51
|
de Souza CB, Saad SMI, Venema K. Lean and obese microbiota: differences in in vitro fermentation of food-by-products. Benef Microbes 2021; 12:91-105. [PMID: 34323161 DOI: 10.3920/bm2020.0151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aim of the study was to investigate the potential prebiotic effects of food-by-products (cassava bagasse (n=3), orange bagasse (n=2) and passion fruit peel (n=3)) using an in vitro model simulating the proximal colon, and to assess possible differences in fermentation when using faecal microbiota from lean or obese people. Fermentation of the by-products was compared to a control medium and the prebiotic inulin. The effects of the by-products on the dynamics of the gut microbiota differed according to the type of microbiota, as well as the type of by-product used. Principal Coordinate Analysis of the microbiota showed evidence of a clear separate clustering of lean and obese microbiota before the addition of substrates, which disappeared after fermentation, and instead, distinct clusters due to primary carbohydrate composition of the by-products (starch, fructan and pectin) were present. This is evidence that the substrates drove the obese microbiota to a healthier profile, more similar to that of the lean microbiota. Cassava bagasses enriched the beneficial genus Bifidobacterium in the obese microbiota. The production of total SCFA by cassava bagasses by the obese microbiota was higher than for control medium and inulin. Orange bagasses stimulated the growth of the butyrate-producing genus Coprococcus. Passion fruit peels were poorly fermented and generated negligible amounts of intermediate metabolites, indicating slow fermentation. Nevertheless, passion fruit peel fermentation resulted in a microbiota with the highest diversity and evenness, a positive trait regarding host health. In conclusion, the use of food-by-products could be an important step to tackle obesity and decrease the waste of valuable food material and consequently environmental pollution. They are an inexpensive and non-invasive way to be used as a dietary intervention to improve health, as they were shown here to drive the composition of the obese microbiota to a healthier profile.
Collapse
Affiliation(s)
- C Bussolo de Souza
- Maastricht University - campus Venlo, Centre for Healthy Eating & Food Innovation, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| | - S M I Saad
- University of São Paulo, School of Pharmaceutical Sciences, Dept. Biochemical and Pharmaceutical Technology, Av. Professor Lineu Prestes 580, 05508-000 São Paulo, Brazil
| | - K Venema
- Maastricht University - campus Venlo, Centre for Healthy Eating & Food Innovation, Villafloraweg 1, 5928 SZ Venlo, the Netherlands.,Beneficial Microbes Consultancy, Johan Karschstraat 3, 6709 TN Wageningen, the Netherlands
| |
Collapse
|
52
|
Rousseaux A, Brosseau C, Le Gall S, Piloquet H, Barbarot S, Bodinier M. Human Milk Oligosaccharides: Their Effects on the Host and Their Potential as Therapeutic Agents. Front Immunol 2021; 12:680911. [PMID: 34108974 PMCID: PMC8180913 DOI: 10.3389/fimmu.2021.680911] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Breastmilk is known to be very important for infants because it provides nutrients and immunological compounds. Among these compounds, human milk oligosaccharides (HMOs) represent the third most important component of breastmilk after lipids and lactose. Several experiments demonstrated the beneficial effects of these components on the microbiota, the immune system and epithelial barriers, which are three major biological systems. Indeed, HMOs induce bacterial colonization in the intestinal tract, which is beneficial for health. The gut bacteria can act directly and indirectly on the immune system by stimulating innate immunity and controlling inflammatory reactions and by inducing an adaptive immune response and a tolerogenic environment. In parallel, HMOs directly strengthen the intestinal epithelial barrier, protecting the host against pathogens. Here, we review the molecular mechanisms of HMOs in these different compartments and highlight their potential use as new therapeutic agents, especially in allergy prevention.
