51
|
Blanco JD, Radusky L, Climente-González H, Serrano L. FoldX accurate structural protein-DNA binding prediction using PADA1 (Protein Assisted DNA Assembly 1). Nucleic Acids Res 2019; 46:3852-3863. [PMID: 29608705 PMCID: PMC5934639 DOI: 10.1093/nar/gky228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
The speed at which new genomes are being sequenced highlights the need for genome-wide methods capable of predicting protein–DNA interactions. Here, we present PADA1, a generic algorithm that accurately models structural complexes and predicts the DNA-binding regions of resolved protein structures. PADA1 relies on a library of protein and double-stranded DNA fragment pairs obtained from a training set of 2103 DNA–protein complexes. It includes a fast statistical force field computed from atom-atom distances, to evaluate and filter the 3D docking models. Using published benchmark validation sets and 212 DNA–protein structures published after 2016 we predicted the DNA-binding regions with an RMSD of <1.8 Å per residue in >95% of the cases. We show that the quality of the docked templates is compatible with FoldX protein design tool suite to identify the crystallized DNA molecule sequence as the most energetically favorable in 80% of the cases. We highlighted the biological potential of PADA1 by reconstituting DNA and protein conformational changes upon protein mutagenesis of a meganuclease and its variants, and by predicting DNA-binding regions and nucleotide sequences in proteins crystallized without DNA. These results opens up new perspectives for the engineering of DNA–protein interfaces.
Collapse
Affiliation(s)
- Javier Delgado Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Leandro Radusky
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Héctor Climente-González
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
52
|
Abstract
We review the current understanding of the mechanics of DNA and DNA-protein complexes, from scales of base pairs up to whole chromosomes. Mechanics of the double helix as revealed by single-molecule experiments will be described, with an emphasis on the role of polymer statistical mechanics. We will then discuss how topological constraints- entanglement and supercoiling-impact physical and mechanical responses. Models for protein-DNA interactions, including effects on polymer properties of DNA of DNA-bending proteins will be described, relevant to behavior of protein-DNA complexes in vivo. We also discuss control of DNA entanglement topology by DNA-lengthwise-compaction machinery acting in concert with topoisomerases. Finally, the chapter will conclude with a discussion of relevance of several aspects of physical properties of DNA and chromatin to oncology.
Collapse
|
53
|
Velmurugu Y, Vivas P, Connolly M, Kuznetsov SV, Rice PA, Ansari A. Two-step interrogation then recognition of DNA binding site by Integration Host Factor: an architectural DNA-bending protein. Nucleic Acids Res 2019; 46:1741-1755. [PMID: 29267885 PMCID: PMC5829579 DOI: 10.1093/nar/gkx1215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/08/2017] [Indexed: 12/23/2022] Open
Abstract
The dynamics and mechanism of how site-specific DNA-bending proteins initially interrogate potential binding sites prior to recognition have remained elusive for most systems. Here we present these dynamics for Integration Host factor (IHF), a nucleoid-associated architectural protein, using a μs-resolved T-jump approach. Our studies show two distinct DNA-bending steps during site recognition by IHF. While the faster (∼100 μs) step is unaffected by changes in DNA or protein sequence that alter affinity by >100-fold, the slower (1–10 ms) step is accelerated ∼5-fold when mismatches are introduced at DNA sites that are sharply kinked in the specific complex. The amplitudes of the fast phase increase when the specific complex is destabilized and decrease with increasing [salt], which increases specificity. Taken together, these results indicate that the fast phase is non-specific DNA bending while the slow phase, which responds only to changes in DNA flexibility at the kink sites, is specific DNA kinking during site recognition. Notably, the timescales for the fast phase overlap with one-dimensional diffusion times measured for several proteins on DNA, suggesting that these dynamics reflect partial DNA bending during interrogation of potential binding sites by IHF as it scans DNA.
Collapse
Affiliation(s)
- Yogambigai Velmurugu
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Paula Vivas
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Mitchell Connolly
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Serguei V Kuznetsov
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Phoebe A Rice
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
54
|
Stojkova P, Spidlova P, Stulik J. Nucleoid-Associated Protein HU: A Lilliputian in Gene Regulation of Bacterial Virulence. Front Cell Infect Microbiol 2019; 9:159. [PMID: 31134164 PMCID: PMC6523023 DOI: 10.3389/fcimb.2019.00159] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/26/2019] [Indexed: 12/29/2022] Open
Abstract
Nucleoid-associated proteins belong to a group of small but abundant proteins in bacterial cells. These transcription regulators are responsible for many important cellular processes and also are involved in pathogenesis of bacteria. The best-known nucleoid-associated proteins, such as HU, FIS, H-NS, and IHF, are often discussed. The most important findings in research concerning HU protein are described in this mini review. Its roles in DNA compaction, shape modulation, and negative supercoiling induction have been studied intensively. HU protein regulates bacteria survival, growth, SOS response, virulence genes expression, cell division, and many other cell processes. Elucidating the mechanism of HU protein action has been the subject of many research projects. This mini review provides a comprehensive overview of the HU protein.
Collapse
Affiliation(s)
| | - Petra Spidlova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | | |
Collapse
|
55
|
NapA (Rv0430), a Novel Nucleoid-Associated Protein that Regulates a Virulence Operon in Mycobacterium tuberculosis in a Supercoiling-Dependent Manner. J Mol Biol 2019; 431:1576-1591. [DOI: 10.1016/j.jmb.2019.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022]
|
56
|
Conforte VP, Malamud F, Yaryura PM, Toum Terrones L, Torres PS, De Pino V, Chazarreta CN, Gudesblat GE, Castagnaro AP, R. Marano M, Vojnov AA. The histone-like protein HupB influences biofilm formation and virulence in Xanthomonas citri ssp. citri through the regulation of flagellar biosynthesis. MOLECULAR PLANT PATHOLOGY 2019; 20:589-598. [PMID: 30537413 PMCID: PMC6637892 DOI: 10.1111/mpp.12777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Citrus canker is an important disease of citrus, whose causal agent is the bacterium Xanthomonas citri ssp. citri (Xcc). In previous studies, we found a group of Xcc mutants, generated by the insertion of the Tn5 transposon, which showed impaired ability to attach to an abiotic substrate. One of these mutants carries the Tn5 insertion in hupB, a gene encoding a bacterial histone-like protein, homologue to the β-subunit of the Heat-Unstable (HU) nucleoid protein of Escherichia coli. These types of protein are necessary to maintain the bacterial nucleoid organization and the global regulation of gene expression. Here, we characterized the influence of the mutation in hupB regarding Xcc biofilm formation and virulence. The mutant strain hupB was incapable of swimming in soft agar, whereas its complemented strain partially recovered this phenotype. Electron microscope imaging revealed that impaired motility of hupB was a consequence of the absence of the flagellum. Comparison of the expression of flagellar genes between the wild-type strain and hupB showed that the mutant exhibited decreased expression of fliC (encoding flagellin). The hupB mutant also displayed reduced virulence compared with the wild-type strain when they were used to infect Citrus lemon plants using different infection methods. Our results therefore show that the histone-like protein HupB plays an essential role in the pathogenesis of Xcc through the regulation of biofilm formation and biosynthesis of the flagellum.
Collapse
Affiliation(s)
- Valeria P. Conforte
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICETSaladillo 2468Ciudad de Buenos AiresC1440FFXArgentina
| | - Florencia Malamud
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San MartínCampus Migueletes, 25 de Mayo y FranciaGeneral San MartínB1650HMN Provincia de Buenos AiresArgentina
| | - Pablo M. Yaryura
- Centro de Investigaciones y Transferencia de Villa María CONICETUniversidad de Villa MaríaCarlos Pellegrini 211Villa María, X5900FSECórdobaArgentina
| | - Laila Toum Terrones
- Departamento de FisiologíaBiología Molecular y Celular, Instituto de Biodiversidad y Biología Experimental y Aplicada, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresIntendente Güiraldes 2160Buenos AiresC1428EGAArgentina
| | - Pablo S. Torres
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICETSaladillo 2468Ciudad de Buenos AiresC1440FFXArgentina
| | - Verónica De Pino
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICETSaladillo 2468Ciudad de Buenos AiresC1440FFXArgentina
| | - Cristian N. Chazarreta
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICETSaladillo 2468Ciudad de Buenos AiresC1440FFXArgentina
| | - Gustavo E. Gudesblat
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Av. William Cross 3150Las TalitasC.P. T4101XACTucumánArgentina
| | - Atilio P. Castagnaro
- Departamento de FisiologíaBiología Molecular y Celular, Instituto de Biodiversidad y Biología Experimental y Aplicada, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresIntendente Güiraldes 2160Buenos AiresC1428EGAArgentina
| | - María R. Marano
- Instituto de Biología Molecular y Celular de Rosario, Departamento de Microbiología, Facultad de Ciencias, Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioSuipacha 531RosarioS2002LRKSanta FéArgentina
| | - Adrian A. Vojnov
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICETSaladillo 2468Ciudad de Buenos AiresC1440FFXArgentina
| |
Collapse
|
57
|
Rovinskiy NS, Agbleke AA, Chesnokova ON, Higgins NP. Supercoil Levels in E. coli and Salmonella Chromosomes Are Regulated by the C-Terminal 35⁻38 Amino Acids of GyrA. Microorganisms 2019; 7:E81. [PMID: 30875939 PMCID: PMC6463007 DOI: 10.3390/microorganisms7030081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023] Open
Abstract
Prokaryotes have an essential gene-gyrase-that catalyzes negative supercoiling of plasmid and chromosomal DNA. Negative supercoils influence DNA replication, transcription, homologous recombination, site-specific recombination, genetic transposition and sister chromosome segregation. Although E. coli and Salmonella Typhimurium are close relatives with a conserved set of essential genes, E. coli DNA has a supercoil density 15% higher than Salmonella, and E. coli cannot grow at the supercoil density maintained by wild type (WT) Salmonella. E. coli is addicted to high supercoiling levels for efficient chromosomal folding. In vitro experiments were performed with four gyrase isoforms of the tetrameric enzyme (GyrA₂:GyrB₂). E. coli gyrase was more processive and faster than the Salmonella enzyme, but Salmonella strains with chromosomal swaps of E. coli GyrA lost 40% of the chromosomal supercoil density. Reciprocal experiments in E. coli showed chromosomal dysfunction for strains harboring Salmonella GyrA. One GyrA segment responsible for dis-regulation was uncovered by constructing and testing GyrA chimeras in vivo. The six pinwheel elements and the C-terminal 35⁻38 acidic residues of GyrA controlled WT chromosome-wide supercoiling density in both species. A model of enzyme processivity modulated by competition between DNA and the GyrA acidic tail for access to β-pinwheel elements is presented.
