51
|
Louka P, Vasudevan KK, Guha M, Joachimiak E, Wloga D, Tomasi RFX, Baroud CN, Dupuis-Williams P, Galati DF, Pearson CG, Rice LM, Moresco JJ, Yates JR, Jiang YY, Lechtreck K, Dentler W, Gaertig J. Proteins that control the geometry of microtubules at the ends of cilia. J Cell Biol 2018; 217:4298-4313. [PMID: 30217954 PMCID: PMC6279374 DOI: 10.1083/jcb.201804141] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/25/2018] [Accepted: 08/31/2018] [Indexed: 11/22/2022] Open
Abstract
Cilia, essential motile and sensory organelles, have several compartments: the basal body, transition zone, and the middle and distal axoneme segments. The distal segment accommodates key functions, including cilium assembly and sensory activities. While the middle segment contains doublet microtubules (incomplete B-tubules fused to complete A-tubules), the distal segment contains only A-tubule extensions, and its existence requires coordination of microtubule length at the nanometer scale. We show that three conserved proteins, two of which are mutated in the ciliopathy Joubert syndrome, determine the geometry of the distal segment, by controlling the positions of specific microtubule ends. FAP256/CEP104 promotes A-tubule elongation. CHE-12/Crescerin and ARMC9 act as positive and negative regulators of B-tubule length, respectively. We show that defects in the distal segment dimensions are associated with motile and sensory deficiencies of cilia. Our observations suggest that abnormalities in distal segment organization cause a subset of Joubert syndrome cases.
Collapse
Affiliation(s)
- Panagiota Louka
- Department of Cellular Biology, University of Georgia, Athens, GA
| | | | - Mayukh Guha
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Raphaël F-X Tomasi
- Department of Mechanics, LadHyX, Ecole Polytechnique-Centre National de la Recherche Scientifique, Palaiseau, France
| | - Charles N Baroud
- Department of Mechanics, LadHyX, Ecole Polytechnique-Centre National de la Recherche Scientifique, Palaiseau, France
| | - Pascale Dupuis-Williams
- UMR-S1174 Institut National de la Santé et de la Recherche Médicale, Université Paris-Sud, Bat 443, Orsay, France
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Paris, France
| | - Domenico F Galati
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Luke M Rice
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Yu-Yang Jiang
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - William Dentler
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA
| |
Collapse
|
52
|
Urbanska P, Joachimiak E, Bazan R, Fu G, Poprzeczko M, Fabczak H, Nicastro D, Wloga D. Ciliary proteins Fap43 and Fap44 interact with each other and are essential for proper cilia and flagella beating. Cell Mol Life Sci 2018; 75:4479-4493. [PMID: 29687140 PMCID: PMC6208767 DOI: 10.1007/s00018-018-2819-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 11/08/2022]
Abstract
Cilia beating is powered by the inner and outer dynein arms (IDAs and ODAs). These multi-subunit macrocomplexes are arranged in two rows on each outer doublet along the entire cilium length, except its distal end. To generate cilia beating, the activity of ODAs and IDAs must be strictly regulated locally by interactions with the dynein arm-associated structures within each ciliary unit and coordinated globally in time and space between doublets and along the axoneme. Here, we provide evidence of a novel ciliary complex composed of two conserved WD-repeat proteins, Fap43p and Fap44p. This complex is adjacent to another WD-repeat protein, Fap57p, and most likely the two-headed inner dynein arm, IDA I1. Loss of either protein results in altered waveform, beat stroke and reduced swimming speed. The ciliary localization of Fap43p and Fap44p is interdependent in the ciliate Tetrahymena thermophila.
Collapse
Affiliation(s)
- Paulina Urbanska
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Rafał Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, USA
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, USA
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, Pasteur 3, 02-093, Warsaw, Poland.
| |
Collapse
|
53
|
Luo GZ, Hao Z, Luo L, Shen M, Sparvoli D, Zheng Y, Zhang Z, Weng X, Chen K, Cui Q, Turkewitz AP, He C. N 6-methyldeoxyadenosine directs nucleosome positioning in Tetrahymena DNA. Genome Biol 2018; 19:200. [PMID: 30454035 PMCID: PMC6245762 DOI: 10.1186/s13059-018-1573-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/22/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND N6-methyldeoxyadenosine (6mA or m6dA) was shown more than 40 years ago in simple eukaryotes. Recent studies revealed the presence of 6mA in more prevalent eukaryotes, even in vertebrates. However, functional characterizations have been limited. RESULTS We use Tetrahymena thermophila as a model organism to examine the effects of 6mA on nucleosome positioning. Independent methods reveal the enrichment of 6mA near and after transcription start sites with a periodic pattern and anti-correlation relationship with the positions of nucleosomes. The distribution pattern can be recapitulated by in vitro nucleosome assembly on native Tetrahymena genomic DNA but not on DNA without 6mA. Model DNA containing artificially installed 6mA resists nucleosome assembling compared to unmodified DNA in vitro. Computational simulation indicates that 6mA increases dsDNA rigidity, which disfavors nucleosome wrapping. Knockout of a potential 6mA methyltransferase leads to a transcriptome-wide change of gene expression. CONCLUSIONS These findings uncover a mechanism by which DNA 6mA assists to shape the nucleosome positioning and potentially affects gene expression.
Collapse
Affiliation(s)
- Guan-Zheng Luo
- The State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510060, China.
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.
| | - Ziyang Hao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Liangzhi Luo
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Mingren Shen
- Graduate Program in Biophysics, Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, 1101 Univ. Ave., Madison, WI, 53706, USA
| | - Daniela Sparvoli
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60637, USA
| | - Yuqing Zheng
- Graduate Program in Biophysics, Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, 1101 Univ. Ave., Madison, WI, 53706, USA
| | - Zijie Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Xiaocheng Weng
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Kai Chen
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Qiang Cui
- Graduate Program in Biophysics, Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, 1101 Univ. Ave., Madison, WI, 53706, USA
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.
| |
Collapse
|
54
|
Andersen KL, Nielsen H. Knock-Down of a Novel snoRNA in Tetrahymena Reveals a Dual Role in 5.8S rRNA Processing and Generation of a 26S rRNA Fragment. Biomolecules 2018; 8:E128. [PMID: 30380771 PMCID: PMC6315972 DOI: 10.3390/biom8040128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 11/30/2022] Open
Abstract
In eukaryotes, 18S, 5.8S, and 28S rRNAs are transcribed as precursor molecules that undergo extensive modification and nucleolytic processing to form the mature rRNA species. Central in the process are the small nucleolar RNAs (snoRNAs). The majority of snoRNAs guide site specific chemical modifications but a few are involved in defining pre-rRNA cleavages. Here, we describe an unusual snoRNA (TtnuCD32) belonging to the box C/D subgroup from the ciliate Tetrahymena thermophila. We show that TtnuCD32 is unlikely to function as a modification guide snoRNA and that it is critical for cell viability. Cell lines with genetic knock-down of TtnuCD32 were impaired in growth and displayed two novel and apparently unrelated phenotypes. The most prominent phenotype is the accumulation of processing intermediates of 5.8S rRNA. The second phenotype is the decrease in abundance of a ~100 nt 26S rRNA fragment of unknown function. Sequence analysis demonstrated that TtnuCD32 share features with the essential snoRNA U14 but an alternative candidate (TtnuCD25) was more closely related to other U14 sequences. This, together with the fact that the observed rRNA processing phenotypes were not similar to what has been observed in U14 depleted cells, suggests that TtnuCD32 is a U14 homolog that has gained novel functions.
Collapse
MESH Headings
- Base Sequence
- Cell Survival
- Conserved Sequence
- Gene Expression Regulation
- Gene Knockdown Techniques
- Genome
- Methylation
- Nucleic Acid Conformation
- Protozoan Proteins/chemistry
- Protozoan Proteins/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 5.8S/chemistry
- RNA, Ribosomal, 5.8S/genetics
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- Tetrahymena/genetics
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Kasper L Andersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200N Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Blegdamsvej 5b, DK-2200N Copenhagen, Denmark.
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Blegdamsvej 5b, DK-2200N Copenhagen, Denmark.
| |
Collapse
|
55
|
Zhu C, Liu X, Chi H, Chen C, Chen Z, Fu G, Gong H, Huang Y. System for the heterologous expression of NS1 protein of H9N2 avian influenza virus in the ciliate Tetrahymena thermophila. J Vet Med Sci 2018; 80:1610-1618. [PMID: 30210069 PMCID: PMC6207525 DOI: 10.1292/jvms.18-0291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tetrahymena is commonly used as an alternative eukaryotic system for
efficiently expressing heterologous genes. In this study, we inserted the non-structural
(NS) 1 gene of avian influenza virus (AIV) into the shuttle vector
pD5H8 and transformed conjugating T. thermophila with the recombinant
plasmid pD5H8-NS1 by particle bombardment. Positive transformants were selected with
paromomycin. We demonstrated that the NS1 protein could be expressed steadily following
induction with cadmium in this Tetrahymena system. An enzyme-linked
immunosorbent assay detection method was preliminary established using the expressed
protein as coating antigens for serodiagnosis. This is the first study in which a
Tetrahymena expression system was employed for the expression of the
AIV NS1 protein, and it provides a good basis for the development of differential
diagnostic kits and vaccines for the prevention and control of avian influenza.
Collapse
Affiliation(s)
- Chunhua Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Fuzhou 350013, China
| | - Xiaodong Liu
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Hongshu Chi
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Cuiteng Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zhen Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Guanghua Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Hui Gong
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.,Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Fuzhou 350013, China
| |
Collapse
|
56
|
Stoddard D, Zhao Y, Bayless BA, Gui L, Louka P, Dave D, Suryawanshi S, Tomasi RFX, Dupuis-Williams P, Baroud CN, Gaertig J, Winey M, Nicastro D. Tetrahymena RIB72A and RIB72B are microtubule inner proteins in the ciliary doublet microtubules. Mol Biol Cell 2018; 29:2566-2577. [PMID: 30133348 PMCID: PMC6254578 DOI: 10.1091/mbc.e18-06-0405] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Doublet and triplet microtubules are essential and highly stable core structures of centrioles, basal bodies, cilia, and flagella. In contrast to dynamic cytoplasmic microtubules, their luminal surface is coated with regularly arranged microtubule inner proteins (MIPs). However, the protein composition and biological function(s) of MIPs remain poorly understood. Using genetic, biochemical, and imaging techniques, we identified Tetrahymena RIB72A and RIB72B proteins as ciliary MIPs. Fluorescence imaging of tagged RIB72A and RIB72B showed that both proteins colocalize to Tetrahymena cilia and basal bodies but assemble independently. Cryoelectron tomography of RIB72A and/or RIB72B knockout strains revealed major structural defects in the ciliary A-tubule involving MIP1, MIP4, and MIP6 structures. The defects of individual mutants were complementary in the double mutant. All mutants had reduced swimming speed and ciliary beat frequencies, and high-speed video imaging revealed abnormal highly curved cilia during power stroke. Our results show that RIB72A and RIB72B are crucial for the structural assembly of ciliary A-tubule MIPs and are important for proper ciliary motility.