Collapse
Affiliation(s)
- Anaïs Rousseaux
- INRAE, Biopolyméres Interactions Assemblages, Nantes, France
| | - Carole Brosseau
- INRAE, Biopolyméres Interactions Assemblages, Nantes, France
| | - Sophie Le Gall
- INRAE, Biopolyméres Interactions Assemblages, Nantes, France.,INRAE, Bioressources: Imagerie, Biochimie & Structure, Nantes, France
| | - Hugues Piloquet
- Centre Hospitalier Universitaire Nantes, UMR1280 PhAN, Nantes, France
| | | | - Marie Bodinier
- INRAE, Biopolyméres Interactions Assemblages, Nantes, France
| |
Collapse
|
53
|
Pham VT, Calatayud M, Rotsaert C, Seifert N, Richard N, Van den Abbeele P, Marzorati M, Steinert RE. Antioxidant Vitamins and Prebiotic FOS and XOS Differentially Shift Microbiota Composition and Function and Improve Intestinal Epithelial Barrier In Vitro. Nutrients 2021; 13:nu13041125. [PMID: 33805552 PMCID: PMC8066074 DOI: 10.3390/nu13041125] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Human gut microbiota (HGM) play a significant role in health and disease. Dietary components, including fiber, fat, proteins and micronutrients, can modulate HGM. Much research has been performed on conventional prebiotics such as fructooligosaccharides (FOS) and galactooligosaccharides (GOS), however, novel prebiotics or micronutrients still require further validation. We assessed the effect of FOS, xylooligosaccharides (XOS) and a mixture of an antioxidant vitamin blend (AOB) on gut microbiota composition and activity, and intestinal barrier in vitro. We used batch fermentations and tested the short-term effect of different products on microbial activity in six donors. Next, fecal inocula from two donors were used to inoculate the simulator of the human microbial ecosystem (SHIME) and after long-term exposure of FOS, XOS and AOB, microbial activity (short- and branched-chain fatty acids and lactate) and HGM composition were evaluated. Finally, in vitro assessment of intestinal barrier was performed in a Transwell setup of differentiated Caco-2 and HT29-MTX-E12 cells exposed to fermentation supernatants. Despite some donor-dependent differences, all three tested products showed beneficial modulatory effects on microbial activity represented by an increase in lactate and SCFA levels (acetate, butyrate and to a lesser extent also propionate), while decreasing proteolytic markers. Bifidogenic effect of XOS was consistent, while AOB supplementation appears to exert a specific impact on reducing F. nucleatum and increasing butyrate-producing B. wexlerae. Functional and compositional microbial changes were translated to an in vitro host response by increases of the intestinal barrier integrity by all the products and a decrease of the redox potential by AOB supplementation.
Collapse
Affiliation(s)
- Van T. Pham
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., 4002 Basel, Switzerland; (N.S.); (N.R.); (R.E.S.)
- Correspondence: ; Tel.: +41-618-158-828
| | - Marta Calatayud
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.C.); (C.R.); (P.V.d.A.); (M.M.)
| | - Chloë Rotsaert
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.C.); (C.R.); (P.V.d.A.); (M.M.)
| | - Nicole Seifert
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., 4002 Basel, Switzerland; (N.S.); (N.R.); (R.E.S.)
| | - Nathalie Richard
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., 4002 Basel, Switzerland; (N.S.); (N.R.); (R.E.S.)
| | - Pieter Van den Abbeele
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.C.); (C.R.); (P.V.d.A.); (M.M.)
| | - Massimo Marzorati
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.C.); (C.R.); (P.V.d.A.); (M.M.)
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Robert E. Steinert
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., 4002 Basel, Switzerland; (N.S.); (N.R.); (R.E.S.)
- Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
54
|
Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes. Biochem Soc Trans 2021; 49:563-578. [PMID: 33666221 PMCID: PMC8106489 DOI: 10.1042/bst20200163] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/05/2023]
Abstract
Bifidobacteria have attracted significant attention because they provide health-promoting effects in the human gut. In this review, we present a current overview of the three-dimensional structures of bifidobacterial proteins involved in carbohydrate uptake, degradation, and metabolism. As predominant early colonizers of the infant's gut, distinct bifidobacterial species are equipped with a panel of transporters and enzymes specific for human milk oligosaccharides (HMOs). Interestingly, Bifidobacterium bifidum and Bifidobacterium longum possess lacto-N-biosidases with unrelated structural folds to release the disaccharide lacto-N-biose from HMOs, suggesting the convergent evolution of this activity from different ancestral proteins. The crystal structures of enzymes that confer the degradation of glycans from the mucin glycoprotein layer provide a structural basis for the utilization of this sustainable nutrient in the gastrointestinal tract. The utilization of several plant dietary oligosaccharides has been studied in detail, and the prime importance of oligosaccharide-specific ATP-binding cassette (ABC) transporters in glycan utilisations by bifidobacteria has been revealed. The structural elements underpinning the high selectivity and roles of ABC transporter binding proteins in establishing competitive growth on preferred oligosaccharides are discussed. Distinct ABC transporters are conserved across several bifidobacterial species, e.g. those targeting arabinoxylooligosaccharide and α-1,6-galactosides/glucosides. Less prevalent transporters, e.g. targeting β-mannooligosaccharides, may contribute to the metabolic specialisation within Bifidobacterium. Some bifidobacterial species have established symbiotic relationships with humans. Structural studies of carbohydrate-utilizing systems in Bifidobacterium have revealed the interesting history of molecular coevolution with the host, as highlighted by the early selection of bifidobacteria by mucin and breast milk glycans.