Collapse
Affiliation(s)
- Nikolay S Rovinskiy
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA.
| | - Andrews A Agbleke
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA.
| | - Olga N Chesnokova
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA.
| | - N Patrick Higgins
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA.
| |
Collapse
|
58
|
Oliveira Paiva AM, Friggen AH, Qin L, Douwes R, Dame RT, Smits WK. The Bacterial Chromatin Protein HupA Can Remodel DNA and Associates with the Nucleoid in Clostridium difficile. J Mol Biol 2019; 431:653-672. [PMID: 30633871 DOI: 10.1016/j.jmb.2019.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
The maintenance and organization of the chromosome plays an important role in the development and survival of bacteria. Bacterial chromatin proteins are architectural proteins that bind DNA and modulate its conformation, and by doing so affect a variety of cellular processes. No bacterial chromatin proteins of Clostridium difficile have been characterized to date. Here, we investigate aspects of the C. difficile HupA protein, a homologue of the histone-like HU proteins of Escherichia coli. HupA is a 10-kDa protein that is present as a homodimer in vitro and self-interacts in vivo. HupA co-localizes with the nucleoid of C. difficile. It binds to the DNA without a preference for the DNA G + C content. Upon DNA binding, HupA induces a conformational change in the substrate DNA in vitro and leads to compaction of the chromosome in vivo. The present study is the first to characterize a bacterial chromatin protein in C. difficile and opens the way to study the role of chromosomal organization in DNA metabolism and on other cellular processes in this organism.
Collapse
Affiliation(s)
- Ana M Oliveira Paiva
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, the Netherlands; Center for Microbial Cell Biology, Leiden, the Netherlands
| | - Annemieke H Friggen
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, the Netherlands; Center for Microbial Cell Biology, Leiden, the Netherlands
| | - Liang Qin
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands; Center for Microbial Cell Biology, Leiden, the Netherlands
| | - Roxanne Douwes
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, the Netherlands
| | - Remus T Dame
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands; Center for Microbial Cell Biology, Leiden, the Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, the Netherlands; Center for Microbial Cell Biology, Leiden, the Netherlands.
| |
Collapse
|
59
|
Hashiya F, Ito S, Sugiyama H. Electron injection from mitochondrial transcription factor A to DNA associated with thymine dimer photo repair. Bioorg Med Chem 2018; 27:278-284. [PMID: 30552005 DOI: 10.1016/j.bmc.2018.11.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/11/2023]
Abstract
Electron transfer through π-stacked arrays of double-stranded DNA contributes to the redox chemistry of bases, including guanine oxidation and thymine-thymine dimer repair by photolyase. 5-Bromouracil is an attractive photoreactive thymine analogue that can be used to investigate electron transfer in DNA, and is a useful probe for protein-DNA interaction analysis. In the present study using BrU we found that UV irradiation facilitated electron injection from mitochondrial transcription factor A into DNA. We also observed that this electron injection could lead to repair of a thymine-thymine dimer.
Collapse
Affiliation(s)
- Fumitaka Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
60
|
Connolly M, Arra A, Zvoda V, Steinbach PJ, Rice PA, Ansari A. Static Kinks or Flexible Hinges: Multiple Conformations of Bent DNA Bound to Integration Host Factor Revealed by Fluorescence Lifetime Measurements. J Phys Chem B 2018; 122:11519-11534. [DOI: 10.1021/acs.jpcb.8b07405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mitchell Connolly
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Aline Arra
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Viktoriya Zvoda
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Peter J. Steinbach
- Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Phoebe A. Rice
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
61
|
Efremov AK, Yan J. Transfer-matrix calculations of the effects of tension and torque constraints on DNA-protein interactions. Nucleic Acids Res 2018; 46:6504-6527. [PMID: 29878241 PMCID: PMC6061897 DOI: 10.1093/nar/gky478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Organization and maintenance of the chromosomal DNA in living cells strongly depends on the DNA interactions with a plethora of DNA-binding proteins. Single-molecule studies show that formation of nucleoprotein complexes on DNA by such proteins is frequently subject to force and torque constraints applied to the DNA. Although the existing experimental techniques allow to exert these type of mechanical constraints on individual DNA biopolymers, their exact effects in regulation of DNA-protein interactions are still not completely understood due to the lack of systematic theoretical methods able to efficiently interpret complex experimental observations. To fill this gap, we have developed a general theoretical framework based on the transfer-matrix calculations that can be used to accurately describe behaviour of DNA-protein interactions under force and torque constraints. Potential applications of the constructed theoretical approach are demonstrated by predicting how these constraints affect the DNA-binding properties of different types of architectural proteins. Obtained results provide important insights into potential physiological functions of mechanical forces in the chromosomal DNA organization by architectural proteins as well as into single-DNA manipulation studies of DNA-protein interactions.
Collapse
Affiliation(s)
- Artem K Efremov
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, 117557, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, 117557, Singapore
- Department of Physics, National University of Singapore, 117551, Singapore
| |
Collapse
|
62
|
Nguyen H, Pham T, Nguyen HL, Phan T. Investigation of Binding Affinity Between Prokaryotic Proteins (AHU-IHF) and DNAs: Steered Molecular Dynamics Approach. Appl Biochem Biotechnol 2018; 186:834-846. [DOI: 10.1007/s12010-018-2735-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/12/2018] [Indexed: 11/29/2022]
|
63
|
Guttula D, Liu F, van Kan JA, Arluison V, van der Maarel JRC. Effect of HU protein on the conformation and compaction of DNA in a nanochannel. SOFT MATTER 2018; 14:2322-2328. [PMID: 29457176 DOI: 10.1039/c7sm02118f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of the heat unstable nucleoid structuring protein HU on the conformation of single DNA molecules confined in a nanochannel was investigated with fluorescence microscopy. Pre-incubated DNA molecules contract in the longitudinal direction of the channel with increasing concentration of HU. This contraction is mainly due to HU-mediated bridging of distal DNA segments and is controlled by channel diameter as well as ionic composition and strength of the buffer. For over-threshold concentrations of HU, the DNA molecules compact into an condensed form. Divalent magnesium ions facilitate, but are not required for bridging nor condensation. The conformational response following exposure to HU was investigated with a nanofluidic device that allows an in situ change in environmental solution conditions. The stretch of the nucleoprotein complex first increases, reaches an apex in ∼20 min, and subsequently decreases to an equilibrium value pertaining to pre-incubated DNA molecules after ∼2 h. This observation is rationalised in terms of a time-dependent bending rigidity by structural rearrangement of bound HU protein followed by compaction through bridging interaction. Results are discussed in regard to previous results obtained for nucleoid associated proteins H-NS and Hfq, with important implications for protein binding related gene regulation.