Collapse
Affiliation(s)
- Daniel Stoddard
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453.,Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ying Zhao
- Department of Molecular, Cellular & Developmental Biology University of Colorado Boulder, Boulder, CO 80309
| | - Brian A Bayless
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Long Gui
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Panagiota Louka
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Drashti Dave
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Swati Suryawanshi
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Raphaël F-X Tomasi
- Department of Mechanics, LadHyX, CNRS and Ecole Polytechnique, 91128 Palaiseau Cedex, France.,Physical Microfluidics and Bioengineering, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Pascale Dupuis-Williams
- UMR-S 1174 Inserm, Universite Paris-Sud, 91405 Orsay Cedex, France.,Ecole Supérieure de Physique et de Chimie Industrielles ParisTech, 75005 Paris, France
| | - Charles N Baroud
- Department of Mechanics, LadHyX, CNRS and Ecole Polytechnique, 91128 Palaiseau Cedex, France.,Physical Microfluidics and Bioengineering, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Mark Winey
- Department of Molecular, Cellular & Developmental Biology University of Colorado Boulder, Boulder, CO 80309.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Daniela Nicastro
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453.,Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
57
|
Noto T, Mochizuki K. Small RNA-Mediated trans-Nuclear and trans-Element Communications in Tetrahymena DNA Elimination. Curr Biol 2018; 28:1938-1949.e5. [DOI: 10.1016/j.cub.2018.04.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 10/14/2022]
|
58
|
Joachimiak E, Jerka‐Dziadosz M, Krzemień‐Ojak Ł, Wacławek E, Jedynak K, Urbanska P, Brutkowski W, Sas‐Nowosielska H, Fabczak H, Gaertig J, Wloga D. Multiple phosphorylation sites on γ‐tubulin are essential and contribute to the biogenesis of basal bodies in
Tetrahymena. J Cell Physiol 2018; 233:8648-8665. [DOI: 10.1002/jcp.26742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 04/09/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Maria Jerka‐Dziadosz
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Łucja Krzemień‐Ojak
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Ewa Wacławek
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Katarzyna Jedynak
- Faculty of BiologyDepartment of Animal PhysiologyInstitute of ZoologyUniversity of WarsawWarsawPoland
| | - Paulina Urbanska
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Wojciech Brutkowski
- Laboratory of Imaging Tissue Structure and FunctionNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Hanna Sas‐Nowosielska
- Laboratory of Imaging Tissue Structure and FunctionNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Jacek Gaertig
- Department of Cellular BiologyUniversity of GeorgiaAthensGeorgia
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| |
Collapse
|
59
|
Zhang J, Yan G, Tian M, Ma Y, Xiong J, Miao W. A DP-like transcription factor protein interacts with E2fl1 to regulate meiosis in Tetrahymena thermophila. Cell Cycle 2018; 17:634-642. [PMID: 29417875 DOI: 10.1080/15384101.2018.1431595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Evolutionarily conserved E2F family transcription factors regulate the cell cycle via controlling gene expression in a wide range of eukaryotes. We previously demonstrated that the meiosis-specific transcription factor E2fl1 had an important role in meiosis in the model ciliate Tetrahymena thermophila. Here, we report that expression of another E2F family transcription factor gene DPL2 correlates highly with that of E2FL1. Similar to e2fl1Δ cells, dpl2Δ cells undergo meiotic arrest prior to anaphase I, with the five chromosomes adopting an abnormal tandem arrangement. Immunofluorescence staining and immunoprecipitation experiments demonstrate that Dpl2 and E2fl1 form a complex during meiosis. We previously identified several meiotic regulatory proteins in T. thermophila. Cyc2 and Tcdk3 may cooperate to initiate meiosis and Cyc17 is essential for initiating meiotic anaphase. We investigate the relationship of these regulators with Dpl2 and E2fl1, and then construct a meiotic regulatory network by measuring changes in meiotic genes expression in knockout cells. We conclude that the E2fl1/Dpl2 complex plays a central role in meiosis in T. thermophila.
Collapse
Affiliation(s)
- Jing Zhang
- a Key Laboratory of Aquatic Biodiversity and Conservation , Institute of Hydrobiology , Chinese Academy of Sciences , Wuhan , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Guanxiong Yan
- a Key Laboratory of Aquatic Biodiversity and Conservation , Institute of Hydrobiology , Chinese Academy of Sciences , Wuhan , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Miao Tian
- a Key Laboratory of Aquatic Biodiversity and Conservation , Institute of Hydrobiology , Chinese Academy of Sciences , Wuhan , People's Republic of China
| | - Yang Ma
- a Key Laboratory of Aquatic Biodiversity and Conservation , Institute of Hydrobiology , Chinese Academy of Sciences , Wuhan , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Jie Xiong
- a Key Laboratory of Aquatic Biodiversity and Conservation , Institute of Hydrobiology , Chinese Academy of Sciences , Wuhan , People's Republic of China
| | - Wei Miao
- a Key Laboratory of Aquatic Biodiversity and Conservation , Institute of Hydrobiology , Chinese Academy of Sciences , Wuhan , People's Republic of China
| |
Collapse
|
60
|
Bednenko J, Harriman R, Mariën L, Nguyen HM, Agrawal A, Papoyan A, Bisharyan Y, Cardarelli J, Cassidy-Hanley D, Clark T, Pedersen D, Abdiche Y, Harriman W, van der Woning B, de Haard H, Collarini E, Wulff H, Colussi P. A multiplatform strategy for the discovery of conventional monoclonal antibodies that inhibit the voltage-gated potassium channel Kv1.3. MAbs 2018; 10:636-650. [PMID: 29494279 PMCID: PMC5973702 DOI: 10.1080/19420862.2018.1445451] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Identifying monoclonal antibodies that block human voltage-gated ion channels (VGICs) is a challenging endeavor exacerbated by difficulties in producing recombinant ion channel proteins in amounts that support drug discovery programs. We have developed a general strategy to address this challenge by combining high-level expression of recombinant VGICs in Tetrahymena thermophila with immunization of phylogenetically diverse species and unique screening tools that allow deep-mining for antibodies that could potentially bind functionally important regions of the protein. Using this approach, we targeted human Kv1.3, a voltage-gated potassium channel widely recognized as a therapeutic target for the treatment of a variety of T-cell mediated autoimmune diseases. Recombinant Kv1.3 was used to generate and recover 69 full-length anti-Kv1.3 mAbs from immunized chickens and llamas, of which 10 were able to inhibit Kv1.3 current. Select antibodies were shown to be potent (IC50<10 nM) and specific for Kv1.3 over related Kv1 family members, hERG and hNav1.5.
Collapse
Affiliation(s)
| | - Rian Harriman
- b Department of Immunology , Crystal Bioscience , Emeryville , California , USA
| | | | - Hai M Nguyen
- d Department of Pharmacology , University of California , Davis , California , USA
| | - Alka Agrawal
- a TetraGenetics Inc , Arlington , Massachusetts , USA
| | - Ashot Papoyan
- a TetraGenetics Inc , Arlington , Massachusetts , USA
| | | | | | - Donna Cassidy-Hanley
- e Department of Immunology and Microbiology , Cornell University , Ithaca , New York , USA
| | - Ted Clark
- a TetraGenetics Inc , Arlington , Massachusetts , USA.,e Department of Immunology and Microbiology , Cornell University , Ithaca , New York , USA
| | | | | | | | | | | | | | - Heike Wulff
- d Department of Pharmacology , University of California , Davis , California , USA
| | - Paul Colussi
- a TetraGenetics Inc , Arlington , Massachusetts , USA
| |
Collapse
|
61
|
Resistance to 6-Methylpurine is Conferred by Defective Adenine Phosphoribosyltransferase in Tetrahymena. Genes (Basel) 2018; 9:genes9040179. [PMID: 29570682 PMCID: PMC5924521 DOI: 10.3390/genes9040179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 02/05/2023] Open
Abstract
6-methylpurine (6mp) is a toxic analog of adenine that inhibits RNA and protein synthesis and interferes with adenine salvage mediated by adenine phosphoribosyltransferase (APRTase). Mutants of the ciliated protist Tetrahymena thermophila that are resistant to 6mp were isolated in 1974, but the mechanism of resistance has remained unknown. To investigate 6mp resistance in T. thermophila, we created 6mp-resistant strains and identified a mutation in the APRTase genomic locus (APRT1) that is responsible for 6mp resistance. While overexpression of the mutated APRT1 allele in 6mp-sensitive cells did not confer resistance to 6mp, reduced wild-type APRT1 expression resulted in a significant decrease in sensitivity to 6mp. Knocking out or reducing the expression of APRT1 by RNA interference (RNAi) did not affect robust cell growth, which indicates that adenine salvage is redundant or that de novo synthesis pathways provide sufficient adenosine monophosphate for viability. We also explored whether 6mp resistance could be used as a novel inducible selection marker by generating 6mp- and paromomycin-resistant double mutants. While 6mp- and paromomycin-resistant double mutants did express fluorescent proteins in an RNAi-based system, the system requires optimization before 6mp resistance can be used as an effective inducible selection marker.
