of p53 tumor suppressor. J Med Food 2009; 12:389-93. [PMID: 19459742 DOI: 10.1089/jmf.2007.0719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation (IR) therapy has been widely employed in the treatment of cancer. However, certain issues, including toxicity, have been raised in conjunction with IR therapy for cancer. Recently, selenomethionine (SeMet) as an antioxidant has been the subject of a great deal of attention for its chemopreventive effects. In this study, we found that DNA repair activity has been enhanced in response to SeMet against IR. In addition, our data showed that p53 functional activity was significantly reduced against IR in the cells expressing a mutant form of redox factor 1 (Ref-1) contrast with Ref-1 wild-type cells treated with SeMet, suggesting that p53 activation under the modulation of Ref-1 might play an important role in IR-treated cells in the presence of SeMet. Furthermore, IR-induced micronuclei numbers were also reduced after treatment with SeMet, strongly implicating protection by SeMet in genomic stability against IR-induced genotoxicity. From this study, we suggest that the p53-mediated protective mechanism of SeMet might provide clues for reducing side effects of IR therapy.
Collapse
Affiliation(s)
- Seok Won Jeong
- Department of Pharmacology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
62
|
Adar S, Izhar L, Hendel A, Geacintov N, Livneh Z. Repair of gaps opposite lesions by homologous recombination in mammalian cells. Nucleic Acids Res 2009; 37:5737-48. [PMID: 19654238 PMCID: PMC2761288 DOI: 10.1093/nar/gkp632] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Damages in the DNA template inhibit the progression of replication, which may cause single-stranded gaps. Such situations can be tolerated by translesion DNA synthesis (TLS), or by homology-dependent repair (HDR), which is based on transfer or copying of the missing information from the replicated sister chromatid. Whereas it is well established that TLS plays an important role in DNA damage tolerance in mammalian cells, it is unknown whether HDR operates in this process. Using a newly developed plasmid-based assay that distinguishes between the three mechanisms of DNA damage tolerance, we found that mammalian cells can efficiently utilize HDR to repair DNA gaps opposite an abasic site or benzo[a]pyrene adduct. The majority of these events occurred by a physical strand transfer (homologous recombination repair; HRR), rather than a template switch mechanism. Furthermore, cells deficient in either the human RAD51 recombination protein or NBS1, but not Rad18, exhibited decreased gap repair through HDR, indicating a role for these proteins in DNA damage tolerance. To our knowledge, this is the first direct evidence of gap-lesion repair via HDR in mammalian cells, providing further molecular insight into the potential activity of HDR in overcoming replication obstacles and maintaining genome stability.
Collapse
Affiliation(s)
- Sheera Adar
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
63
|
Mahabir AG, Zwart E, Schaap M, van Benthem J, de Vries A, Hernandez LG, Hendriksen CFM, van Steeg H. lacZ mouse embryonic fibroblasts detect both clastogens and mutagens. Mutat Res 2009; 666:50-56. [PMID: 19393670 DOI: 10.1016/j.mrfmmm.2009.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/23/2009] [Accepted: 04/14/2009] [Indexed: 05/27/2023]
Abstract
The clastogenic effects of MMC and BLM and the mutagenic effects of B[a]P, N-ac-AAF and ENU were studied in mouse embryonic fibroblasts derived from wild-type (WT) and Rad54/Rad54B-deficient mice. Clastogens as well as mutagens showed a statistically significant induction of mutations in the lacZ reporter gene both in a WT and Rad54/Rad54B-deficient genetic background. Rad54/Rad54B MEFs appeared equally sensitive to the clastogens compared to WT MEFs, except for MMC. The type of mutations induced by the different compounds was investigated further by hybridizing the mutant colonies with total mouse DNA. An obvious increased number of mouse DNA positive clones was observed after BLM and MMC exposure, indicating that after these treatments genome rearrangements/translocations had occurred. In this hybridization assay, Rad54/Rad54B MEFs did not show more rearrangements/translocations than WT MEFs. As expected, the mutagens used showed no increase in chromosomal rearrangements or transloctions in MEFs derived from both genotypes. These results show that WT MEFs carrying the lacZ reporter gene on a plasmid are capable to detect both clastogenic as well as mutagenic effects of compounds in vitro. Deletion of the Rad54 and Rad54B genes did not further enhance the sensitivity of MEFs towards clastogens.
Collapse
Affiliation(s)
- Anuska G Mahabir
- National Institute of Public Health and the Environment (RIVM), Laboratory for Health Protection Research, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Postiglione I, Chiaviello A, Palumbo G. Twilight effects of low doses of ionizing radiation on cellular systems: a bird's eye view on current concepts and research. Med Oncol 2009; 27:495-509. [PMID: 19504191 DOI: 10.1007/s12032-009-9241-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/22/2009] [Indexed: 01/10/2023]
Abstract
The debate about the health risks from low doses of radiation is vigorous and often acrimonious since many years and does not appear to weaken. Being far from completeness, this review presents only a bird's eye view on current concepts and research in the field. It is organized and divided in two parts. The first is dedicated to molecular responses determined by radiation-induced DNA ruptures. It focuses its attention on molecular pathways that are activated by ATM and tries to describe the variegated functions and specific roles of Chk2 and p53 and other proteins in sensing, promoting and executing DNA repair. The second part is more concerned with the risk associated with exposure to low dose radiation and possible effects that the radiation-affected cell may undergo. These effects include induction of apoptosis and mitotic catastrophe, bystander effect and genomic instability, senescence and hormetic response. Current hypotheses and research on these issues are briefly discussed.
Collapse
Affiliation(s)
- Ilaria Postiglione
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, L Califano and IEOS/CNR, University FEDERICO II, Via Sergio Pansini 5, 80131 Naples, Italy
| | | | | |
Collapse
|
65
|
Kirshner M, Rathavs M, Nizan A, Essers J, Kanaar R, Shiloh Y, Barzilai A. Analysis of the relationships between ATM and the Rad54 paralogs involved in homologous recombination repair. DNA Repair (Amst) 2009; 8:253-61. [DOI: 10.1016/j.dnarep.2008.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 01/22/2023]
|
66
|
Abe K, Osakabe K, Ishikawa Y, Tagiri A, Yamanouchi H, Takyuu T, Yoshioka T, Ito T, Kobayashi M, Shinozaki K, Ichikawa H, Toki S. Inefficient double-strand DNA break repair is associated with increased fasciation in Arabidopsis BRCA2 mutants. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2751-61. [PMID: 19457980 PMCID: PMC2692019 DOI: 10.1093/jxb/erp135] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BRCA2 is a breast tumour susceptibility factor with functions in maintaining genome stability through ensuring efficient double-strand DNA break (DSB) repair via homologous recombination. Although best known in vertebrates, fungi, and higher plants also possess BRCA2-like genes. To investigate the role of Arabidopsis BRCA2 genes in DNA repair in somatic cells, transposon insertion mutants of the AtBRCA2a and AtBRCA2b genes were identified and characterized. atbrca2a-1 and atbrca2b-1 mutant plants showed hypersensitivity to genotoxic stresses compared to wild-type plants. An atbrca2a-1/atbrca2b-1 double mutant showed an additive increase in sensitivity to genotoxic stresses compared to each single mutant. In addition, it was found that atbrca2 mutant plants displayed fasciation and abnormal phyllotaxy phenotypes with low incidence, and that the ratio of plants exhibiting these phenotypes is increased by gamma-irradiation. Interestingly, these phenotypes were also induced by gamma-irradiation in wild-type plants. Moreover, it was found that shoot apical meristems of the atbrca2a-1/atbrca2b-1 double mutant show altered cell cycle progression. These data suggest that inefficient DSB repair in the atbrca2a-1/atbrca2b-1 mutant leads to disorganization of the programmed cell cycle of apical meristems.
