51
|
Abstract
The tremendous shifts in the size, structure, and function of the brain during primate evolution are ultimately caused by changes at the genetic level. Understanding what these changes are and how they effect the phenotypic changes observed lies at the heart of understanding evolutionary change. This chapter focuses on understanding the genetic basis of primate brain evolution, considering the substrates and mechanisms through which genetic change occurs. It also discusses the implications that our current understandings and tools have for what we have already discovered and where our studies will head in the future. While genetic and genomic studies have identified many regions undergoing positive selection during primate evolution, the findings are certainly not exhaustive and functional relevance remains to be confirmed. Nevertheless, a strong foundation has been built upon which future studies will emerge.
Collapse
Affiliation(s)
- Eric J Vallender
- New England Primate Research Center, Harvard Medical School, Southborough, MA, USA.
| |
Collapse
|
52
|
Abstract
Encephalization is a concept that implies an increase in brain or neocortex size relative to body size, size of lower brain areas, and/or evolutionary time. Here, I review 26 large-scale comparative studies that provide robust evidence for five lifestyle correlates of encephalization (group living, a large home range, a high-quality diet, a strong reliance on vision, arboreal and forest dwelling), six cognitive correlates (better performance in captive tests, more tactical deception, innovation, tool use, social learning, all subsumed in part by general intelligence), one life history correlate (a longer lifespan), two evolutionary correlates (a high rate of change in microcephaly genes, an increase in brain size over macroevolutionary time), as well as three trade-offs (a slower juvenile development, a higher metabolic rate, sexually selected dimorphism). Of the 26 different encephalization measures used in these studies, corrected neocortex size, either with a ratio or a residual, is the most popular structural correlate of the functional variables, while residual brain size is the measure associated with the greatest number of them. Controversies remain on corrected or absolute measures of neural structure size, concerted versus mosaic evolution of brain parts and specialized versus domain-general brain structures and cognitive processes.
Collapse
Affiliation(s)
- Louis Lefebvre
- Department of Biology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
53
|
Abstract
Brain development in the early stages of life has been suggested to be one of the factors that may influence an individual's risk of Alzheimer disease (AD) later in life. Four microcephaly genes, which regulate brain development in utero and have been suggested to play a role in the evolution of the human brain, were selected as candidate genes that may modulate the risk of AD. We examined the association between single nucleotide polymorphisms tagging common sequence variations in these genes and risk of AD in two case-control samples. We found that the G allele of rs2442607 in microcephalin 1 was associated with an increased risk of AD (under an additive genetic model, P=0.01; odds ratio=3.41; confidence interval, 1.77-6.57). However, this association was not replicated using another case-control sample research participants from the Alzheimer Disease Neuroimaging Initiative. We conclude that the common variations we measured in the 4 microcephaly genes do not affect the risk of AD or that their effect size is small.
Collapse
|
54
|
Webster MT, Hurst LD. Direct and indirect consequences of meiotic recombination: implications for genome evolution. Trends Genet 2011; 28:101-9. [PMID: 22154475 DOI: 10.1016/j.tig.2011.11.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/23/2022]
Abstract
There is considerable variation within eukaryotic genomes in the local rate of crossing over. Why is this and what effect does it have on genome evolution? On the genome scale, it is known that by shuffling alleles, recombination increases the efficacy of selection. By contrast, the extent to which differences in the recombination rate modulate the efficacy of selection between genomic regions is unclear. Recombination also has direct consequences on the origin and fate of mutations: biased gene conversion and other forms of meiotic drive promote the fixation of mutations in a similar way to selection, and recombination itself may be mutagenic. Consideration of both the direct and indirect effects of recombination is necessary to understand why its rate is so variable and for correct interpretation of patterns of genome evolution.
Collapse
Affiliation(s)
- Matthew T Webster
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
55
|
Abstract
We review the fossil and genetic evidence that relate to evolution in the genus Homo. We focus on the origin of Homo and on the evidence for taxonomic diversity at the beginning of the evolutionary history of Homo and in the last 200,000 years. We set out the arguments for recognizing a second early Homo taxon, Homo rudolfensis, and the arguments for and against including Homo habilis sensu stricto and Homo rudolfensis within Homo. We end by reviewing recent genomic evolution within Homo. The challenge of the upcoming decades is to meld innovations in molecular genetic methods and technology with evidence from the fossil record to generate hypotheses about the developmental bases of the phenotypic and behavioral developments we see within the genus Homo.
Collapse
Affiliation(s)
- Bernard Wood
- Center for the Advanced Study of Hominid Paleobiology and
| | - Jennifer Baker
- Center for the Advanced Study of Hominid Paleobiology and
- Hominid Paleobiology Graduate Program, Department of Anthropology, George Washington University, Washington, DC 20052
| |
Collapse
|
56
|
Montgomery SH, Mundy NI. EVOLUTION OF ASPM
IS ASSOCIATED WITH BOTH INCREASES AND DECREASES IN BRAIN SIZE IN PRIMATES. Evolution 2011; 66:927-932. [DOI: 10.1111/j.1558-5646.2011.01487.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
57
|
Abstract
This review dissects the complex human cough reflex and suggests hypotheses about the evolutionary basis for the reflex. A mechanosensory-induced cough reflex conveys through branches of myelinated Aδ nerve fibers is not chemically reactive (i.e., capsaicin, bradykinin); possibly, its evolution is to prevent the harmful effects of aspiration of gastric or particulate contents into the lungs. This became necessary as the larynx moves closer to the opening of the esophagus as human ancestors adapt phonation over olfaction beginning less than 10 million years ago. The second type of cough reflex, a chemosensory type, is carried by unmyelinated C fibers. Supposedly, its origin dates back when prehistoric humans began living in close proximity to each other and were at risk for infectious respiratory diseases or irritant-induced lung injury. The mechanism for the latter type of cough is analogous to induced pain after tissue injury; and, it is controlled by the identical transient receptor potential vanilloid cation channel (TRPV1). The airways do not normally manifest nociceptive pain from a stimulus but the only consistent response that capsaicin and lung inflammation provoke in healthy human airways is cough. TRPA1, another excitatory ion channel, has been referred to as the "irritant receptor" and its activation also induces cough. For both types of cough, the motor responses are identical and via coordinated, precisely-timed and sequential respiratory events orchestrated by complex neuromuscular networking of the diaphragm, chest and abdominal respiratory muscles, the glottis and parts of the brain.