Collapse
|
62
|
Saettone A, Garg J, Lambert JP, Nabeel-Shah S, Ponce M, Burtch A, Thuppu Mudalige C, Gingras AC, Pearlman RE, Fillingham J. The bromodomain-containing protein Ibd1 links multiple chromatin-related protein complexes to highly expressed genes in Tetrahymena thermophila. Epigenetics Chromatin 2018. [PMID: 29523178 PMCID: PMC5844071 DOI: 10.1186/s13072-018-0180-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background The chromatin remodelers of the SWI/SNF family are critical transcriptional regulators. Recognition of lysine acetylation through a bromodomain (BRD) component is key to SWI/SNF function; in most eukaryotes, this function is attributed to SNF2/Brg1. Results Using affinity purification coupled to mass spectrometry (AP–MS) we identified members of a SWI/SNF complex (SWI/SNFTt) in Tetrahymena thermophila. SWI/SNFTt is composed of 11 proteins, Snf5Tt, Swi1Tt, Swi3Tt, Snf12Tt, Brg1Tt, two proteins with potential chromatin-interacting domains and four proteins without orthologs to SWI/SNF proteins in yeast or mammals. SWI/SNFTt subunits localize exclusively to the transcriptionally active macronucleus during growth and development, consistent with a role in transcription. While Tetrahymena Brg1 does not contain a BRD, our AP–MS results identified a BRD-containing SWI/SNFTt component, Ibd1 that associates with SWI/SNFTt during growth but not development. AP–MS analysis of epitope-tagged Ibd1 revealed it to be a subunit of several additional protein complexes, including putative SWRTt, and SAGATt complexes as well as a putative H3K4-specific histone methyl transferase complex. Recombinant Ibd1 recognizes acetyl-lysine marks on histones correlated with active transcription. Consistent with our AP–MS and histone array data suggesting a role in regulation of gene expression, ChIP-Seq analysis of Ibd1 indicated that it primarily binds near promoters and within gene bodies of highly expressed genes during growth. Conclusions Our results suggest that through recognizing specific histones marks, Ibd1 targets active chromatin regions of highly expressed genes in Tetrahymena where it subsequently might coordinate the recruitment of several chromatin-remodeling complexes to regulate the transcriptional landscape of vegetatively growing Tetrahymena cells. Electronic supplementary material The online version of this article (10.1186/s13072-018-0180-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada
| | - Jyoti Garg
- Department of Biology, York University, 4700 Keele St., Toronto, M3J 1P3, Canada
| | - Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, Canada.,Department of Molecular Medicine, Université Laval, Quebec, Canada.,Centre Hospitalier Universitaire de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec, G1V 4G2, Canada
| | - Syed Nabeel-Shah
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Marcelo Ponce
- SciNet HPC Consortium, University of Toronto, 661 University Ave, Suite 1140, Toronto, M5G 1M1, Canada
| | - Alyson Burtch
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada
| | - Cristina Thuppu Mudalige
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele St., Toronto, M3J 1P3, Canada
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada.
| |
Collapse
|
63
|
Sparvoli D, Richardson E, Osakada H, Lan X, Iwamoto M, Bowman GR, Kontur C, Bourland WA, Lynn DH, Pritchard JK, Haraguchi T, Dacks JB, Turkewitz AP. Remodeling the Specificity of an Endosomal CORVET Tether Underlies Formation of Regulated Secretory Vesicles in the Ciliate Tetrahymena thermophila. Curr Biol 2018; 28:697-710.e13. [PMID: 29478853 DOI: 10.1016/j.cub.2018.01.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/09/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022]
Abstract
In the endocytic pathway of animals, two related complexes, called CORVET (class C core vacuole/endosome transport) and HOPS (homotypic fusion and protein sorting), act as both tethers and fusion factors for early and late endosomes, respectively. Mutations in CORVET or HOPS lead to trafficking defects and contribute to human disease, including immune dysfunction. HOPS and CORVET are conserved throughout eukaryotes, but remarkably, in the ciliate Tetrahymena thermophila, the HOPS-specific subunits are absent, while CORVET-specific subunits have proliferated. VPS8 (vacuolar protein sorting), a CORVET subunit, expanded to 6 paralogs in Tetrahymena. This expansion correlated with loss of HOPS within a ciliate subgroup, including the Oligohymenophorea, which contains Tetrahymena. As uncovered via forward genetics, a single VPS8 paralog in Tetrahymena (VPS8A) is required to synthesize prominent secretory granules called mucocysts. More specifically, Δvps8a cells fail to deliver a subset of cargo proteins to developing mucocysts, instead accumulating that cargo in vesicles also bearing the mucocyst-sorting receptor Sor4p. Surprisingly, although this transport step relies on CORVET, it does not appear to involve early endosomes. Instead, Vps8a associates with the late endosomal/lysosomal marker Rab7, indicating that target specificity switching occurred in CORVET subunits during the evolution of ciliates. Mucocysts belong to a markedly diverse and understudied class of protist secretory organelles called extrusomes. Our results underscore that biogenesis of mucocysts depends on endolysosomal trafficking, revealing parallels with invasive organelles in apicomplexan parasites and suggesting that a wide array of secretory adaptations in protists, like in animals, depend on mechanisms related to lysosome biogenesis.
Collapse
Affiliation(s)
- Daniela Sparvoli
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | | | - Hiroko Osakada
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan
| | - Xun Lan
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Masaaki Iwamoto
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan
| | - Grant R Bowman
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Cassandra Kontur
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - William A Bourland
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA
| | - Denis H Lynn
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tokuko Haraguchi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
64
|
Howard-Till R, Loidl J. Condensins promote chromosome individualization and segregation during mitosis, meiosis, and amitosis in Tetrahymena thermophila. Mol Biol Cell 2017; 29:466-478. [PMID: 29237819 PMCID: PMC6014175 DOI: 10.1091/mbc.e17-07-0451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 11/11/2022] Open
Abstract
Condensin is a protein complex with diverse functions in chromatin packaging and chromosome condensation and segregation. We studied condensin in the evolutionarily distant protist model Tetrahymena, which features noncanonical nuclear organization and divisions. In Tetrahymena, the germline and soma are partitioned into two different nuclei within a single cell. Consistent with their functional specializations in sexual reproduction and gene expression, condensins of the germline nucleus and the polyploid somatic nucleus are composed of different subunits. Mitosis and meiosis of the germline nucleus and amitotic division of the somatic nucleus are all dependent on condensins. In condensin-depleted cells, a chromosome condensation defect was most striking at meiotic metaphase, when Tetrahymena chromosomes are normally most densely packaged. Live imaging of meiotic divisions in condensin-depleted cells showed repeated nuclear stretching and contraction as the chromosomes failed to separate. Condensin depletion also fundamentally altered chromosome arrangement in the polyploid somatic nucleus: multiple copies of homologous chromosomes tended to cluster, consistent with a previous model of condensin suppressing default somatic pairing. We propose that failure to form discrete chromosome territories is the common cause of the defects observed in the absence of condensins.
Collapse
Affiliation(s)
- Rachel Howard-Till
- Department of Chromosome Biology, University of Vienna, 1190 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, University of Vienna, 1190 Vienna, Austria
| |
Collapse
|
65
|
de Francisco P, Martín-González A, Turkewitz AP, Gutiérrez JC. Extreme metal adapted, knockout and knockdown strains reveal a coordinated gene expression among different Tetrahymena thermophila metallothionein isoforms. PLoS One 2017; 12:e0189076. [PMID: 29206858 PMCID: PMC5716537 DOI: 10.1371/journal.pone.0189076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/17/2017] [Indexed: 01/01/2023] Open
Abstract
Metallothioneins (MT) constitute a superfamily of small cytosolic proteins that are able to bind metal cations through numerous cysteine (Cys) residues. Like other organisms the ciliate Tetrahymena thermophila presents several MT isoforms, which have been classified into two subfamilies (Cd- and Cu-metallothioneins). The main aim of this study was to examine the specific functions and transcriptional regulation of the five MT isoforms present in T. thermophila, by using several strains of this ciliate. After a laboratory evolution experiment over more than two years, three different T. thermophila strains adapted to extreme metal stress (Cd2+, Cu2+ or Pb2+) were obtained. In addition, three knockout and/or knockdown strains for different metallothionein (MT) genes were generated. These strains were then analyzed for expression of the individual MT isoforms. Our results provide a strong basis for assigning differential roles to the set of MT isoforms. MTT1 appears to have a key role in adaptation to Cd. In contrast, MTT2/4 are crucial for Cu-adaptation and MTT5 appears to be important for Pb-adaptation and might be considered as an “alarm” MT gene for responding to metal stress. Moreover, results indicate that likely a coordinated transcriptional regulation exists between the MT genes, particularly among MTT1, MTT5 and MTT2/4. MTT5 appears to be an essential gene, a first such report in any organism of an essential MT gene.
Collapse
Affiliation(s)
- Patricia de Francisco
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ana Martín-González
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, Cummings Life Sciences Center, University of Chicago, Chicago, Illinois, United States of America
| | - Juan Carlos Gutiérrez
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
- * E-mail:
| |
Collapse
|
66
|
Qiao J, Xu J, Bo T, Wang W. Micronucleus-specific histone H1 is required for micronuclear chromosome integrity in Tetrahymena thermophila. PLoS One 2017; 12:e0187475. [PMID: 29095884 PMCID: PMC5667856 DOI: 10.1371/journal.pone.0187475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 10/19/2017] [Indexed: 02/02/2023] Open
Abstract
Histone H1 molecules play a key role in establishing and maintaining higher order chromatin structures. They can bind to linker DNA entering and exiting the nucleosome and regulate transcriptional activity. Tetrahymena thermophila has two histone H1, namely, macronuclear histone H1 and micronuclear histone H1 (Mlh1). Mlh1 is specifically localized at micronuclei during growth and starvation stages. Moreover, Mlh1 is localized around micronuclei and forms a specific structure during the conjugation stage. It co-localizes partially with spindle apparatus during micronuclear meiosis. Analysis of MLH1 knock-out revealed that Mlh1 was required for the micronuclear integrity and development during conjugation stage. Overexpression of Mlh1 led to abnormal conjugation progression. RT-PCR analysis indicated that the expression level of HMGB3 increased in ΔMLH1 strains, while the expression level of MLH1 increased in ΔHMGB3 cells during conjugation. These results indicate that micronuclear integrity and sexual development require normal expression level of Mlh1 and that HmgB3 and Mlh1 may functionally compensate each other in regulating micronuclear structure in T. thermophila.
