51
|
Nikolac Perkovic M, Pivac N. Genetic Markers of Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:27-52. [PMID: 31705489 DOI: 10.1007/978-981-32-9721-0_3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease is a complex and heterogeneous, severe neurodegenerative disorder and the predominant form of dementia, characterized by cognitive disturbances, behavioral and psychotic symptoms, progressive cognitive decline, disorientation, behavioral changes, and death. Genetic background of Alzheimer's disease differs between early-onset familial Alzheimer's disease, other cases of early-onset Alzheimer's disease, and late-onset Alzheimer's disease. Rare cases of early-onset familial Alzheimer's diseases are caused by high-penetrant mutations in genes coding for amyloid precursor protein, presenilin 1, and presenilin 2. Late-onset Alzheimer's disease is multifactorial and associated with many different genetic risk loci (>20), with the apolipoprotein E ε4 allele being a major genetic risk factor for late-onset Alzheimer's disease. Genetic and genomic studies offer insight into many additional genetic risk loci involved in the genetically complex nature of late-onset Alzheimer's disease. This review highlights the contributions of individual loci to the pathogenesis of Alzheimer's disease and suggests that their exact contribution is still not clear. Therefore, the use of genetic markers of Alzheimer's disease, for monitoring development, time course, treatment response, and prognosis of Alzheimer's disease, is still far away from the clinical application, because the contribution of genetic variations to the relative risk of developing Alzheimer's disease is limited. In the light of prediction and prevention of Alzheimer's disease, a novel approach could be found in the form of additive genetic risk scores, which combine additive effects of numerous susceptibility loci.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, Zagreb, 10000, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, Zagreb, 10000, Croatia.
| |
Collapse
|
52
|
Mutation screening in Chinese patients with familial Alzheimer's disease by whole-exome sequencing. Neurobiol Aging 2018; 76:215.e15-215.e21. [PMID: 30598257 DOI: 10.1016/j.neurobiolaging.2018.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 11/02/2018] [Accepted: 11/29/2018] [Indexed: 01/26/2023]
Abstract
Familial Alzheimer's disease (FAD) is characterized by a positive family history of dementia and typically occurs at an early age with an autosomal dominant pattern of inheritance. Amyloid precursor protein (APP), presenilin1 (PSEN1), and presenilin2 (PSEN2) are the major causative genes of FAD. The spectrum of mutations in patients with FAD has been investigated extensively in the Caucasian population but rarely in the Chinese population. Here, we performed whole-exome sequencing in a total of 15 unrelated Chinese patients with FAD. Among them, 12 were found to carry missense variants in APP, PSEN1, and PSEN2. Two novel variants (APP: p.D244G, p.K687Q), 3 variants not previously associated with FAD (APP: p.T297M, p.D332G; PSEN1: p.R157S), and 7 previously reported pathogenic variants (APP: p.V717I; PSEN1: p.M139I, p.T147I, p.L173W, p.F177S, p.R269H; PSEN2: p.V139M) were identified. The novel variant APP p.K687Q was classified as likely pathogenic, and the other 4 variants (APP: p.D244G, p.T297M, p.D332G; PSEN1: p.R157S) were classified as uncertain significance. Therefore, APP, PSEN1, and PSEN2 mutations account for 2 (25.0%), 5 (62.5%), and 1 (12.5%) of the genotyped cases positive for mutations, respectively. Furthermore, the genotype-phenotype correlations were described. Our findings broaden the genetic spectrum of FAD with APP, PSEN1, and PSEN2 variants.
Collapse
|
53
|
Bernstein AM, Ritch R, Wolosin JM. Exfoliation Syndrome: A Disease of Autophagy and LOXL1 Proteopathy. J Glaucoma 2018; 27 Suppl 1:S44-S53. [PMID: 29547474 PMCID: PMC6028293 DOI: 10.1097/ijg.0000000000000919] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Exfoliation syndrome (XFS) is an age-related disease involving the deposition of aggregated fibrillar material (exfoliation material) at extracellular matrices in tissues that synthesize elastic fibers. Its main morbidity is in the eye, where exfoliation material accumulations form on the surface of the ciliary body, iris, and lens. Exfoliation glaucoma (XFG) occurs in a high proportion of persons with XFS and can be a rapidly progressing disease. Worldwide, XFG accounts for about 25% of open-angle glaucoma cases. XFS and XFG show a sharp age-dependence, similarly to the many age-related diseases classified as aggregopathies. Progress in understanding the cellular bases for XFS/XFG has been slowed by a lack of experimental models. Working with primary human tenon fibroblasts (TF) derived from trabeculectomies of XFG patients and age-matched primary open-glaucoma controls, we found that TF from XFG cells display many of the functional features observed in cells from other protein aggregate diseases, such as Parkinson, Alzheimer, Huntington, and age-related macular degeneration. We have documented defects in lysosomal positioning, microtubule organization, autophagy processing rate, and mitochondrial health. In regard to failure of lysosomal and autophagosome positioning in XFG cells, we have found that XFG TF are unable to establish the transnuclear microtubule organizing center that is required for efficient centripetal vesicular locomotion along microtubules. In regard to potential sources of the autophagy malfunction, we have directed our attention to a potential role of the lysyl oxidase-like 1 protein (LOXL1), the elastic fiber catalyst that displays variant-dependent association with risk for XFG. Our experiments show that (a) in XFG cells, a substantial fraction of LOXL1 is processed for degradation by the autophagic system; (b) most of the LOXL1 N-terminus domain exists in a highly disordered state, a condition known to greatly increase the frequency of polypeptide misfolding; (c) that maximum misfolding occurs at amino acid position 153, the location of the high risk variant G153D; and (d) that replacement of glycine (G) by aspartate (D) there results in a substantial decrease in disorder within the 20 amino acid surrounding domain. Finally, we show that clusterin, a protein that can be induced by the presence of intracellular, or extracellular aggregates, is uniformly overexpressed in XFG TF. The implications of our results for a theory relating XFG to cellular aggregopathy are discussed.
Collapse
Affiliation(s)
- Audrey M Bernstein
- Department of Ophthalmology, Eye and Vision Research Institute Icahn School of Medicine at Mount Sinai
- Department of Ophthalmology, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York
| | - Jose M Wolosin
- Department of Ophthalmology, Eye and Vision Research Institute Icahn School of Medicine at Mount Sinai
| |
Collapse
|
54
|
Abstract
Alzheimer’s disease is one of the most severe neurodegenerative diseases among elderly people.
Different pathogenic factors for Alzheimer’s disease have been posited and
studied in recent decades, but no effective treatment has been found,
necessitating further studies. In this Viewpoint article, we assess studies on
the mechanisms underlying the accumulation of amyloid (Aβ) peptide and the
formation of Aβ oligomers because their accumulation in amyloid plaques in
brain tissue has become a well-studied hallmark of Alzheimer’s disease. We focus
on the production of Aβ and its impact on the function of synapses and
neural circuits, and also discuss the clinical prospects for amyloid-targeted
therapies.
Collapse
Affiliation(s)
- Yixiu Zhou
- Medical College of Soochow University, Soochow University, Suzhou, Jiangsu 215004, China
| | - Yuhui Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
55
|
Dai MH, Zheng H, Zeng LD, Zhang Y. The genes associated with early-onset Alzheimer's disease. Oncotarget 2018; 9:15132-15143. [PMID: 29599933 PMCID: PMC5871104 DOI: 10.18632/oncotarget.23738] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/14/2017] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for the most cases of dementia, which is characterized by the deposition of dense plaques of amyloid beta (Aβ) plaques and neurofibrillary tangles consisting of hyperphosphorylated tau. The two main types of AD can be classified as early-onset AD (EOAD, onset < 65 years) and late-onset AD (LOAD, onset ≥ 65 years). Evidence from family and twin studies indicate that genetic factors are estimated to play a role in at least 80% of AD cases. The first milestone with linkage analysis revealed the mutations in APP, PSEN1, and PSEN2 genes that cause EOAD. But pathogenic mutations in these three genes can only explain a small fraction of EOAD families. The additional disease-causing genes have not yet been identified. This review provides an overview of the genetic basis of EOAD and the relationship between the functions of these risk genes and the neuropathologic features of AD. A better understanding of genetic mechanisms underlying EOAD pathogenesis and the potentially molecular mechanisms of neurodegeneration will lead to the development of effective diagnosis and treatment strategies for this devastating disease.