Collapse
Affiliation(s)
- Kiyomi Abe
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Keishi Osakabe
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yuichi Ishikawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Akemi Tagiri
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hiroaki Yamanouchi
- Institute of Radiation Breeding, National Institute of Agrobiological Sciences, 2425 Kamimurata, Hitachi-ohmiya, Ibaraki 319-2293, Japan
| | - Toshio Takyuu
- Institute of Radiation Breeding, National Institute of Agrobiological Sciences, 2425 Kamimurata, Hitachi-ohmiya, Ibaraki 319-2293, Japan
| | - Terutaka Yoshioka
- Institute of Radiation Breeding, National Institute of Agrobiological Sciences, 2425 Kamimurata, Hitachi-ohmiya, Ibaraki 319-2293, Japan
| | - Takuya Ito
- Laboratory of Plant Molecular Biology, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Masatomo Kobayashi
- Experimental Plant Division, RIKEN BioResources Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroaki Ichikawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Seiichi Toki
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka Yokohama, Kanagawa 244-0813 Japan
- To whom correspondence should be addressed in Ibaraki. E-mail.
| |
Collapse
|
67
|
Sugimura K, Takebayashi SI, Taguchi H, Takeda S, Okumura K. PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. ACTA ACUST UNITED AC 2008; 183:1203-12. [PMID: 19103807 PMCID: PMC2606964 DOI: 10.1083/jcb.200806068] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Poly-ADP ribose polymerase 1 (PARP-1) is activated by DNA damage and has been implicated in the repair of single-strand breaks (SSBs). Involvement of PARP-1 in other DNA damage responses remains controversial. In this study, we show that PARP-1 is required for replication fork slowing on damaged DNA. Fork progression in PARP-1−/− DT40 cells is not slowed down even in the presence of DNA damage induced by the topoisomerase I inhibitor camptothecin (CPT). Mammalian cells treated with a PARP inhibitor or PARP-1–specific small interfering RNAs show similar results. The expression of human PARP-1 restores fork slowing in PARP-1−/− DT40 cells. PARP-1 affects SSB repair, homologous recombination (HR), and nonhomologous end joining; therefore, we analyzed the effect of CPT on DT40 clones deficient in these pathways. We find that fork slowing is correlated with the proficiency of HR-mediated repair. Our data support the presence of a novel checkpoint pathway in which the initiation of HR but not DNA damage delays the fork progression.
Collapse
Affiliation(s)
- Kazuto Sugimura
- Department of Life Science, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan.
| | | | | | | | | |
Collapse
|
68
|
Artemis and nonhomologous end joining-independent influence of DNA-dependent protein kinase catalytic subunit on chromosome stability. Mol Cell Biol 2008; 29:503-14. [PMID: 19015239 DOI: 10.1128/mcb.01354-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Deficiency in both ATM and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is synthetically lethal in developing mouse embryos. Using mice that phenocopy diverse aspects of Atm deficiency, we have analyzed the genetic requirements for embryonic lethality in the absence of functional DNA-PKcs. Similar to the loss of ATM, hypomorphic mutations of Mre11 (Mre11(ATLD1)) led to synthetic lethality when juxtaposed with DNA-PKcs deficiency (Prkdc(scid)). In contrast, the more moderate DNA double-strand break response defects associated with the Nbs1(DeltaB) allele permitted viability of some Nbs1(DeltaB/DeltaB) Prkdc(scid/scid) embryos. Cell cultures from Nbs1(DeltaB/DeltaB) Prkdc(scid/scid) embryos displayed severe defects, including premature senescence, mitotic aberrations, sensitivity to ionizing radiation, altered checkpoint responses, and increased chromosome instability. The known functions of DNA-PKcs in the regulation of Artemis nuclease activity or nonhomologous end joining-mediated repair do not appear to underlie the severe genetic interaction. Our results reveal a role for DNA-PKcs in the maintenance of S/G(2)-phase chromosome stability and in the induction of cell cycle checkpoint responses.
Collapse
|
69
|
Bryant PE, Mozdarani H, Marr C. G2-phase chromatid break kinetics in irradiated DNA repair mutant hamster cell lines using calyculin-induced PCC and colcemid-block. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 657:8-12. [DOI: 10.1016/j.mrgentox.2008.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 11/29/2022]
|
70
|
Bañuelos CA, Banáth JP, MacPhail SH, Zhao J, Eaves CA, O'Connor MD, Lansdorp PM, Olive PL. Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks. DNA Repair (Amst) 2008; 7:1471-83. [PMID: 18602349 DOI: 10.1016/j.dnarep.2008.05.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 05/08/2008] [Indexed: 01/05/2023]
Abstract
Mouse embryonic stem (mES) cells will give rise to all of the cells of the adult mouse, but they failed to rejoin half of the DNA double-strand breaks (dsb) produced by high doses of ionizing radiation. A deficiency in DNA-PK(cs) appears to be responsible since mES cells expressed <10% of the level of mouse embryo fibroblasts (MEFs) although Ku70/80 protein levels were higher than MEFs. However, the low level of DNA-PK(cs) found in wild-type cells appeared sufficient to allow rejoining of dsb after doses <20Gy even in G1 phase cells. Inhibition of DNA-PK(cs) with wortmannin and NU7026 still sensitized mES cells to radiation confirming the importance of the residual DNA-PK(cs) at low doses. In contrast to wild-type cells, mES cells lacking H2AX, a histone protein involved in the DNA damage response, were radiosensitive but they rejoined double-strand breaks more rapidly. Consistent with more rapid dsb rejoining, H2AX(-/-) mES cells also expressed 6 times more DNA-PK(cs) than wild-type mES cells. Similar results were obtained for ATM(-/-) mES cells. Differentiation of mES cells led to an increase in DNA-PK(cs), an increase in dsb rejoining rate, and a decrease in Ku70/80. Unlike mouse ES, human ES cells were proficient in rejoining of dsb and expressed high levels of DNA-PK(cs). These results confirm the importance of homologous recombination in the accurate repair of double-strand breaks in mES cells, they help explain the chromosome abnormalities associated with deficiencies in H2AX and ATM, and they add to the growing list of differences in the way rodent and human cells deal with DNA damage.