Collapse
Affiliation(s)
- Juxia Qiao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi, China
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi, China
- * E-mail:
| |
Collapse
|
67
|
Feng L, Wang G, Hamilton EP, Xiong J, Yan G, Chen K, Chen X, Dui W, Plemens A, Khadr L, Dhanekula A, Juma M, Dang HQ, Kapler GM, Orias E, Miao W, Liu Y. A germline-limited piggyBac transposase gene is required for precise excision in Tetrahymena genome rearrangement. Nucleic Acids Res 2017; 45:9481-9502. [PMID: 28934495 PMCID: PMC5766162 DOI: 10.1093/nar/gkx652] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022] Open
Abstract
Developmentally programmed genome rearrangement accompanies differentiation of the silent germline micronucleus into the transcriptionally active somatic macronucleus in the ciliated protozoan Tetrahymena thermophila. Internal eliminated sequences (IES) are excised, followed by rejoining of MAC-destined sequences, while fragmentation occurs at conserved chromosome breakage sequences, generating macronuclear chromosomes. Some macronuclear chromosomes, referred to as non-maintained chromosomes (NMC), are lost soon after differentiation. Large NMC contain genes implicated in development-specific roles. One such gene encodes the domesticated piggyBac transposase TPB6, required for heterochromatin-dependent precise excision of IES residing within exons of functionally important genes. These conserved exonic IES determine alternative transcription products in the developing macronucleus; some even contain free-standing genes. Examples of precise loss of some exonic IES in the micronucleus and retention of others in the macronucleus of related species suggest an evolutionary analogy to introns. Our results reveal that germline-limited sequences can encode genes with specific expression patterns and development-related functions, which may be a recurring theme in eukaryotic organisms experiencing programmed genome rearrangement during germline to soma differentiation.
Collapse
Affiliation(s)
- Lifang Feng
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.,Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Eileen P Hamilton
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guanxiong Yan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao Chen
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wen Dui
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amber Plemens
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lara Khadr
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arjune Dhanekula
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mina Juma
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hung Quang Dang
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Geoffrey M Kapler
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
68
|
Matthews CB, Wright C, Kuo A, Colant N, Westoby M, Love JC. Reexamining opportunities for therapeutic protein production in eukaryotic microorganisms. Biotechnol Bioeng 2017; 114:2432-2444. [DOI: 10.1002/bit.26378] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/19/2017] [Accepted: 07/03/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Catherine B. Matthews
- Department of Chemical Engineering; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge Massachusetts
| | | | - Angel Kuo
- Department of Chemical Engineering; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge Massachusetts
| | - Noelle Colant
- Department of Chemical Engineering; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge Massachusetts
| | | | - J. Christopher Love
- Department of Chemical Engineering; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge Massachusetts
| |
Collapse
|
69
|
BIME2, a novel gene required for interhomolog meiotic recombination in the protist model organism Tetrahymena. Chromosome Res 2017; 25:291-298. [PMID: 28803330 PMCID: PMC5662671 DOI: 10.1007/s10577-017-9563-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/23/2022]
Abstract
Meiotic recombination is initiated by DNA double-strand breaks (DSBs). Most DSBs are converted into nonreciprocal exchanges (gene conversions) or crossovers (COs) between sister chromatids. Only a minority of DSBs are processed toward interhomolog COs, the precursors of the chiasmata that connect homologous chromosomes. Dmc1, the meiosis-specific paralog of the universal recombination protein Rad51, is required for interhomolog COs; in its absence, univalents are primarily formed. Here, we report a ciliate-specific novel meiotic gene, BIME2, which also promotes interhomolog crossing over. In the bime2Δ mutant, DSBs are formed and repaired normally, but bivalent formation is strongly reduced. Bime2 protein forms foci on chromatin during meiotic prophase, and chromatin localization of Bime2 and Dmc1 is largely interdependent. Bime2 distantly resembles budding yeast Rdh54/Tid1 and the vertebrate Rad54B helicases and may have similar functions in promoting or stabilizing Dmc1 nucleoprotein filaments.
Collapse
|
70
|
Tian M, Yang W, Zhang J, Dang H, Lu X, Fu C, Miao W. Nonsense-mediated mRNA decay in Tetrahymena is EJC independent and requires a protozoa-specific nuclease. Nucleic Acids Res 2017; 45:6848-6863. [PMID: 28402567 PMCID: PMC5499736 DOI: 10.1093/nar/gkx256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 02/03/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is essential for removing premature termination codon-containing transcripts from cells. Studying the NMD pathway in model organisms can help to elucidate the NMD mechanism in humans and improve our understanding of how this biologically important process has evolved. Ciliates are among the earliest branching eukaryotes; their NMD mechanism is poorly understood and may be primordial. We demonstrate that highly conserved Upf proteins (Upf1a, Upf2 and Upf3) are involved in the NMD pathway of the ciliate, Tetrahymena thermophila. We further show that a novel protozoa-specific nuclease, Smg6L, is responsible for destroying many NMD-targeted transcripts. Transcriptome-wide identification and characterization of NMD-targeted transcripts in vegetative Tetrahymena cells showed that many have exon-exon junctions downstream of the termination codon. However, Tetrahymena may lack a functional exon junction complex (EJC), and the Tetrahymena ortholog of an EJC core component, Mago nashi (Mag1), is dispensable for NMD. Therefore, NMD is EJC independent in this early branching eukaryote.
Collapse
Affiliation(s)
- Miao Tian
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna A-1030, Austria
| | - Wentao Yang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huai Dang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Xingyi Lu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengjie Fu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| |
Collapse
|
71
|
Akematsu T, Fukuda Y, Garg J, Fillingham JS, Pearlman RE, Loidl J. Post-meiotic DNA double-strand breaks occur in Tetrahymena, and require Topoisomerase II and Spo11. eLife 2017. [PMID: 28621664 PMCID: PMC5482572 DOI: 10.7554/elife.26176] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Based on observations of markers for DNA lesions, such as phosphorylated histone H2AX (γH2AX) and open DNA ends, it has been suggested that post-meiotic DNA double-strand breaks (PM-DSBs) enable chromatin remodeling during animal spermiogenesis. However, the existence of PM-DSBs is unconfirmed, and the mechanism responsible for their formation is unclear. Here, we report the first direct observation of programmed PM-DSBs via the electrophoretic separation of DSB-generated DNA fragments in the ciliate Tetrahymena thermophila. These PM-DSBs are accompanied by switching from a heterochromatic to euchromatic chromatin structure in the haploid pronucleus. Both a topoisomerase II paralog with exclusive pronuclear expression and Spo11 are prerequisites for PM-DSB induction. Reduced PM-DSB induction blocks euchromatin formation, characterized by histone H3K56 acetylation, leading to a failure in gametic nuclei production. We propose that PM-DSBs are responsible for histone replacement during the reprogramming of generative to undifferentiated progeny nuclei. DOI:http://dx.doi.org/10.7554/eLife.26176.001
Collapse
Affiliation(s)
- Takahiko Akematsu
- Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Yasuhiro Fukuda
- Department of Biodiversity Science, Tohoku University, Oosaki, Japan.,Division of Biological Resource Science, Tohoku University, Oosaki, Japan.,Graduate School of Agricultural Science, Tohoku University, Oosaki, Japan
| | - Jyoti Garg
- Department of Biology, York University, Toronto, Canada
| | | | | | - Josef Loidl
- Department of Chromosome Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
72
|
Tetrahymena as a Unicellular Model Eukaryote: Genetic and Genomic Tools. Genetics 2017; 203:649-65. [PMID: 27270699 DOI: 10.1534/genetics.114.169748] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022] Open
Abstract
Tetrahymena thermophila is a ciliate model organism whose study has led to important discoveries and insights into both conserved and divergent biological processes. In this review, we describe the tools for the use of Tetrahymena as a model eukaryote, including an overview of its life cycle, orientation to its evolutionary roots, and methodological approaches to forward and reverse genetics. Recent genomic tools have expanded Tetrahymena's utility as a genetic model system. With the unique advantages that Tetrahymena provide, we argue that it will continue to be a model organism of choice.
Collapse
|
73
|
Kaur H, Sparvoli D, Osakada H, Iwamoto M, Haraguchi T, Turkewitz AP. An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) in Tetrahymena thermophila. Mol Biol Cell 2017; 28:1551-1564. [PMID: 28381425 PMCID: PMC5449153 DOI: 10.1091/mbc.e17-01-0018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022] Open
Abstract
Lysosome-related organelles (LROs) are secretory organelles formed by convergence between secretory and endosomal trafficking pathways. In Tetrahymena, secretory vesicles that resemble dense core granules are a new class of LROs whose synthesis depends on a conserved syntaxin required for heterotypic fusion and AP-3 for maturation. The ciliate Tetrahymena thermophila synthesizes large secretory vesicles called mucocysts. Mucocyst biosynthesis shares features with dense core granules (DCGs) in animal cells, including proteolytic processing of cargo proteins during maturation. However, other molecular features have suggested relatedness to lysosome-related organelles (LROs). LROs, which include diverse organelles in animals, are formed via convergence of secretory and endocytic trafficking. Here we analyzed Tetrahymena syntaxin 7-like 1 (Stx7l1p), a Qa-SNARE whose homologues in other lineages are linked with vacuoles/LROs. Stx7l1p is targeted to both immature and mature mucocysts and is essential in mucocyst formation. In STX7L1-knockout cells, the two major classes of mucocyst cargo proteins localize independently, accumulating in largely nonoverlapping vesicles. Thus initial formation of immature mucocysts involves heterotypic fusion, in which a subset of mucocyst proteins is delivered via an endolysosomal compartment. Further, we show that subsequent maturation requires AP-3, a complex widely implicated in LRO formation. Knockout of the µ-subunit gene does not impede delivery of any known mucocyst cargo but nonetheless arrests mucocyst maturation. Our data argue that secretory organelles in ciliates may represent a new class of LROs and reveal key roles of an endosomal syntaxin and AP-3 in the assembly of this complex compartment.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Daniela Sparvoli
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Hiroko Osakada
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Masaaki Iwamoto
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
74
|
Shodhan A, Kataoka K, Mochizuki K, Novatchkova M, Loidl J. A Zip3-like protein plays a role in crossover formation in the SC-less meiosis of the protist Tetrahymena. Mol Biol Cell 2017; 28:825-833. [PMID: 28100637 PMCID: PMC5349789 DOI: 10.1091/mbc.e16-09-0678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 11/11/2022] Open
Abstract
When programmed meiotic DNA double-strand breaks (DSBs) undergo recombinational repair, genetic crossovers (COs) may be formed. A certain level of this is required for the faithful segregation of chromosomes, but the majority of DSBs are processed toward a safer alternative, namely noncrossovers (NCOs), via nonreciprocal DNA exchange. At the crossroads between these two DSB fates is the Msh4-Msh5 (MutSγ) complex, which stabilizes CO-destined recombination intermediates and members of the Zip3/RNF212 family of RING finger proteins, which in turn stabilize MutSγ. These proteins function in the context of the synaptonemal complex (SC) and mainly act on SC-dependent COs. Here we show that in the SC-less ciliate Tetrahymena, Zhp3 (a protein distantly related to Zip3/RNF212), together with MutSγ, is responsible for the majority of COs. This activity of Zhp3 suggests an evolutionarily conserved SC-independent strategy for balancing CO:NCO ratios. Moreover, we report a novel meiosis-specific protein, Sa15, as an interacting partner of Zhp3. Sa15 forms linear structures in meiotic prophase nuclei to which Zhp3 localizes. Sa15 is required for a wild-type level of CO formation. Its linear organization suggests the existence of an underlying chromosomal axis that serves as a scaffold for Zhp3 and other recombination proteins.