Collapse
Affiliation(s)
- Stuart M Brooks
- Colleges of Public Health and Medicine, University of South Florida, Tampa, Florida.
| |
Collapse
|
58
|
|
59
|
Reillo I, Borrell V. Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors. ACTA ACUST UNITED AC 2011; 22:2039-54. [PMID: 21988826 DOI: 10.1093/cercor/bhr284] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Expansion and folding of the cerebral cortex are landmark features of mammalian brain evolution. This is recapitulated during embryonic development, and specialized progenitor cell populations known as intermediate radial glia cells (IRGCs) are believed to play central roles. Because developmental mechanisms involved in cortical expansion and folding are likely conserved across phylogeny, it is crucial to identify features specific for gyrencephaly from those unique to primate brain development. Here, we studied multiple features of cortical development in ferret, a gyrencephalic carnivore, in comparison with primates. Analyzing the combinatorial expression of transcription factors, cytoskeletal proteins, and cell cycle parameters, we identified a combination of traits that distinguish in ferret similar germinal layers as in primates. Transcription factor analysis indicated that inner subventricular zone (ISVZ) and outer subventricular zone (OSVZ) may contain an identical mixture of progenitor cell subpopulations in ferret. However, we found that these layers emerge at different time points, differ in IRGC abundance, and progenitors have different cell cycle kinetics and self-renewal dynamics. Thus, ISVZ and OSVZ are likely distinguished by genetic differences regulating progenitor cell behavior and dynamics. Our findings demonstrate that some, but not all, features of primate cortical development are shared by the ferret, suggesting a conserved role in the evolutionary emergence of gyrencephaly.
Collapse
Affiliation(s)
- Isabel Reillo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | | |
Collapse
|
60
|
Abstract
Brain regions and their highly neuroplastic long axonal connections that expanded rapidly during hominid evolution are preferentially affected by Alzheimer disease. There is no natural animal model with full disease pathology (neurofibrillary tangles and neuritic amyloid plaques of a severity seen in Alzheimer's disease brains). Biomarkers such as reduced glucose metabolism in association neocortex, defects in long white matter tracts, RNA neurochemical changes, and high CSF levels of total and phosphorylated tau protein, which are helpful to identify MCI and preclinical Alzheimer disease patients, may also provide insights into what brain changes led to this disease being introduced during hominid evolution.
Collapse
|
61
|
Mahmood S, Ahmad W, Hassan MJ. Autosomal Recessive Primary Microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J Rare Dis 2011; 6:39. [PMID: 21668957 PMCID: PMC3123551 DOI: 10.1186/1750-1172-6-39] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 06/13/2011] [Indexed: 12/21/2022] Open
Abstract
Autosomal Recessive Primary Microcephaly (MCPH) is a rare disorder of neurogenic mitosis characterized by reduced head circumference at birth with variable degree of mental retardation. In MCPH patients, brain size reduced to almost one-third of its original volume due to reduced number of generated cerebral cortical neurons during embryonic neurogensis. So far, seven genetic loci (MCPH1-7) for this condition have been mapped with seven corresponding genes (MCPH1, WDR62, CDK5RAP2, CEP152, ASPM, CENPJ, and STIL) identified from different world populations. Contribution of ASPM and WDR62 gene mutations in MCPH World wide is more than 50%. By and large, primary microcephaly patients are phenotypically indistinguishable, however, recent studies in patients with mutations in MCPH1, WDR62 and ASPM genes showed a broader clinical and/or cellular phenotype. It has been proposed that mutations in MCPH genes can cause the disease phenotype by disturbing: 1) orientation of mitotic spindles, 2) chromosome condensation mechanism during embryonic neurogenesis, 3) DNA damage-response signaling, 4) transcriptional regulations and microtubule dynamics, 5) certain unknown centrosomal mechanisms that control the number of neurons generated by neural precursor cells. Recent discoveries of mammalian models for MCPH have open up horizons for researchers to add more knowledge regarding the etiology and pathophysiology of MCPH. High incidence of MCPH in Pakistani population reflects the most probable involvement of consanguinity. Genetic counseling and clinical management through carrier detection/prenatal diagnosis in MCPH families can help reducing the incidence of this autosomal recessive disorder.
Collapse
Affiliation(s)
- Saqib Mahmood
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Khayaban-e-Jamia Punjab, Lahore, 54600, Pakistan
| | | | | |
Collapse
|
62
|
Kim HT, Lee MS, Choi JH, Jung JY, Ahn DG, Yeo SY, Choi DK, Kim CH. The microcephaly gene aspm is involved in brain development in zebrafish. Biochem Biophys Res Commun 2011; 409:640-4. [PMID: 21620798 DOI: 10.1016/j.bbrc.2011.05.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
MCPH is a neurodevelopmental disorder characterized by a global reduction in cerebral cortical volume. Homozygous mutation of the MCPH5 gene, also known as ASPM, is the most common cause of the MCPH phenotype. To elucidate the roles of ASPM during embryonic development, the zebrafish aspm was identified, which is specifically expressed in proliferating cells in the CNS. Morpholino-mediated knock-down of aspm resulted in a significant reduction in head size. Furthermore, aspm-deficient embryos exhibited a mitotic arrest during early development. These findings suggest that the reduction in brain size in MCPH might be caused by lack of aspm function in the mitotic cell cycle and demonstrate that the zebrafish can provide a model system for congenital diseases of the human nervous system.
Collapse
Affiliation(s)
- Hyun-Taek Kim
- Department of Biology and GRAST, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Toth N. How to succeed in business (The Business of Becoming a Cognitively Modern Human): a review of The Rise of Homo sapiens: The Evolution of Modern Thinking, by Frederick L. Coolidge and Thomas Wynn. Evol Dev 2011. [DOI: 10.1111/j.1525-142x.2011.00484.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
64
|
Kraemer N, Issa L, Hauck SCR, Mani S, Ninnemann O, Kaindl AM. What's the hype about CDK5RAP2? Cell Mol Life Sci 2011; 68:1719-36. [PMID: 21327915 PMCID: PMC11115181 DOI: 10.1007/s00018-011-0635-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/18/2011] [Accepted: 02/01/2011] [Indexed: 12/11/2022]
Abstract
Cyclin dependent kinase 5 regulatory subunit-associated protein 2 (CDK5RAP2) has gained attention in the last years following the discovery, in 2005, that recessive mutations cause primary autosomal recessive microcephaly. This disease is seen as an isolated developmental defect of the brain, particularly of the cerebral cortex, and was thus historically also referred to as microcephalia vera. Unraveling the pathomechanisms leading to this human disease is fascinating scientists because it can convey insight into basic mechanisms of physiologic brain development (particularly of cortex formation). It also finds itself in the spotlight because of its implication in trends in mammalian evolution with a massive increase in the size of the cerebral cortex in primates. Here, we provide a timely overview of the current knowledge on the function of CDK5RAP2 and mechanisms that might lead to disease in humans when the function of this protein is disturbed.