Collapse
Affiliation(s)
- C A Bañuelos
- Medical Biophysics Department, British Columbia Cancer Research Centre, 675 W. 10th Avenue, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Cuozzo C, Porcellini A, Angrisano T, Morano A, Lee B, Pardo AD, Messina S, Iuliano R, Fusco A, Santillo MR, Muller MT, Chiariotti L, Gottesman ME, Avvedimento EV. DNA damage, homology-directed repair, and DNA methylation. PLoS Genet 2008; 3:e110. [PMID: 17616978 PMCID: PMC1913100 DOI: 10.1371/journal.pgen.0030110] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 05/21/2007] [Indexed: 02/06/2023] Open
Abstract
To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES) cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP) genes (DR-GFP). A total of 2%–4% of the cells generated a functional GFP by homology-directed repair (HR) and gene conversion. However, ~50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2′-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments. Genomic DNA can be modified by cytosine methylation. This epigenetic modification is layered on the primary genetic information and can silence the affected gene. Epigenetic modification has been implicated in cancer and aging. To date, the primary cause and the mechanism leading to DNA methylation are not known. By using a sophisticated genetic system, we have induced a single break in the double helix of the genomes of mouse or human cells. This rupture was repaired by a very precise mechanism: the damaged chromosome pairs and retrieves genetic information from an undamaged and homologous DNA partner. This homology-directed repair was marked in half of the repaired molecules by de novo methylation of cytosines flanking the cut. As a direct consequence, the gene in these repaired molecules was silenced. In the remaining molecules, the recombinant DNA was undermethylated and expressed the reconstituted gene. Since homology-directed repair may duplicate or delete genetic information, epigenetic modification of repaired DNA represents a powerful evolutionary force. If the expression of the repaired gene is harmful, only cells inheriting the silenced copy will survive. Conversely, if the function of the repaired gene is beneficial, cells inheriting the under-methylated copy will have a selective advantage.
Collapse
Affiliation(s)
- Concetta Cuozzo
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università Federico II, Naples, Italy
| | - Antonio Porcellini
- Dipartimento di Medicina Sperimentale, Università “La Sapienza,” Rome, Italy
- Dipartimento di Patologia Molecolare, Istituto Neurologico Mediterraneo, Neuromed, Pozzilli, Italy
| | - Tiziana Angrisano
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università Federico II, Naples, Italy
| | - Annalisa Morano
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università Federico II, Naples, Italy
| | - Bongyong Lee
- Department of Molecular Biology and Microbiology and Biomolecular Science Center, University of Central Florida, Orlando, Florida, United States of America
| | - Alba Di Pardo
- Dipartimento di Patologia Molecolare, Istituto Neurologico Mediterraneo, Neuromed, Pozzilli, Italy
| | - Samantha Messina
- Dipartimento di Patologia Molecolare, Istituto Neurologico Mediterraneo, Neuromed, Pozzilli, Italy
| | - Rodolfo Iuliano
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università Federico II, Naples, Italy
| | - Alfredo Fusco
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università Federico II, Naples, Italy
| | - Maria R Santillo
- Dipartimento di Neuroscienze, Sezione Fisiologia, Università Federico II, Naples, Italy
| | - Mark T Muller
- Department of Molecular Biology and Microbiology and Biomolecular Science Center, University of Central Florida, Orlando, Florida, United States of America
| | - Lorenzo Chiariotti
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università Federico II, Naples, Italy
| | - Max E Gottesman
- Institute of Cancer Research, Columbia University Medical Center, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail: (MEG); (EVA)
| | - Enrico V Avvedimento
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università Federico II, Naples, Italy
- * To whom correspondence should be addressed. E-mail: (MEG); (EVA)
| |
Collapse
|
72
|
Minter-Dykhouse K, Ward I, Huen MSY, Chen J, Lou Z. Distinct versus overlapping functions of MDC1 and 53BP1 in DNA damage response and tumorigenesis. J Cell Biol 2008; 181:727-35. [PMID: 18504301 PMCID: PMC2396806 DOI: 10.1083/jcb.200801083] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 04/29/2008] [Indexed: 01/07/2023] Open
Abstract
The importance of the DNA damage response (DDR) pathway in development, genomic stability, and tumor suppression is well recognized. Although 53BP1 and MDC1 have been recently identified as critical upstream mediators in the cellular response to DNA double-strand breaks, their relative hierarchy in the ataxia telangiectasia mutated (ATM) signaling cascade remains controversial. To investigate the divergent and potentially overlapping functions of MDC1 and 53BP1 in the ATM response pathway, we generated mice deficient for both genes. Unexpectedly, the loss of both MDC1 and 53BP1 neither significantly increases the severity of defects in DDR nor increases tumor incidence compared with the loss of MDC1 alone. We additionally show that MDC1 regulates 53BP1 foci formation and phosphorylation in response to DNA damage. These results suggest that MDC1 functions as an upstream regulator of 53BP1 in the DDR pathway and in tumor suppression.
Collapse
|
73
|
Nunnari G, Smith JA, Daniel R. HIV-1 Tat and AIDS-associated cancer: targeting the cellular anti-cancer barrier? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2008; 27:3. [PMID: 18577246 PMCID: PMC2438332 DOI: 10.1186/1756-9966-27-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 05/15/2008] [Indexed: 01/28/2023]
Abstract
The acquired immunodeficiency syndrome (AIDS) is accompanied by a significant increase in the incidence of neoplasms. Several causative agents have been proposed for this phenomenon. These include immunodeficiency and oncogenic DNA viruses and the HIV-1 protein Tat. Cancer in general is closely linked to genomic instability and DNA repair mechanisms. The latter maintains genomic stability and serves as a cellular anti-cancer barrier. Defects in DNA repair pathway are associated with carcinogenesis. This review focuses on newly discovered connections of the HIV-1 protein Tat, as well as cellular co-factors of Tat, to double-strand break DNA repair. We propose that the Tat-induced DNA repair deficiencies may play a significant role in the development of AIDS-associated cancer.
Collapse
Affiliation(s)
- Giuseppe Nunnari
- University of Catania, Department of Medicine and Medical Specialties, Division of Infectious Diseases, Via Palermo 636, Catania, Italy.
| | | | | |
Collapse
|
74
|
Derijck A, van der Heijden G, Giele M, Philippens M, de Boer P. DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum Mol Genet 2008; 17:1922-37. [PMID: 18353795 DOI: 10.1093/hmg/ddn090] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the human, the contribution of the sexes to the genetic load is dissimilar. Especially for point mutations, expanded simple tandem repeats and structural chromosome mutations, the contribution of the male germline is dominant. Far less is known about the male germ cell stage(s) that are most vulnerable to mutation contraction. For the understanding of de novo mutation induction in the germline, mechanistic insight of DNA repair in the zygote is mandatory. At the onset of embryonic development, the parental chromatin sets occupy one pronucleus (PN) each and DNA repair can be regarded as a maternal trait, depending on proteins and mRNAs provided by the oocyte. Repair of DNA double-strand breaks (DSBs) is executed by non-homologous end joining (NHEJ) and homologous recombination (HR). Differentiated somatic cells often resolve DSBs by NHEJ, whereas embryonic stem cells preferably use HR. We show NHEJ and HR to be both functional during the zygotic cell cycle. NHEJ is already active during replacement of sperm protamines by nucleosomes. The kinetics of G1 repair is influenced by DNA-PK(cs) hypomorphic activity. Both HR and NHEJ are operative in S-phase, HR being more active in the male PN. DNA-PK(cs) deficiency upregulates the HR activity. Both after sperm remodeling and at first mitosis, spontaneous levels of gammaH2AX foci (marker for DSBs) are high. All immunoflurescent indices of DNA damage and DNA repair point at greater spontaneous damage and induced repair activity in paternal chromatin in the zygote.