Collapse
Affiliation(s)
- Anura Shodhan
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Kensuke Kataoka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences and
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences and
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences and
- Research Institute of Molecular Pathology, 1030 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
75
|
Arthur LL, Chung JJ, Jankirama P, Keefer KM, Kolotilin I, Pavlovic-Djuranovic S, Chalker DL, Grbic V, Green R, Menassa R, True HL, Skeath JB, Djuranovic S. Rapid generation of hypomorphic mutations. Nat Commun 2017; 8:14112. [PMID: 28106166 PMCID: PMC5263891 DOI: 10.1038/ncomms14112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/30/2016] [Indexed: 01/05/2023] Open
Abstract
Hypomorphic mutations are a valuable tool for both genetic analysis of gene function and for synthetic biology applications. However, current methods to generate hypomorphic mutations are limited to a specific organism, change gene expression unpredictably, or depend on changes in spatial-temporal expression of the targeted gene. Here we present a simple and predictable method to generate hypomorphic mutations in model organisms by targeting translation elongation. Adding consecutive adenosine nucleotides, so-called polyA tracks, to the gene coding sequence of interest will decrease translation elongation efficiency, and in all tested cell cultures and model organisms, this decreases mRNA stability and protein expression. We show that protein expression is adjustable independent of promoter strength and can be further modulated by changing sequence features of the polyA tracks. These characteristics make this method highly predictable and tractable for generation of programmable allelic series with a range of expression levels.
Collapse
Affiliation(s)
- Laura L. Arthur
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Joyce J. Chung
- Department of Biology, Washington University, St Louis, Missouri 63105, USA
| | - Preetam Jankirama
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A5B7
- Science and Technology Branch, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, Canada N5V4T3
| | - Kathryn M. Keefer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Igor Kolotilin
- Scattered Gold Biotechnology Inc. 14 Denali Terrace, London, Ontario, Canada N5X 3W2
| | - Slavica Pavlovic-Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Douglas L. Chalker
- Department of Biology, Washington University, St Louis, Missouri 63105, USA
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A5B7
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | - Rima Menassa
- Science and Technology Branch, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, Canada N5V4T3
| | - Heather L. True
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
- The Hope Center for Neurological Diseases, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - James B. Skeath
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| |
Collapse
|
76
|
McDaniel SL, Zweifel E, Harris PKW, Yao MC, Cole ES, Chalker DL. DRH1, a p68-related RNA helicase gene, is required for chromosome breakage in Tetrahymena. Biol Open 2016; 5:1790-1798. [PMID: 27793833 PMCID: PMC5200911 DOI: 10.1242/bio.021576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The p68 DEAD box helicases comprise a widely conserved protein family involved in a large range of biological processes including transcription, splicing and translation. The genome of the ciliate Tetrahymena thermophile encodes two p68-like helicases, Drh1p and Lia2p. We show that DRH1 is essential for growth and completion of development. In growing cells, Drh1p is excluded from the nucleus and accumulates near cortical basal bodies. In contrast, during sexual reproduction, this protein localizes to meiotic micronuclei, initially in punctate foci in regions where centromeres and telomeres are known to reside and later in post-zygotic differentiating somatic macronuclei. Differentiation of the macronuclear genome involves extensive DNA rearrangements including fragmentation of the five pairs of germline-derived chromosomes into 180 chromosomal sub-fragments that are stabilized by de novo telomere deletion. In addition, thousands of internal eliminated sequences (IESs) are excised from loci dispersed throughout the genome. Strains with DRH1 deleted from the germline nuclei, which do not express the protein during post-zygotic development, fail to fragment the developing macronuclear chromosomes. IES excision still occurs in the absence of DRH1 zygotic expression; thus, Drh1p is the first protein found to be specifically required for chromosome breakage but not DNA elimination. Summary: The p68-related Drh1protein is essential for both growth and development of the ciliate Tetrahymena thermophila. It localizes to meiotic nuclei and is required for chromosome breakage of developing somatic chromosomes.
Collapse
Affiliation(s)
- Stephen L McDaniel
- Department of Biology, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Erica Zweifel
- Biology Department, St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Peter K W Harris
- Department of Biology, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Eric S Cole
- Biology Department, St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Douglas L Chalker
- Department of Biology, Washington University in St. Louis, St Louis, MO 63130, USA
| |
Collapse
|
77
|
Zhang J, Tian M, Yan GX, Shodhan A, Miao W. E2fl1 is a meiosis-specific transcription factor in the protist Tetrahymena thermophila. Cell Cycle 2016; 16:123-135. [PMID: 27892792 DOI: 10.1080/15384101.2016.1259779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Members of the E2F family of transcription factors have been reported to regulate the expression of genes involved in cell cycle control, DNA replication, and DNA repair in multicellular eukaryotes. Here, E2FL1, a meiosis-specific E2F transcription factor gene, was identified in the model ciliate Tetrahymena thermophila. Loss of this gene resulted in meiotic arrest prior to anaphase I. The cytological experiments revealed that the meiotic homologous pairing was not affected in the absence of E2FL1, but the paired homologous chromosomes did not separate and assumed a peculiar tandem arrangement. This is the first time that an E2F family member has been shown to regulate meiotic events. Moreover, BrdU incorporation showed that DSB processing during meiosis was abnormal upon the deletion of E2FL1. Transcriptome sequencing analysis revealed that E2FL1 knockout decreased the expression of genes involved in DNA replication and DNA repair in T. thermophila, suggesting that the function of E2F is highly conserved in eukaryotes. In addition, E2FL1 deletion inhibited the expression of related homologous chromosome segregation genes in T. thermophila. The result may explain the meiotic arrest phenotype at anaphase I. Finally, by searching for E2F DNA-binding motifs in the entire T. thermophila genome, we identified 714 genes containing at least one E2F DNA-binding motif; of these, 235 downregulated represent putative E2FL1 target genes.
Collapse
Affiliation(s)
- Jing Zhang
- a Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Miao Tian
- a Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China.,c Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna , Vienna , Austria
| | - Guan-Xiong Yan
- a Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Anura Shodhan
- c Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna , Vienna , Austria
| | - Wei Miao
- a Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China
| |
Collapse
|
78
|
Abstract
AIM AND OBJECTIVES Exocrine pancreatic insufficiency caused by inflammation or pancreatic tumors results in nutrient malfunction by a lack of digestive enzymes and neutralization compounds. Despite satisfactory clinical results with current enzyme therapies, a normalization of fat absorption in patients is rare. An individualized therapy is required that includes high dosage of enzymatic units, usage of enteric coating, and addition of gastric proton pump inhibitors. The key goal to improve this therapy is to identify digestive enzymes with high activity and stability in the gastrointestinal tract. METHODS We cloned and analyzed three novel ciliate lipases derived from Tetrahymena thermophila. Using highly precise pH-STAT-titration and colorimetric methods, we determined stability and lipolytic activity under physiological conditions in comparison with commercially available porcine and fungal digestive enzyme preparations. We measured from pH 2.0 to 9.0, with different bile salts concentrations, and substrates such as olive oil and fat derived from pig diet. RESULTS Ciliate lipases CL-120, CL-130, and CL-230 showed activities up to 220-fold higher than Creon, pancreatin standard, and rizolipase Nortase within a pH range from pH 2.0 to 9.0. They are highly active in the presence of bile salts and complex pig diet substrate, and more stable after incubation in human gastric juice compared with porcine pancreatic lipase and rizolipase. CONCLUSIONS The newly cloned and characterized lipases fulfilled all requirements for high activity under physiological conditions. These novel enzymes are therefore promising candidates for an improved enzyme replacement therapy for exocrine pancreatic insufficiency.
Collapse
|
79
|
Zhao X, Wang Y, Wang Y, Liu Y, Gao S. Histone methyltransferase TXR1 is required for both H3 and H3.3 lysine 27 methylation in the well-known ciliated protist Tetrahymena thermophila. SCIENCE CHINA-LIFE SCIENCES 2016; 60:264-270. [PMID: 27761696 DOI: 10.1007/s11427-016-0183-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/16/2016] [Indexed: 10/20/2022]
Abstract
DNA replication elongation is tightly controlled by histone-modifying enzymes. Our previous studies showed that the histone methytransferase TXR1 (Tetrahymena Trithorax related protein 1) specifically catalyzes H3K27 monomethylation and affects DNA replication elongation in Tetrahymena thermophila. In this study, we investigated whether TXR1 has a substrate preference to the canonical H3 over the replacement variant H3.3. We demonstrated by histone mutagenesis that K27Q mutation in H3.3 further aggravated the replication stress phenotype of K27Q mutation in canonical H3, supporting H3.3 as a physiologically relevant substrate of TXR1. This result is in apparent contrast to the strong preference for canonical H3 recently reported in Arabidopsis homologues ATXR5 and ATXR6, and further corroborates the role of TXR1 in DNA replication.