Collapse
Affiliation(s)
- Nadine Kraemer
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Lina Issa
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefanie C. R. Hauck
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Shyamala Mani
- Center for Neuroscience, Indian Institute of Science, Bangalore, 560 012 India
| | - Olaf Ninnemann
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Angela M. Kaindl
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology and Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
65
|
McGowen MR, Montgomery SH, Clark C, Gatesy J. Phylogeny and adaptive evolution of the brain-development gene microcephalin (MCPH1) in cetaceans. BMC Evol Biol 2011; 11:98. [PMID: 21492470 PMCID: PMC3101173 DOI: 10.1186/1471-2148-11-98] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 04/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Representatives of Cetacea have the greatest absolute brain size among animals, and the largest relative brain size aside from humans. Despite this, genes implicated in the evolution of large brain size in primates have yet to be surveyed in cetaceans. RESULTS We sequenced ~1240 basepairs of the brain development gene microcephalin (MCPH1) in 38 cetacean species. Alignments of these data and a published complete sequence from Tursiops truncatus with primate MCPH1 were utilized in phylogenetic analyses and to estimate ω (rate of nonsynonymous substitution/rate of synonymous substitution) using site and branch models of molecular evolution. We also tested the hypothesis that selection on MCPH1 was correlated with brain size in cetaceans using a continuous regression analysis that accounted for phylogenetic history. Our analyses revealed widespread signals of adaptive evolution in the MCPH1 of Cetacea and in other subclades of Mammalia, however, there was not a significant positive association between ω and brain size within Cetacea. CONCLUSION In conjunction with a recent study of Primates, we find no evidence to support an association between MCPH1 evolution and the evolution of brain size in highly encephalized mammalian species. Our finding of significant positive selection in MCPH1 may be linked to other functions of the gene.
Collapse
Affiliation(s)
- Michael R McGowen
- Department of Biology, University of California, Riverside, 92521, USA.
| | | | | | | |
Collapse
|
66
|
Abstract
Patterns and risks of human disease have evolved. In this article, I review evidence regarding the importance of recent adaptive evolution, positive selection, and genomic conflicts in shaping the genetic and phenotypic architectures of polygenic human diseases. Strong recent selection in human populations can create and maintain genetically based disease risk primarily through three processes: increased scope for dysregulation from recent human adaptations, divergent optima generated by intraspecific genomic conflicts, and transient or stable deleterious by-products of positive selection caused by antagonistic pleiotropy, ultimately due to trade-offs at the levels of molecular genetics, development, and physiology. Human disease due to these processes appears to be concentrated in three sets of phenotypes: cognition and emotion, reproductive traits, and life-history traits related to long life-span. Diverse, convergent lines of evidence suggest that a small set of tissues whose pleiotropic patterns of gene function and expression are under especially strong selection-brain, placenta, testis, prostate, breast, and ovary-has mediated a considerable proportion of disease risk in modern humans.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biosciences, Simon Fraser University, Burnaby, B. C., Canada V5A 1S6.
| |
Collapse
|
67
|
Montgomery SH, Capellini I, Venditti C, Barton RA, Mundy NI. Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates. Mol Biol Evol 2010; 28:625-38. [PMID: 20961963 DOI: 10.1093/molbev/msq237] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The anatomical basis and adaptive function of the expansion in primate brain size have long been studied; however, we are only beginning to understand the genetic basis of these evolutionary changes. Genes linked to human primary microcephaly have received much attention as they have accelerated evolutionary rates along lineages leading to humans. However, these studies focus narrowly on apes, and the link between microcephaly gene evolution and brain evolution is disputed. We analyzed the molecular evolution of four genes associated with microcephaly (ASPM, CDK5RAP2, CENPJ, MCPH1) across 21 species representing all major clades of anthropoid primates. Contrary to prevailing assumptions, positive selection was not limited to or intensified along the lineage leading to humans. In fact we show that all four loci were subject to positive selection across the anthropoid primate phylogeny. We developed clearly defined hypotheses to explicitly test if selection on these loci was associated with the evolution of brain size. We found positive relationships between both CDK5RAP2 and ASPM and neonatal brain mass and somewhat weaker relationships between these genes and adult brain size. In contrast, there is no evidence linking CENPJ and MCPH1 to brain size evolution. The stronger association of ASPM and CDK5RAP2 evolution with neonatal brain size than with adult brain size is consistent with these loci having a direct effect on prenatal neuronal proliferation. These results suggest that primate brain size may have at least a partially conserved genetic basis. Our results contradict a previous study that linked adaptive evolution of ASPM to changes in relative cortex size; however, our analysis indicates that this conclusion is not robust. Our finding that the coding regions of two widely expressed loci has experienced pervasive positive selection in relation to a complex, quantitative developmental phenotype provides a notable counterexample to the commonly asserted hypothesis that cis-regulatory regions play a dominant role in phenotypic evolution.
Collapse
|
68
|
|
69
|
Pinker S. Colloquium paper: the cognitive niche: coevolution of intelligence, sociality, and language. Proc Natl Acad Sci U S A 2010; 107 Suppl 2:8993-9. [PMID: 20445094 PMCID: PMC3024014 DOI: 10.1073/pnas.0914630107] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although Darwin insisted that human intelligence could be fully explained by the theory of evolution, the codiscoverer of natural selection, Alfred Russel Wallace, claimed that abstract intelligence was of no use to ancestral humans and could only be explained by intelligent design. Wallace's apparent paradox can be dissolved with two hypotheses about human cognition. One is that intelligence is an adaptation to a knowledge-using, socially interdependent lifestyle, the "cognitive niche." This embraces the ability to overcome the evolutionary fixed defenses of plants and animals by applications of reasoning, including weapons, traps, coordinated driving of game, and detoxification of plants. Such reasoning exploits intuitive theories about different aspects of the world, such as objects, forces, paths, places, states, substances, and other people's beliefs and desires. The theory explains many zoologically unusual traits in Homo sapiens, including our complex toolkit, wide range of habitats and diets, extended childhoods and long lives, hypersociality, complex mating, division into cultures, and language (which multiplies the benefit of knowledge because know-how is useful not only for its practical benefits but as a trade good with others, enhancing the evolution of cooperation). The second hypothesis is that humans possess an ability of metaphorical abstraction, which allows them to coopt faculties that originally evolved for physical problem-solving and social coordination, apply them to abstract subject matter, and combine them productively. These abilities can help explain the emergence of abstract cognition without supernatural or exotic evolutionary forces and are in principle testable by analyses of statistical signs of selection in the human genome.
Collapse
Affiliation(s)
- Steven Pinker
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
70
|
Colloquium paper: phylogenomic evidence of adaptive evolution in the ancestry of humans. Proc Natl Acad Sci U S A 2010; 107 Suppl 2:8918-23. [PMID: 20445097 DOI: 10.1073/pnas.0914626107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In Charles Darwin's tree model for life's evolution, natural selection adaptively modifies newly arisen species as they branch apart from their common ancestor. In accord with this Darwinian concept, the phylogenomic approach to elucidating adaptive evolution in genes and genomes in the ancestry of modern humans requires a well supported and well sampled phylogeny that accurately places humans and other primates and mammals with respect to one another. For more than a century, first from the comparative immunological work of Nuttall on blood sera and now from comparative genomic studies, molecular findings have demonstrated the close kinship of humans to chimpanzees. The close genetic correspondence of chimpanzees to humans and the relative shortness of our evolutionary separation suggest that most distinctive features of the modern human phenotype had already evolved during our ancestry with chimpanzees. Thus, a phylogenomic assessment of being human should examine earlier stages of human ancestry as well as later stages. In addition, with the availability of a number of mammalian genomes, similarities in phenotype between distantly related taxa should be explored for evidence of convergent or parallel adaptive evolution. As an example, recent phylogenomic evidence has shown that adaptive evolution of aerobic energy metabolism genes may have helped shape such distinctive modern human features as long life spans and enlarged brains in the ancestries of both humans and elephants.