Collapse
Affiliation(s)
- Alwin Derijck
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
75
|
Wu W, Wang M, Wu W, Singh SK, Mussfeldt T, Iliakis G. Repair of radiation induced DNA double strand breaks by backup NHEJ is enhanced in G2. DNA Repair (Amst) 2008; 7:329-38. [DOI: 10.1016/j.dnarep.2007.11.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/08/2007] [Accepted: 11/09/2007] [Indexed: 01/20/2023]
|
76
|
Interstrand crosslink repair: can XPF-ERCC1 be let off the hook? Trends Genet 2008; 24:70-6. [PMID: 18192062 DOI: 10.1016/j.tig.2007.11.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 11/21/2022]
Abstract
The interstrand crosslink (ICL) presents a challenge to both the cell and the scientist. From a clinical standpoint, these lesions are particularly intriguing: ICL-inducing agents are powerful tools in cancer chemotherapy, and spontaneous ICLs have recently been linked with accelerated aging phenotypes. Nevertheless, the ICL repair process has proven difficult to elucidate. Here we discuss recent additions to the current model and argue that the endonuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1 (XPF-ERCC1) has been heretofore misplaced. During nucleotide excision repair, XPF-ERCC1 makes a single-strand nick adjacent to the lesion. XPF-ERCC1 has been thought to play an analogous role in ICL repair. However, recent data has implicated XPF-ERCC1 in homologous recombination. We suggest that this role, rather than its function in nucleotide excision repair, defines its importance to ICL repair.
Collapse
|
77
|
Abstract
Telomeres are the very ends of the chromosomes. They can be seen as natural double-strand breaks (DSB), specialized structures which prevent DSB repair and activation of DNA damage checkpoints. In somatic cells, attrition of telomeres occurs after each cell division until replicative senescence. In the absence of telomerase, telomeres shorten due to incomplete replication of the lagging strand at the very end of chromosome termini. Moreover, oxidative stress and accumulating reactive oxygen species (ROS) lead to an increased telomere shortening due to a less efficient repair of SSB in telomeres. The specialized structures at telomeres include proteins involved in both telomere maintenance and DNA repair. However when a telomere is damaged and has to be repaired, those proteins might fail to perform an accurate repair of the damage. This is the starting point of this article in which we first summarize the well-established relationships between DNA repair processes and maintenance of functional telomeres. We then examine how damaged telomeres would be processed, and show that irradiation alters telomere maintenance leading to possibly dramatic consequences. Our point is to suggest that those consequences are not restricted to the short term effects such as increased radiation-induced cell death. On the contrary, we postulate that the major impact of the loss of telomere integrity might occur in the long term, during multistep carcinogenesis. Its major role would be to act as an amplificator event unmasking in one single step recessive radiation-induced mutations among thousands of genes and providing cellular proliferative advantage. Moreover, the chromosomal instability generated by damaged telomeres will favour each step of the transformation from normal to fully transformed cells.
Collapse
|
78
|
Lee MN, Tseng RC, Hsu HS, Chen JY, Tzao C, Ho WL, Wang YC. Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non-small cell lung cancer. Clin Cancer Res 2007; 13:832-8. [PMID: 17289874 DOI: 10.1158/1078-0432.ccr-05-2694] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Lung cancer cells frequently exhibit marked chromosome instability. We postulated that alterations of the double-strand break repair genes (BRCA1, BRCA2, and XRCC5) might be involved in lung cancer. PATIENTS AND METHODS We examined the loss of protein and mRNA expression and the 5'CpG hypermethylation and allelic imbalance of the BRCA1, BRCA2, and XRCC5 genes in 98 non-small cell lung cancer (NSCLC) samples. Anchorage-dependent growth after reexpression of these genes was examined in a lung cancer cell line that originally lacked BRCA1 and BRCA2 expression. RESULTS The data indicated that low protein expression of BRCA1 and BRCA2 was frequent in lung adenocarcinomas (42-44%), whereas low XRCC5 protein expression was more prevalent among squamous cell carcinoma (32%). In addition, low BRCA1 expression was significantly associated with low RB expression, especially in lung adenocarcinoma. Concurrent alterations in XRCC5 and p53 were the most frequent profiles in smoking patients. Importantly, low mRNA and protein expressions of BRCA1, BRCA2, and XRCC5 were significantly associated with their promoter hypermethylation. 5-Aza-2'-deoxycytidine treatment of NSCLC cells showed demethylation and reexpression of the BRCA1 and BRCA2 genes and reduced anchorage-independent growth. CONCLUSIONS Our retrospective study provides compelling evidence that low mRNA and protein expression in the BRCA1/BRCA2 and XRCC5 genes occur in lung adenocarcinoma and squamous cell carcinoma, respectively, and that promoter hypermethylation is the predominant mechanism in deregulation of these genes. Alteration of the double-strand break repair pathway, perhaps by interacting with p53 and RB deregulation, is important in the pathogenesis of a subset of NSCLC.
Collapse
Affiliation(s)
- Ming-Ni Lee
- Department of Life Sciences, National Taiwan Normal University, and Division of Thoracic Surgery, Taipei Veterans General Hospital, Taiwan
| | | | | | | | | | | | | |
Collapse
|
79
|
Ren J, Lin J, Dong X, Xu D, Chen Q, Liu Y, Chang Y, Yao J, Han S. Screening of efficient siRNA target sites directed against gatekeeper genes for DNA repair. ACTA ACUST UNITED AC 2007; 26:640-3. [PMID: 17357476 DOI: 10.1007/s11596-006-0602-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To investigate the RNA interference (RNAi) effect induced by vector-derived small interfering RNA (siRNA) targeting the three gatekeeper genes (Rad52, Ku70, Ku80) and screen the more effective target sites from candidates for further research, by using siRNA design tools online, we selected 2 candidate sequences directed to every gatekeeper gene. According to the sequences, six vector-derived siRNAs (denoted psiRNA1-6) and one mocking psiRNA7 were constructed. Among them, psiRNA1 and psiRNA2 targeted Rad52, psiRNA3 and psiRNA4 to Ku70, psiRNA5 and psiRNA6 to Ku80. The mocking psiRNA7 was used as control. After sequence identification, the seven plasmids were transfected into HepG2 cell line. siRNA-induced silencing of gatekeeper genes was determined by using RT-PCR at RNA level and Western Blot at protein level. The results showed that the six plasmids specifically targeting the coding region of gatekeeper genes were successfully designed and constructed. To some extent, the six plasmids could reduce the expression of target gene. Comparatively, the plasmid-derived siRNA psiRNA1, psiRNA4 and psiRNA5 were more effective than their counterparts. The results suggest that the gene silencing efficiency of siRNA is different, depending on their targeted region, and siRNA may provide us with practical tools for further study on the three gatekeeper genes, i.e. Rad52, Ku70, Ku80.