Collapse
Affiliation(s)
- Durgarao Guttula
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Fan Liu
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Véronique Arluison
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris Saclay, 91191 Gif-sur-Yvette, France and Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | | |
Collapse
|
64
|
Biton YY. Effects of Protein-Induced Local Bending and Sequence Dependence on the Configurations of Supercoiled DNA Minicircles. J Chem Theory Comput 2018; 14:2063-2075. [PMID: 29558800 DOI: 10.1021/acs.jctc.7b01090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yoav Y. Biton
- Department of Mechanical Engineering, SCE, Shamoon College of Engineering, Beer Sheva 84100, Israel
| |
Collapse
|
65
|
Ferrándiz MJ, Carreño D, Ayora S, de la Campa AG. HU of Streptococcus pneumoniae Is Essential for the Preservation of DNA Supercoiling. Front Microbiol 2018; 9:493. [PMID: 29662473 PMCID: PMC5890176 DOI: 10.3389/fmicb.2018.00493] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/02/2018] [Indexed: 01/11/2023] Open
Abstract
The histone-like protein HU is a conserved nucleoid-associated protein that is involved in the maintenance of the bacterial chromosome architecture. It is the only known nucleoid-associated protein in Streptococcus pneumoniae, but it has not been studied. The pneumococcal gene encoding this protein, hlp, is shown herein to be essential for cell viability. Its disruption was only possible either when it was duplicated in the chromosome and its expression induced from the P Zn promoter, or when hlp was cloned into a plasmid under the control of the inducible P mal promoter. In vitro assays indicated that pneumococcal HU shows a preference for binding to supercoiled DNA rather than to linear or nicked DNA. In vivo experiments in which the amount of HU was manipulated showed a relationship between the amount of HU and the level of DNA supercoiling. A twofold reduction in the amount of HU triggered a 21% increase in DNA relaxation in untreated cells. However, in cells treated with novobiocin, a drug that relaxes DNA by inhibiting DNA gyrase, a 35% increase in DNA relaxation was observed, instead of the expected 20% in cells with a constitutive HU amount. Conversely, a fourfold HU increase caused only 14% of DNA relaxation in the presence of novobiocin. Taken together, these results support an essential role for HU in the maintenance of DNA supercoiling in S. pneumoniae.
Collapse
Affiliation(s)
- María-José Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - David Carreño
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Ayora
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Adela G de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
66
|
Kamagata K, Mano E, Ouchi K, Kanbayashi S, Johnson RC. High Free-Energy Barrier of 1D Diffusion Along DNA by Architectural DNA-Binding Proteins. J Mol Biol 2018; 430:655-667. [PMID: 29307468 DOI: 10.1016/j.jmb.2018.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 01/02/2018] [Indexed: 01/25/2023]
Abstract
Architectural DNA-binding proteins function to regulate diverse DNA reactions and have the defining property of significantly changing DNA conformation. Although the 1D movement along DNA by other types of DNA-binding proteins has been visualized, the mobility of architectural DNA-binding proteins on DNA remains unknown. Here, we applied single-molecule fluorescence imaging on arrays of extended DNA molecules to probe the binding dynamics of three structurally distinct architectural DNA-binding proteins: Nhp6A, HU, and Fis. Each of these proteins was observed to move along DNA, and the salt concentration independence of the 1D diffusion implies sliding with continuous contact to DNA. Nhp6A and HU exhibit a single sliding mode, whereas Fis exhibits two sliding modes. Based on comparison of the diffusion coefficients and sizes of many DNA binding proteins, the architectural proteins are categorized into a new group distinguished by an unusually high free-energy barrier for 1D diffusion. The higher free-energy barrier for 1D diffusion by architectural proteins can be attributed to the large DNA conformational changes that accompany binding and impede rotation-coupled movement along the DNA grooves.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Aoba-ku, Sendai980-8577, Japan.
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Kana Ouchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Aoba-ku, Sendai980-8577, Japan
| | - Saori Kanbayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA90095-1737, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
67
|
Timofeev VI, Altukhov DA, Talyzina AA, Agapova YK, Vlaskina AV, Korzhenevskiy DA, Kleymenov SY, Bocharov EV, Rakitina TV. Structural plasticity and thermal stability of the histone-like protein from Spiroplasma melliferum are due to phenylalanine insertions into the conservative scaffold. J Biomol Struct Dyn 2017; 36:4392-4404. [PMID: 29283021 DOI: 10.1080/07391102.2017.1417162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The histone-like (HU) protein is one of the major nucleoid-associated proteins of the bacterial nucleoid, which shares high sequence and structural similarity with IHF but differs from the latter in DNA-specificity. Here, we perform an analysis of structural-dynamic properties of HU protein from Spiroplasma melliferum and compare its behavior in solution to that of another mycoplasmal HU from Mycoplasma gallisepticum. The high-resolution heteronuclear NMR spectroscopy was coupled with molecular-dynamics study and comparative analysis of thermal denaturation of both mycoplasmal HU proteins. We suggest that stacking interactions in two aromatic clusters in the HUSpm dimeric interface determine not only high thermal stability of the protein, but also its structural plasticity experimentally observed as slow conformational exchange. One of these two centers of stacking interactions is highly conserved among the known HU and IHF proteins. Second aromatic core described recently in IHFs and IHF-like proteins is considered as a discriminating feature of IHFs. We performed an electromobility shift assay to confirm high affinities of HUSpm to both normal and distorted dsDNA, which are the characteristics of HU protein. MD simulations of HUSpm with alanine mutations of the residues forming the non-conserved aromatic cluster demonstrate its role in dimer stabilization, as both partial and complete distortion of the cluster enhances local flexibility of HUSpm.
Collapse
Affiliation(s)
- Vladimir I Timofeev
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,b Federal Scientific Research Center 'Crystallography and Photonics' RAS , Leninskii pr., 59, Moscow 119333 , Russian Federation
| | - Dmitry A Altukhov
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Anna A Talyzina
- c Moscow Institute of Physics and Technology , Institutskiy per., 9, Dolgoprudny, Moscow Region 141700 , Russian Federation
| | - Yulia K Agapova
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Anna V Vlaskina
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Dmitry A Korzhenevskiy
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Sergey Yu Kleymenov
- d Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences , Leninsky Prospekt. 33, bld. 2, Moscow 119071 , Russian Federation.,e Russian Academy of Sciences, Koltzov Institute of Developmental Biology , ul. Vavilova, 26, Moscow 119334 , Russian Federation
| | - Eduard V Bocharov
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,f Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry RAS , str. Miklukho-Maklaya 16/10, Moscow 117997 , Russian Federation
| | - Tatiana V Rakitina
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,f Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry RAS , str. Miklukho-Maklaya 16/10, Moscow 117997 , Russian Federation
| |
Collapse
|
68
|
Huang MF, Lin SJ, Ko TP, Liao YT, Hsu KC, Wang HC. The monomeric form of Neisseria DNA mimic protein DMP19 prevents DNA from binding to the histone-like HU protein. PLoS One 2017; 12:e0189461. [PMID: 29220372 PMCID: PMC5722371 DOI: 10.1371/journal.pone.0189461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022] Open
Abstract
DNA mimicry is a direct and effective strategy by which the mimic competes with DNA for the DNA binding sites on other proteins. Until now, only about a dozen proteins have been shown to function via this strategy, including the DNA mimic protein DMP19 from Neisseria meningitides. We have shown previously that DMP19 dimer prevents the operator DNA from binding to the transcription factor NHTF. Here, we provide new evidence that DMP19 monomer can also interact with the Neisseria nucleoid-associated protein HU. Using BS3 crosslinking, gel filtration and isothermal titration calorimetry assays, we found that DMP19 uses its monomeric form to interact with the Neisseria HU dimer. Crosslinking conjugated mass spectrometry was used to investigate the binding mode of DMP19 monomer and HU dimer. Finally, an electrophoretic mobility shift assay (EMSA) confirmed that the DNA binding affinity of HU is affected by DMP19. These results showed that DMP19 is bifunctional in the gene regulation of Neisseria through its variable oligomeric forms.
Collapse
Affiliation(s)
- Ming-Fen Huang
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shin-Jen Lin
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Ting Liao
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hao-Ching Wang
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
69
|
Kamashev D, Agapova Y, Rastorguev S, Talyzina AA, Boyko KM, Korzhenevskiy DA, Vlaskina A, Vasilov R, Timofeev VI, Rakitina TV. Comparison of histone-like HU protein DNA-binding properties and HU/IHF protein sequence alignment. PLoS One 2017; 12:e0188037. [PMID: 29131864 PMCID: PMC5683647 DOI: 10.1371/journal.pone.0188037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022] Open
Abstract
Background The structure and function of bacterial nucleoid are controlled by histone-like proteins of HU/IHF family, omnipresent in bacteria and also founding archaea and some eukaryotes.HU protein binds dsDNA without sequence specificity and avidly binds DNA structures with propensity to be inclined such as forks, three/four-way junctions, nicks, overhangs and DNA bulges. Sequence comparison of thousands of known histone-like proteins from diverse bacteria phyla reveals relation between HU/IHF sequence, DNA–binding properties and other protein features. Methodology and principal findings Performed alignment and clusterization of the protein sequences show that HU/IHF family proteins can be unambiguously divided into three groups, HU proteins, IHF_A and IHF_B proteins. HU proteins, IHF_A and IHF_B proteins are further partitioned into several clades for IHF and HU; such a subdivision is in good agreement with bacterial taxonomy. We also analyzed a hundred of 3D fold comparative models built for HU sequences from all revealed HU clades. It appears that HU fold remains similar in spite of the HU sequence variations. We studied DNA–binding properties of HU from N. gonorrhoeae, which sequence is similar to one of E.coli HU, and HU from M. gallisepticum and S. melliferum which sequences are distant from E.coli protein. We found that in respect to dsDNA binding, only S. melliferum HU essentially differs from E.coli HU. In respect to binding of distorted DNA structures, S. melliferum HU and E.coli HU have similar properties but essentially different from M. gallisepticum HU and N. gonorrhea HU. We found that in respect to dsDNA binding, only S. melliferum HU binds DNA in non-cooperative manner and both mycoplasma HU bend dsDNA stronger than E.coli and N. gonorrhoeae. In respect to binding to distorted DNA structures, each HU protein has its individual profile of affinities to various DNA-structures with the increased specificity to DNA junction. Conclusions and significance HU/IHF family proteins sequence alignment and classification are updated. Comparative modeling demonstrates that HU protein 3D folding’s even more conservative than HU sequence. For the first time, DNA binding characteristics of HU from N. gonorrhoeae, M. gallisepticum and S. melliferum are studied. Here we provide detailed analysis of the similarity and variability of DNA-recognizing and bending of four HU proteins from closely and distantly related HU clades.