Collapse
|
71
|
Yu F, Keinan A, Chen H, Ferland RJ, Hill RS, Mignault AA, Walsh CA, Reich D. Detecting natural selection by empirical comparison to random regions of the genome. Hum Mol Genet 2009; 18:4853-67. [PMID: 19783549 PMCID: PMC2778377 DOI: 10.1093/hmg/ddp457] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Accepted: 09/23/2009] [Indexed: 11/30/2022] Open
Abstract
Historical episodes of natural selection can skew the frequencies of genetic variants, leaving a signature that can persist for many tens or even hundreds of thousands of years. However, formal tests for selection based on allele frequency skew require strong assumptions about demographic history and mutation, which are rarely well understood. Here, we develop an empirical approach to test for signals of selection that compares patterns of genetic variation at a candidate locus with matched random regions of the genome collected in the same way. We apply this approach to four genes that have been implicated in syndromes of impaired neurological development, comparing the pattern of variation in our re-sequencing data with a large-scale, genomic data set that provides an empirical null distribution. We confirm a previously reported signal at FOXP2, and find a novel signal of selection centered at AHI1, a gene that is involved in motor and behavior abnormalities. The locus is marked by many high frequency derived alleles in non-Africans that are of low frequency in Africans, suggesting that selection at this or a closely neighboring gene occurred in the ancestral population of non-Africans. Our study also provides a prototype for how empirical scans for ancient selection can be carried out once many genomes are sequenced.
Collapse
Affiliation(s)
- Fuli Yu
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Many roads lead to primary autosomal recessive microcephaly. Prog Neurobiol 2009; 90:363-83. [PMID: 19931588 DOI: 10.1016/j.pneurobio.2009.11.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/27/2009] [Accepted: 11/11/2009] [Indexed: 12/24/2022]
Abstract
Autosomal recessive primary microcephaly (MCPH), historically referred to as Microcephalia vera, is a genetically and clinically heterogeneous disease. Patients with MCPH typically exhibit congenital microcephaly as well as mental retardation, but usually no further neurological findings or malformations. Their microcephaly with grossly preserved macroscopic organization of the brain is a consequence of a reduced brain volume, which is evident particularly within the cerebral cortex and thus results to a large part from a reduction of grey matter. Some patients with MCPH further provide evidence of neuronal heterotopias, polymicrogyria or cortical dysplasia suggesting an associated neuronal migration defect. Genetic causes of MCPH subtypes 1-7 include mutations in genes encoding microcephalin, cyclin-dependent kinase 5 regulatory associated protein 2 (CDK5RAP2), abnormal spindle-like, microcephaly associated protein (ASPM), centromeric protein J (CENPJ), and SCL/TAL1-interrupting locus (STIL) as well as linkage to the two loci 19q13.1-13.2 and 15q15-q21. Here, we provide a timely overview of current knowledge on mechanisms leading to microcephaly in humans with MCPH and abnormalities in cell division/cell survival in corresponding animal models. Understanding the pathomechanisms leading to MCPH is of high importance not only for our understanding of physiologic brain development (particularly of cortex formation), but also for that of trends in mammalian evolution with a massive increase in size of the cerebral cortex in primates, of microcephalies of other etiologies including environmentally induced microcephalies, and of cancer formation.
Collapse
|
73
|
Phylogenomic analyses reveal convergent patterns of adaptive evolution in elephant and human ancestries. Proc Natl Acad Sci U S A 2009; 106:20824-9. [PMID: 19926857 DOI: 10.1073/pnas.0911239106] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specific sets of brain-expressed genes, such as aerobic energy metabolism genes, evolved adaptively in the ancestry of humans and may have evolved adaptively in the ancestry of other large-brained mammals. The recent addition of genomes from two afrotherians (elephant and tenrec) to the expanding set of publically available sequenced mammalian genomes provided an opportunity to test this hypothesis. Elephants resemble humans by having large brains and long life spans; tenrecs, in contrast, have small brains and short life spans. Thus, we investigated whether the phylogenomic patterns of adaptive evolution are more similar between elephant and human than between either elephant and tenrec lineages or human and mouse lineages, and whether aerobic energy metabolism genes are especially well represented in the elephant and human patterns. Our analyses encompassed approximately 6,000 genes in each of these lineages with each gene yielding extensive coding sequence matches in interordinal comparisons. Each gene's nonsynonymous and synonymous nucleotide substitution rates and dN/dS ratios were determined. Then, from gene ontology information on genes with the higher dN/dS ratios, we identified the more prevalent sets of genes that belong to specific functional categories and that evolved adaptively. Elephant and human lineages showed much slower nucleotide substitution rates than tenrec and mouse lineages but more adaptively evolved genes. In correlation with absolute brain size and brain oxygen consumption being largest in elephants and next largest in humans, adaptively evolved aerobic energy metabolism genes were most evident in the elephant lineage and next most evident in the human lineage.
Collapse
|
74
|
|
75
|
Abstract
Genetic microcephaly and lissencephaly are 2 of the most common brain malformations. Each of them is a heterogeneous group of disorders caused by mutations of many different genes. They are a significant cause of neurological morbidity in children worldwide, responsible for many cases of mental retardation, cerebral palsy, and epilepsy. Recent advances in molecular genetics have led to the identification of several genes causing these disorders, and thus accurate molecular diagnosis and improved genetic counseling has become available for many patients and their families. More recently identified genes include STIL, causing primary autosomal recessive microcephaly (microcephaly vera), and TUBA1A, causing lissencephaly. Numerous other disease genes are likely still to be identified. Functional studies of genes that cause microcephaly and lissencephaly have provided valuable insight into the molecular mechanisms of human brain development.
Collapse
Affiliation(s)
- Ganeshwaran H Mochida
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.
| |
Collapse
|
76
|
A common MECP2 haplotype associates with reduced cortical surface area in humans in two independent populations. Proc Natl Acad Sci U S A 2009; 106:15483-8. [PMID: 19717458 DOI: 10.1073/pnas.0901866106] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gene MECP2 is a well-known determinant of brain structure. Mutations in the MECP2 protein cause microencephalopathy and are associated with several neurodevelopmental disorders that affect both brain morphology and cognition. Although mutations in MECP2 result in severe neurological phenotypes, the effect of common variation in this genetic region is unknown. We find that common sequence variations in a region in and around MECP2 show association with structural brain size measures in 2 independent cohorts, a discovery sample from the Thematic Organized Psychosis research group, and a replication sample from the Alzheimer's Disease Neuroimaging Initiative. The most statistically significant replicated association (P < 0.025 in both cohorts) involved the minor allele of SNP rs2239464 with reduced cortical surface area, and the finding was specific to male gender in both populations. Variations in the MECP2 region were associated with cortical surface area but not cortical thickness. Secondary analysis showed that this allele was also associated with reduced surface area in specific cortical regions (cuneus, fusiform gyrus, pars triangularis) in both populations.