Collapse
Affiliation(s)
- Jinghua Ren
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Non-homologous end-joining for repairing I-SceI-induced DNA double strand breaks in human cells. DNA Repair (Amst) 2007; 6:781-8. [PMID: 17296333 DOI: 10.1016/j.dnarep.2007.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 12/04/2006] [Accepted: 01/04/2007] [Indexed: 01/08/2023]
Abstract
DNA double strand breaks (DSBs) are usually repaired through either non-homologous end-joining (NHEJ) or homologous recombination (HR). While HR is basically error-free repair, NHEJ is a mutagenic pathway that leads to deletion. NHEJ must be precisely regulated to maintain genomic integrity. To clarify the role of NHEJ, we investigated the genetic consequences of NHEJ repair of DSBs in human cells. Human lymphoblastoid cell lines TSCE5 and TSCE105 have, respectively, single and double I-SceI endonuclease sites in the endogenous thymidine kinase gene (TK) located on chromosome 17q. I-SceI expression generated DSBs at the TK gene. We used the novel transfection system (Amaxa Nucleofector) to introduce an I-SceI expression vector into the cells and randomly isolated clones. We found mutations involved in the DSBs in the TK gene in 3% of TSCE5 cells and 30% of TSCE105 cell clones. Most of the mutations in TSCE5 were small (1-30bp) deletions with a 0-4bp microhomology at the junction. The others consisted of large (>60) bp deletions, an insertion, and a rearrangement. Mutants resulting from interallelic HR also occurred, but infrequently. Most of the mutations in TSCE105, on the other hand, were deletions that encompassed the two I-SceI sites generated by NHEJ at DSBs. The sequence joint was similar to that found in TSCE5 mutants. Interestingly, some mutants formed a new I-SceI site by perfectly joining the two original I-SceI sites without deletion of the broken-ends. These results support the idea that NHEJ for repairing I-SceI-induced DSBs mainly results in small or no deletions. Thus, NHEJ must help maintain genomic integrity in mammalian cells by repairing DSBs as well as by preventing many deleterious alterations.
Collapse
|
81
|
Reduction of gene repair by selenomethionine with the use of single-stranded oligonucleotides. BMC Mol Biol 2007; 8:7. [PMID: 17257432 PMCID: PMC1797052 DOI: 10.1186/1471-2199-8-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 01/26/2007] [Indexed: 12/02/2022] Open
Abstract
Background The repair of single base mutations in mammalian genes can be directed by single-stranded oligonucleotides in a process known as targeted gene repair. The mechanism of this reaction is currently being elucidated but likely involves a pairing step in which the oligonucleotide align in homologous register with its target sequence and a correction step in which the mutant base is replaced by endogenous repair pathways. This process is regulated by the activity of various factors and proteins that either elevate or depress the frequency at which gene repair takes place. Results In this report, we find that addition of selenomethionine reduces gene repair frequency in a dose-dependent fashion. A correlation between gene repair and altered cell cycle progression is observed. We also find that selenium induces expression of Ref-1 which, in turn, modifies the activity of p53 during the cell cycle. Conclusion We can conclude from the results that the suppression of gene repair by introduction of selenomethionine occurs through a p53-associated pathway. This result indicates that the successful application of gene repair for treatment of inherited disorders may be hampered by indirect activation of endogenous suppressor functions.
Collapse
|
82
|
Ju DS, Kim MJ, Bae JH, Song HS, Chung BS, Lee MK, Kang CD, Lee HS, Kim DW, Kim SH. Camptothecin acts synergistically with imatinib and overcomes imatinib resistance through Bcr-Abl independence in human K562 cells. Cancer Lett 2007; 252:75-85. [PMID: 17223257 DOI: 10.1016/j.canlet.2006.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/08/2006] [Accepted: 12/12/2006] [Indexed: 11/28/2022]
Abstract
In this study, we have tried to find new targets and effective drugs for imatinib-resistant chronic myelogenous leukemia (CML) cells displaying loss of Bcr-Abl kinase target dependence. The imatinib-resistant K562/R1, -R2 and -R3 cells showed profound declines of Bcr-Abl level and concurrently exhibited up-regulation of Bcl-2 and Ku70/80, and down-regulation of Bax, DNA-PKcs and BRCA1, suggesting that loss of Bcr-Abl after exposure to imatinib might be accompanied by other cell survival mechanism. K562/R3 cells were more sensitive to camptothecin (CPT)- and radiation-induced apoptosis than K562 cells, indicating hypersensitivity of imatinib-resistant cells to DNA damaging agents. Moreover, when K562 cells were treated with the combination of imatinib with CPT, the level of Bax and the cleavage of PARP-1 and DNA-PK were significantly increased in comparison with the effects of each drug. Therefore, our study suggests that CPT can be used to treat CML with loss of Bcr-Abl expression.
Collapse
Affiliation(s)
- Dong-Sik Ju
- Department of Biochemistry, Pusan National University School of Medicine, Busan 602-739, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
|
84
|
Delacôte F, Deriano L, Lambert S, Bertrand P, Saintigny Y, Lopez BS. Chronic exposure to sublethal doses of radiation mimetic Zeocin selects for clones deficient in homologous recombination. Mutat Res 2006; 615:125-33. [PMID: 17174359 DOI: 10.1016/j.mrfmmm.2006.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/30/2006] [Accepted: 11/17/2006] [Indexed: 01/27/2023]
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions leading to genome variability/instability. The balance between homologous recombination (HR) and non-homologous end-joining (NHEJ), two alternative DSB repair systems, is essential to ensure genome maintenance in mammalian cells. Here, we transfected CHO hamster cells with the pcDNA3.1/Zeo plasmid, and selected transfectants with Zeocin, a bleomycin analog which produces DSBs. Despite the presence of a Zeocin resistance gene in pcDNA3.1/Zeo, Zeocin induced 8-10 gamma-H2AX foci per cell. This shows that the Zeocin resistance gene failed to fully detoxify cells treated with Zeocin, and that during selection cells were submitted to a chronic sublethal DSB stress. Selected clones show decreases in both spontaneous and induced intrachromosomal HR. In contrast, in an in vitro assay, these clones show an increase in NHEJ products specific to the KU86 pathway. We selected cells, in the absence of pcDNA3.1/Zeo, with low and sublethal doses of Zeocin, producing a mean 8-10 gamma-H2AX foci per cell. Newly selected clones exhibited similar phenotypes: HR decrease accompanied by an increase in KU86-dependent NHEJ efficiency. Thus chronic exposure to sublethal numbers of DSBs selects cells whose HR versus NHEJ balance is altered. This may well have implications for radio- and chemotherapy, and for management of environmental hazards.
Collapse
Affiliation(s)
- Fabien Delacôte
- UMR CNRS/CEA 217, DSV, DRR, CEA, 18 route du panorama, 92265 Fontenay aux Roses, Cédex, France
| | | | | | | | | | | |
Collapse
|
85
|
Hanada K, Budzowska M, Modesti M, Maas A, Wyman C, Essers J, Kanaar R. The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J 2006; 25:4921-32. [PMID: 17036055 PMCID: PMC1618088 DOI: 10.1038/sj.emboj.7601344] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 08/16/2006] [Indexed: 01/02/2023] Open
Abstract
Repair of interstrand crosslinks (ICLs) requires multiple-strand incisions to separate the two covalently attached strands of DNA. It is unclear how these incisions are generated. DNA double-strand breaks (DSBs) have been identified as intermediates in ICL repair, but enzymes responsible for producing these intermediates are unknown. Here we show that Mus81, a component of the Mus81-Eme1 structure-specific endonuclease, is involved in generating the ICL-induced DSBs in mouse embryonic stem (ES) cells in S phase. Given the DNA junction cleavage specificity of Mus81-Eme1 in vitro, DNA damage-stalled replication forks are suitable in vivo substrates. Interestingly, generation of DSBs from replication forks stalled due to DNA damage that affects only one of the two DNA strands did not require Mus81. Furthermore, in addition to a physical interaction between Mus81 and the homologous recombination protein Rad54, we show that Mus81(-/-) Rad54(-/-) ES cells were as hypersensitive to ICL agents as Mus81(-/-) cells. We propose that Mus81-Eme1- and Rad54-mediated homologous recombination are involved in the same DNA replication-dependent ICL repair pathway.