Collapse
Affiliation(s)
- Meng-Hui Dai
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling-Dan Zeng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
56
|
Ohshima Y, Taguchi K, Mizuta I, Tanaka M, Tomiyama T, Kametani F, Yabe-Nishimura C, Mizuno T, Tokuda T. Mutations in the β-amyloid precursor protein in familial Alzheimer's disease increase Aβ oligomer production in cellular models. Heliyon 2018; 4:e00511. [PMID: 29560429 PMCID: PMC5857613 DOI: 10.1016/j.heliyon.2018.e00511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/29/2022] Open
Abstract
Soluble oligomers of amyloid-β (Aβ) peptides (AβOs) contribute to neurotoxicity in Alzheimer’s disease (AD). However, it currently remains unknown whether an increase in AβOs is the common phenotype in cellular and animal models. Furthermore, it has not yet been established whether experimental studies conducted using models overexpressing mutant genes of the amyloid precursor protein (APP) are suitable for investigating the underlying molecular mechanism of AD. We herein employed the Flp-In™ T-REx™-293 (T-REx 293) cellular system transfected with a single copy of wild-type, Swedish-, Dutch-, or London-type APP, and quantified the levels of Aβ monomers (Aβ1-40 and Aβ1-42) and AβOs using an enzyme-linked immunosorbent assay (ELISA). The levels of extracellular AβOs were significantly higher in Dutch- and London-type APP-transfected cells than in wild-type APP-transfected cells. Increased levels were also observed in Swedish-type APP-transfected cells. On the other hand, intracellular levels of AβOs were unaltered among wild-type and mutant APP-transfected cells. Intracellular levels of Aβ monomers were undetectable, and no common abnormality was observed in their extracellular levels or ratios (Aβ1-42/Aβ1-40) among the cells examined. We herein demonstrated that increased levels of extracellular AβOs are the common phenotype in cellular models harboring different types of APP mutations. Our results suggest that extracellular AβOs play a key role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Yoichi Ohshima
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan.,Department of Neurology, Kyoto Yamashiro General Medical Center, 1-27 Kizu station, Kizugawa, Kyoto, 619-0214, Japan
| | - Katsutoshi Taguchi
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Ikuko Mizuta
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Takami Tomiyama
- Department of Neuroscience, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Fuyuki Kametani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Chihiro Yabe-Nishimura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan.,Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
57
|
Hunter S, Brayne C. Understanding the roles of mutations in the amyloid precursor protein in Alzheimer disease. Mol Psychiatry 2018; 23:81-93. [PMID: 29112196 DOI: 10.1038/mp.2017.218] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022]
Abstract
Many models of disease progression in Alzheimer's disease (AD) have been proposed to help guide experimental design and aid the interpretation of results. Models focussing on the genetic evidence include the amyloid cascade (ACH) and presenilin (PSH) hypotheses and the amyloid precursor protein (APP) matrix approach (AMA), of which the ACH has held a dominant position for over two decades. However, the ACH has never been fully accepted and has not yet delivered on its therapeutic promise. We review the ACH, PSH and AMA in relation to levels of APP proteolytic fragments reported from AD-associated mutations in APP. Different APP mutations have diverse effects on the levels of APP proteolytic fragments. This evidence is consistent with at least three disease pathways that can differ between familial and sporadic AD and two pathways associated with cerebral amyloid angiopathy. We cannot fully evaluate the ACH, PSH and AMA in relation to the effects of mutations in APP as the APP proteolytic system has not been investigated systematically. The confounding effects of sequence homology, complexity of competing cleavages and antibody cross reactivities all illustrate limitations in our understanding of the roles these fragments and the APP proteolytic system as a whole in normal aging and disease play. Current experimental design should be refined to generate clearer evidence, addressing both aging and complex disorders with standardised reporting formats. A more flexible theoretical framework capable of accommodating the complexity of the APP proteolytic system is required to integrate available evidence.
Collapse
Affiliation(s)
- S Hunter
- Department of Public Health and Primary Care, Institute of Public Health, Forvie Site University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - C Brayne
- Department of Public Health and Primary Care, Institute of Public Health, Forvie Site University of Cambridge, School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
58
|
|
59
|
Genetic Complexity of Early-Onset Alzheimer’s Disease. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
60
|
Colacurcio DJ, Pensalfini A, Jiang Y, Nixon RA. Dysfunction of autophagy and endosomal-lysosomal pathways: Roles in pathogenesis of Down syndrome and Alzheimer's Disease. Free Radic Biol Med 2018; 114:40-51. [PMID: 28988799 PMCID: PMC5748263 DOI: 10.1016/j.freeradbiomed.2017.10.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Individuals with Down syndrome (DS) have an increased risk of early-onset Alzheimer's Disease (AD), largely owing to a triplication of the APP gene, located on chromosome 21. In DS and AD, defects in endocytosis and lysosomal function appear at the earliest stages of disease development and progress to widespread failure of intraneuronal waste clearance, neuritic dystrophy and neuronal cell death. The same genetic factors that cause or increase AD risk are also direct causes of endosomal-lysosomal dysfunction, underscoring the essential partnership between this dysfunction and APP metabolites in AD pathogenesis. The appearance of APP-dependent endosome anomalies in DS beginning in infancy and evolving into the full range of AD-related endosomal-lysosomal deficits provides a unique opportunity to characterize the earliest pathobiology of AD preceding the classical neuropathological hallmarks. Facilitating this characterization is the authentic recapitulation of this endosomal pathobiology in peripheral cells from people with DS and in trisomy mouse models. Here, we review current research on endocytic-lysosomal dysfunction in DS and AD, the emerging importance of APP/βCTF in initiating this dysfunction, and the potential roles of additional trisomy 21 genes in accelerating endosomal-lysosomal impairment in DS. Collectively, these studies underscore the growing value of investigating DS to probe the biological origins of AD as well as to understand and ameliorate the developmental disability of DS.
Collapse
Affiliation(s)
- Daniel J Colacurcio
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anna Pensalfini
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ying Jiang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Cell Biology, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
61
|
β-Amyloid and the Pathomechanisms of Alzheimer's Disease: A Comprehensive View. Molecules 2017; 22:molecules22101692. [PMID: 28994715 PMCID: PMC6151811 DOI: 10.3390/molecules22101692] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 01/14/2023] Open
Abstract
Protein dyshomeostasis is the common mechanism of neurodegenerative diseases such as Alzheimer’s disease (AD). Aging is the key risk factor, as the capacity of the proteostasis network declines during aging. Different cellular stress conditions result in the up-regulation of the neurotrophic, neuroprotective amyloid precursor protein (APP). Enzymatic processing of APP may result in formation of toxic Aβ aggregates (β-amyloids). Protein folding is the basis of life and death. Intracellular Aβ affects the function of subcellular organelles by disturbing the endoplasmic reticulum-mitochondria cross-talk and causing severe Ca2+-dysregulation and lipid dyshomeostasis. The extensive and complex network of proteostasis declines during aging and is not able to maintain the balance between production and disposal of proteins. The effectivity of cellular pathways that safeguard cells against proteotoxic stress (molecular chaperones, aggresomes, the ubiquitin-proteasome system, autophagy) declines with age. Chronic cerebral hypoperfusion causes dysfunction of the blood-brain barrier (BBB), and thus the Aβ-clearance from brain-to-blood decreases. Microglia-mediated clearance of Aβ also declines, Aβ accumulates in the brain and causes neuroinflammation. Recognition of the above mentioned complex pathogenesis pathway resulted in novel drug targets in AD research.
Collapse
|
62
|
Nixon RA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. FASEB J 2017; 31:2729-2743. [PMID: 28663518 DOI: 10.1096/fj.201700359] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA; .,Department of Psychiatry and Department of Cell Biology, New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|
63
|
Chiti F, Dobson CM. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu Rev Biochem 2017; 86:27-68. [DOI: 10.1146/annurev-biochem-061516-045115] [Citation(s) in RCA: 1714] [Impact Index Per Article: 244.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Peptides and proteins have been found to possess an inherent tendency to convert from their native functional states into intractable amyloid aggregates. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidoses. In this review, we describe this field of science with particular reference to the advances that have been made over the last decade in our understanding of its fundamental nature and consequences. We list the proteins that are known to be deposited as amyloid or other types of aggregates in human tissues and the disorders with which they are associated, as well as the proteins that exploit the amyloid motif to play specific functional roles in humans. In addition, we summarize the genetic factors that have provided insight into the mechanisms of disease onset. We describe recent advances in our knowledge of the structures of amyloid fibrils and their oligomeric precursors and of the mechanisms by which they are formed and proliferate to generate cellular dysfunction. We show evidence that a complex proteostasis network actively combats protein aggregation and that such an efficient system can fail in some circumstances and give rise to disease. Finally, we anticipate the development of novel therapeutic strategies with which to prevent or treat these highly debilitating and currently incurable conditions.