Collapse
|
77
|
Abstract
Gould and Lewontin's 30-year-old critique of adaptionism fundamentally changed the discourse of evolutionary biology. However, with the influx of new ideas and scientific traditions from genomics into evolutionary biology, the old adaptionist controversies are being recycled in a new context. The insight gained by evolutionary biologists, that functional differences cannot be equated to adaptive changes, has at times not been appreciated by the genomics community. In this comment, I argue that even in the presence of both functional data and evidence for selection from DNA sequence data, it is still difficult to construct strong arguments in favor of adaptation. However, despite the difficulties in establishing scientific arguments in favor of specific historic evolutionary events, there is still much to learn about evolution from genomic data.
Collapse
Affiliation(s)
- Rasmus Nielsen
- Department of Biology, University of Copenhagen, 2100 Kbh Ø, Denmark
| |
Collapse
|
78
|
Takaji M, Komatsu Y, Watakabe A, Hashikawa T, Yamamori T. Paraneoplastic antigen-like 5 gene (PNMA5) is preferentially expressed in the association areas in a primate specific manner. ACTA ACUST UNITED AC 2009; 19:2865-79. [PMID: 19366867 PMCID: PMC2774394 DOI: 10.1093/cercor/bhp062] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To understand the relationship between the structure and function of primate neocortical areas at a molecular level, we have been screening for genes differentially expressed across macaque neocortical areas by restriction landmark cDNA scanning (RLCS). Here, we report enriched expression of the paraneoplastic antigen-like 5 gene (PNMA5) in association areas but not in primary sensory areas, with the lowest expression level in primary visual cortex. In situ hybridization in the primary sensory areas revealed PNMA5 mRNA expression restricted to layer II. Along the ventral visual pathway, the expression gradually increased in the excitatory neurons from the primary to higher visual areas. This differential expression pattern was very similar to that of retinol-binding protein (RBP) mRNA, another association-area-enriched gene that we reported previously. Additional expression analysis for comparison of other genes in the PNMA gene family, PNMA1, PNMA2, PNMA3, and MOAP1 (PNMA4), showed that they were widely expressed across areas and layers but without the differentiated pattern of PNMA5. In mouse brains, PNMA1 was only faintly expressed and PNMA5 was not detected. Sequence analysis showed divergence of PNMA5 sequences among mammals. These findings suggest that PNMA5 acquired a certain specialized role in the association areas of the neocortex during primate evolution.
Collapse
Affiliation(s)
- Masafumi Takaji
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
79
|
Johnson R, Samuel J, Ng CKL, Jauch R, Stanton LW, Wood IC. Evolution of the vertebrate gene regulatory network controlled by the transcriptional repressor REST. Mol Biol Evol 2009; 26:1491-507. [PMID: 19318521 DOI: 10.1093/molbev/msp058] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Specific wiring of gene-regulatory networks is likely to underlie much of the phenotypic difference between species, but the extent of lineage-specific regulatory architecture remains poorly understood. The essential vertebrate transcriptional repressor REST (RE1-Silencing Transcription Factor) targets many neural genes during development of the preimplantation embryo and the central nervous system, through its cognate DNA motif, the RE1 (Repressor Element 1). Here we present a comparative genomic analysis of REST recruitment in multiple species by integrating both sequence and experimental data. We use an accurate, experimentally validated Position-Specific Scoring Matrix method to identify REST binding sites in multiply aligned vertebrate genomes, allowing us to infer the evolutionary origin of each of 1,298 human RE1 elements. We validate these findings using experimental data of REST binding across the whole genomes of human and mouse. We show that one-third of human RE1s are unique to primates: These sites recruit REST in vivo, target neural genes, and are under purifying evolutionary selection. We observe a consistent and significant trend for more ancient RE1s to have higher affinity for REST than lineage-specific sites and to be more proximal to target genes. Our results lead us to propose a model where new transcription factor binding sites are constantly generated throughout the genome; thereafter, refinement of their sequence and location consolidates this remodeling of networks governing neural gene regulation.
Collapse
Affiliation(s)
- Rory Johnson
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Singapore.
| | | | | | | | | | | |
Collapse
|
80
|
Ghika J. Paleoneurology: Neurodegenerative diseases are age-related diseases of specific brain regions recently developed by homo sapiens. Med Hypotheses 2008; 71:788-801. [DOI: 10.1016/j.mehy.2008.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 05/01/2008] [Accepted: 05/04/2008] [Indexed: 12/31/2022]
|
81
|
|
82
|
Vallender EJ, Mekel-Bobrov N, Lahn BT. Genetic basis of human brain evolution. Trends Neurosci 2008; 31:637-44. [PMID: 18848363 DOI: 10.1016/j.tins.2008.08.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 08/25/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
Abstract
Human evolution is characterized by a rapid increase in brain size and complexity. Decades of research have made important strides in identifying anatomical and physiological substrates underlying the unique features of the human brain. By contrast, it has become possible only very recently to examine the genetic basis of human brain evolution. Through comparative genomics, tantalizing insights regarding human brain evolution have emerged. The genetic changes that potentially underlie human brain evolution span a wide range from single-nucleotide substitutions to large-scale structural alterations of the genome. Similarly, the functional consequences of these genetic changes vary greatly, including protein-sequence alterations, cis-regulatory changes and even the emergence of new genes and the extinction of existing ones. Here, we provide a general review of recent findings into the genetic basis of human brain evolution, highlight the most notable trends that have emerged and caution against over-interpretation of current data.
Collapse
Affiliation(s)
- Eric J Vallender
- Division of Neurochemistry, New England Primate Research Center, Harvard Medical School, Southborough, MA 01772, USA.
| | | | | |
Collapse
|
83
|
Vallender EJ. Exploring the origins of the human brain through molecular evolution. BRAIN, BEHAVIOR AND EVOLUTION 2008; 72:168-77. [PMID: 18836262 DOI: 10.1159/000151476] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The emergence of the human brain is one of evolution's most compelling mysteries. With its singular importance and astounding complexity, understanding the forces that gave rise to the human brain is a major undertaking. Recently, the identification and publication of the complete genomic sequence of humans, mice, chimpanzees, and macaques has allowed for large-scale studies looking for the genic substrates of this natural selection. These investigations into positive selection, however, have generally produced incongruous results. Here we consider some of these studies and their differences in methodologies with an eye towards how they affect the results. We also clarify the strengths and weaknesses of each of these approaches and discuss how these can be synthesized to develop a more complete understanding of the genetic correlates behind the human brain and the selective events that have acted upon them.