Collapse
Affiliation(s)
- Katsuhiro Hanada
- Department of Cell Biology & Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Magda Budzowska
- Department of Cell Biology & Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Mauro Modesti
- Department of Cell Biology & Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Alex Maas
- Department of Cell Biology & Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Cell Biology & Genetics, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Cell Biology & Genetics, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Cell Biology & Genetics, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
86
|
Huff LM, Lee JS, Robey RW, Fojo T. Characterization of gene rearrangements leading to activation of MDR-1. J Biol Chem 2006; 281:36501-9. [PMID: 16956878 DOI: 10.1074/jbc.m602998200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the MDR-1/P-glycoprotein gene confers drug resistance both in vitro and in vivo. We previously reported that gene rearrangements resulting in a hybrid MDR-1 transcript represent a common mechanism for acquired activation of MDR-1/P-glycoprotein. We have identified hybrid MDR-1 transcripts in nine MDR-1-overexpressing cell lines and two patients with relapsed ALL. We characterize these rearrangements as follows. 1) Non-MDR-1 sequences in the hybrid MDR-1 transcripts are expressed in unselected cell lines, showing that these sequences are constitutively expressed. 2) The rearrangements occur randomly and involve partner genes (sequences) on chromosome 7 and on chromosomes other than 7. Breakpoints have been characterized in six cell lines. In one, the rearrangement occurred within intron 2 of MDR-1; in the other five, the rearrangement occurred 24 to >96 kb 5' of the normal start of transcription of MDR-1. In one cell line, homologous recombination involving an Alu repeat was observed. However, in the remaining five cell lines, nonhomologous recombination was observed. 3) The rearrangements arise during drug selection. The acquired rearrangements are not detected in parental cells. 4) Five of the six active promoters that captured MDR-1 controlled MDR-1 from a distance of 29 to more than 110 kb 5' to MDR-1. Transcription was initiated in an antegrade or retrograde direction. We conclude that drug selection with natural products targeting DNA or microtubules leads to DNA damage, nonhomologous recombination, and acquired drug resistance, wherein MDR-1 expression is driven by a random but constitutively active promoter.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/immunology
- Base Sequence
- Cell Line
- Cell Line, Tumor
- DNA Damage
- Gene Rearrangement
- Genes, MDR/genetics
- Humans
- Microtubules/genetics
- Models, Genetic
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA/chemistry
- Recombination, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- Lyn M Huff
- Medical Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
87
|
Abstract
Controversy surrounding the proposed mechanism of radiation-induced translocation has existed virtually since the inception of radiation genetics/cytogenetics, some 75 years ago. Chief among these controversies is how close chromosomes have to be to one another at the time of exposure for an exchange to occur. An historically related issue, and one that continues to generate lively debate, is whether both chromosomes participating in an exchange must sustain radiation damage, or whether instead a single damaged site on one chromosome is sufficient. The intent of this paper is to present one person's perspective as we revisit these two long-standing issues, armed with more recent knowledge in three key areas. These include a new-found appreciation for the complexity of chromosome rearrangements; molecular processes of recombination that are likely to be involved; and the architecture of the nucleus regarding the relationship among chromosomes during interphase.
Collapse
Affiliation(s)
- Michael N Cornforth
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX 77555-0884, USA.
| |
Collapse
|
88
|
Abstract
Homologous recombination (HR) is a ubiquitous cellular pathway that mediates transfer of genetic information between homologous or near homologous (homeologous) DNA sequences. During meiosis it ensures proper chromosome segregation in the first division. Moreover, HR is critical for the tolerance and repair of DNA damage, as well as in the recovery of stalled and broken replication forks. Together these functions preserve genomic stability and assure high fidelity transmission of the genetic material in the mitotic and meiotic cell divisions. This review will focus on the Rad54 protein, a member of the Snf2-family of SF2 helicases, which translocates on dsDNA but does not display strand displacement activity typical for a helicase. A wealth of genetic, cytological, biochemical and structural data suggests that Rad54 is a core factor of HR, possibly acting at multiple stages during HR in concert with the central homologous pairing protein Rad51.
Collapse
Affiliation(s)
- Wolf-Dietrich Heyer
- Sections of Microbiology, University of California Davis, CA 95616-8665, USA.
| | | | | | | |
Collapse
|
89
|
Brugmans L, Kanaar R, Essers J. Analysis of DNA double-strand break repair pathways in mice. Mutat Res 2006; 614:95-108. [PMID: 16797606 DOI: 10.1016/j.mrfmmm.2006.01.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 01/19/2006] [Accepted: 01/23/2006] [Indexed: 11/26/2022]
Abstract
During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues.
Collapse
Affiliation(s)
- Linda Brugmans
- Department of Cell Biology and Genetics, Erasmus MC, Dr. Molewaterplein 50, PO Box 1738, Rotterdam 3015GE, The Netherlands
| | | | | |
Collapse
|
90
|
Giaginis C, Gatzidou E, Theocharis S. DNA repair systems as targets of cadmium toxicity. Toxicol Appl Pharmacol 2006; 213:282-90. [PMID: 16677676 DOI: 10.1016/j.taap.2006.03.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 03/19/2006] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
Cadmium (Cd) is a heavy metal and a potent carcinogen implicated in tumor development through occupational and environmental exposure. Recent evidence suggests that proteins participating in the DNA repair systems, especially in excision and mismatch repair, are sensitive targets of Cd toxicity. Cd by interfering and inhibiting these DNA repair processes might contribute to increased risk for tumor formation in humans. In the present review, the information available on the interference of Cd with DNA repair systems and their inhibition is summarized. These actions could possibly explain the indirect contribution of Cd to mutagenic effects and/or carcinogenicity.
Collapse
Affiliation(s)
- Constantinos Giaginis
- Department of Forensic Medicine and Toxicology, University of Athens, Medical School, 75 M. Asias str., Goudi, GR11527 Athens, Greece
| | | | | |
Collapse
|
91
|
Boyko A, Zemp F, Filkowski J, Kovalchuk I. Double-strand break repair in plants is developmentally regulated. PLANT PHYSIOLOGY 2006; 141:488-97. [PMID: 16474027 PMCID: PMC1475443 DOI: 10.1104/pp.105.074658] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this study, we analyzed double-strand break (DSB) repair in Arabidopsis (Arabidopsis thaliana) at various developmental stages. To analyze DSB repair, we used a homologous recombination (HR) and point mutation reversion assays based on nonfunctional beta-glucuronidase reporter genes. Activation of the reporter gene through HR or point mutation reversion resulted in the appearance of blue sectors after histochemical staining. Scoring of these sectors at 3-d intervals from 2 to 31 d post germination (dpg) revealed that, although there was a 100-fold increase in the number of genomes per plant, the recombination frequency only increased 30-fold. This translates to a recombination rate at 31 dpg (2.77 x 10(-8)) being only 30% of the recombination rate at 2 dpg (9.14 x 10(-8)). Conversely, the mutation frequency increased nearly 180-fold, resulting in a 1.8-fold increase in mutation rate from 2 to 31 dpg. Additional analysis of DSBs over the early developmental stages revealed a substantial increase in the number of strand breaks per unit of DNA. Furthermore, RNA analysis of Ku70 and Rad51, two key enzymes in two different DSB repair pathways, and further protein analysis of Ku70 revealed an increase in Ku70 levels and a decrease of Rad51 levels in the developing plants. These data suggest that DSB repair mechanisms are developmentally regulated in Arabidopsis, whereby the proportion of breaks repaired via HR substantially decreases as the plants mature.