Collapse
Affiliation(s)
- Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” Section of Biochemistry, Università di Firenze, 50134 Firenze, Italy
| | - Christopher M. Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
64
|
Abstract
Mutations in amyloid β precursor protein (APP) gene alter APP processing, either causing familial Alzheimer's disease (AD) or protecting against dementia. Under normal conditions, β-site APP cleaving enzyme 1 (BACE1) cleaves APP at minor Asp1 site to generate C99 for amyloid β protein (Aβ) production, and predominantly at major Glu11 site to generate C89, resulting in truncated Aβ production. We discovered that A673V mutation, the only recessive AD-associated APP mutation, shifted the preferential β-cleavage site of BACE1 in APP from the Glu11 site to the Asp1 site both in male and female transgenic mice in vivo and in cell lines and primary neuronal culture derived from timed pregnant rats in vitro, resulting in a much higher C99 level and C99/C89 ratio. All other mutations at this site, including the protective Icelandic A673T mutation, reduced C99 generation, and decreased the C99/C89 ratio. Furthermore, A673V mutation caused stronger dimerization between mutant and wild-type APP, enhanced the lysosomal degradation of the mutant APP, and inhibited γ-secretase cleavage of the mutant C99 to generate Aβ, leading to recessively inherited AD. The results demonstrate that APP673 regulates APP processing and the BACE1 cleavage site selection is critical for amyloidogenesis in AD pathogenesis, and implicate a pharmaceutical potential for targeting the APP673 site for AD drug development.SIGNIFICANCE STATEMENT β-site APP cleaving enzyme 1 (BACE1) is essential for amyloid β protein production. We discovered that A673V mutation shifted the BACE1 cleavage site from the Glu11 to the Asp1 site, resulting in much higher C99 level and C99/C89 ratio. All other mutations at this site of amyloid β precursor protein (APP) reduced C99 generation and decreased the C99/C89 ratio. Furthermore, A673V mutation resulted in stronger dimerization between mutant and wild-type APP, enhanced the lysosomal degradation of the mutant APP, and inhibited γ-secretase cleavage of the mutant C99 to generate amyloid β protein, leading to recessively inherited Alzheimer's disease (AD). The results demonstrate that APP673 regulates APP processing, and the BACE1 cleavage site selection is critical for amyloidogenesis in AD pathogenesis, and implicate a pharmaceutical potential for targeting the APP673 site for AD drug development.
Collapse
|
65
|
de Matos AM, de Macedo MP, Rauter AP. Bridging Type 2 Diabetes and Alzheimer's Disease: Assembling the Puzzle Pieces in the Quest for the Molecules With Therapeutic and Preventive Potential. Med Res Rev 2017; 38:261-324. [PMID: 28422298 DOI: 10.1002/med.21440] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/18/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) and Alzheimer's disease (AD) are two age-related amyloid diseases that affect millions of people worldwide. Broadly supported by epidemiological data, the higher incidence of AD among type 2 diabetic patients led to the recognition of T2D as a tangible risk factor for the development of AD. Indeed, there is now growing evidence on brain structural and functional abnormalities arising from brain insulin resistance and deficiency, ultimately highlighting the need for new approaches capable of preventing the development of AD in type 2 diabetic patients. This review provides an update on overlapping pathophysiological mechanisms and pathways in T2D and AD, such as amyloidogenic events, oxidative stress, endothelial dysfunction, aberrant enzymatic activity, and even shared genetic background. These events will be presented as puzzle pieces put together, thus establishing potential therapeutic targets for drug discovery and development against T2D and diabetes-induced cognitive decline-a heavyweight contributor to the increasing incidence of dementia in developed countries. Hoping to pave the way in this direction, we will present some of the most promising and well-studied drug leads with potential against both pathologies, including their respective bioactivity reports, mechanisms of action, and structure-activity relationships.
Collapse
Affiliation(s)
- Ana Marta de Matos
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal.,CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Maria Paula de Macedo
- CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Amélia Pilar Rauter
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
66
|
Gleevec shifts APP processing from a β-cleavage to a nonamyloidogenic cleavage. Proc Natl Acad Sci U S A 2017; 114:1389-1394. [PMID: 28115709 DOI: 10.1073/pnas.1620963114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Neurotoxic amyloid-β peptides (Aβ) are major drivers of Alzheimer's disease (AD) and are formed by sequential cleavage of the amyloid precursor protein (APP) by β-secretase (BACE) and γ-secretase. Our previous study showed that the anticancer drug Gleevec lowers Aβ levels through indirect inhibition of γ-secretase activity. Here we report that Gleevec also achieves its Aβ-lowering effects through an additional cellular mechanism. It renders APP less susceptible to proteolysis by BACE without inhibiting BACE enzymatic activity or the processing of other BACE substrates. This effect closely mimics the phenotype of APP A673T, a recently discovered mutation that protects carriers against AD and age-related cognitive decline. In addition, Gleevec induces formation of a specific set of APP C-terminal fragments, also observed in cells expressing the APP protective mutation and in cells exposed to a conventional BACE inhibitor. These Gleevec phenotypes require an intracellular acidic pH and are independent of tyrosine kinase inhibition, given that a related compound lacking tyrosine kinase inhibitory activity, DV2-103, exerts similar effects on APP metabolism. In addition, DV2-103 accumulates at high concentrations in the rodent brain, where it rapidly lowers Aβ levels. This study suggests that long-term treatment with drugs that indirectly modulate BACE processing of APP but spare other BACE substrates and achieve therapeutic concentrations in the brain might be effective in preventing or delaying the onset of AD and could be safer than nonselective BACE inhibitor drugs.
Collapse
|
67
|
Canter RG, Penney J, Tsai LH. The road to restoring neural circuits for the treatment of Alzheimer's disease. Nature 2016; 539:187-196. [PMID: 27830780 DOI: 10.1038/nature20412] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/03/2016] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease is a progressive loss of memory and cognition, for which there is no cure. Although genetic studies initially suggested a primary role for amyloid-in Alzheimer's disease, treatment strategies targeted at reducing amyloid-have failed to reverse cognitive symptoms. These clinical findings suggest that cognitive decline is the result of a complex pathophysiology and that targeting amyloid-alone may not be sufficient to treat Alzheimer's disease. Instead, a broad outlook on neural-circuit-damaging processes may yield insights into new therapeutic strategies for curing memory loss in the disease.
Collapse
Affiliation(s)
- Rebecca G Canter
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jay Penney
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
68
|
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| | - Laura Dominguez
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| |
Collapse
|
69
|
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disease and the most common form of dementia in elderly people. It is an emerging public health problem that poses a huge societal burden. Linkage analysis was the first milestone in unraveling the mutations in APP, PSEN1, and PSEN2 that cause early-onset AD, followed by the discovery of apolipoprotein E-ε4 allele as the only one genetic risk factor for late-onset AD. Genome-wide association studies have revolutionized genetic research and have identified over 20 genetic loci associated with late-onset AD. Recently, next-generation sequencing technologies have enabled the identification of rare disease variants, including unmasking small mutations with intermediate risk of AD in PLD3, TREM2, UNC5C, AKAP9, and ADAM10. This review provides an overview of the genetic basis of AD and the relationship between these risk genes and the neuropathologic features of AD. An understanding of genetic mechanisms underlying AD pathogenesis and the potentially implicated pathways will lead to the development of novel treatment for this devastating disease.
Collapse
Affiliation(s)
- Mohan Giri
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Man Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| |
Collapse
|
70
|
Buss L, Fisher E, Hardy J, Nizetic D, Groet J, Pulford L, Strydom A. Intracerebral haemorrhage in Down syndrome: protected or predisposed? F1000Res 2016; 5. [PMID: 27239286 PMCID: PMC4870990 DOI: 10.12688/f1000research.7819.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 01/08/2023] Open
Abstract
Down syndrome (DS), which arises from trisomy of chromosome 21, is associated with deposition of large amounts of amyloid within the central nervous system. Amyloid accumulates in two compartments: as plaques within the brain parenchyma and in vessel walls of the cerebral microvasculature. The parenchymal plaque amyloid is thought to result in an early onset Alzheimer’s disease (AD) dementia, a phenomenon so common amongst people with DS that it could be considered a defining feature of the condition. The amyloid precursor protein (
APP) gene lies on chromosome 21 and its presence in three copies in DS is thought to largely drive the early onset AD. In contrast, intracerebral haemorrhage (ICH), the main clinical consequence of vascular amyloidosis, is a more poorly defined feature of DS. We review recent epidemiological data on stroke (including haemorrhagic stroke) in order to make comparisons with a rare form of familial AD due to duplication (i.e. having three copies) of the
APP region on chromosome 21, here called ‘dup-APP’, which is associated with more frequent and severe ICH. We conclude that although people with DS are at increased risk of ICH, this is less common than in dup-APP, suggesting the presence of mechanisms that act protectively. We review these mechanisms and consider comparative research into DS and dup-APP that may yield further pathophysiological insight.