Collapse
Affiliation(s)
- Eric J Vallender
- Division of Neurochemistry, New England Primate Research Center, Harvard Medical School, Southborough, MA 01772, USA.
| |
Collapse
|
84
|
Ali F, Meier R. Positive Selection in ASPM Is Correlated with Cerebral Cortex Evolution across Primates but Not with Whole-Brain Size. Mol Biol Evol 2008; 25:2247-50. [PMID: 18718919 DOI: 10.1093/molbev/msn184] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Farhan Ali
- Department of Psychology, National University of Singapore, Singapore
| | | |
Collapse
|
85
|
Abstract
The use of phylogenetic analysis to predict positive selection specific to human genes is complicated by the very close evolutionary relationship with our nearest extant primate relatives, chimpanzees. To assess the power and limitations inherent in use of maximum-likelihood (ML) analysis of codon substitution patterns in such recently diverged species, a series of simulations was performed to assess the impact of several parameters of the evolutionary model on prediction of human-specific positive selection, including branch length and d(N)/d(S) ratio. Parameters were varied across a range of values observed in alignments of 175 transcription factor (TF) genes that were sequenced in 12 primate species. The ML method largely lacks the power to detect positive selection that has occurred since the most recent common ancestor between humans and chimpanzees. An alternative null model was developed on the basis of gene-specific evaluation of the empirical distribution of ML results, using simulated neutrally evolving sequences. This empirical test provides greater sensitivity to detect lineage-specific positive selection in the context of recent evolutionary divergence.
Collapse
|
86
|
Bonnefont J, Nikolaev SI, Perrier AL, Guo S, Cartier L, Sorce S, Laforge T, Aubry L, Khaitovich P, Peschanski M, Antonarakis SE, Krause KH. Evolutionary forces shape the human RFPL1,2,3 genes toward a role in neocortex development. Am J Hum Genet 2008; 83:208-18. [PMID: 18656177 DOI: 10.1016/j.ajhg.2008.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/13/2008] [Accepted: 07/07/2008] [Indexed: 12/28/2022] Open
Abstract
The size and organization of the brain neocortex has dramatically changed during primate evolution. This is probably due to the emergence of novel genes after duplication events, evolutionary changes in gene expression, and/or acceleration in protein evolution. Here, we describe a human Ret finger protein-like (hRFPL)1,2,3 gene cluster on chromosome 22, which is transactivated by the corticogenic transcription factor Pax6. High hRFPL1,2,3 transcript levels were detected at the onset of neurogenesis in differentiating human embryonic stem cells and in the developing human neocortex, whereas the unique murine RFPL gene is expressed in liver but not in neural tissue. Study of the evolutionary history of the RFPL gene family revealed that the RFPL1,2,3 gene ancestor emerged after the Euarchonta-Glires split. Subsequent duplication events led to the presence of multiple RFPL1,2,3 genes in Catarrhini ( approximately 34 mya) resulting in an increase in gene copy number in the hominoid lineage. In Catarrhini, RFPL1,2,3 expression profile diverged toward the neocortex and cerebellum over the liver. Importantly, humans showed a striking increase in cortical RFPL1,2,3 expression in comparison to their cerebellum, and to chimpanzee and macaque neocortex. Acceleration in RFPL-protein evolution was also observed with signs of positive selection in the RFPL1,2,3 cluster and two neofunctionalization events (acquisition of a specific RFPL-Defining Motif in all RFPLs and of a N-terminal 29 amino-acid sequence in catarrhinian RFPL1,2,3). Thus, we propose that the recent emergence and multiplication of the RFPL1,2,3 genes contribute to changes in primate neocortex size and/or organization.
Collapse
Affiliation(s)
- Jérôme Bonnefont
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
|
88
|
Abstract
PYST1/MKP3 is a negative feedback modulator of fibroblast growth factor 8 (Fgf8) signaling in the mammalian isthmic organizer of the brain, which affects the development of the midbrain and the hindbrain. The Dusp6 (Mkp3) gene is also highly expressed in the mouse embryonic forebrain. However, its role in forebrain development and function remains largely unknown. In this study, association analyses were preformed in silico between the variation I62M (rs13480726) of the Dusp6 (Mkp3) gene and the mouse forebrain weight/structure in 385 mice of 20 strains. It was found that I62M (allele A) was associated with reduced mouse forebrain structure in both sexes and lower brain weight in males.
Collapse
Affiliation(s)
- Bin Liu
- Molecular Epidemiological Research Center, Guangzhou No. 12 Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
89
|
Maussion G, Carayol J, Lepagnol-Bestel AM, Tores F, Loe-Mie Y, Milbreta U, Rousseau F, Fontaine K, Renaud J, Moalic JM, Philippi A, Chedotal A, Gorwood P, Ramoz N, Hager J, Simonneau M. Convergent evidence identifying MAP/microtubule affinity-regulating kinase 1 (MARK1) as a susceptibility gene for autism. Hum Mol Genet 2008; 17:2541-51. [PMID: 18492799 DOI: 10.1093/hmg/ddn154] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Autism spectrum disorders (ASDs) are common, heritable, but genetically heterogeneous neurodevelopmental conditions. We recently defined a susceptibility locus for ASDs on chromosome 1q41-q42. High-resolution single-nucleotide polymorphisms (126 SNPs) genotyping across the chromosome 1q41-q42 region, followed by a MARK1 (microtubule affinity-regulating kinase 1)-tagged-SNP association study in 276 families with autism from the Autism Genetic Research Exchange, showed that several SNPs within the MARK1 gene were significantly associated with ASDs by transmission disequilibrium tests. Haplotype rs12740310*C-rs3737296*G-rs12410279*A was overtransmitted (P(corrected)= 0.0016), with a relative risk for autism of 1.8 in homozygous carriers. Furthermore, ASD-associated SNP rs12410279 modulates the level of transcription of MARK1. We found that MARK1 was overexpressed in the prefrontal cortex (BA46) but not in cerebellar granule cells, on postmortem brain tissues from patients. MARK1 displayed an accelerated evolution along the lineage leading to humans, suggesting possible involvement of this gene in cognition. MARK1 encodes a kinase-regulating microtubule-dependent transport in axons and dendrites. Both overexpression and silencing of MARK1 resulted in significantly shorter dendrite length in mouse neocortical neurons and modified dendritic transport speed. As expected for a gene encoding a key polarity determinant Par-1 protein kinase, MARK1 is involved in axon-dendrite specification. Thus, MARK1 overexpression in humans may be responsible for subtle changes in dendritic functioning.
Collapse
Affiliation(s)
- Gilles Maussion
- INSERM U675, IFR2, Faculté de Médecine Xavier Bichat, Université Denis Diderot-Paris 7, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
Understanding the organization of the cerebral cortex remains a central focus of neuroscience. Cortical maps have relied almost exclusively on the examination of postmortem tissue to construct structural, architectonic maps. These maps have invariably distinguished between areas with fewer discernable layers, which have a less complex overall pattern of lamination and lack an internal granular layer, and those with more complex laminar architecture. The former includes several agranular limbic areas, and the latter includes the homotypical and granular areas of association and sensory cortex. Here, we relate these traditional maps to developmental data from noninvasive neuroimaging. Changes in cortical thickness were determined in vivo from 764 neuroanatomic magnetic resonance images acquired longitudinally from 375 typically developing children and young adults. We find differing levels of complexity of cortical growth across the cerebrum, which align closely with established architectonic maps. Cortical regions with simple laminar architecture, including most limbic areas, predominantly show simpler growth trajectories. These areas have clearly identified homologues in all mammalian brains and thus likely evolved in early mammals. In contrast, polysensory and high-order association areas of cortex, the most complex areas in terms of their laminar architecture, also have the most complex developmental trajectories. Some of these areas are unique to, or dramatically expanded in primates, lending an evolutionary significance to the findings. Furthermore, by mapping a key characteristic of these development trajectories (the age of attaining peak cortical thickness) we document the dynamic, heterochronous maturation of the cerebral cortex through time lapse sequences ("movies").