Collapse
Affiliation(s)
- Dmitri Kamashev
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
- * E-mail:
| | - Yulia Agapova
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
| | - Sergey Rastorguev
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
| | - Anna A. Talyzina
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Konstantin M. Boyko
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitry A. Korzhenevskiy
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
| | - Anna Vlaskina
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
| | - Raif Vasilov
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
| | - Vladimir I. Timofeev
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
- Federal Scientific Research Center “Crystallography and Photonics”, RAS, Moscow, Russian Federation
| | - Tatiana V. Rakitina
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
- Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russian Federation
| |
Collapse
|
70
|
A specific single-stranded DNA induces a distinct conformational change in the nucleoid-associated protein HU. Biochem Biophys Rep 2017; 8:318-324. [PMID: 28955971 PMCID: PMC5613972 DOI: 10.1016/j.bbrep.2016.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/23/2016] [Accepted: 09/29/2016] [Indexed: 11/23/2022] Open
Abstract
In prokaryotic cells, genomic DNA forms an aggregated structure with various nucleoid-associated proteins (NAPs). The functions of genomic DNA are cooperatively modulated by NAPs, of which HU is considered to be one of the most important. HU binds double-stranded DNA (dsDNA) and serves as a structural modulator in the genome architecture. It plays important roles in diverse DNA functions, including replication, segregation, transcription and repair. Interestingly, it has been reported that HU also binds single-stranded DNA (ssDNA) regardless of sequence. However, structural analysis of HU with ssDNA has been lacking, and the functional relevance of this binding remains elusive. In this study, we found that ssDNA induced a significant change in the secondary structure of Thermus thermophilus HU (TtHU), as observed by analysis of circular dichroism spectra. Notably, this change in secondary structure was sequence specific, because the complementary ssDNA or dsDNA did not induce the change. Structural analysis using nuclear magnetic resonance confirmed that TtHU and this ssDNA formed a unique structure, which was different from the previously reported structure of HU in complex with dsDNA. Our data suggest that TtHU undergoes a distinct structural change when it associates with ssDNA of a specific sequence and subsequently exerts a yet-to-be-defined function. We observed the CD spectra and NMR spectra of TtHU bound to various DNA. The specific ssDNA affected the secondary structure of TtHU. The structure of TtHU bound to ssDNA was distinct from the structure bound to dsDNA.
Collapse
|
71
|
Epitope determination of immunogenic proteins of Neisseria gonorrhoeae. PLoS One 2017; 12:e0180962. [PMID: 28723967 PMCID: PMC5516995 DOI: 10.1371/journal.pone.0180962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/23/2017] [Indexed: 11/29/2022] Open
Abstract
Neisseria gonorrhoeae is the causative organism of gonorrhoea, a sexually transmitted disease that globally accounts for an estimated 80 to 100 million new infections per year. Increasing resistances to all common antibiotics used for N. gonorrhoeae treatment pose the risk of an untreatable disease. Further knowledge of ways of infection and host immune response are needed to understand the pathogen-host interaction and to discover new treatment alternatives against this disease. Therefore, detailed information about immunogenic proteins and their properties like epitope sites could advance further research in this area. In this work, we investigated immunogenic proteins of N. gonorrhoeae for linear epitopes by microarrays. Dominant linear epitopes were identified for eleven of the nineteen investigated proteins with three polyclonal rabbit antibodies from different immunisations. Identified linear epitopes were further examined for non-specific binding with antibodies to Escherichia coli and the closely related pathogen Neisseria meningitidis. On top of that, amino acids crucial for the antibody epitope binding were detected by microarray based alanine scans.
Collapse
|
72
|
Beckwitt EC, Kong M, Van Houten B. Studying protein-DNA interactions using atomic force microscopy. Semin Cell Dev Biol 2017; 73:220-230. [PMID: 28673677 DOI: 10.1016/j.semcdb.2017.06.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
Atomic force microscopy (AFM) has made significant contributions to the study of protein-DNA interactions by making it possible to topographically image biological samples. A single protein-DNA binding reaction imaged by AFM can reveal protein binding specificity and affinity, protein-induced DNA bending, and protein binding stoichiometry. Changes in DNA structure, complex conformation, and cooperativity, can also be analyzed. In this review we highlight some important examples in the literature and discuss the advantages and limitations of these measurements. We also discuss important advances in technology that will facilitate the progress of AFM in the future.
Collapse
Affiliation(s)
- Emily C Beckwitt
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Muwen Kong
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
73
|
Roles of Leu28 side chain intercalation in the interaction between Cren7 and DNA. Biochem J 2017; 474:1727-1739. [PMID: 28377493 DOI: 10.1042/bcj20170036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022]
Abstract
Crenarchaeal chromatin protein Cren7 binds double-stranded DNA in the minor groove, introducing a sharp single-step DNA kink. The side chain of Leu28, a residue conserved among all Cren7 homologs, intercalates into the kinked DNA step. In the present study, we replaced Leu28 with a residue containing a hydrophobic side chain of different sizes (i.e. L28A, L28V, L28I, L28M and L28F). Both the stability of the Cren7-DNA complex and the ability of Cren7 to constrain DNA supercoils correlated well with the size of the intercalated side chain. Structural analysis shows that L28A induces a kink (∼43°), nearly as sharp as that produced by wild-type Cren7 (∼48°), in the bound DNA fragment despite the lack of side chain intercalation. In another duplex DNA fragment, L28F inserts a large hydrophobic side chain deep into the DNA step, but introduces a smaller kink (∼39°) than that formed by the wild-type protein (∼50°). Mutation of Leu28 into methionine yields two protein conformers differing in loop β3-β4 orientation, DNA-binding surface and DNA geometry in the protein-DNA structure. Our results indicate that side chain intercalation is not directly responsible for DNA kinking or bending by Cren7, but plays a critical role in the stabilization of the Cren7-DNA complex. In addition, the flexibility of loop β3-β4 in Cren7, as revealed in the crystal structure of L28M-DNA, may serve a role in the modulation of chromosomal organization and function in the cell.
Collapse
|
74
|
Burroughs AM, Kaur G, Zhang D, Aravind L. Novel clades of the HU/IHF superfamily point to unexpected roles in the eukaryotic centrosome, chromosome partitioning, and biologic conflicts. Cell Cycle 2017; 16:1093-1103. [PMID: 28441108 PMCID: PMC5499826 DOI: 10.1080/15384101.2017.1315494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The HU superfamily of proteins, with a unique DNA-binding mode, has been extensively studied as the primary chromosome-packaging protein of the bacterial superkingdom. Representatives also play a role in DNA-structuring during recombination events and in eukaryotic organellar genome maintenance. However, beyond these well-studied roles, little is understood of the functional diversification of this large superfamily. Using sensitive sequence and structure analysis methods we identify multiple novel clades of the HU superfamily. We present evidence that a novel eukaryotic clade prototyped by the human CCDC81 protein acquired roles beyond DNA-binding, likely in protein-protein interaction in centrosome organization and as a potential cargo-binding protein in conjunction with Dynein-VII. We also show that these eukaryotic versions were acquired via an early lateral transfer from bacteroidetes, where we predict a role in chromosome partition. This likely happened before the last eukaryotic common ancestor, pointing to potential endosymbiont contributions beyond that of the mitochondrial progenitor. Further, we show that the dramatic lineage-specific expansion of this domain in the bacteroidetes lineage primarily is linked to a functional shift related to potential recognition and preemption of genome invasive entities such as mobile elements. Remarkably, the CCDC81 clade has undergone a similar massive lineage-specific expansion within the archosaurian lineage in birds, suggesting a possible use of the HU superfamily in a similar capacity in recognition of non-self molecules even in this case.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- a National Center for Biotechnology Information , National Library of Medicine, National Institutes of Health , Bethesda , MD , USA
| | - Gurmeet Kaur
- a National Center for Biotechnology Information , National Library of Medicine, National Institutes of Health , Bethesda , MD , USA
| | - Dapeng Zhang
- a National Center for Biotechnology Information , National Library of Medicine, National Institutes of Health , Bethesda , MD , USA
| | - L Aravind
- a National Center for Biotechnology Information , National Library of Medicine, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
75
|
The Arginine Pairs and C-Termini of the Sso7c4 from Sulfolobus solfataricus Participate in Binding and Bending DNA. PLoS One 2017; 12:e0169627. [PMID: 28068385 PMCID: PMC5222340 DOI: 10.1371/journal.pone.0169627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/20/2016] [Indexed: 11/19/2022] Open
Abstract
The Sso7c4 from Sulfolobus solfataricus forms a dimer, which is believed to function as a chromosomal protein involved in genomic DNA compaction and gene regulation. Here, we present the crystal structure of wild-type Sso7c4 at a high resolution of 1.63 Å, showing that the two basic C-termini are disordered. Based on the fluorescence polarization (FP) binding assay, two arginine pairs, R11/R22' and R11'/R22, on the top surface participate in binding DNA. As shown in electron microscopy (EM) images, wild-type Sso7c4 compacts DNA through bridging and bending interactions, whereas the binding of C-terminally truncated proteins rigidifies and opens DNA molecules, and no compaction of the DNA occurs. Moreover, the FP, EM and fluorescence resonance energy transfer (FRET) data indicated that the two basic and flexible C-terminal arms of the Sso7c4 dimer play a crucial role in binding and bending DNA. Sso7c4 has been classified as a repressor-like protein because of its similarity to Escherichia coli Ecrep 6.8 and Ecrep 7.3 as well as Agrobacterium tumefaciens ACCR in amino acid sequence. Based on these data, we proposed a model of the Sso7c4-DNA complex using a curved DNA molecule in the catabolite activator protein-DNA complex. The DNA end-to-end distance measured with FRET upon wild-type Sso7c4 binding is almost equal to the distance measured in the model, which supports the fidelity of the proposed model. The FRET data also confirm the EM observation showing that the binding of wild-type Sso7c4 reduces the DNA length while the C-terminal truncation does not. A functional role for Sso7c4 in the organization of chromosomal DNA and/or the regulation of gene expression through bridging and bending interactions is suggested.