Collapse
Affiliation(s)
- Xiaolu Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yuanyuan Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yurui Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shan Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
80
|
Calow J, Behrens AJ, Mader S, Bockau U, Struwe WB, Harvey DJ, Cormann KU, Nowaczyk MM, Loser K, Schinor D, Hartmann MWW, Crispin M. Antibody production using a ciliate generates unusual antibody glycoforms displaying enhanced cell-killing activity. MAbs 2016; 8:1498-1511. [PMID: 27594301 PMCID: PMC5098438 DOI: 10.1080/19420862.2016.1228504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antibody glycosylation is a key parameter in the optimization of antibody therapeutics. Here, we describe the production of the anti-cancer monoclonal antibody rituximab in the unicellular ciliate, Tetrahymena thermophila. The resulting antibody demonstrated enhanced antibody-dependent cell-mediated cytotoxicity, which we attribute to unusual N-linked glycosylation. Detailed chromatographic and mass spectrometric analysis revealed afucosylated, oligomannose-type glycans, which, as a whole, displayed isomeric structures that deviate from the typical human counterparts, but whose branches were equivalent to fragments of metabolic intermediates observed in human glycoproteins. From the analysis of deposited crystal structures, we predict that the ciliate glycans adopt protein-carbohydrate interactions with the Fc domain that closely mimic those of native complex-type glycans. In addition, terminal glucose structures were identified that match biosynthetic precursors of human glycosylation. Our results suggest that ciliate-based expression systems offer a route to large-scale production of monoclonal antibodies exhibiting glycosylation that imparts enhanced cell killing activity.
Collapse
Affiliation(s)
| | - Anna-Janina Behrens
- b Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford , UK
| | | | | | - Weston B Struwe
- b Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford , UK
| | - David J Harvey
- b Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford , UK
| | - Kai U Cormann
- c Plant Biochemistry, Ruhr University Bochum , Bochum , Germany
| | - Marc M Nowaczyk
- c Plant Biochemistry, Ruhr University Bochum , Bochum , Germany
| | - Karin Loser
- d Department of Dermatology , University of Münster , Münster , Germany
| | - Daniel Schinor
- e Wessling GmbH, Pharmaanalytik Münster , Münster , Germany
| | | | - Max Crispin
- b Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford , UK
| |
Collapse
|
81
|
Chen X, Gao S, Liu Y, Wang Y, Wang Y, Song W. Enzymatic and chemical mapping of nucleosome distribution in purified micro- and macronuclei of the ciliated model organism, Tetrahymena thermophila. SCIENCE CHINA-LIFE SCIENCES 2016; 59:909-19. [DOI: 10.1007/s11427-016-5102-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 06/12/2016] [Indexed: 02/01/2023]
|
82
|
Gotesman M, Williams SA. Using a Handheld Gene Gun for Genetic Transformation of Tetrahymena thermophila. Methods Mol Biol 2016; 1365:373-383. [PMID: 26498798 DOI: 10.1007/978-1-4939-3124-8_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This chapter describes protocols for using a handheld gene gun to deliver transformation vectors for overexpression of genes or gene replacement in the macronucleus of Tetrahymena thermophila. The protocols provide helpful information for preparing Tetrahymena for biolistic bombardment, preparation of vector-coated microcarriers, and basic gene gun operating procedures.
Collapse
Affiliation(s)
- Michael Gotesman
- Department of Biology, Technion - Israel Institute of Technology, Technion, Haifa, 3200003, Israel.
| | | |
Collapse
|
83
|
Depletion of UBC9 Causes Nuclear Defects during the Vegetative and Sexual Life Cycles in Tetrahymena thermophila. EUKARYOTIC CELL 2015; 14:1240-52. [PMID: 26453653 DOI: 10.1128/ec.00115-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/03/2015] [Indexed: 11/20/2022]
Abstract
Ubc9p is the sole E2-conjugating enzyme for SUMOylation, and its proper function is required for regulating key nuclear events such as transcription, DNA repair, and mitosis. In Tetrahymena thermophila, the genome is separated into a diploid germ line micronucleus (MIC) that divides by mitosis and a polyploid somatic macronucleus (MAC) that divides amitotically. This unusual nuclear organization provides novel opportunities for the study of SUMOylation and Ubc9p function. We identified the UBC9 gene and demonstrated that its complete deletion from both MIC and MAC genomes is lethal. Rescue of the lethal phenotype with a GFP-UBC9 fusion gene driven by a metallothionein promoter generated a cell line with CdCl2-dependent expression of green fluorescent protein (GFP)-Ubc9p. Depletion of Ubc9p in vegetative cells resulted in the loss of MICs, but MACs continued to divide. In contrast, expression of catalytically inactive Ubc9p resulted in the accumulation of multiple MICs. Critical roles for Ubc9p were also identified during the sexual life cycle of Tetrahymena. Cell lines that were depleted for Ubc9p did not form mating pairs and therefore could not complete any of the subsequent stages of conjugation, including meiosis and macronuclear development. Mating between cells expressing catalytically inactive Ubc9p resulted in arrest during macronuclear development, consistent with our observation that Ubc9p accumulates in the developing macronucleus.
Collapse
|
84
|
Lukaszewicz A, Shodhan A, Loidl J. Exo1 and Mre11 execute meiotic DSB end resection in the protist Tetrahymena. DNA Repair (Amst) 2015; 35:137-43. [PMID: 26519827 DOI: 10.1016/j.dnarep.2015.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 01/09/2023]
Abstract
The resection of 5'-DNA ends at a double-strand break (DSB) is an essential step in recombinational repair, as it exposes 3' single-stranded DNA (ssDNA) tails for interaction with a repair template. In mitosis, Exo1 and Sgs1 have a conserved function in the formation of long ssDNA tails, whereas this step in the processing of programmed meiotic DSBs is less well-characterized across model organisms. In budding yeast, which has been most intensely studied in this respect, Exo1 is a major meiotic nuclease. In addition, it exerts a nuclease-independent function later in meiosis in the conversion of DNA joint molecules into ZMM-dependent crossovers. In order to gain insight into the diverse meiotic roles of Exo1, we investigated the effect of Exo1 deletion in the ciliated protist Tetrahymena. We found that Exo1 together with Mre11, but without the help of Sgs1, promotes meiotic DSB end resection. Resection is completely eliminated only if both Mre11 and Exo1 are missing. This is consistent with the yeast model where Mre11 promotes resection in the 3'-5' direction and Exo1 in the opposite 5'-3' direction. However, while the endonuclease activity of Mre11 is essential to create an entry site for exonucleases and hence to start resection in budding yeast, Tetrahymena Exo1 is able to create single-stranded DNA in the absence of Mre11. Excluding a possible contribution of the Mre11 cofactor Sae2 (Com1) as an autonomous endonuclease, we conclude that there exists another unknown nuclease that initiates DSB processing in Tetrahymena. Consistent with the absence of the ZMM crossover pathway in Tetrahymena, crossover formation is independent of Exo1.
Collapse
Affiliation(s)
- Agnieszka Lukaszewicz
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Anura Shodhan
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
85
|
Abstract
Tetrahymena is a useful eukaryotic model for biochemistry and molecular cell biology studies. We previously demonstrated that targeted ectopic DNA elimination, also called co-Deletion (coDel), can be induced by the introduction of an internal eliminated sequence (IES)-target DNA chimeric construct. In this study, we demonstrate that coDel occurs at most of the loci tested and can be used for the production of somatic gene KO strains. We also showed that coDel at two loci can be simultaneously induced by a single transformation; thus, coDel can be used to disrupt multiple gene loci in a single cell. Therefore, coDel is a useful tool for functional genetics in Tetrahymena and further extends the usefulness of this model organism.
Collapse
|
86
|
Secretion of Polypeptide Crystals from Tetrahymena thermophila Secretory Organelles (Mucocysts) Depends on Processing by a Cysteine Cathepsin, Cth4p. EUKARYOTIC CELL 2015; 14:817-33. [PMID: 26092918 DOI: 10.1128/ec.00058-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/10/2015] [Indexed: 01/26/2023]
Abstract
In many organisms, sophisticated mechanisms facilitate release of peptides in response to extracellular stimuli. In the ciliate Tetrahymena thermophila, efficient peptide secretion depends on specialized vesicles called mucocysts that contain dense crystalline cores that expand rapidly during exocytosis. Core assembly depends of endoproteolytic cleavage of mucocyst proproteins by an aspartyl protease, cathepsin 3 (CTH3). Here, we show that a second enzyme identified by expression profiling, Cth4p, is also required for processing of proGrl proteins and for assembly of functional mucocysts. Cth4p is a cysteine cathepsin that localizes partially to endolysosomal structures and appears to act downstream of, and may be activated by, Cth3p. Disruption of CTH4 results in cells (Δcth4) that show aberrant trimming of Grl proproteins, as well as grossly aberrant mucocyst exocytosis. Surprisingly, Δcth4 cells succeed in assembling crystalline mucocyst cores. However, those cores do not undergo normal directional expansion during exocytosis, and they thus fail to efficiently extrude from the cells. We could phenocopy the Δcth4 defects by mutating conserved catalytic residues, indicating that the in vivo function of Cth4p is enzymatic. Our results indicate that as for canonical proteins packaged in animal secretory granules, the maturation of mucocyst proproteins involves sequential processing steps. The Δcth4 defects uncouple, in an unanticipated way, the assembly of mucocyst cores and their subsequent expansion and thereby reveal a previously unsuspected aspect of polypeptide secretion in ciliates.