Collapse
|
55
|
Kelly SM, Munoz-Munoz J, van Sinderen D. Plant Glycan Metabolism by Bifidobacteria. Front Microbiol 2021; 12:609418. [PMID: 33613480 PMCID: PMC7889515 DOI: 10.3389/fmicb.2021.609418] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the genus Bifidobacterium, of which the majority have been isolated as gut commensals, are Gram-positive, non-motile, saccharolytic, non-sporulating, anaerobic bacteria. Many bifidobacterial strains are considered probiotic and therefore are thought to bestow health benefits upon their host. Bifidobacteria are highly abundant among the gut microbiota of healthy, full term, breast-fed infants, yet the relative average abundance of bifidobacteria tends to decrease as the human host ages. Because of the inverse correlation between bifidobacterial abundance/prevalence and health, there has been an increasing interest in maintaining, increasing or restoring bifidobacterial populations in the infant, adult and elderly gut. In order to colonize and persist in the gastrointestinal environment, bifidobacteria must be able to metabolise complex dietary and/or host-derived carbohydrates, and be resistant to various environmental challenges of the gut. This is not only important for the autochthonous bifidobacterial species colonising the gut, but also for allochthonous bifidobacteria provided as probiotic supplements in functional foods. For example, Bifidobacterium longum subsp. longum is a taxon associated with the metabolism of plant-derived poly/oligosaccharides in the adult diet, being capable of metabolising hemicellulose and various pectin-associated glycans. Many of these plant glycans are believed to stimulate the metabolism and growth of specific bifidobacterial species and are for this reason classified as prebiotics. In this review, bifidobacterial carbohydrate metabolism, with a focus on plant poly-/oligosaccharide degradation and uptake, as well as its associated regulation, will be discussed.
Collapse
Affiliation(s)
- Sandra M Kelly
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jose Munoz-Munoz
- Microbial Enzymology Group, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
56
|
Exploring the Ecology of Bifidobacteria and Their Genetic Adaptation to the Mammalian Gut. Microorganisms 2020; 9:microorganisms9010008. [PMID: 33375064 PMCID: PMC7822027 DOI: 10.3390/microorganisms9010008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
The mammalian gut is densely inhabited by microorganisms that have coevolved with their host. Amongst these latter microorganisms, bifidobacteria represent a key model to study host–microbe interaction within the mammalian gut. Remarkably, bifidobacteria naturally occur in a range of ecological niches that are either directly or indirectly connected to the animal gastrointestinal tract. They constitute one of the dominant bacterial members of the intestinal microbiota and are among the first colonizers of the mammalian gut. Notably, the presence of bifidobacteria in the gut has been associated with several health-promoting activities. In this review, we aim to provide an overview of current knowledge on the genetic diversity and ecology of bifidobacteria. Furthermore, we will discuss how this important group of gut bacteria is able to colonize and survive in the mammalian gut, so as to facilitate host interactions.