Collapse
|
76
|
Altukhov DA, Talyzina AA, Agapova YK, Vlaskina AV, Korzhenevskiy DA, Bocharov EV, Rakitina TV, Timofeev VI, Popov VO. Enhanced conformational flexibility of the histone-like (HU) protein from Mycoplasma gallisepticum. J Biomol Struct Dyn 2016; 36:45-53. [PMID: 27884082 DOI: 10.1080/07391102.2016.1264893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The histone-like (HU) protein is one of the major nucleoid-associated proteins involved in DNA supercoiling and compaction into bacterial nucleoid as well as in all DNA-dependent transactions. This small positively charged dimeric protein binds DNA in a non-sequence specific manner promoting DNA super-structures. The majority of HU proteins are highly conserved among bacteria; however, HU protein from Mycoplasma gallisepticum (HUMgal) has multiple amino acid substitutions in the most conserved regions, which are believed to contribute to its specificity to DNA targets unusual for canonical HU proteins. In this work, we studied the structural dynamic properties of the HUMgal dimer by NMR spectroscopy and MD simulations. The obtained all-atom model displays compliance with the NMR data and confirms the heterogeneous backbone flexibility of HUMgal. We found that HUMgal, being folded into a dimeric conformation typical for HU proteins, has a labile α-helical body with protruded β-stranded arms forming DNA-binding domain that are highly flexible in the absence of DNA. The amino acid substitutions in conserved regions of the protein are likely to affect the conformational lability of the HUMgal dimer that can be responsible for complex functional behavior of HUMgal in vivo, e.g. facilitating its spatial adaptation to non-canonical DNA-targets.
Collapse
Affiliation(s)
- Dmitry A Altukhov
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Anna A Talyzina
- b Moscow Institute of Physics and Technology , Institutskiy per., 9, Dolgoprudny, Moscow Region 141700 , Russian Federation
| | - Yulia K Agapova
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Anna V Vlaskina
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Dmitry A Korzhenevskiy
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Eduard V Bocharov
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,c Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry RAS , str. Miklukho-Maklaya 16/10, Moscow 117997 , Russian Federation
| | - Tatiana V Rakitina
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,c Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry RAS , str. Miklukho-Maklaya 16/10, Moscow 117997 , Russian Federation
| | - Vladimir I Timofeev
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,d Federal Scientific Research Center 'Crystallography and Photonics' RAS , Leninskii pr., 59, Moscow 119333 , Russian Federation
| | - Vladimir O Popov
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,e Bach Institute of Biochemistry , Research Center of Biotechnology of the Russian Academy of Sciences , Leninsky Prospekt. 33, bld. 2, Moscow 119071 , Russian Federation
| |
Collapse
|
77
|
Structural basis of the high thermal stability of the histone-like HU protein from the mollicute Spiroplasma melliferum KC3. Sci Rep 2016; 6:36366. [PMID: 27808161 PMCID: PMC5093408 DOI: 10.1038/srep36366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023] Open
Abstract
The three-dimensional structure of the histone-like HU protein from the mycoplasma Spiroplasma melliferum KC3 (HUSpm) was determined at 1.4 Å resolution, and the thermal stability of the protein was evaluated by differential scanning calorimetry. A detailed analysis revealed that the three-dimensional structure of the HUSpm dimer is similar to that of its bacterial homologues but is characterized by stronger hydrophobic interactions at the dimer interface. This HUSpm dimer interface lacks salt bridges but is stabilized by a larger number of hydrogen bonds. According to the DSC data, HUSpm has a high denaturation temperature, comparable to that of HU proteins from thermophilic bacteria. To elucidate the structural basis of HUSpm thermal stability, we identified amino acid residues potentially responsible for this property and modified them by site-directed mutagenesis. A comparative analysis of the melting curves of mutant and wild-type HUSpm revealed the motifs that play a key role in protein thermal stability: non-conserved phenylalanine residues in the hydrophobic core, an additional hydrophobic loop at the N-terminal region of the protein, the absence of the internal cavity present at the dimer interface of some HU proteins, and the presence of additional hydrogen bonds between the monomers that are missing in homologous proteins.
Collapse
|
78
|
Abstract
If fully stretched out, a typical bacterial chromosome would be nearly 1 mm long, approximately 1,000 times the length of a cell. Not only must cells massively compact their genetic material, but they must also organize their DNA in a manner that is compatible with a range of cellular processes, including DNA replication, DNA repair, homologous recombination, and horizontal gene transfer. Recent work, driven in part by technological advances, has begun to reveal the general principles of chromosome organization in bacteria. Here, drawing on studies of many different organisms, we review the emerging picture of how bacterial chromosomes are structured at multiple length scales, highlighting the functions of various DNA-binding proteins and the impact of physical forces. Additionally, we discuss the spatial dynamics of chromosomes, particularly during their segregation to daughter cells. Although there has been tremendous progress, we also highlight gaps that remain in understanding chromosome organization and segregation.
Collapse
|
79
|
Genes on a Wire: The Nucleoid-Associated Protein HU Insulates Transcription Units in Escherichia coli. Sci Rep 2016; 6:31512. [PMID: 27545593 PMCID: PMC4992867 DOI: 10.1038/srep31512] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/21/2016] [Indexed: 01/06/2023] Open
Abstract
The extent to which chromosomal gene position in prokaryotes affects local gene expression remains an open question. Several studies have shown that chromosomal re-positioning of bacterial transcription units does not alter their expression pattern, except for a general decrease in gene expression levels from chromosomal origin to terminus proximal positions, which is believed to result from gene dosage effects. Surprisingly, the question as to whether this chromosomal context independence is a cis encoded property of a bacterial transcription unit, or if position independence is a property conferred by factors acting in trans, has not been addressed so far. For this purpose, we established a genetic test system assessing the chromosomal positioning effects by means of identical promoter-fluorescent reporter gene fusions inserted equidistantly from OriC into both chromosomal replichores of Escherichia coli K-12. Our investigations of the reporter activities in mutant cells lacking the conserved nucleoid associated protein HU uncovered various drastic chromosomal positional effects on gene transcription. In addition we present evidence that these positional effects are caused by transcriptional activity nearby the insertion site of our reporter modules. We therefore suggest that the nucleoid-associated protein HU is functionally insulating transcription units, most likely by constraining transcription induced DNA supercoiling.