Collapse
|
87
|
Chromodomain protein Tcd1 is required for macronuclear genome rearrangement and repair in Tetrahymena. Sci Rep 2015; 5:10243. [PMID: 25989344 PMCID: PMC4437310 DOI: 10.1038/srep10243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/07/2015] [Indexed: 11/25/2022] Open
Abstract
The survival of an organism’s progeny depends on the maintenance of its genome. Programmed DNA rearrangement and repair in Tetrahymena occur during the differentiation of the developing somatic macronuclear genome from the germ line micronuclear genome. Tetrahymena chromodomain protein (Tcd1) exhibited dynamic localization from the parental to the developing macronuclei. In the developing macronuclei, Tcd1 colocalized with Pdd1 and H3K9me3. Furthermore, Tcd1 colocalized with Pdd1 in the conjusome and “donut structure” of DNA elimination heterochromatin region. During the growth and conjugation stages, TCD1 knockout cells appeared normal and similar to wild-type strains. In addition, these knockout cells proceeded to the 2MAC-1MIC stage. However, the progeny of the TCD1 knockout cells did not grow upon return to SPP medium and eventually died. The deletion of the internal elimination sequence R element was partially disrupted in the developing new macronuclei. Gamma H2A staining showed that Tcd1 loss induced the accumulation of DNA double-strand breaks and the failure of genome repair. These results suggest that the chromodomain protein Tcd1 is required for the rearrangement and repair of new macronuclear genome in Tetrahymena.
Collapse
|
88
|
Habicht J, Woehle C, Gould SB. Tetrahymena Expresses More than a Hundred Proteins with Lipid-binding MORN Motifs that can Differ in their Subcellular Localisations. J Eukaryot Microbiol 2015; 62:694-700. [PMID: 25847055 DOI: 10.1111/jeu.12216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/20/2015] [Indexed: 12/11/2022]
Abstract
Proteins with membrane occupation and recognition nexus (MORN) motifs are associated with cell fission in apicomplexan parasites, chloroplast division in Arabidopsis and the motility of sperm cells. We found that ciliates are among those that encode the largest variety of MORN proteins. Tetrahymena thermophila expresses 129 MORN protein-encoding genes, some of which are specifically up-regulated during conjugation. A lipid-binding assay underpins the assumption that the predominant function of MORN motifs themselves is to confer the ability of lipid binding. The localisation of four MORN candidate proteins with similar characteristics highlights the functional diversity of this group especially in ciliates.
Collapse
Affiliation(s)
- Jörn Habicht
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Christian Woehle
- Institute for Microbiology, Christian-Albrecht-University, 24118, Kiel, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| |
Collapse
|
89
|
Urbanska P, Song K, Joachimiak E, Krzemien-Ojak L, Koprowski P, Hennessey T, Jerka-Dziadosz M, Fabczak H, Gaertig J, Nicastro D, Wloga D. The CSC proteins FAP61 and FAP251 build the basal substructures of radial spoke 3 in cilia. Mol Biol Cell 2015; 26:1463-75. [PMID: 25694453 PMCID: PMC4395127 DOI: 10.1091/mbc.e14-11-1545] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/09/2015] [Indexed: 11/25/2022] Open
Abstract
Motile cilia have nine doublet microtubules, with hundreds of associated proteins that repeat in modules. Each module contains three radial spokes, which differ in their architecture, protein composition, and function. The conserved proteins FAP61 and FAP251 are crucial for the assembly and stable docking of RS3 and cilia motility. Dynein motors and regulatory complexes repeat every 96 nm along the length of motile cilia. Each repeat contains three radial spokes, RS1, RS2, and RS3, which transduct signals between the central microtubules and dynein arms. Each radial spoke has a distinct structure, but little is known about the mechanisms of assembly and function of the individual radial spokes. In Chlamydomonas, calmodulin and spoke-associated complex (CSC) is composed of FAP61, FAP91, and FAP251 and has been linked to the base of RS2 and RS3. We show that in Tetrahymena, loss of either FAP61 or FAP251 reduces cell swimming and affects the ciliary waveform and that RS3 is either missing or incomplete, whereas RS1 and RS2 are unaffected. Specifically, FAP251-null cilia lack an arch-like density at the RS3 base, whereas FAP61-null cilia lack an adjacent portion of the RS3 stem region. This suggests that the CSC proteins are crucial for stable and functional assembly of RS3 and that RS3 and the CSC are important for ciliary motility.
Collapse
Affiliation(s)
- Paulina Urbanska
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Kangkang Song
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Ewa Joachimiak
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Lucja Krzemien-Ojak
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Piotr Koprowski
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Todd Hennessey
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Maria Jerka-Dziadosz
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Hanna Fabczak
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Daniela Nicastro
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Dorota Wloga
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| |
Collapse
|
90
|
Fukuda Y, Akematsu T, Attiq R, Tada C, Nakai Y, Pearlman RE. Role of the Cytosolic Heat Shock Protein 70 Ssa5 in the Ciliate Protozoan Tetrahymena thermophila. J Eukaryot Microbiol 2015; 62:481-93. [DOI: 10.1111/jeu.12203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Yasuhiro Fukuda
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University; Osaki Japan
| | | | - Rizwan Attiq
- Department of Biology; York University; Toronto Ontario Canada
| | - Chika Tada
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University; Osaki Japan
| | - Yutaka Nakai
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University; Osaki Japan
| | | |
Collapse
|
91
|
Vasudevan KK, Song K, Alford LM, Sale WS, Dymek EE, Smith EF, Hennessey T, Joachimiak E, Urbanska P, Wloga D, Dentler W, Nicastro D, Gaertig J. FAP206 is a microtubule-docking adapter for ciliary radial spoke 2 and dynein c. Mol Biol Cell 2014; 26:696-710. [PMID: 25540426 PMCID: PMC4325840 DOI: 10.1091/mbc.e14-11-1506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Radial spokes are conserved macromolecular complexes that are essential for ciliary motility. Little is known about the assembly and functions of the three individual radial spokes, RS1, RS2, and RS3. In Tetrahymena, a conserved ciliary protein, FAP206, docks RS2 and dynein c to the doublet microtubule. Radial spokes are conserved macromolecular complexes that are essential for ciliary motility. A triplet of three radial spokes, RS1, RS2, and RS3, repeats every 96 nm along the doublet microtubules. Each spoke has a distinct base that docks to the doublet and is linked to different inner dynein arms. Little is known about the assembly and functions of individual radial spokes. A knockout of the conserved ciliary protein FAP206 in the ciliate Tetrahymena resulted in slow cell motility. Cryo–electron tomography showed that in the absence of FAP206, the 96-nm repeats lacked RS2 and dynein c. Occasionally, RS2 assembled but lacked both the front prong of its microtubule base and dynein c, whose tail is attached to the front prong. Overexpressed GFP-FAP206 decorated nonciliary microtubules in vivo. Thus FAP206 is likely part of the front prong and docks RS2 and dynein c to the microtubule.
Collapse
Affiliation(s)
| | - Kangkang Song
- Department of Biology, Rosenstiel Center, Brandeis University, Waltham, MA 02454
| | - Lea M Alford
- Department of Cell Biology, Emory University, Atlanta, GA 30303
| | - Winfield S Sale
- Department of Cell Biology, Emory University, Atlanta, GA 30303
| | - Erin E Dymek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Elizabeth F Smith
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Todd Hennessey
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260
| | - Ewa Joachimiak
- Department of Cell Biology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Paulina Urbanska
- Department of Cell Biology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Dorota Wloga
- Department of Cell Biology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - William Dentler
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Daniela Nicastro
- Department of Biology, Rosenstiel Center, Brandeis University, Waltham, MA 02454
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
92
|
LIA4 encodes a chromoshadow domain protein required for genomewide DNA rearrangements in Tetrahymena thermophila. EUKARYOTIC CELL 2014; 13:1300-11. [PMID: 25084866 DOI: 10.1128/ec.00125-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extensive DNA elimination occurs as part of macronuclear differentiation during Tetrahymena sexual reproduction. The identification of sequences to excise is guided by a specialized RNA interference (RNAi) machinery that targets the methylation of histone H3 lysine 9 (K9) and K27 on chromatin associated with these internal eliminated sequences (IESs). This modified chromatin is reorganized into heterochromatic subnuclear foci, which is a hallmark of their subsequent elimination. Here, we demonstrate that Lia4, a chromoshadow domain-containing protein, is an essential component in this DNA elimination pathway. LIA4 knockout (ΔLIA4) lines fail to excise IESs from their developing somatic genome and arrest at a late stage of conjugation. Lia4 acts after RNAi-guided heterochromatin formation, as both H3K9 and H3K27 methylation are established. Nevertheless, without LIA4, these cells fail to form the heterochromatic foci associated with DNA rearrangement, and Lia4 accumulates in the foci, indicating that Lia4 plays a key role in their structure. These data indicate a critical role for Lia4 in organizing the nucleus during Tetrahymena macronuclear differentiation.
Collapse
|
93
|
Kumar S, Briguglio JS, Turkewitz AP. An aspartyl cathepsin, CTH3, is essential for proprotein processing during secretory granule maturation in Tetrahymena thermophila. Mol Biol Cell 2014; 25:2444-60. [PMID: 24943840 PMCID: PMC4142616 DOI: 10.1091/mbc.e14-03-0833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In animal cells, the assembly of dense cores in secretory granules is controlled by proteolytic processing of proproteins. The same phenomenon occurs in the ciliate Tetrahymena thermophila, but the proteases involved appear to be highly unrelated, suggesting that similar regulatory mechanisms have different molecular origins. In Tetrahymena thermophila, peptides secreted via dense-core granules, called mucocysts, are generated by proprotein processing. We used expression profiling to identify candidate processing enzymes, which localized as cyan fluorescent protein fusions to mucocysts. Of note, the aspartyl cathepsin Cth3p plays a key role in mucocyst-based secretion, since knockdown of this gene blocked proteolytic maturation of the entire set of mucocyst proproteins and dramatically reduced mucocyst accumulation. The activity of Cth3p was eliminated by mutation of two predicted active-site mutations, and overexpression of the wild-type gene, but not the catalytic-site mutant, partially rescued a Mendelian mutant defective in mucocyst proprotein processing. Our results provide the first direct evidence for the role of proprotein processing in this system. Of interest, both localization and the CTH3 disruption phenotype suggest that the enzyme provides non–mucocyst-related functions. Phylogenetic analysis of the T. thermophila cathepsins, combined with prior work on the role of sortilin receptors in mucocyst biogenesis, suggests that repurposing of lysosomal enzymes was an important step in the evolution of secretory granules in ciliates.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Joseph S Briguglio
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
94
|
Cowan GJM, Bockau U, Eleni-Muus J, Aldag I, Samuel K, Creasey AM, Hartmann MWW, Cavanagh DR. A novel malaria vaccine candidate antigen expressed in Tetrahymena thermophila. PLoS One 2014; 9:e87198. [PMID: 24489871 PMCID: PMC3906136 DOI: 10.1371/journal.pone.0087198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 12/20/2013] [Indexed: 01/15/2023] Open
Abstract
Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens.