Collapse
Affiliation(s)
- Alexander Boyko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | | | | | | |
Collapse
|
92
|
Zhao Y, Thomas HD, Batey MA, Cowell IG, Richardson CJ, Griffin RJ, Calvert AH, Newell DR, Smith GCM, Curtin NJ. Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. Cancer Res 2006; 66:5354-62. [PMID: 16707462 DOI: 10.1158/0008-5472.can-05-4275] [Citation(s) in RCA: 334] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA double-strand breaks (DSB) are the most cytotoxic lesions induced by ionizing radiation and topoisomerase II poisons, such as etoposide and doxorubicin. A major pathway for the repair of DSB is nonhomologous end joining, which requires DNA-dependent protein kinase (DNA-PK) activity. We investigated the therapeutic use of a potent, specific DNA-PK inhibitor (NU7441) in models of human cancer. We measured chemosensitization by NU7441 of topoisomerase II poisons and radiosensitization in cells deficient and proficient in DNA-PK(CS) (V3 and V3-YAC) and p53 wild type (LoVo) and p53 mutant (SW620) human colon cancer cell lines by clonogenic survival assay. Effects of NU7441 on DSB repair and cell cycle arrest were measured by gammaH2AX foci and flow cytometry. Tissue distribution of NU7441 and potentiation of etoposide activity were determined in mice bearing SW620 tumors. NU7441 increased the cytotoxicity of ionizing radiation and etoposide in SW620, LoVo, and V3-YAC cells but not in V3 cells, confirming that potentiation was due to DNA-PK inhibition. NU7441 substantially retarded the repair of ionizing radiation-induced and etoposide-induced DSB. NU7441 appreciably increased G(2)-M accumulation induced by ionizing radiation, etoposide, and doxorubicin in both SW620 and LoVo cells. In mice bearing SW620 xenografts, NU7441 concentrations in the tumor necessary for chemopotentiation in vitro were maintained for at least 4 hours at nontoxic doses. NU7441 increased etoposide-induced tumor growth delay 2-fold without exacerbating etoposide toxicity to unacceptable levels. In conclusion, NU7441 shows sufficient proof of principle through in vitro and in vivo chemosensitization and radiosensitization to justify further development of DNA-PK inhibitors for clinical use.
Collapse
Affiliation(s)
- Yan Zhao
- Northern Institute for Cancer Research, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Boyko A, Filkowski J, Hudson D, Kovalchuk I. Homologous recombination in plants is organ specific. Mutat Res 2006; 595:145-55. [PMID: 16442571 DOI: 10.1016/j.mrfmmm.2005.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/27/2005] [Accepted: 11/03/2005] [Indexed: 05/06/2023]
Abstract
In this paper we analysed the genome stability of various Arabidopsis thaliana plant organs using a transgenic recombination system. The system was based on two copies of non-functional GUS (lines #651 and #11) or LUC (line #15D8) reporter genes serving as a recombination substrate. Both reporter assays showed that recombination in flowers or stems were rare events. Most of the recombination sectors were found in leaves and roots, with leaves having over 2-fold greater number of the recombination events per single cell genome as compared to roots. The recombination events per single genome were 9.7-fold more frequent on the lateral half of the leaves than on the medial halves. This correlated with a 2.5-fold higher metabolic activity in the energy source (lateral) versus energy sink (medial) of leaves. Higher metabolic activity was paralleled by a higher anthocyanin production in lateral halves. The level of double strand break (DSB) occurrence was also different among plant organs; the highest level was observed in roots and the lowest in leaves. High level of DSBs strongly positively correlated with the activity of the key repair enzymes, AtKU70 and AtRAD51. The ratio of AtRAD51 to AtKU70 expression was the highest in leaves, supporting the more active involvement of homologous recombination pathway in the repair of DSBs in this organ. Western blot analysis confirmed the real time PCR expression data for AtKU70 gene.
Collapse
Affiliation(s)
- Alexander Boyko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alta., Canada T1K 3M4
| | | | | | | |
Collapse
|
94
|
Bracker TU, Giebel B, Spanholtz J, Sorg UR, Klein-Hitpass L, Moritz T, Thomale J. Stringent Regulation of DNA Repair During Human Hematopoietic Differentiation: A Gene Expression and Functional Analysis. Stem Cells 2006; 24:722-30. [PMID: 16195417 DOI: 10.1634/stemcells.2005-0227] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
For the lymphohematopoietic system, maturation-dependent alterations in DNA repair function have been demonstrated. Because little information is available on the regulatory mechanisms underlying these changes, we have correlated the expression of DNA damage response genes and the functional repair capacity of cells at distinct stages of human hematopoietic differentiation. Comparing fractions of mature (CD34-), progenitor (CD34+ 38+), and stem cells (CD34+ 38-) isolated from umbilical cord blood, we observed: 1) stringently regulated differentiation-dependent shifts in both the cellular processing of DNA lesions and the expression profiles of related genes and 2) considerable interindividual variability of DNA repair at transcriptional and functional levels. The respective repair phenotype was found to be constitutively regulated and not dominated by adaptive response to acute DNA damage. During blood cell development, the removal of DNA adducts, the resealing of repair gaps, the resistance to DNA-reactive drugs clearly increased in stem or mature compared with progenitor cells of the same individual. On the other hand, the vast majority of differentially expressed repair genes was consistently upregulated in the progenitor fraction. A positive correlation of repair function and transcript levels was found for a small number of genes such as RAD23 or ATM, which may serve as key regulators for DNA damage processing via specific pathways. These data indicate that the organism might aim to protect the small number of valuable slow dividing stem cells by extensive DNA repair, whereas fast-proliferating progenitor cells, once damaged, are rather eliminated by apoptosis.
Collapse
Affiliation(s)
- Tomke U Bracker
- Institute of Cell Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
95
|
Wesoly J, Agarwal S, Sigurdsson S, Bussen W, Van Komen S, Qin J, van Steeg H, van Benthem J, Wassenaar E, Baarends WM, Ghazvini M, Tafel AA, Heath H, Galjart N, Essers J, Grootegoed JA, Arnheim N, Bezzubova O, Buerstedde JM, Sung P, Kanaar R. Differential contributions of mammalian Rad54 paralogs to recombination, DNA damage repair, and meiosis. Mol Cell Biol 2006; 26:976-89. [PMID: 16428451 PMCID: PMC1347043 DOI: 10.1128/mcb.26.3.976-989.2006] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Homologous recombination is a versatile DNA damage repair pathway requiring Rad51 and Rad54. Here we show that a mammalian Rad54 paralog, Rad54B, displays physical and functional interactions with Rad51 and DNA that are similar to those of Rad54. While ablation of Rad54 in mouse embryonic stem (ES) cells leads to a mild reduction in homologous recombination efficiency, the absence of Rad54B has little effect. However, the absence of both Rad54 and Rad54B dramatically reduces homologous recombination efficiency. Furthermore, we show that Rad54B protects ES cells from ionizing radiation and the interstrand DNA cross-linking agent mitomycin C. Interestingly, at the ES cell level the paralogs do not display an additive or synergic interaction with respect to mitomycin C sensitivity, yet animals lacking both Rad54 and Rad54B are dramatically sensitized to mitomycin C compared to either single mutant. This suggests that the paralogs possibly function in a tissue-specific manner. Finally, we show that Rad54, but not Rad54B, is needed for a normal distribution of Rad51 on meiotic chromosomes. Thus, even though the paralogs have similar biochemical properties, genetic analysis in mice uncovered their nonoverlapping roles.