Collapse
Affiliation(s)
- Lewis Buss
- Division of Psychiatry, University College London, London, UK; London Down Syndrome (LonDownS) Consortium, University College London, London, UK
| | - Elizabeth Fisher
- Institute of Neurology, University College London, London, UK; London Down Syndrome (LonDownS) Consortium, University College London, London, UK
| | - John Hardy
- Institute of Neurology, University College London, London, UK; London Down Syndrome (LonDownS) Consortium, University College London, London, UK
| | - Dean Nizetic
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Blizard Institute, Barts and the London School of Medicine, Queen Mary, University of London, London, UK; London Down Syndrome (LonDownS) Consortium, University College London, London, UK
| | - Jurgen Groet
- Blizard Institute, Barts and the London School of Medicine, Queen Mary, University of London, London, UK; London Down Syndrome (LonDownS) Consortium, University College London, London, UK
| | - Laura Pulford
- Institute of Neurology, University College London, London, UK; London Down Syndrome (LonDownS) Consortium, University College London, London, UK
| | - André Strydom
- Division of Psychiatry, University College London, London, UK; London Down Syndrome (LonDownS) Consortium, University College London, London, UK
| |
Collapse
|
71
|
Chen W, Gamache E, Rosenman DJ, Xie J, Lopez MM, Li YM, Wang C. Familial Alzheimer's mutations within APPTM increase Aβ42 production by enhancing accessibility of ε-cleavage site. Nat Commun 2015; 5:3037. [PMID: 24390130 DOI: 10.1038/ncomms4037] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/29/2013] [Indexed: 02/08/2023] Open
Abstract
The high Aβ42/Aβ40 production ratio is a hallmark of familial Alzheimer's disease, which can be caused by mutations in the amyloid precursor protein (APP). The C-terminus of Aβ is generated by γ-secretase cleavage within the transmembrane domain of APP (APPTM), a process that is primed by an initial ε-cleavage at either T48 or L49, resulting in subsequent production of Aβ42 or Aβ40, respectively. Here we solve the dimer structures of wild-type APPTM (AAPTM WT) and mutant APPTM (FAD mutants V44M) with solution NMR. The right-handed APPTM helical dimer is mediated by GXXXA motif. From the NMR structural and dynamic data, we show that the V44M and V44A mutations can selectively expose the T48 site by weakening helical hydrogen bonds and increasing hydrogen-deuterium exchange rate (kex). We propose a structural model in which FAD mutations (V44M and V44A) can open the T48 site γ-secretase for the initial ε-cleavage, and consequently shift cleavage preference towards Aβ42.
Collapse
Affiliation(s)
- Wen Chen
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
| | - Eric Gamache
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
| | - David J Rosenman
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
| | - Jian Xie
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
| | - Maria M Lopez
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
| | - Yue-Ming Li
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
| |
Collapse
|
72
|
Wang Q, Jia J, Qin W, Wu L, Li D, Wang Q, Li H. A Novel AβPP M722K Mutation Affects Amyloid-β Secretion and Tau Phosphorylation and May Cause Early-Onset Familial Alzheimer’s Disease in Chinese Individuals. J Alzheimers Dis 2015; 47:157-65. [PMID: 26402764 DOI: 10.3233/jad-143231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qianqian Wang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
| | - Jianping Jia
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China
- Key Neurodegenerative Laboratory of Ministry of Education of the People’s Republic of China, Beijing, People’s Republic of China, Beijing, P.R. China
| | - Wei Qin
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China
- Key Neurodegenerative Laboratory of Ministry of Education of the People’s Republic of China, Beijing, People’s Republic of China, Beijing, P.R. China
| | - Liyong Wu
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China
- Key Neurodegenerative Laboratory of Ministry of Education of the People’s Republic of China, Beijing, People’s Republic of China, Beijing, P.R. China
| | - Dan Li
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China
- Key Neurodegenerative Laboratory of Ministry of Education of the People’s Republic of China, Beijing, People’s Republic of China, Beijing, P.R. China
| | - Qi Wang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China
- Key Neurodegenerative Laboratory of Ministry of Education of the People’s Republic of China, Beijing, People’s Republic of China, Beijing, P.R. China
| | - Hanzhi Li
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
73
|
Tiwari MK, Kepp KP. Modeling the Aggregation Propensity and Toxicity of Amyloid-β Variants. J Alzheimers Dis 2015; 47:215-29. [DOI: 10.3233/jad-150046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
74
|
Van Giau V, An SSA, Bagyinszky E, Kim S. Gene panels and primers for next generation sequencing studies on neurodegenerative disorders. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0011-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
75
|
Conidi ME, Bernardi L, Puccio G, Smirne N, Muraca MG, Curcio SAM, Colao R, Piscopo P, Gallo M, Anfossi M, Frangipane F, Clodomiro A, Mirabelli M, Vasso F, Cupidi C, Torchia G, Di Lorenzo R, Mandich P, Confaloni A, Maletta RG, Bruni AC. Homozygous carriers of APP A713T mutation in an autosomal dominant Alzheimer disease family. Neurology 2015; 84:2266-73. [PMID: 25948718 DOI: 10.1212/wnl.0000000000001648] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/23/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To report, for the first time, a large autosomal dominant Alzheimer disease (AD) family in which the APP A713T mutation is present in the homozygous and heterozygous state. To date, the mutation has been reported as dominant, and in the heterozygous state associated with familial AD and cerebrovascular lesions. METHODS The family described here has been genealogically reconstructed over 6 generations dating back to the 19th century. Plasma β-amyloid peptide was measured. Sequencing of causative AD genes was performed. RESULTS Twenty-one individuals, all but 1 born from 2 consanguineous unions, were studied: 8 were described as affected through history, 5 were studied clinically and genetically, and 8 were asymptomatic at-risk subjects. The A713T mutation was detected in the homozygous state in 3 patients and in the heterozygous state in 8 subjects (6 asymptomatic and 2 affected). CONCLUSIONS Our findings, also supported by the β-amyloid plasma assay, confirm (1) the pathogenic role of the APP A713T mutation, (2) the specific phenotype (AD with cerebrovascular lesions) associated with this mutation, and (3) the large span of age at onset, not influenced by APOE, TOMM40, and TREM2 genes. No substantial differences concerning clinical phenotype were evidenced between heterozygous and homozygous patients, in line with the classic definition of dominance. Therefore, in this study, AD followed the classic definition of a dominant disease, contrary to that reported in a previously described AD family with recessive APP mutation. This confirms that genetic AD may be considered a disease with dominant and recessive traits of inheritance.
Collapse
Affiliation(s)
- Maria E Conidi
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Livia Bernardi
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Gianfranco Puccio
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Nicoletta Smirne
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Maria G Muraca
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Sabrina A M Curcio
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Rosanna Colao
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Paola Piscopo
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Maura Gallo
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Maria Anfossi
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Francesca Frangipane
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Alessandra Clodomiro
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Maria Mirabelli
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Franca Vasso
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Chiara Cupidi
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Giusi Torchia
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Raffaele Di Lorenzo
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Paola Mandich
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Annamaria Confaloni
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Raffaele G Maletta
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy
| | - Amalia C Bruni
- From the Regional Neurogenetic Centre (M.E.C., L.B., G.P., N.S., M.G.M., S.A.M.C., R.C., M.G., M.A., F.F., A. Clodomiro, M.M., F.V., C.C., G.T., R.D.L., R.G.M., A.C.B.), ASP Catanzaro, Lamezia Terme; Department of Cell Biology and Neurosciences (P.P., A. Confaloni), National Institute of Health, Rome; and DINOGMI (P.M.), Università degli studi di Genova, Italy.
| |
Collapse
|
76
|
The Ubiquitin-Proteasome System and Molecular Chaperone Deregulation in Alzheimer's Disease. Mol Neurobiol 2015; 53:905-931. [PMID: 25561438 DOI: 10.1007/s12035-014-9063-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/09/2014] [Indexed: 12/18/2022]
Abstract
One of the shared hallmarks of neurodegenerative diseases is the accumulation of misfolded proteins. Therefore, it is suspected that normal proteostasis is crucial for neuronal survival in the brain and that the malfunction of this mechanism may be the underlying cause of neurodegenerative diseases. The accumulation of amyloid plaques (APs) composed of amyloid-beta peptide (Aβ) aggregates and neurofibrillary tangles (NFTs) composed of misfolded Tau proteins are the defining pathological markers of Alzheimer's disease (AD). The accumulation of these proteins indicates a faulty protein quality control in the AD brain. An impaired ubiquitin-proteasome system (UPS) could lead to negative consequences for protein regulation, including loss of function. Another pivotal mechanism for the prevention of misfolded protein accumulation is the utilization of molecular chaperones. Molecular chaperones, such as heat shock proteins (HSPs) and FK506-binding proteins (FKBPs), are highly involved in protein regulation to ensure proper folding and normal function. In this review, we elaborate on the molecular basis of AD pathophysiology using recent data, with a particular focus on the role of the UPS and molecular chaperones as the defensive mechanism against misfolded proteins that have prion-like properties. In addition, we propose a rational therapy approach based on this mechanism.