Collapse
|
80
|
Hammel M, Amlanjyoti D, Reyes FE, Chen JH, Parpana R, Tang HYH, Larabell CA, Tainer JA, Adhya S. HU multimerization shift controls nucleoid compaction. SCIENCE ADVANCES 2016; 2:e1600650. [PMID: 27482541 PMCID: PMC4966879 DOI: 10.1126/sciadv.1600650] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/14/2016] [Indexed: 05/05/2023]
Abstract
Molecular mechanisms controlling functional bacterial chromosome (nucleoid) compaction and organization are surprisingly enigmatic but partly depend on conserved, histone-like proteins HUαα and HUαβ and their interactions that span the nanoscale and mesoscale from protein-DNA complexes to the bacterial chromosome and nucleoid structure. We determined the crystal structures of these chromosome-associated proteins in complex with native duplex DNA. Distinct DNA binding modes of HUαα and HUαβ elucidate fundamental features of bacterial chromosome packing that regulate gene transcription. By combining crystal structures with solution x-ray scattering results, we determined architectures of HU-DNA nucleoproteins in solution under near-physiological conditions. These macromolecular conformations and interactions result in contraction at the cellular level based on in vivo imaging of native unlabeled nucleoid by soft x-ray tomography upon HUβ and ectopic HUα38 expression. Structural characterization of charge-altered HUαα-DNA complexes reveals an HU molecular switch that is suitable for condensing nucleoid and reprogramming noninvasive Escherichia coli into an invasive form. Collective findings suggest that shifts between networking and cooperative and noncooperative DNA-dependent HU multimerization control DNA compaction and supercoiling independently of cellular topoisomerase activity. By integrating x-ray crystal structures, x-ray scattering, mutational tests, and x-ray imaging that span from protein-DNA complexes to the bacterial chromosome and nucleoid structure, we show that defined dynamic HU interaction networks can promote nucleoid reorganization and transcriptional regulation as efficient general microbial mechanisms to help synchronize genetic responses to cell cycle, changing environments, and pathogenesis.
Collapse
Affiliation(s)
- Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author. (M.H.); (J.A.T.)
| | - Dhar Amlanjyoti
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Francis E. Reyes
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jian-Hua Chen
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Rochelle Parpana
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henry Y. H. Tang
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Carolyn A. Larabell
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - John A. Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Corresponding author. (M.H.); (J.A.T.)
| | - Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
81
|
Tan C, Terakawa T, Takada S. Dynamic Coupling among Protein Binding, Sliding, and DNA Bending Revealed by Molecular Dynamics. J Am Chem Soc 2016; 138:8512-22. [DOI: 10.1021/jacs.6b03729] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cheng Tan
- Department
of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tsuyoshi Terakawa
- Department
of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| | - Shoji Takada
- Department
of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
82
|
HU histone-like DNA-binding protein from Thermus thermophilus: structural and evolutionary analyses. Extremophiles 2016; 20:695-709. [DOI: 10.1007/s00792-016-0859-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
|
83
|
Kentache T, Jouenne T, Dé E, Hardouin J. Proteomic characterization of Nα- and Nε-acetylation in Acinetobacter baumannii. J Proteomics 2016; 144:148-58. [PMID: 27222042 DOI: 10.1016/j.jprot.2016.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 12/25/2022]
Abstract
Nα- and Nε-acetylation represent a pivotal post-translational modification used by both eukaryotes and prokaryotes to modulate diverse biological processes. Acinetobacter baumannii has been described as an important nosocomial pathogen for the past 30 years, frequently involved in ventilator-associated pneumonia, bloodstream and urinary tract infections. Many aspects of the biology of A. baumannii remain elusive, in particular the extent and function of N-acetylation. We investigated here N-acetylation in A. baumannii strain ATCC 17978 by proteomic analysis, and we showed the usefulness of using different analytical approaches. Overall, we identified 525 N-acetylated proteins in which, 145 were Nα-acetylated and 411 were Nε-acetylated. Among them, 41 proteins carried both types of N-acetylation. We found that N-acetylation may play a role in biofilm formation, bacterial virulence (e.g. in several iron acquisition pathways), as well as a number of phenotypes, such as, stress adaptation and drug resistance. BIOLOGICAL SIGNIFICANCE This study is the first to perform the N-acetylome of A. baumannii using different analytical approaches. Each analytical tool permitted to characterize distinctive modified peptides. The combination of all these methods allowed us to identify 145 and 411 Nα- and Nε-acetylated proteins. Besides the fact that acetylation was involved in central metabolism as previously described in other bacteria, some N-acetylated proteins showed interesting role in bacterial virulence (iron acquisition), biofilm formation, stress adaptation and drug resistance of A. baumannii.
Collapse
Affiliation(s)
- Takfarinas Kentache
- CNRS, UMR 6270, Polymères, Biopolymères, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France; Normandie Univ, UR, France
| | - Thierry Jouenne
- CNRS, UMR 6270, Polymères, Biopolymères, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France; Normandie Univ, UR, France; PISSARO proteomic facility, IRIB, F-76821 Mont-Saint-Aignan, France
| | - Emmanuelle Dé
- CNRS, UMR 6270, Polymères, Biopolymères, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France; Normandie Univ, UR, France; PISSARO proteomic facility, IRIB, F-76821 Mont-Saint-Aignan, France
| | - Julie Hardouin
- CNRS, UMR 6270, Polymères, Biopolymères, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France; Normandie Univ, UR, France; PISSARO proteomic facility, IRIB, F-76821 Mont-Saint-Aignan, France.
| |
Collapse
|
84
|
O’Neil P, Lovell S, Mehzabeen N, Battaile K, Biswas I. Crystal structure of histone-like protein from Streptococcus mutans refined to 1.9 Å resolution. Acta Crystallogr F Struct Biol Commun 2016; 72:257-62. [PMID: 27050257 PMCID: PMC4822980 DOI: 10.1107/s2053230x1600217x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/04/2016] [Indexed: 12/18/2022] Open
Abstract
Nucleoid-associated proteins (NAPs) in prokaryotes play an important architectural role in DNA bending, supercoiling and DNA compaction. In addition to architectural roles, some NAPs also play regulatory roles in DNA replication and repair, and act as global transcriptional regulators in many bacteria. Bacteria encode multiple NAPs and some of them are even essential for survival. Streptococcus mutans, a dental pathogen, encodes one such essential NAP called histone-like protein (HLP). Here, the three-dimensional structure of S. mutans HLP has been determined to 1.9 Å resolution. The HLP structure is a dimer and shares a high degree of similarity with other bacterial NAPs, including HU. Since HLPs are essential for the survival of pathogenic streptococci, this structure determination is potentially beneficial for future drug development against these pathogens.
Collapse
Affiliation(s)
- Pierce O’Neil
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Kansas City, KS 66047, USA
| | - Nurjahan Mehzabeen
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Kansas City, KS 66047, USA
| | - Kevin Battaile
- IMCA-CAT, Hauptman–Woodward Medical Research Institute, APS, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
85
|
Lal A, Dhar A, Trostel A, Kouzine F, Seshasayee ASN, Adhya S. Genome scale patterns of supercoiling in a bacterial chromosome. Nat Commun 2016; 7:11055. [PMID: 27025941 PMCID: PMC4820846 DOI: 10.1038/ncomms11055] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/16/2016] [Indexed: 11/09/2022] Open
Abstract
DNA in bacterial cells primarily exists in a negatively supercoiled state. The extent of supercoiling differs between regions of the chromosome, changes in response to external conditions and regulates gene expression. Here we report the use of trimethylpsoralen intercalation to map the extent of supercoiling across the Escherichia coli chromosome during exponential and stationary growth phases. We find that stationary phase E. coli cells display a gradient of negative supercoiling, with the terminus being more negatively supercoiled than the origin of replication, and that such a gradient is absent in exponentially growing cells. This stationary phase pattern is correlated with the binding of the nucleoid-associated protein HU, and we show that it is lost in an HU deletion strain. We suggest that HU establishes higher supercoiling near the terminus of the chromosome during stationary phase, whereas during exponential growth DNA gyrase and/or transcription equalizes supercoiling across the chromosome. Bacterial DNA primarily exists in a negatively supercoiled or under-wound state. Here, by mapping the supercoiling state, the authors show that there is a gradient of supercoiling across the bacterial chromosome with the terminus being more negatively supercoiled than the origin.
Collapse
Affiliation(s)
- Avantika Lal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - Amlanjyoti Dhar
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | - Andrei Trostel
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | - Fedor Kouzine
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | - Aswin S N Seshasayee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| |
Collapse
|
86
|
Abstract
The site-specific recombinase encoded by bacteriophage λ (Int) is responsible for integrating and excising the viral chromosome into and out of the chromosome of its Escherichia coli host. Int carries out a reaction that is highly directional, tightly regulated, and depends upon an ensemble of accessory DNA bending proteins acting on 240 bp of DNA encoding 16 protein binding sites. This additional complexity enables two pathways, integrative and excisive recombination, whose opposite, and effectively irreversible, directions are dictated by different physiological and environmental signals. Int recombinase is a heterobivalent DNA binding protein and each of the four Int protomers, within a multiprotein 400 kDa recombinogenic complex, is thought to bind and, with the aid of DNA bending proteins, bridge one arm- and one core-type DNA site. In the 12 years since the publication of the last review focused solely on the λ site-specific recombination pathway in Mobile DNA II, there has been a great deal of progress in elucidating the molecular details of this pathway. The most dramatic advances in our understanding of the reaction have been in the area of X-ray crystallography where protein-DNA structures have now been determined for of all of the DNA-protein interfaces driving the Int pathway. Building on this foundation of structures, it has been possible to derive models for the assembly of components that determine the regulatory apparatus in the P-arm, and for the overall architectures that define excisive and integrative recombinogenic complexes. The most fundamental additional mechanistic insights derive from the application of hexapeptide inhibitors and single molecule kinetics.