Collapse
Affiliation(s)
- Joanna Wesoly
- Department of Cell Biology and Genetics, Erasmus MC, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Pathways of DNA Double-Strand Break Repair in Mammalian Cells after Ionizing Radiation. Genome Integr 2006. [DOI: 10.1007/7050_011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
97
|
Abe K, Osakabe K, Nakayama S, Endo M, Tagiri A, Todoriki S, Ichikawa H, Toki S. Arabidopsis RAD51C gene is important for homologous recombination in meiosis and mitosis. PLANT PHYSIOLOGY 2005; 139:896-908. [PMID: 16169964 PMCID: PMC1256004 DOI: 10.1104/pp.105.065243] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Rad51 is a homolog of the bacterial RecA recombinase, and a key factor in homologous recombination in eukaryotes. Rad51 paralogs have been identified from yeast to vertebrates. Rad51 paralogs are thought to play an important role in the assembly or stabilization of Rad51 that promotes homologous pairing and strand exchange reactions. We previously characterized two RAD51 paralogous genes in Arabidopsis (Arabidopsis thaliana) named AtRAD51C and AtXRCC3, which are homologs of human RAD51C and XRCC3, respectively, and described the interaction of their products in a yeast two-hybrid system. Recent studies showed the involvement of AtXrcc3 in DNA repair and functional role in meiosis. To determine the role of RAD51C in meiotic and mitotic recombination in higher plants, we characterized a T-DNA insertion mutant of AtRAD51C. Although the atrad51C mutant grew normally during vegetative developmental stage, the mutant produced aborted siliques, and their anthers did not contain mature pollen grains. Crossing of the mutant with wild-type plants showed defective male and female gametogeneses as evidenced by lack of seed production. Furthermore, meiosis was severely disturbed in the mutant. The atrad51C mutant also showed increased sensitivity to gamma-irradiation and cisplatin, which are known to induce double-strand DNA breaks. The efficiency of homologous recombination in somatic cells in the mutant was markedly reduced relative to that in wild-type plants.
Collapse
Affiliation(s)
- Kiyomi Abe
- Department of Plant Biotechnology, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
98
|
de Vries FAT, Zonneveld JBM, van Duijn-Goedhart A, Roodbergen M, Boei J, van Buul PPW, Essers J, van Steeg H, van Zeeland AA, van Benthem J, Pastink A. Inactivation of RAD52 aggravates RAD54 defects in mice but not in Schizosaccharomyces pombe. DNA Repair (Amst) 2005; 4:1121-8. [PMID: 16009599 DOI: 10.1016/j.dnarep.2005.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/12/2005] [Accepted: 06/02/2005] [Indexed: 01/09/2023]
Abstract
RAD52 and RAD54 genes from Saccharomyces cerevisiae are required for double-strand break repair through homologous recombination and show epistatic interactions i.e., single and double mutant strains are equally sensitive to DNA damaging agents. In here we combined mutations in RAD52 and RAD54 homologs in Schizosaccharomyces pombe and mice. The analysis of mutant strains in S. pombe demonstrated nearly identical sensitivities of rhp54, rad22A and rad22B double and triple mutants to X-rays, cis-diamminedichloroplatinum and hydroxyurea. In this respect, the fission yeast homologs of RAD54 and RAD52 closely resemble their counterparts in S. cerevisiae. To verify if inactivation of RAD52 affects the DNA damage sensitivities of RAD54 deficient mice, several endpoints were studied in double mutant mice and in bone marrow cells derived from these animals. Haemopoietic depression in bone marrow and the formation of micronuclei after in vivo exposure to mitomycine C (MMC) was not increased in either single or double mutant mice in comparison to wildtype animals. The induction of sister chromatid exchanges in splenocytes was slightly reduced in the RAD54 mutant. A similar reduction was detected in the double mutant. However, a deficiency of RAD52 exacerbates the MMC survival of RAD54 mutant mice and also has a distinct effect on the survival of bone marrow cells after exposure to ionizing radiation. These findings may be explained by additive defects in HR in the double mutant but may also indicate a more prominent role for single-strand annealing in the absence of Rad54.
Collapse
Affiliation(s)
- Femke A T de Vries
- Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Cellular DNA is under constant challenge by exogenous and endogenous genotoxic stress, which results in both transient and accumulated DNA damage and genomic instability. All cells are equipped with DNA damage response pathways that trigger DNA repair, cell cycle arrest, and, if need be, apoptosis, to eliminate DNA damage or damaged cells. The consequences of these processes for stem cells can be profound: diminution in stem cell pools, or, because of altered gene expression, an increased chance for stem cell differentiation or malignant transformation. Furthermore, a number of DNA repair abnormalities are linked to premature aging syndromes, and these are associated with defects in the stem cell population. The specific DNA repair systems for which there are data regarding the impact of repair defects on stem cell function include O(6)-alkylguanine DNA alkyltransferase, nucleotide excision repair, base excision repair, mismatch repair, non-homologous DNA end-joining Fanconi's anemia protein complex, and homologous recombination. It has recently become clear that deficiencies of these processes are associated not only with cancer and/or aging but also with stem cell defects. This discovery raises the possibility of a link between aging and stem cell dysfunction. In this review, we provide evidence for a link between DNA repair systems and the maintenance and longevity of stem cells.
Collapse
Affiliation(s)
- Youngji Park
- Division of Hematology and Oncology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio 44106-4937, USA.
| | | |
Collapse
|
100
|
Hu Y, Lu X, Barnes E, Yan M, Lou H, Luo G. Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers. Mol Cell Biol 2005; 25:3431-42. [PMID: 15831450 PMCID: PMC1084310 DOI: 10.1128/mcb.25.9.3431-3442.2005] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 12/31/2004] [Accepted: 02/02/2005] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, crossovers in mitotic cells can have deleterious consequences and therefore must be suppressed. Mutations in BLM give rise to Bloom syndrome, a disease that is characterized by an elevated rate of crossovers and increased cancer susceptibility. However, simple eukaryotes such as Saccharomyces cerevisiae have multiple pathways for suppressing crossovers, suggesting that mammals also have multiple pathways for controlling crossovers in their mitotic cells. We show here that in mouse embryonic stem (ES) cells, mutations in either the Bloom syndrome homologue (Blm) or the Recql5 genes result in a significant increase in the frequency of sister chromatid exchange (SCE), whereas deleting both Blm and Recql5 lead to an even higher frequency of SCE. These data indicate that Blm and Recql5 have nonredundant roles in suppressing crossovers in mouse ES cells. Furthermore, we show that mouse embryonic fibroblasts derived from Recql5 knockout mice also exhibit a significantly increased frequency of SCE compared with the corresponding wild-type control. Thus, this study identifies a previously unknown Recql5-dependent, Blm-independent pathway for suppressing crossovers during mitosis in mice.
Collapse
Affiliation(s)
- Yiduo Hu
- Department of Genetics, Case Western Reserve University, BRB, 7th floor, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|