Collapse
|
77
|
Novel APP K724M mutation causes Chinese early-onset familial Alzheimer's disease and increases amyloid-β42 to amyloid-β40 ratio. Neurobiol Aging 2014; 35:2657.e1-2657.e6. [DOI: 10.1016/j.neurobiolaging.2014.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/27/2014] [Accepted: 06/07/2014] [Indexed: 12/20/2022]
|
78
|
Maloney JA, Bainbridge T, Gustafson A, Zhang S, Kyauk R, Steiner P, van der Brug M, Liu Y, Ernst JA, Watts RJ, Atwal JK. Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein. J Biol Chem 2014; 289:30990-1000. [PMID: 25253696 DOI: 10.1074/jbc.m114.589069] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pathogenic mutations in the amyloid precursor protein (APP) gene have been described as causing early onset familial Alzheimer disease (AD). We recently identified a rare APP variant encoding an alanine-to-threonine substitution at residue 673 (A673T) that confers protection against development of AD (Jonsson, T., Atwal, J. K., Steinberg, S., Snaedal, J., Jonsson, P. V., Bjornsson, S., Stefansson, H., Sulem, P., Gudbjartsson, D., Maloney, J., Hoyte, K., Gustafson, A., Liu, Y., Lu, Y., Bhangale, T., Graham, R. R., Huttenlocher, J., Bjornsdottir, G., Andreassen, O. A., Jönsson, E. G., Palotie, A., Behrens, T. W., Magnusson, O. T., Kong, A., Thorsteinsdottir, U., Watts, R. J., and Stefansson, K. (2012) Nature 488, 96-99). The Ala-673 residue lies within the β-secretase recognition sequence and is part of the amyloid-β (Aβ) peptide cleavage product (position 2 of Aβ). We previously demonstrated that the A673T substitution makes APP a less favorable substrate for cleavage by BACE1. In follow-up studies, we confirm that A673T APP shows reduced cleavage by BACE1 in transfected mouse primary neurons and in isogenic human induced pluripotent stem cell-derived neurons. Using a biochemical approach, we show that the A673T substitution modulates the catalytic turnover rate (V(max)) of APP by the BACE1 enzyme, without affecting the affinity (K(m)) of the APP substrate for BACE1. We also show a reduced level of Aβ(1-42) aggregation with A2T Aβ peptides, an observation not conserved in Aβ(1-40) peptides. When combined in a ratio of 1:9 Aβ(1-42)/Aβ(1-40) to mimic physiologically relevant mixtures, A2T retains a trend toward slowed aggregation kinetics. Microglial uptake of the mutant Aβ(1-42) peptides correlated with their aggregation level. Cytotoxicity of the mutant Aβ peptides was not dramatically altered. Taken together, our findings demonstrate that A673T, a protective allele of APP, reproducibly reduces amyloidogenic processing of APP and also mildly decreases Aβ aggregation. These effects could together have an additive or even synergistic impact on the risk of developing AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marcel van der Brug
- ITGR Diagnostics Discovery, Genentech, Inc., South San Francisco, California 94080
| | - Yichin Liu
- Biochemical and Cellular Pharmacology, and
| | - James A Ernst
- From the Departments of Neuroscience, Protein Chemistry,
| | | | | |
Collapse
|
79
|
Specific antibody binding to the APP672-699 region shifts APP processing from α- to β-cleavage. Cell Death Dis 2014; 5:e1374. [PMID: 25118934 PMCID: PMC4454311 DOI: 10.1038/cddis.2014.336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/02/2014] [Accepted: 07/09/2014] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder that is the most common cause of dementia in the elderly, is characterized by the accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles, as well as a progressive loss of synapses and neurons in the brain. The major pertinacious component of amyloid plaques is Aβ, a variably sized peptide derived from the integral membrane protein amyloid precursor protein (APP). The Aβ region of APP locates partly within its ecto- and trans-membrane domains. APP is cleaved by three proteases, designated as α-, β-, and γ-secretases. Processing by β- and γ-secretase cleaves the N- and C-terminal ends of the Aβ region, respectively, releasing Aβ, whereas α-secretase cleaves within the Aβ sequence, releasing soluble APPα (sAPPα). The γ-secretase cleaves at several adjacent sites to yield Aβ species containing 39-43 amino acid residues. Both α- and β-cleavage sites of human wild-type APP are located in APP672-699 region (ectodomain of β-C-terminal fragment, ED-β-CTF or ED-C99). Therefore, the amino acid residues within or near this region are definitely pivotal for human wild-type APP function and processing. Here, we report that one ED-C99-specific monoclonal antibody (mAbED-C99) blocks human wild-type APP endocytosis and shifts its processing from α- to β-cleavage, as evidenced by elevated accumulation of cell surface full-length APP and β-CTF together with reduced sAPPα and α-CTF levels. Moreover, mAbED-C99 enhances the interactions of APP with cholesterol. Consistently, intracerebroventricular injection of mAbED-C99 to human wild-type APP transgenic mice markedly increases membrane-associated β-CTF. All these findings suggest that APP672-699 region is critical for human wild-type APP processing and may provide new clues for the pathogenesis of sporadic AD.
Collapse
|
80
|
Jiao B, Tang B, Liu X, Xu J, Wang Y, Zhou L, Zhang F, Yan X, Zhou Y, Shen L. Mutational analysis in early-onset familial Alzheimer's disease in Mainland China. Neurobiol Aging 2014; 35:1957.e1-6. [DOI: 10.1016/j.neurobiolaging.2014.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/07/2014] [Accepted: 02/16/2014] [Indexed: 11/29/2022]
|
81
|
Sofola-Adesakin O, Castillo-Quan JI, Rallis C, Tain LS, Bjedov I, Rogers I, Li L, Martinez P, Khericha M, Cabecinha M, Bähler J, Partridge L. Lithium suppresses Aβ pathology by inhibiting translation in an adult Drosophila model of Alzheimer's disease. Front Aging Neurosci 2014; 6:190. [PMID: 25126078 PMCID: PMC4115666 DOI: 10.3389/fnagi.2014.00190] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/10/2014] [Indexed: 01/28/2023] Open
Abstract
The greatest risk factor for Alzheimer's disease (AD) is age, and changes in the ageing nervous system are likely contributors to AD pathology. Amyloid beta (Aβ) accumulation, which occurs as a result of the amyloidogenic processing of amyloid precursor protein (APP), is thought to initiate the pathogenesis of AD, eventually leading to neuronal cell death. Previously, we developed an adult-onset Drosophila model of AD. Mutant Aβ42 accumulation led to increased mortality and neuronal dysfunction in the adult flies. Furthermore, we showed that lithium reduced Aβ42 protein, but not mRNA, and was able to rescue Aβ42-induced toxicity. In the current study, we investigated the mechanism/s by which lithium modulates Aβ42 protein levels and Aβ42 induced toxicity in the fly model. We found that lithium caused a reduction in protein synthesis in Drosophila and hence the level of Aβ42. At both the low and high doses tested, lithium rescued the locomotory defects induced by Aβ42, but it rescued lifespan only at lower doses, suggesting that long-term, high-dose lithium treatment may have induced toxicity. Lithium also down-regulated translation in the fission yeast Schizosaccharomyces pombe associated with increased chronological lifespan. Our data highlight a role for lithium and reduced protein synthesis as potential therapeutic targets for AD pathogenesis.
Collapse
Affiliation(s)
- Oyinkan Sofola-Adesakin
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College LondonLondon, UK
- Max Planck Institute for Biology of AgeingCologne, Germany
| | - Jorge I. Castillo-Quan
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College LondonLondon, UK
- Max Planck Institute for Biology of AgeingCologne, Germany
| | - Charalampos Rallis
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College LondonLondon, UK
| | - Luke S. Tain
- Max Planck Institute for Biology of AgeingCologne, Germany
| | - Ivana Bjedov
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College LondonLondon, UK
- Laboratory of Molecular Biology of Cancer, UCL Cancer InstituteLondon, UK
| | - Iain Rogers
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College LondonLondon, UK
| | - Li Li
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College LondonLondon, UK
| | - Pedro Martinez
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College LondonLondon, UK
- Max Planck Institute for Biology of AgeingCologne, Germany
| | - Mobina Khericha
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College LondonLondon, UK
- Max Planck Institute for Biology of AgeingCologne, Germany
| | - Melissa Cabecinha
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College LondonLondon, UK
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College LondonLondon, UK
| | - Linda Partridge
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College LondonLondon, UK
- Max Planck Institute for Biology of AgeingCologne, Germany
| |
Collapse
|
82
|
Zou Z, Liu C, Che C, Huang H. Clinical genetics of Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:291862. [PMID: 24955352 PMCID: PMC4052685 DOI: 10.1155/2014/291862] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/21/2014] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease and the most common form of dementia in the elderly. It is a complex disorder with environmental and genetic components. There are two major types of AD, early onset and the more common late onset. The genetics of early-onset AD are largely understood with mutations in three different genes leading to the disease. In contrast, while susceptibility loci and alleles associated with late-onset AD have been identified using genetic association studies, the genetics of late-onset Alzheimer's disease are not fully understood. Here we review the known genetics of early- and late-onset AD, the clinical features of EOAD according to genotypes, and the clinical implications of the genetics of AD.