Collapse
|
87
|
Abstract
Serine resolvases are an interesting group of site-specific recombinases that, in their native contexts, resolve large fused replicons into smaller separated ones. Some resolvases are encoded by replicative transposons and resolve the transposition product, in which the donor and recipient molecules are fused, into separate replicons. Other resolvases are encoded by plasmids and function to resolve plasmid dimers into monomers. Both types are therefore involved in the spread and maintenance of antibiotic-resistance genes. Resolvases and the closely related invertases were the first serine recombinases to be studied in detail, and much of our understanding of the unusual strand exchange mechanism of serine recombinases is owed to those early studies. Resolvases and invertases have also served as paradigms for understanding how DNA topology can be harnessed to regulate enzyme activity. Finally, their relatively modular structure, combined with a wealth of structural and biochemical data, has made them good choices for engineering chimeric recombinases with designer specificity. This chapter focuses on the current understanding of serine resolvases, with a focus on the contributions of structural studies.
Collapse
|
88
|
Abstract
This review provides a brief review of the current understanding of the structure-function relationship of the Escherichia coli nucleoid developed after the overview by Pettijohn focusing on the physical properties of nucleoids. Isolation of nucleoids requires suppression of DNA expansion by various procedures. The ability to control the expansion of nucleoids in vitro has led to purification of nucleoids for chemical and physical analyses and for high-resolution imaging. Isolated E. coli genomes display a number of individually intertwined supercoiled loops emanating from a central core. Metabolic processes of the DNA double helix lead to three types of topological constraints that all cells must resolve to survive: linking number, catenates, and knots. The major species of nucleoid core protein share functional properties with eukaryotic histones forming chromatin; even the structures are different from histones. Eukaryotic histones play dynamic roles in the remodeling of eukaryotic chromatin, thereby controlling the access of RNA polymerase and transcription factors to promoters. The E. coli genome is tightly packed into the nucleoid, but, at each cell division, the genome must be faithfully replicated, divided, and segregated. Nucleoid activities such as transcription, replication, recombination, and repair are all affected by the structural properties and the special conformations of nucleoid. While it is apparent that much has been learned about the nucleoid, it is also evident that the fundamental interactions organizing the structure of DNA in the nucleoid still need to be clearly defined.
Collapse
|
89
|
Gruber S. Multilayer chromosome organization through DNA bending, bridging and extrusion. Curr Opin Microbiol 2015; 22:102-10. [PMID: 25460803 DOI: 10.1016/j.mib.2014.09.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/25/2022]
Abstract
All living cells have to master the extraordinarily extended and tangly nature of genomic DNA molecules — in particular during cell division when sister chromosomes are resolved from one another and confined to opposite halves of a cell. Bacteria have evolved diverse sets of proteins, which collectively ensure the formation of compact and yet highly dynamic nucleoids. Some of these players act locally by changing the path of DNA through the bending of its double helical backbone. Other proteins have wider or even global impact on chromosome organization, for example by interconnecting two distant segments of chromosomal DNA or by actively relocating DNA within a cell. Here, I highlight different modes of chromosome organization in bacteria and on this basis consider models for the function of SMC protein complexes, whose mechanism of action is only poorly understood so far.
Collapse
Affiliation(s)
- Stephan Gruber
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
90
|
The nucleoid-associated protein HU enhances 8-oxoguanine base excision by the formamidopyrimidine-DNA glycosylase. Biochem J 2015; 471:13-23. [DOI: 10.1042/bj20150387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/10/2015] [Indexed: 11/17/2022]
Abstract
The major E. coli histone-like HU protein is identified as a strong stimulator of the DNA glycosylase Fpg by inducing enzyme product release. According to an active molecular process, HU acts as a molecular partner for an efficient DNA-repair process.
Collapse
|
91
|
High-resolution mapping of architectural DNA binding protein facilitation of a DNA repression loop in Escherichia coli. Proc Natl Acad Sci U S A 2015; 112:7177-82. [PMID: 26039992 PMCID: PMC4466710 DOI: 10.1073/pnas.1500412112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Double-stranded DNA is one of the stiffest polymers in biology, resisting both bending and twisting over hundreds of base pairs. However, tightly bent DNA loops are formed by proteins that turn off (repress) genes in bacteria. It has been shown that “architectural” proteins capable of kinking any DNA molecule without sequence preference facilitate this kind of gene repression. The mechanism of this effect is unknown for DNA loops involving the well-known Escherichia coli lac repressor. Here we adapt high-resolution protein-mapping techniques to show that an architectural protein directly binds tightly looped DNA to facilitate gene repression by the lac repressor. Double-stranded DNA is a locally inflexible polymer that resists bending and twisting over hundreds of base pairs. Despite this, tight DNA bending is biologically important for DNA packaging in eukaryotic chromatin and tight DNA looping is important for gene repression in prokaryotes. We and others have previously shown that sequence nonspecific DNA kinking proteins, such as Escherichia coli heat unstable and Saccharomyces cerevisiae non-histone chromosomal protein 6A (Nhp6A), facilitate lac repressor (LacI) repression loops in E. coli. It has been unknown if this facilitation involves direct protein binding to the tightly bent DNA loop or an indirect effect promoting global negative supercoiling of DNA. Here we adapt two high-resolution in vivo protein-mapping techniques to demonstrate direct binding of the heterologous Nhp6A protein at a LacI repression loop in living E. coli cells.
Collapse
|
92
|
Aiyer S, Rossi P, Malani N, Schneider WM, Chandar A, Bushman FD, Montelione GT, Roth MJ. Structural and sequencing analysis of local target DNA recognition by MLV integrase. Nucleic Acids Res 2015; 43:5647-63. [PMID: 25969444 PMCID: PMC4477651 DOI: 10.1093/nar/gkv410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 04/16/2015] [Indexed: 01/01/2023] Open
Abstract
Target-site selection by retroviral integrase (IN) proteins profoundly affects viral pathogenesis. We describe the solution nuclear magnetic resonance structure of the Moloney murine leukemia virus IN (M-MLV) C-terminal domain (CTD) and a structural homology model of the catalytic core domain (CCD). In solution, the isolated MLV IN CTD adopts an SH3 domain fold flanked by a C-terminal unstructured tail. We generated a concordant MLV IN CCD structural model using SWISS-MODEL, MMM-tree and I-TASSER. Using the X-ray crystal structure of the prototype foamy virus IN target capture complex together with our MLV domain structures, residues within the CCD α2 helical region and the CTD β1-β2 loop were predicted to bind target DNA. The role of these residues was analyzed in vivo through point mutants and motif interchanges. Viable viruses with substitutions at the IN CCD α2 helical region and the CTD β1-β2 loop were tested for effects on integration target site selection. Next-generation sequencing and analysis of integration target sequences indicate that the CCD α2 helical region, in particular P187, interacts with the sequences distal to the scissile bonds whereas the CTD β1-β2 loop binds to residues proximal to it. These findings validate our structural model and disclose IN-DNA interactions relevant to target site selection.
Collapse
Affiliation(s)
- Sriram Aiyer
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Paolo Rossi
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium (NESG), Rutgers University, Piscataway, NJ 08854, USA
| | - Nirav Malani
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William M Schneider
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, Piscataway, NJ 08854, USA
| | - Ashwin Chandar
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, Piscataway, NJ 08854, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium (NESG), Rutgers University, Piscataway, NJ 08854, USA Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Monica J Roth
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
93
|
The Bacteroides thetaiotaomicron protein Bacteroides host factor A participates in integration of the integrative conjugative element CTnDOT into the chromosome. J Bacteriol 2015; 197:1339-49. [PMID: 25645562 DOI: 10.1128/jb.02198-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED CTnDOT is a conjugative transposon found in Bacteroides species. It encodes multiple antibiotic resistances and is stimulated to transfer by exposure to tetracycline. CTnDOT integration into the host chromosome requires IntDOT and a previously unknown host factor. We have identified a protein, designated BHFa (Bacteroides host factor A), that participates in integrative recombination. BHFa is the first host factor identified for a site-specific recombination reaction in the CTnDOT family of integrative and conjugative elements. Based on the amino acid sequence of BHFa, the ability to bind specifically to 4 sites in the attDOT DNA, and its activity in the integration reaction, BHFa is a member of the IHF/HU family of nucleoid-associated proteins. Other DNA bending proteins that bind DNA nonspecifically can substitute for BHFa in the integration reaction. IMPORTANCE Bacteroides species are normal members of the human colonic microbiota. These species can harbor and spread self-transmissible genetic elements (integrative conjugative elements [ICEs]) that contain antibiotic resistance genes. This work describes the role of a protein, BHFa, and its importance in the integration reaction required for the element CTnDOT to persist in Bacteroides host cells.
Collapse
|
94
|
Abstract
The function of DNA in cells depends on its interactions with protein molecules, which recognize and act on base sequence patterns along the double helix. These notes aim to introduce basic polymer physics of DNA molecules, biophysics of protein-DNA interactions and their study in single-DNA experiments, and some aspects of large-scale chromosome structure. Mechanisms for control of chromosome topology will also be discussed.