Collapse
|
91
|
|
92
|
Bradley BJ. Reconstructing phylogenies and phenotypes: a molecular view of human evolution. J Anat 2008; 212:337-53. [PMID: 18380860 PMCID: PMC2409108 DOI: 10.1111/j.1469-7580.2007.00840.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2007] [Indexed: 12/19/2022] Open
Abstract
This review broadly summarizes how molecular biology has contributed to our understanding of human evolution. Molecular anthropology began in the 1960s with immunological comparisons indicating that African apes and humans were closely related and, indeed, shared a common ancestor as recently as 5 million years ago. Although initially dismissed, this finding has proven robust and numerous lines of molecular evidence now firmly place the human-ape divergence at 4-8 Ma. Resolving the trichotomy among humans, chimpanzees and gorillas took a few more decades. Despite the readily apparent physical similarities shared by African apes to the exclusion of modern humans (body hair, knuckle-walking, thin tooth enamel), the molecular support for a human-chimpanzee clade is now overwhelming. More recently, whole genome sequencing and gene mapping have shifted the focus of molecular anthropology from phylogenetic analyses to phenotypic reconstruction and functional genomics. We are starting to identify the genetic basis of the morphological, physiological and behavioural traits that distinguish modern humans from apes and apes from other primates. Most notably, recent comparative genomic analyses strongly indicate that the marked differences between modern humans and chimpanzees are likely due more to changes in gene regulation than to modifications of the genes themselves, an idea first proposed over 30 years ago. Almost weekly, press releases describe newly identified genes and regulatory elements that seem to have undergone strong positive selection along the human lineage. Loci involved in speech (e.g. FOXP2), brain development (e.g. ASPM), and skull musculature (e.g. MYH16) have been of particular interest, but some surprising candidate loci (e.g. those involved in auditory capabilities) have emerged as well. Exciting new research avenues, such as the Neanderthal Genome Project, promise that molecular analyses will continue to provide novel insights about our evolution. Ultimately, however, these molecular findings can only be understood in light of data from field sites, morphology labs, and museum collections. Indeed, molecular anthropology depends on these sources for calibrating molecular clocks and placing genetic data within the context of key morphological and ecological transitions in human evolution.
Collapse
Affiliation(s)
- Brenda J Bradley
- Department of Zoology and Christ's College, University of Cambridge, UK.
| |
Collapse
|
93
|
Sherwood CC, Subiaul F, Zawidzki TW. A natural history of the human mind: tracing evolutionary changes in brain and cognition. J Anat 2008; 212:426-54. [PMID: 18380864 PMCID: PMC2409100 DOI: 10.1111/j.1469-7580.2008.00868.x] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2008] [Indexed: 11/29/2022] Open
Abstract
Since the last common ancestor shared by modern humans, chimpanzees and bonobos, the lineage leading to Homo sapiens has undergone a substantial change in brain size and organization. As a result, modern humans display striking differences from the living apes in the realm of cognition and linguistic expression. In this article, we review the evolutionary changes that occurred in the descent of Homo sapiens by reconstructing the neural and cognitive traits that would have characterized the last common ancestor and comparing these with the modern human condition. The last common ancestor can be reconstructed to have had a brain of approximately 300-400 g that displayed several unique phylogenetic specializations of development, anatomical organization, and biochemical function. These neuroanatomical substrates contributed to the enhancement of behavioral flexibility and social cognition. With this evolutionary history as precursor, the modern human mind may be conceived as a mosaic of traits inherited from a common ancestry with our close relatives, along with the addition of evolutionary specializations within particular domains. These modern human-specific cognitive and linguistic adaptations appear to be correlated with enlargement of the neocortex and related structures. Accompanying this general neocortical expansion, certain higher-order unimodal and multimodal cortical areas have grown disproportionately relative to primary cortical areas. Anatomical and molecular changes have also been identified that might relate to the greater metabolic demand and enhanced synaptic plasticity of modern human brain's. Finally, the unique brain growth trajectory of modern humans has made a significant contribution to our species' cognitive and linguistic abilities.
Collapse
Affiliation(s)
- Chet C Sherwood
- Center for the Advanced Study of Hominid Paleobiology and Department of Anthropology, The George Washington University, Washington DC 20052, USA.
| | | | | |
Collapse
|
94
|
Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 2008; 9:110-22. [PMID: 18209730 DOI: 10.1038/nrn2252] [Citation(s) in RCA: 629] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In 1970 the Boulder Committee described the basic principles of the development of the CNS, derived from observations on the human embryonic cerebrum. Since then, numerous studies have significantly advanced our knowledge of the timing, sequence and complexity of developmental events, and revealed important inter-species differences. We review current data on the development of the human cerebral cortex and update the classical model of how the structure that makes us human is formed.
Collapse
|
95
|
Focquaert F, Braeckman J, Platek SM. An Evolutionary Cognitive Neuroscience Perspective on Human Self-awareness and Theory of Mind. PHILOSOPHICAL PSYCHOLOGY 2008. [DOI: 10.1080/09515080701875156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
96
|
Harris EE, Meyer D. The molecular signature of selection underlying human adaptations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; Suppl 43:89-130. [PMID: 17103426 DOI: 10.1002/ajpa.20518] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the last decade, advances in human population genetics and comparative genomics have resulted in important contributions to our understanding of human genetic diversity and genetic adaptation. For the first time, we are able to reliably detect the signature of natural selection from patterns of DNA polymorphism. Identifying the effects of natural selection in this way provides a crucial piece of evidence needed to support hypotheses of human adaptation. This review provides a detailed description of the theory and analytical approaches used to detect signatures of natural selection in the human genome. We discuss these methods in relation to four classic human traits--skin color, the Duffy blood group, bitter-taste sensation, and lactase persistence. By highlighting these four traits we are able to discuss the ways in which analyses of DNA polymorphism can lead to inferences regarding past histories of selection. Specifically, we can infer the importance of specific regimes of selection (i.e. directional selection, balancing selection, and purifying selection) in the evolution of a trait because these different types of selection leave different patterns of DNA polymorphism. In addition, we demonstrate how these types of data can be used to estimate the time frame in which selection operated on a trait. As the field has advanced, a general issue that has come to the forefront is how specific demographic events in human history, such as population expansions, bottlenecks, and subdivision of populations, have also left a signature across the genome that can interfere with our detection of the footprint of selection at particular genes. Therefore, we discuss this general problem with respect to the four traits reviewed here, and describe the ways in which the signature of selection can be teased from a background signature of demographic history. Finally, we move from a discussion of analyses of selection motivated by a "candidate-gene" approach, in which a priori information led to the analysis of specific gene, to discussion of "genome-scanning" approaches that are directed at discovering new genes that have been under positive selection. Such scans can be designed to detect those genes that have been positively selected in our divergence from chimpanzees, as well as those genes that have been under selection as human populations have migrated, differentiated, and adapted to specific geographic environments. We predict that both approaches will be applied in the future, enabling a greater insight into human species-wide adaptations, as well as the specific adaptations of human populations.