Collapse
Affiliation(s)
- Zhangyu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Changyun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chunhui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Huapin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
83
|
Sassi C, Guerreiro R, Gibbs R, Ding J, Lupton MK, Troakes C, Lunnon K, Al-Sarraj S, Brown KS, Medway C, Lord J, Turton J, Mann D, Snowden J, Neary D, Harris J, Bras J, Morgan K, Powell JF, Singleton A, Hardy J. Exome sequencing identifies 2 novel presenilin 1 mutations (p.L166V and p.S230R) in British early-onset Alzheimer's disease. Neurobiol Aging 2014; 35:2422.e13-6. [PMID: 24880964 PMCID: PMC4099516 DOI: 10.1016/j.neurobiolaging.2014.04.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 04/22/2014] [Indexed: 11/29/2022]
Abstract
Early-onset Alzheimer's disease (EOAD) represents 1%–2% of the Alzheimer's disease (AD) cases, and it is generally characterized by a positive family history and a rapidly progressive symptomatology. Rare coding and fully penetrant variants in amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) are the only causative mutations reported for autosomal dominant AD. Thus, in this study we used exome sequencing data to rapidly screen rare coding variability in APP, PSEN1, and PSEN2, in a British cohort composed of 47 unrelated EOAD cases and 179 elderly controls, neuropathologically proven. We report 2 novel and likely pathogenic variants in PSEN1 (p.L166V and p.S230R). A comprehensive catalog of rare pathogenic variants in the AD Mendelian genes is pivotal for a premortem diagnosis of autosomal dominant EOAD and for the differential diagnosis with other early onset dementias such as frontotemporal dementia (FTD) and Creutzfeldt-Jakob disease (CJD).
Collapse
Affiliation(s)
- Celeste Sassi
- University College London (UCL) Institute of Neurology, London, UK; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Rita Guerreiro
- University College London (UCL) Institute of Neurology, London, UK; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Raphael Gibbs
- University College London (UCL) Institute of Neurology, London, UK; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Claire Troakes
- Institute of Psychiatry, King's College London, London, UK
| | - Katie Lunnon
- Institute of Psychiatry, King's College London, London, UK
| | - Safa Al-Sarraj
- Institute of Psychiatry, King's College London, London, UK
| | - Kristelle S Brown
- School of Molecular Medical Sciences, Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Chirstopher Medway
- School of Molecular Medical Sciences, Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Jenny Lord
- School of Molecular Medical Sciences, Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - James Turton
- School of Molecular Medical Sciences, Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - David Mann
- Institute of Brain, Behaviour, and Mental Health, The University of Manchester, Manchester, UK
| | - Julie Snowden
- Cerebral Function Unit Greater Manchester Neuroscience Centre, Manchester, UK
| | - David Neary
- Cerebral Function Unit Greater Manchester Neuroscience Centre, Manchester, UK
| | - Jeniffer Harris
- Cerebral Function Unit Greater Manchester Neuroscience Centre, Manchester, UK
| | - Jose Bras
- University College London (UCL) Institute of Neurology, London, UK
| | | | - Kevin Morgan
- School of Molecular Medical Sciences, Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - John F Powell
- Institute of Psychiatry, King's College London, London, UK
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - John Hardy
- University College London (UCL) Institute of Neurology, London, UK
| |
Collapse
|
84
|
Abstract
Alzheimer’s disease (AD) is a complex and heterogeneous neurodegenerative disorder, classified as either early onset (under 65 years of age), or late onset (over 65 years of age). Three main genes are involved in early onset AD: amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2). The apolipoprotein E (APOE) E4 allele has been found to be a main risk factor for late-onset Alzheimer’s disease. Additionally, genome-wide association studies (GWASs) have identified several genes that might be potential risk factors for AD, including clusterin (CLU), complement receptor 1 (CR1), phosphatidylinositol binding clathrin assembly protein (PICALM), and sortilin-related receptor (SORL1). Recent studies have discovered additional novel genes that might be involved in late-onset AD, such as triggering receptor expressed on myeloid cells 2 (TREM2) and cluster of differentiation 33 (CD33). Identification of new AD-related genes is important for better understanding of the pathomechanisms leading to neurodegeneration. Since the differential diagnoses of neurodegenerative disorders are difficult, especially in the early stages, genetic testing is essential for diagnostic processes. Next-generation sequencing studies have been successfully used for detecting mutations, monitoring the epigenetic changes, and analyzing transcriptomes. These studies may be a promising approach toward understanding the complete genetic mechanisms of diverse genetic disorders such as AD.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of BioNano Technology Gachon University, Gyeonggi-do, South Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Seong Soo A An
- Department of BioNano Technology Gachon University, Gyeonggi-do, South Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Budang Hospital, Gyeonggi-do, South Korea
| |
Collapse
|
85
|
Muratore CR, Rice HC, Srikanth P, Callahan DG, Shin T, Benjamin LNP, Walsh DM, Selkoe DJ, Young-Pearse TL. The familial Alzheimer's disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum Mol Genet 2014; 23:3523-36. [PMID: 24524897 DOI: 10.1093/hmg/ddu064] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by extracellular plaques containing amyloid β (Aβ)-protein and intracellular tangles containing hyperphosphorylated Tau protein. Here, we describe the generation of inducible pluripotent stem cell lines from patients harboring the London familial AD (fAD) amyloid precursor protein (APP) mutation (V717I). We examine AD-relevant phenotypes following directed differentiation to forebrain neuronal fates vulnerable in AD. We observe that over differentiation time to mature neuronal fates, APP expression and levels of Aβ increase dramatically. In both immature and mature neuronal fates, the APPV717I mutation affects both β- and γ-secretase cleavage of APP. Although the mutation lies near the γ-secretase cleavage site in the transmembrane domain of APP, we find that β-secretase cleavage of APP is elevated leading to generation of increased levels of both APPsβ and Aβ. Furthermore, we find that this mutation alters the initial cleavage site of γ-secretase, resulting in an increased generation of both Aβ42 and Aβ38. In addition to altered APP processing, an increase in levels of total and phosphorylated Tau is observed in neurons with the APPV717I mutation. We show that treatment with Aβ-specific antibodies early in culture reverses the phenotype of increased total Tau levels, implicating altered Aβ production in fAD neurons in this phenotype. These studies use human neurons to reveal previously unrecognized effects of the most common fAD APP mutation and provide a model system for testing therapeutic strategies in the cell types most relevant to disease processes.
Collapse
Affiliation(s)
- Christina R Muratore
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Heather C Rice
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Priya Srikanth
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Dana G Callahan
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Taehwan Shin
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lawrence N P Benjamin
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Dominic M Walsh
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Dennis J Selkoe
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tracy L Young-Pearse
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
86
|
Asai M, Shirotani K, Kondo T, Inoue H, Iwata N. [Cellular models for individualized medicine in Alzheimer's disease using patient-derived induced pluripotent stem cells]. Nihon Yakurigaku Zasshi 2014; 143:23-6. [PMID: 24420133 DOI: 10.1254/fpj.143.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
87
|
Early onset Alzheimer's disease and oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:375968. [PMID: 24669286 PMCID: PMC3942075 DOI: 10.1155/2014/375968] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/18/2013] [Indexed: 01/30/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in elderly adults. It is estimated that 10% of the world's population aged more than 60-65 years could currently be affected by AD, and that in the next 20 years, there could be more than 30 million people affected by this pathology. One of the great challenges in this regard is that AD is not just a scientific problem; it is associated with major psychosocial and ethical dilemmas and has a negative impact on national economies. The neurodegenerative process that occurs in AD involves a specific nervous cell dysfunction, which leads to neuronal death. Mutations in APP, PS1, and PS2 genes are causes for early onset AD. Several animal models have demonstrated that alterations in these proteins are able to induce oxidative damage, which in turn favors the development of AD. This paper provides a review of many, although not all, of the mutations present in patients with familial Alzheimer's disease and the association between some of these mutations with both oxidative damage and the development of the pathology.
Collapse
|
88
|
|
89
|
Eisele YS. From soluble aβ to progressive aβ aggregation: could prion-like templated misfolding play a role? Brain Pathol 2013; 23:333-41. [PMID: 23587139 DOI: 10.1111/bpa.12049] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 12/13/2022] Open
Abstract
Accumulation, aggregation and deposition of Aβ peptides are pathological hallmarks in the brains of individuals affected by Alzheimer's disease (AD) or by cerebral β-amyloid angiopathy (Aβ-CAA). While Aβ is a peptide of yet largely unknown function, it is constantly produced in the human brain where it normally remains in a soluble state. However, Aβ peptides are aggregation prone by their intrinsic ability to adopt alternative conformations rich in β-sheet structure that aggregate into oligomeric as well as fibrillar formations. This transition from soluble to aggregated state has been hypothesized to initiate the pathological cascade and is therefore subject to intensive research. Mounting evidence suggests prion-like templated misfolding as the biochemical phenomenon responsible for promoting progressive Aβ aggregation. Here, we review studies in vitro and in vivo that suggest that cerebral Aβ aggregation may indeed progress via prion-like templated misfolding. The implications of these findings are discussed with respect to understanding initiation and progression of the disease and to developing therapeutics.