Collapse
Affiliation(s)
- Graeme J. M. Cowan
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - Kay Samuel
- Cell Therapy Group, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Alison M. Creasey
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | | | - David R. Cavanagh
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
95
|
Zhang C, Gao S, Molascon AJ, Liu Y, Andrews PC. Quantitative proteomics reveals histone modifications in crosstalk with H3 lysine 27 methylation. Mol Cell Proteomics 2014; 13:749-59. [PMID: 24382802 DOI: 10.1074/mcp.m113.029025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Methylation at histone H3 lysine 27 (H3K27me) is an evolutionarily conserved epigenetic mark associated with transcriptional repression and replication elongation. We have previously shown that in Tetrahymena thermophila, a unicellular eukaryote, the histone methyltransferases (HMTs) TXR1 and EZL2 are primarily responsible for H3K27 mono-methylation (H3K27me1) and di-/tri-methylation (H3K27me2/3), respectively. Using (15)N metabolically labeled histones as the internal reference, we quantified global changes in histone post-translational modifications in ΔTXR1 and ΔEZL2 cells, to systematically identify potential crosstalk between H3K27 methylation and other PTMs across all four core histones as well as their variants. Most prominently, we observed hyper-acetylation of histones H2A, H2A.Z, and H4 in their N-terminal domains in response to decreased H3K27 methylation. We also provide additional evidence implicating hyper-acetylation in the DNA damage response pathway in replication-defective ΔTXR1 cells, in apparent contrast to the transcriptional role of hyper-acetylation in ΔEZL2 cells.
Collapse
|
96
|
Mutations in Pdd1 reveal distinct requirements for its chromodomain and chromoshadow domain in directing histone methylation and heterochromatin elimination. EUKARYOTIC CELL 2013; 13:190-201. [PMID: 24297443 DOI: 10.1128/ec.00219-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pdd1, a specialized HP1-like protein, is required for genome-wide DNA rearrangements that restructure a previously silent germ line genome into an active somatic genome during macronuclear differentiation of Tetrahymena thermophila. We deleted or otherwise mutated conserved regions of the protein to investigate how its different domains promote the excision of thousands of internal eliminated sequences (IESs). Previous studies revealed that Pdd1 contributes to recognition of IES loci after they are targeted by small-RNA-guided methylation of histone H3 on lysine 27 (H3K27), subsequently aids the establishment of H3K9 methylation, and recruits proteins that lead to excision. The phenotypes we observed for different Pdd1 alleles showed that each of the two chromodomains and the chromoshadow domain (CSD) have distinct contributions during somatic genome differentiation. Chromodomain 1 (CD1) is essential for conjugation as either its deletion or the substitution of two key aromatic amino acid residues (the W97A W100A mutant) is lethal. These mutations caused mislocalization of a cyan fluorescent protein (CFP)-tagged protein, prevented the establishment of histone H3 dimethylated on K9 (H3K9me2), and abolished IES excision. Nevertheless, the requirement for CD1 could be bypassed by recruiting Pdd1 directly to an IES by addition of a specific DNA binding domain. Chromodomain 2 (CD2) was necessary for producing viable progeny, but low levels of H3K9me2 and IES excision still occurred. A mutation in the chromoshadow domain (CSD) prevented Pdd1 focus formation but still permitted ∼17% of conjugants to produce viable progeny. However, this mutant was unable to stimulate excision when recruited to an ectopic IES, indicating that this domain is important for recruitment of excision factors.
Collapse
|
97
|
Briguglio JS, Kumar S, Turkewitz AP. Lysosomal sorting receptors are essential for secretory granule biogenesis in Tetrahymena. ACTA ACUST UNITED AC 2013; 203:537-50. [PMID: 24189272 PMCID: PMC3824020 DOI: 10.1083/jcb.201305086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The delivery of nonaggregated cargo proteins to Tetrahymena secretory granules requires receptors of the sortilin/VPS10 family, proteins classically associated with lysosome biogenesis. Secretory granules, such as neuronal dense core vesicles, are specialized for storing cargo at high concentration and releasing it via regulated exocytosis in response to extracellular stimuli. Here, we used expression profiling to identify new components of the machinery for sorting proteins into mucocysts, secretory granule-like vesicles in the ciliate Tetrahymena thermophila. We show that assembly of mucocysts depends on proteins classically associated with lysosome biogenesis. In particular, the delivery of nonaggregated, but not aggregated, cargo proteins requires classical receptors of the sortilin/VPS10 family, which indicates that dual mechanisms are involved in sorting to this secretory compartment. In addition, sortilins are required for delivery of a key protease involved in T. thermophila mucocyst maturation. Our results suggest potential similarities in the formation of regulated secretory organelles between even very distantly related eukaryotes.
Collapse
Affiliation(s)
- Joseph S Briguglio
- Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | | | | |
Collapse
|
98
|
Garg J, Lambert JP, Karsou A, Marquez S, Nabeel-Shah S, Bertucci V, Retnasothie DV, Radovani E, Pawson T, Gingras AC, Pearlman RE, Fillingham JS. Conserved Asf1-importin β physical interaction in growth and sexual development in the ciliate Tetrahymena thermophila. J Proteomics 2013; 94:311-26. [PMID: 24120531 DOI: 10.1016/j.jprot.2013.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/07/2013] [Accepted: 09/23/2013] [Indexed: 01/14/2023]
Abstract
UNLABELLED How the eukaryotic cell specifies distinct chromatin domains is a central problem in molecular biology. The ciliate protozoan Tetrahymena thermophila features a separation of structurally and functionally distinct germ-line and somatic chromatin into two distinct nuclei, the micronucleus (MIC) and macronucleus (MAC) respectively. To address questions about how distinct chromatin states are assembled in the MAC and MIC, we have initiated studies to define protein-protein interactions for T. thermophila chromatin-related proteins. Affinity purification followed by mass spectrometry analysis of the conserved Asf1 histone chaperone in T. thermophila revealed that it forms a complex with an importin β, ImpB6. Furthermore, these proteins co-localized to both the MAC and MIC in growth and development. We suggest that newly synthesized histones H3 and H4 in T. thermophila are transported via Asf1-ImpB6 in an evolutionarily conserved pathway to both nuclei where they then enter nucleus-specific chromatin assembly pathways. These studies set the stage for further use of functional proteomics to elucidate details of the characterization and functional analysis of the unique chromatin domains in T. thermophila. BIOLOGICAL SIGNIFICANCE Asf1 is an evolutionarily conserved chaperone of H3 and H4 histones that functions in replication dependent and independent chromatin assembly. Although Asf1 has been well studied in humans and yeast (members of the Opisthokonta lineage of eukaryotes), questions remain concerning its mechanism of function. To obtain additional insight into the Asf1 function we have initiated a proteomic analysis in the ciliate protozoan T. thermophila, a member of the Alveolata lineage of eukaryotes. Our results suggest that an evolutionarily conserved function of Asf1 is mediating the nuclear transport of newly synthesized histones H3 and H4.
Collapse
Affiliation(s)
- Jyoti Garg
- Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Shieh AWY, Chalker DL. LIA5 is required for nuclear reorganization and programmed DNA rearrangements occurring during tetrahymena macronuclear differentiation. PLoS One 2013; 8:e75337. [PMID: 24069402 PMCID: PMC3775806 DOI: 10.1371/journal.pone.0075337] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/13/2013] [Indexed: 01/24/2023] Open
Abstract
During macronuclear differentiation of the ciliate Tetrahymena thermophila, genome-wide DNA rearrangements eliminate nearly 50 Mbp of germline derived DNA, creating a streamlined somatic genome. The transposon-like and other repetitive sequences to be eliminated are identified using a piRNA pathway and packaged as heterochromatin prior to their removal. In this study, we show that LIA5, which encodes a zinc-finger protein likely of transposon origin, is required for both chromosome fragmentation and DNA elimination events. Lia5p acts after the establishment of RNAi-directed heterochromatin modifications, but prior to the excision of the modified sequences. In ∆LIA5 cells, DNA elimination foci, large nuclear sub-structures containing the sequences to be eliminated and the essential chromodomain protein Pdd1p, do not form. Lia5p, unlike Pdd1p, is not stably associated with these structures, but is required for their formation. In the absence of Lia5p, we could recover foci formation by ectopically inducing DNA damage by UV treatment. Foci in both wild-type or UV-treated ∆LIA5 cells contain dephosphorylated Pdd1p. These studies of LIA5 reveal that DNA elimination foci form after the excision of germ-line limited sequences occurs and indicate that Pdd1p reorganization is likely mediated through a DNA damage response.
Collapse
Affiliation(s)
- Annie Wan Yi Shieh
- Biology Department, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Douglas L. Chalker
- Biology Department, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
100
|
Freire SLS, Tanner B. Additive-free digital microfluidics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:9024-30. [PMID: 23758672 DOI: 10.1021/la401616j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Digital microfluidics, a technique for manipulation of droplets, is becoming increasingly important for the development of miniaturized platforms for laboratory processes. Despite the enthusiasm, droplet motion is frequently hindered by the desorption of proteins or other analytes to surfaces. Current approaches to minimize this unwanted surface fouling involve the addition of extra species to the droplet or its surroundings, which might be problematic depending on the droplet content. Here, a new strategy is introduced to move droplets containing cells and other analytes on solid substrates, without extra moieties; in particular, droplets with bovine serum albumin could be moved at a concentration 2000 times higher than previously reported (without additives). This capability is achieved by using a soot-based superamphiphobic surface combined with a new device geometry, which favors droplet rolling. Contrasting with electrowetting, wetting forces are not required for droplet motion.
Collapse
Affiliation(s)
- Sergio L S Freire
- Department of Mathematics, Physics and Statistics, University of the Sciences, Philadelphia, Pennsylvania 19104, United States.
| | | |
Collapse
|