Collapse
|
57
|
Alsharairi NA. The Role of Short-Chain Fatty Acids in the Interplay between a Very Low-Calorie Ketogenic Diet and the Infant Gut Microbiota and Its Therapeutic Implications for Reducing Asthma. Int J Mol Sci 2020; 21:E9580. [PMID: 33339172 PMCID: PMC7765661 DOI: 10.3390/ijms21249580] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota is well known as playing a critical role in inflammation and asthma development. The very low-calorie ketogenic diet (VLCKD) is suggested to affect gut microbiota; however, the effects of VLCKD during pregnancy and lactation on the infant gut microbiota are unclear. The VLCKD appears to be more effective than caloric/energy restriction diets for the treatment of several diseases, such as obesity and diabetes. However, whether adherence to VLCKD affects the infant gut microbiota and the protective effects thereof on asthma remains uncertain. The exact mechanisms underlying this process, and in particular the potential role of short chain fatty acids (SCFAs), are still to be unravelled. Thus, the aim of this review is to identify the potential role of SCFAs that underlie the effects of VLCKD during pregnancy and lactation on the infant gut microbiota, and explore whether it incurs significant implications for reducing asthma.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind & Body Research Group, Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
| |
Collapse
|
58
|
In Love with Shaping You-Influential Factors on the Breast Milk Content of Human Milk Oligosaccharides and Their Decisive Roles for Neonatal Development. Nutrients 2020; 12:nu12113568. [PMID: 33233832 PMCID: PMC7699834 DOI: 10.3390/nu12113568] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are structurally versatile sugar molecules constituting the third major group of soluble components in human breast milk. Based on the disaccharide lactose, the mammary glands of future and lactating mothers produce a few hundreds of different HMOs implicating that their overall anabolism utilizes rather high amounts of energy. At first sight, it therefore seems contradictory that these sugars are indigestible for infants raising the question of why such an energy-intensive molecular class evolved. However, in-depth analysis of their molecular modes of action reveals that Mother Nature created HMOs for neonatal development, protection and promotion of health. This is not solely facilitated by HMOs in their indigestible form but also by catabolites that are generated by microbial metabolism in the neonatal gut additionally qualifying HMOs as natural prebiotics. This narrative review elucidates factors influencing the HMO composition as well as physiological roles of HMOs on their way through the infant body and within the gut, where a major portion of HMOs faces microbial catabolism. Concurrently, this work summarizes in vitro, preclinical and observational as well as interventional clinical studies that analyzed potential health effects that have been demonstrated by or were related to either human milk-derived or synthetic HMOs or HMO fractions.
Collapse
|
59
|
An R, Gowda M, Rey FE, Thibeault SL. Selective Bacterial Colonization of the Murine Larynx in a Gnotobiotic Model. Front Microbiol 2020; 11:594617. [PMID: 33250883 PMCID: PMC7676279 DOI: 10.3389/fmicb.2020.594617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/08/2020] [Indexed: 01/04/2023] Open
Abstract
The larynx is a mucosal organ situated between the respiratory and gastrointestinal tracts. Little is known about microbial contributions to laryngeal epithelial health and pathogenesis. Developing a gnotobiotic laryngeal model will introduce new avenues for targeted explorations of microbes in laryngeal mucosal biology, allowing for enhanced understanding of host-microbe interaction in the upper airway. In this study, we first assessed the potential of using gut microbiota as a source to establish laryngeal microbiota in germ-free mice. Results demonstrated the selective nature of the upper airway and provided evidence that gut bacteria can assemble into communities that resemble the commensal resident bacteria occurring in the larynx of conventionally-raised animals phylogenetically and functionally. Then, we confirmed the reproducibility of laryngeal colonization through comparison of laryngeal microbiota in the larynx along with neighboring regions (base of tongue, esophagus, and trachea) between conventionally-raised and germ-free mice that conventionalized with cecal microbiota. Despite taxonomic differences, the established laryngeal microbiota from cecal content exhibited similarity to commensal resident microbiota in diversity within/between communities and predicted metagenomic functions. Our data also suggests little difference in bacterial distribution across the larynx and its surrounding regions and that cell motility and the ability to degrade xenobiotics is critical for bacteria colonizing upper airway. Successful colonization of laryngeal and oropharyngeal regions with gut microbiota in our study will greatly facilitate the investigation of potential localized inflammatory responses within host tissues that contribute to the disorders of essential laryngeal functions. Utilizing said gnotobiotic model to conduct future studies will allow for novel insights into direct microbial contributions to laryngeal epithelial health and pathogenesis.
Collapse
Affiliation(s)
- Ran An
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
| | - Madhu Gowda
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Susan L. Thibeault
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|