Collapse
Affiliation(s)
- John F Marko
- Department of Physics & Astronomy and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois USA 60208
| |
Collapse
|
95
|
Kim DH, Im H, Jee JG, Jang SB, Yoon HJ, Kwon AR, Kang SM, Lee BJ. β-Arm flexibility of HU fromStaphylococcus aureusdictates the DNA-binding and recognition mechanism. ACTA ACUST UNITED AC 2014; 70:3273-89. [DOI: 10.1107/s1399004714023931] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/30/2014] [Indexed: 12/11/2022]
Abstract
HU, one of the major nucleoid-associated proteins, interacts with the minor groove of DNA in a nonspecific manner to induce DNA bending or to stabilize bent DNA. In this study, crystal structures are reported for both free HU fromStaphylococcus aureusMu50 (SHU) and SHU bound to 21-mer dsDNA. The structures, in combination with electrophoretic mobility shift assays (EMSAs), isothermal titration calorimetry (ITC) measurements and molecular-dynamics (MD) simulations, elucidate the overall and residue-specific changes in SHU upon recognizing and binding to DNA. Firstly, structural comparison showed the flexible nature of the β-sheets of the DNA-binding domain and that the β-arms bend inwards upon complex formation, whereas the other portions are nearly unaltered. Secondly, it was found that the disruption and formation of salt bridges accompanies DNA binding. Thirdly, residue-specific free-energy analyses using the MM-PBSA method with MD simulation data suggested that the successive basic residues in the β-arms play a central role in recognizing and binding to DNA, which was confirmed by the EMSA and ITC analyses. Moreover, residue Arg55 resides in the hinge region of the flexible β-arms, exhibiting a remarkable role in their flexible nature. Fourthly, EMSAs with various DNAs revealed that SHU prefers deformable DNA. Taken together, these data suggest residue-specific roles in local shape and base readouts, which are primarily mediated by the flexible β-arms consisting of residues 50–80.
Collapse
|
96
|
DNA topology confers sequence specificity to nonspecific architectural proteins. Proc Natl Acad Sci U S A 2014; 111:16742-7. [PMID: 25385626 DOI: 10.1073/pnas.1405016111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Topological constraints placed on short fragments of DNA change the disorder found in chain molecules randomly decorated by nonspecific, architectural proteins into tightly organized 3D structures. The bacterial heat-unstable (HU) protein builds up, counter to expectations, in greater quantities and at particular sites along simulated DNA minicircles and loops. Moreover, the placement of HU along loops with the "wild-type" spacing found in the Escherichia coli lactose (lac) and galactose (gal) operons precludes access to key recognition elements on DNA. The HU protein introduces a unique spatial pathway in the DNA upon closure. The many ways in which the protein induces nearly the same closed circular configuration point to the statistical advantage of its nonspecificity. The rotational settings imposed on DNA by the repressor proteins, by contrast, introduce sequential specificity in HU placement, with the nonspecific protein accumulating at particular loci on the constrained duplex. Thus, an architectural protein with no discernible DNA sequence-recognizing features becomes site-specific and potentially assumes a functional role upon loop formation. The locations of HU on the closed DNA reflect long-range mechanical correlations. The protein responds to DNA shape and deformability—the stiff, naturally straight double-helical structure—rather than to the unique features of the constituent base pairs. The structures of the simulated loops suggest that HU architecture, like nucleosomal architecture, which modulates the ability of regulatory proteins to recognize their binding sites in the context of chromatin, may influence repressor-operator interactions in the context of the bacterial nucleoid.
Collapse
|
97
|
Driessen RPC, Sitters G, Laurens N, Moolenaar GF, Wuite GJL, Goosen N, Dame RT. Effect of temperature on the intrinsic flexibility of DNA and its interaction with architectural proteins. Biochemistry 2014; 53:6430-8. [PMID: 25291500 PMCID: PMC5451147 DOI: 10.1021/bi500344j] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
helical structure of double-stranded DNA is destabilized by
increasing temperature. Above a critical temperature (the melting
temperature), the two strands in duplex DNA become fully separated.
Below this temperature, the structural effects are localized. Using
tethered particle motion in a temperature-controlled sample chamber,
we systematically investigated the effect of increasing temperature
on DNA structure and the interplay between this effect and protein
binding. Our measurements revealed that (1) increasing temperature
enhances DNA flexibility, effectively leading to more compact folding
of the double-stranded DNA chain, and (2) temperature differentially
affects different types of DNA-bending chromatin proteins from mesophilic
and thermophilic organisms. Thus, our findings aid in understanding
genome organization in organisms thriving at moderate as well as extreme
temperatures. Moreover, our results underscore the importance of carefully
controlling and measuring temperature in single-molecule DNA (micromanipulation)
experiments.
Collapse
Affiliation(s)
- Rosalie P C Driessen
- Molecular Genetics, Leiden Institute of Chemistry and Cell Observatory, Leiden University , 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
98
|
Perez PJ, Clauvelin N, Grosner MA, Colasanti AV, Olson WK. What controls DNA looping? Int J Mol Sci 2014; 15:15090-108. [PMID: 25167135 PMCID: PMC4200792 DOI: 10.3390/ijms150915090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 01/15/2023] Open
Abstract
The looping of DNA provides a means of communication between sequentially distant genomic sites that operate in tandem to express, copy, and repair the information encoded in the DNA base sequence. The short loops implicated in the expression of bacterial genes suggest that molecular factors other than the naturally stiff double helix are involved in bringing the interacting sites into close spatial proximity. New computational techniques that take direct account of the three-dimensional structures and fluctuations of protein and DNA allow us to examine the likely means of enhancing such communication. Here, we describe the application of these approaches to the looping of a 92 base-pair DNA segment between the headpieces of the tetrameric Escherichia coli Lac repressor protein. The distortions of the double helix induced by a second protein--the nonspecific nucleoid protein HU--increase the computed likelihood of looping by several orders of magnitude over that of DNA alone. Large-scale deformations of the repressor, sequence-dependent features in the DNA loop, and deformability of the DNA operators also enhance looping, although to lesser degrees. The correspondence between the predicted looping propensities and the ease of looping derived from gene-expression and single-molecule measurements lends credence to the derived structural picture.
Collapse
Affiliation(s)
- Pamela J Perez
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Nicolas Clauvelin
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Michael A Grosner
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Andrew V Colasanti
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Wilma K Olson
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
99
|
Structural insight into the DNA-binding mode of the primosomal proteins PriA, PriB, and DnaT. BIOMED RESEARCH INTERNATIONAL 2014; 2014:195162. [PMID: 25136561 PMCID: PMC4129139 DOI: 10.1155/2014/195162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/20/2014] [Accepted: 07/01/2014] [Indexed: 01/31/2023]
Abstract
Replication restart primosome is a complex dynamic system that is essential for bacterial survival. This system uses various proteins to reinitiate chromosomal DNA replication to maintain genetic integrity after DNA damage. The replication restart primosome in Escherichia coli is composed of PriA helicase, PriB, PriC, DnaT, DnaC, DnaB helicase, and DnaG primase. The assembly of the protein complexes within the forked DNA responsible for reloading the replicative DnaB helicase anywhere on the chromosome for genome duplication requires the coordination of transient biomolecular interactions. Over the last decade, investigations on the structure and mechanism of these nucleoproteins have provided considerable insight into primosome assembly. In this review, we summarize and discuss our current knowledge and recent advances on the DNA-binding mode of the primosomal proteins PriA, PriB, and DnaT.
Collapse
|
100
|
Bhowmick T, Ghosh S, Dixit K, Ganesan V, Ramagopal UA, Dey D, Sarma SP, Ramakumar S, Nagaraja V. Targeting Mycobacterium tuberculosis nucleoid-associated protein HU with structure-based inhibitors. Nat Commun 2014; 5:4124. [PMID: 24916461 DOI: 10.1038/ncomms5124] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 05/15/2014] [Indexed: 01/03/2023] Open
Abstract
The nucleoid-associated protein HU plays an important role in maintenance of chromosomal architecture and in global regulation of DNA transactions in bacteria. Although HU is essential for growth in Mycobacterium tuberculosis (Mtb), there have been no reported attempts to perturb HU function with small molecules. Here we report the crystal structure of the N-terminal domain of HU from Mtb. We identify a core region within the HU-DNA interface that can be targeted using stilbene derivatives. These small molecules specifically inhibit HU-DNA binding, disrupt nucleoid architecture and reduce Mtb growth. The stilbene inhibitors induce gene expression changes in Mtb that resemble those induced by HU deficiency. Our results indicate that HU is a potential target for the development of therapies against tuberculosis.
Collapse
Affiliation(s)
- Tuhin Bhowmick
- 1] Department of Physics, Indian Institute of Science, Bangalore 560012, India [2]
| | - Soumitra Ghosh
- 1] Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560012, India [2]
| | - Karuna Dixit
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Varsha Ganesan
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560012, India
| | - Udupi A Ramagopal
- 1] Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Ullmann Building, Room 409, Bronx, New York 10461, USA [2] Biological Sciences Division, Poornaprajna Institute of Scientific Research, Bangalore 562110, India
| | - Debayan Dey
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | - Valakunja Nagaraja
- 1] Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560012, India [2] Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|