Collapse
Affiliation(s)
- Yvonne S Eisele
- DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany.
| |
Collapse
|
90
|
Suárez-Calvet M, Belbin O, Pera M, Badiola N, Magrané J, Guardia-Laguarta C, Muñoz L, Colom-Cadena M, Clarimón J, Lleó A. Autosomal-dominant Alzheimer's disease mutations at the same codon of amyloid precursor protein differentially alter Aβ production. J Neurochem 2013; 128:330-9. [PMID: 24117942 DOI: 10.1111/jnc.12466] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 09/20/2013] [Accepted: 10/24/2013] [Indexed: 02/02/2023]
Abstract
Autosomal-dominant Alzheimer's disease (ADAD) is a genetic disorder caused by mutations in Amyloid Precursor Protein (APP) or Presenilin (PSEN) genes. Studying the mechanisms underlying these mutations can provide insight into the pathways that lead to AD pathology. The majority of biochemical studies on APP mutations to-date have focused on comparing mechanisms between mutations at different codons. It has been assumed that amino acid position is a major determinant of protein dysfunction and clinical phenotype. However, the differential effect of mutations at the same codon has not been sufficiently addressed. In the present study we compared the effects of the aggressive ADAD-associated APP I716F mutation with I716V and I716T on APP processing in human neuroglioma and CHO-K1 cells. All APP I716 mutations increased the ratio of Aβ42/40 and changed the product line preference of γ-secretase towards Aβ38 production. In addition, the APP I716F mutation impaired the ε-cleavage and the fourth cleavage of γ-secretase and led to abnormal APP β-CTF accumulation at the plasma membrane. Taken together, these data indicate that APP mutations at the same codon can induce diverse abnormalities in APP processing, some resembling PSEN1 mutations. These differential effects could explain the clinical differences observed among ADAD patients bearing different APP mutations at the same position. The amyloid precursor protein (APP) I716F mutation is associated with autosomal dominant Alzheimer's disease with the youngest age-at-onset for the APP locus. Here, we describe that this mutation, when compared to two other familial Alzheimer's disease mutations at the same codon (I716V and I716T), interfered distinctly with γ-secretase cleavage. While all three mutations direct γ-secretase cleavage towards the 48→38 production line, the APP I716F mutation also impaired the ε-cleavage and the fourth cleavage of γ-secretase, resembling a PSEN1 mutation. These features may contribute to the aggressiveness of this mutation.
Collapse
Affiliation(s)
- Marc Suárez-Calvet
- Department of Neurology, Memory Disorders Unit, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Alzheimer Laboratory, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Fan LF, Xu DE, Wang WH, Yan K, Wu H, Yao XQ, Xu RX, Liu CF, Ma QH. Caspr interaction with Amyloid Precursor Protein reduces amyloid-β generation in vitro. Neurosci Lett 2013; 548:255-60. [DOI: 10.1016/j.neulet.2013.05.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/04/2013] [Accepted: 05/18/2013] [Indexed: 11/15/2022]
|
92
|
Noda Y, Asada M, Kubota M, Maesako M, Watanabe K, Uemura M, Kihara T, Shimohama S, Takahashi R, Kinoshita A, Uemura K. Copper enhances APP dimerization and promotes Aβ production. Neurosci Lett 2013; 547:10-5. [PMID: 23669644 DOI: 10.1016/j.neulet.2013.04.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/22/2013] [Accepted: 04/27/2013] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is characterized by the deposition of amyloid-β (Aβ) plaques, senile plaque. The Aβ peptide is cleaved from amyloid precursor protein (APP) by β-secretase and γ-secretase. Until now, many literatures have documented that the high concentration of copper is present in Aβ plaques and enhances aggregation of. The APP copper binding domain (CuBD) is located in the N-terminal next to the growth factor-like domain that gets involved in APP homodimerization. Importantly, dimerization of APP has profound effect on Aβ production. We investigated whether copper alters the state of APP dimerization and how it affects APP metabolism. Here, we demonstrate that copper enhanced APP dimerization and increased extracellular release of Aβ. Moreover, copper chelator, D-penicillamine, suppressed APP dimerization and decreased extracellular release of Aβ. These results suggest that the action of copper may be profoundly associated with the pathway of Aβ production in AD pathogenesis.
Collapse
Affiliation(s)
- Yasuha Noda
- Department of Health Science, Kyoto University Graduate School of Medicine, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Reversible pathologic and cognitive phenotypes in an inducible model of Alzheimer-amyloidosis. J Neurosci 2013; 33:3765-79. [PMID: 23447589 DOI: 10.1523/jneurosci.4251-12.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transgenic mice that express mutant amyloid precursor protein (APPsi) using tet-Off vector systems provide an alternative model for assessing short- and long-term effects of Aβ-targeting therapies on phenotypes related to the deposition of Alzheimer-type amyloid. Here we use such a model, termed APPsi:tTA, to determine what phenotypes persist in mice with high amyloid burden after new production of APP/Aβ has been suppressed. We find that 12- to 13-month-old APPsi:tTA mice are impaired in cognitive tasks that assess short- and long-term memories. Acutely suppressing new APPsi/Aβ production produced highly significant improvements in performing short-term spatial memory tasks, which upon continued suppression translated to superior performance in more demanding tasks that assess long-term spatial memory and working memory. Deficits in episodic-like memory and cognitive flexibility, however, were more persistent. Arresting mutant APPsi production caused a rapid decline in the brain levels of soluble APP ectodomains, full-length APP, and APP C-terminal fragments. As expected, amyloid deposits persisted after new APP/Aβ production was inhibited, whereas, unexpectedly, we detected persistent pools of solubilizable, relatively mobile, Aβ42. Additionally, we observed persistent levels of Aβ-immunoreactive entities that were of a size consistent with SDS-resistant oligomeric assemblies. Thus, in this model with significant amyloid pathology, a rapid amelioration of cognitive deficits was observed despite persistent levels of oligomeric Aβ assemblies and low, but detectable solubilizable Aβ42 peptides. These findings implicate complex relationships between accumulating Aβ and activities of APP, soluble APP ectodomains, and/or APP C-terminal fragments in mediating cognitive deficits in this model of amyloidosis.
Collapse
|
94
|
Hunter S, Arendt T, Brayne C. The senescence hypothesis of disease progression in Alzheimer disease: an integrated matrix of disease pathways for FAD and SAD. Mol Neurobiol 2013; 48:556-70. [PMID: 23546742 DOI: 10.1007/s12035-013-8445-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/13/2013] [Indexed: 12/24/2022]
Abstract
Alzheimer disease (AD) is a progressive, neurodegenerative disease characterised in life by cognitive decline and behavioural symptoms and post-mortem by the neuropathological hallmarks including the microtubule-associated protein tau-reactive tangles and neuritic plaques and amyloid-beta-protein-reactive senile plaques. Greater than 95 % of AD cases are sporadic (SAD) with a late onset and <5 % of AD cases are familial (FAD) with an early onset. FAD is associated with various genetic mutations in the amyloid precursor protein (APP) and the presenilins (PS)1 and PS2. As yet, no disease pathway has been fully accepted and there are no treatments that prevent, stop or reverse the cognitive decline associated with AD. Here, we review and integrate available environmental and genetic evidence associated with all forms of AD. We present the senescence hypothesis of AD progression, suggesting that factors associated with AD can be seen as partial stressors within the matrix of signalling pathways that underlie cell survival and function. Senescence pathways are triggered when stressors exceed the cells ability to compensate for them. The APP proteolytic system has many interactions with pathways involved in programmed senescence and APP proteolysis can both respond to and be driven by senescence-associated signalling. Disease pathways associated with sporadic disease may be different to those involving familial genetic mutations. The interpretation we provide strongly points to senescence as an additional underlying causal process in dementia progression in both SAD and FAD via multiple disease pathways.
Collapse
Affiliation(s)
- Sally Hunter
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK,
| | | | | |
Collapse
|
95
|
Jadhav S, Zilka N, Novak M. Protein truncation as a common denominator of human neurodegenerative foldopathies. Mol Neurobiol 2013; 48:516-32. [PMID: 23516100 DOI: 10.1007/s12035-013-8440-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/05/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative foldopathies are characterized by aberrant folding of diseased modified proteins, which are major constituents of the intracellular and extracellular lesions. These lesions correlate with the cognitive and/or motor impairment seen in these diseases. The majority of the disease modified proteins in neurodegenerative foldopathies belongs to the group of proteins termed as intrinsically disordered proteins (IDPs). Several independent studies have showed that abnormal protein processing constitutes the key pathological feature of these disorders. The current review focuses on protein truncation as a common denominator of neurodegenerative foldopathies, which is considered to be the major driving force behind the pathological metamorphosis of brain IDPs. The aim of the review is to emphasize the key role of the protein truncation in the pathogenic pathways of neurodegenerative diseases. A deeper understanding of the complex downstream processing of the IDPs, resulting in the generation of pathologically modified proteins might be a prerequisite for the successful therapeutic strategies of several fatal neurodegenerative diseases.
Collapse
Affiliation(s)
- Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10, Bratislava, Slovak Republic
| | | | | |
Collapse
|
96
|
Lin S, Liu H, Kanawati B, Liu L, Dong J, Li M, Huang J, Schmitt-Kopplin P, Cai Z. Hippocampal metabolomics using ultrahigh-resolution mass spectrometry reveals neuroinflammation from Alzheimer's disease in CRND8 mice. Anal Bioanal Chem 2013; 405:5105-17. [PMID: 23494273 DOI: 10.1007/s00216-013-6825-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/02/2013] [Accepted: 02/06/2013] [Indexed: 12/24/2022]
Abstract
In the wake of genomics, metabolomics characterizes the small molecular metabolites revealing the phenotypes induced by gene mutants. To address the metabolic signatures in the hippocampus of the amyloid-beta (Aβ) peptides produced in transgenic (Tg) CRND8 mice, high-field ion cyclotron resonance-Fourier transform mass spectrometry supported by LC-LTQ-Orbitrap was introduced to profile the extracted metabolites. More than 10,000 ions were detected in the mass profile for each sample. Subsequently, peak alignment and the 80% rule followed by feature selection based on T score computation were performed. The putative identification was also conducted using the highly accurate masses with isotopic distribution by interfacing the MassTRIX database as well as MS/MS fragmentation generated in the LTQ-Orbitrap after chromatographic separation. Consequently, 58 differentiating masses were tentatively identified while up to 44 differentiating elemental compositions could not be biologically annotated in the databases. Nonetheless, of the putatively annotated masses, eicosanoids in arachidonic acid metabolism, fatty acid beta-oxidation disorders as well as disturbed glucose metabolism were highlighted as metabolic traits of Aβ toxicity in Tg CRND8 mice. Furthermore, a web-based bioinformatic tool was used for simulation of the metabolic pathways. As a result of the obtained metabolic signatures, the arachidonic acid metabolism dominates the metabolic perturbation in hippocampal tissues of Tg CRND8 mice compared to non-Tg littermates, indicating that Aβ toxicity functions neuroinflammation in hippocampal tissue and new theranostic opportunities might be offered by characterization of altered arachidonic acid metabolism for Alzheimer's disease.
Collapse
Affiliation(s)
- Shuhai Lin
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Agyare EK, Leonard SR, Curran GL, Yu CC, Lowe VJ, Paravastu AK, Poduslo JF, Kandimalla KK. Traffic jam at the blood-brain barrier promotes greater accumulation of Alzheimer's disease amyloid-β proteins in the cerebral vasculature. Mol Pharm 2013; 10:1557-65. [PMID: 23249146 DOI: 10.1021/mp300352c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid-β (Aβ) deposition in the brain vasculature results in cerebral amyloid angiopathy (CAA), which occurs in about 80% of Alzheimer's disease (AD) patients. While Aβ42 predominates parenchymal amyloid plaques in AD brain, Aβ40 is prevalent in the cerebrovascular amyloid. Dutch mutation of Aβ40 (E22Q) promotes aggressive cerebrovascular accumulation and leads to severe CAA in the mutation carriers; knowledge of how DutchAβ40 drives this process more efficiently than Aβ40 could reveal various pathophysiological events that promote CAA. In this study we have demonstrated that DutchAβ40 shows preferential accumulation in the blood-brain-barrier (BBB) endothelial cells due to its inefficient blood-to-brain transcytosis. Consequently, DutchAβ40 establishes a permeation barrier in the BBB endothelium, prevents its own clearance from the brain, and promotes the formation of amyloid deposits in the cerebral microvessels. The BBB endothelial accumulation of native Aβ40 is not robust enough to exercise such a significant impact on its brain clearance. Hence, the cerebrovascular accumulation of Aβ40 is slow and may require other copathologies to precipitate into CAA. In conclusion, the magnitude of Aβ accumulation in the BBB endothelial cells is a critical factor that promotes CAA; hence, clearing vascular endothelium of Aβ proteins may halt or even reverse CAA.
Collapse
Affiliation(s)
- Edward K Agyare
- Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, United States
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Abe M, Sonobe N, Fukuhara R, Mori Y, Ochi S, Matsumoto T, Mori T, Tanimukai S, Ueno SI. Phenotypical difference of amyloid precursor protein (APP) V717L mutation in Japanese family. BMC Neurol 2012; 12:38. [PMID: 22702962 PMCID: PMC3482594 DOI: 10.1186/1471-2377-12-38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 05/23/2012] [Indexed: 12/03/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the most common form of dementia. Mutations in genes such as those encoding amyloid precursor protein (APP), presenilin 1 and presenilin 2, are responsible for early-onset familial AD. Case presentation In this study, we report a 275341 G > C (Val717Leu) mutation in the APP gene in a Japanese family with early onset AD by genetic screening. This mutation has previously been detected in European families. In the Japanese family we screened, the age at onset of AD was 47.1 ± 3.1 years old (n = 9; range, 42–52). The symptoms in the affected members included psychiatric vulnerability and focal signs such as pyramidal signs, epileptic seizures, and myoclonic discharges. An MR imaging study showed relatively mild atrophic changes in the bilateral hippocampus and cerebral cortices in all affected members compared with their clinical presentations. Conclusion We conclude that the clinical features of Alzheimer’s disease can be different even when caused by the same mutation in the APP gene. Further clinical and genetic studies are required to clarify the relationship between phenotypes and genotypes.
Collapse
Affiliation(s)
- Masao Abe
- Department of Neuropsychiatry, Neuroscience, Ehime University Graduate School of Medicine, Shitsukawa, Toon-city, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Weggen S, Beher D. Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2012; 4:9. [PMID: 22494386 PMCID: PMC3334542 DOI: 10.1186/alzrt107] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mutations in both the amyloid precursor protein (APP) and the presenilin (PSEN) genes cause familial Alzheimer's disease (FAD) with autosomal dominant inheritance and early onset of disease. The clinical course and neuropathology of FAD and sporadic Alzheimer's disease are highly similar, and patients with FAD constitute a unique population in which to conduct treatment and, in particular, prevention trials with novel pharmaceutical entities. It is critical, therefore, to exactly defi ne the molecular consequences of APP and PSEN FAD mutations. Both APP and PSEN mutations drive amyloidosis in FAD patients through changes in the brain metabolism of amyloid-β (Aβ) peptides that promote the formation of pathogenic aggregates. APP mutations do not seem to impair the physiological functions of APP. In contrast, it has been proposed that PSEN mutations compromise γ-secretase-dependent and -independent functions of PSEN. However, PSEN mutations have mostly been studied in model systems that do not accurately refl ect the genetic background in FAD patients. In this review, we discuss the reported cellular phenotypes of APP and PSEN mutations, the current understanding of their molecular mechanisms, the need to generate faithful models of PSEN mutations, and the potential bias of APP and PSEN mutations on therapeutic strategies that target Aβ.
Collapse
Affiliation(s)
- Sascha Weggen
- Department of Neuropathology, Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany.
| | | |
Collapse
|
100
|
Vidal R, Sammeta N, Garringer HJ, Sambamurti K, Miravalle L, Lamb BT, Ghetti B. The Psen1-L166P-knock-in mutation leads to amyloid deposition in human wild-type amyloid precursor protein YAC transgenic mice. FASEB J 2012; 26:2899-910. [PMID: 22459153 DOI: 10.1096/fj.12-205542] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Genetically engineered mice have been generated to model cerebral β-amyloidosis, one of the hallmarks of Alzheimer disease (AD) pathology, based on the overexpression of a mutated cDNA of the amyloid-β precursor protein (AβPP) or by knock-in of the murine Aβpp gene alone or with presenilin1 mutations. Here we describe the generation and initial characterization of a new mouse line based on the presence of 2 copies of the human genomic region encoding the wild-type AβPP and the L166P presenilin 1 mutation. At ∼6 mo of age, double-mutant mice develop amyloid pathology, with signs of neuritic dystrophy, intracellular Aβ accumulation, and glial inflammation, an increase in AβPP C-terminal fragments, and an 8 times increase in Aβ42 levels with a 40% decrease in Aβ40 levels, leading to a significant increase (14 times) of Aβ42/Aβ40 ratios, with minimal effects on presenilin or the Notch1 pathway in the brain. We conclude that in mice, neither mutations in AβPP nor overexpression of an AβPP isoform are a prerequisite for Aβ pathology. This model will allow the study of AD pathogenesis and testing of therapeutic strategies in a more relevant environment without experimental artifacts due to the overexpression of a single-mutant AβPP isoform using exogenous promoters.
Collapse
Affiliation(s)
- Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|