Collapse
Affiliation(s)
- Eugene E Harris
- Department of Biological Sciences and Geology, Queensborough Community College, City University of New York, New York 11222, USA.
| | | |
Collapse
|
97
|
Wang JK, Li Y, Su B. A common SNP of MCPH1 is associated with cranial volume variation in Chinese population. Hum Mol Genet 2008; 17:1329-35. [PMID: 18204051 DOI: 10.1093/hmg/ddn021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microcephaly (MCPH) genes are informative in understanding the genetics and evolution of human brain volume. MCPH1 and abnormal spindle-like MCPH associated (ASPM) are the two known MCPH causing genes that were suggested undergone recent positive selection in human populations. However, previous studies focusing only on the two tag single nucleotide polymorphisms(SNPs) of MCPH1 and ASPM failed to detect any correlation between gene polymorphisms and variations of brain volume and cognitive abilities. We conducted an association study on eight common SNPs of MCPH1 and ASPM in a Chinese population of 867 unrelated individuals. We demonstrate that a non-synonymous SNP (rs1057090, V761A in BRCA1 C-terminus (BRCT) domain) of MCPH1 other than the two known tag SNPs is significantly associated with cranial volume in Chinese males. The haplotype analysis confirmed the association of rs1057090 with cranial volume, and the homozygote males containing the derived alleles of rs1057090 have larger cranial volumes compared with those containing the ancestral alleles. No recent selection signal can be detected on this SNP, suggesting that the brain volume variation in human populations is likely neutral or under very weak selection in recent human history.
Collapse
Affiliation(s)
- Jin-kai Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, PR China
| | | | | |
Collapse
|
98
|
Gurok U, Loebbert RW, Meyer AH, Mueller R, Schoemaker H, Gross G, Behl B. Laser capture microdissection and microarray analysis of dividing neural progenitor cells from the adult rat hippocampus. Eur J Neurosci 2007; 26:1079-90. [PMID: 17767487 DOI: 10.1111/j.1460-9568.2007.05734.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neural progenitor cells reside in the hippocampus of adult rodents and humans and generate granule neurons throughout life. Knowledge about the molecular processes regulating these neurogenic cells is fragmentary. In order to identify genes with a role in the proliferation of adult neural progenitor cells, a protocol was elaborated to enable the staining and isolation of such cells under RNA-preserving conditions with a combination of immunohistochemistry and laser capture microdissection. We increased proliferation of neural progenitor cells by electroconvulsive treatment, one of the most effective antidepressant treatments, and isolated Ki-67-positive cells using this new protocol. RNA amplification via in vitro transcription and subsequent microarray analysis revealed over 100 genes that were differentially expressed in neural progenitor cells due to electroconvulsive treatment compared to untreated control animals. Some of these genes have already been implicated in the functioning of neural progenitor cells or have been induced by electroconvulsive treatment; these include brain-derived neurotrophic factor (Bdnf), PDZ-binding kinase (Pbk) and abnormal spindle-like microcephaly-associated (Aspm). In addition, genes were identified for which no role in the proliferation of neurogenic progenitors has been described so far, such as enhancer of zeste homolog 2 (Ezh2).
Collapse
Affiliation(s)
- Ulf Gurok
- Neuroscience Discovery Research, Abbott, Knollstrasse, 67061 Ludwigshafen, Germany.
| | | | | | | | | | | | | |
Collapse
|
99
|
Lu ZX, Peng J, Su B. A human-specific mutation leads to the origin of a novel splice form of neuropsin (KLK8), a gene involved in learning and memory. Hum Mutat 2007; 28:978-84. [PMID: 17487847 DOI: 10.1002/humu.20547] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neuropsin (kallikrein 8, KLK8) is a secreted-type serine protease preferentially expressed in the central nervous system and involved in learning and memory. Its splicing pattern is different in human and mouse, with the longer form (type II) only expressed in human. Sequence analysis suggested a recent origin of type II during primate evolution. Here we demonstrate that the type II form is absent in nonhuman primates, and is thus a human-specific splice form. With the use of an in vitro splicing assay, we show that a human-specific T to A mutation (c.71-127T>A) triggers the change of splicing pattern, leading to the origin of a novel splice form in the human brain. Using mutation assay, we prove that this mutation is not only necessary but also sufficient for type II expression. Our results demonstrate a molecular mechanism for the creation of novel proteins through alternative splicing in the central nervous system during human evolution.
Collapse
Affiliation(s)
- Zhi-xiang Lu
- Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | | |
Collapse
|
100
|
Wang HY, Chien HC, Osada N, Hashimoto K, Sugano S, Gojobori T, Chou CK, Tsai SF, Wu CI, Shen CKJ. Rate of evolution in brain-expressed genes in humans and other primates. PLoS Biol 2007; 5:e13. [PMID: 17194215 PMCID: PMC1717015 DOI: 10.1371/journal.pbio.0050013] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 11/10/2006] [Indexed: 11/30/2022] Open
Abstract
Brain-expressed genes are known to evolve slowly in mammals. Nevertheless, since brains of higher primates have evolved rapidly, one might expect acceleration in DNA sequence evolution in their brain-expressed genes. In this study, we carried out full-length cDNA sequencing on the brain transcriptome of an Old World monkey (OWM) and then conducted three-way comparisons among (i) mouse, OWM, and human, and (ii) OWM, chimpanzee, and human. Although brain-expressed genes indeed appear to evolve more rapidly in species with more advanced brains (apes > OWM > mouse), a similar lineage effect is observable for most other genes. The broad inclusion of genes in the reference set to represent the genomic average is therefore critical to this type of analysis. Calibrated against the genomic average, the rate of evolution among brain-expressed genes is probably lower (or at most equal) in humans than in chimpanzee and OWM. Interestingly, the trend of slow evolution in coding sequence is no less pronounced among brain-specific genes, vis-à-vis brain-expressed genes in general. The human brain may thus differ from those of our close relatives in two opposite directions: (i) faster evolution in gene expression, and (ii) a likely slowdown in the evolution of protein sequences. Possible explanations and hypotheses are discussed. When calibrated against the genomic average, the rate of evolution among brain-expressed genes in humans is probably lower than or equal to that of other closely related primates. Whether comparing morphology or cognitive ability, it is clear that the human brain has evolved rapidly relative to that of other primates. But the extent to which genes expressed in the brain also reflect this overall pattern is unclear. To address this question, it's necessary to measure any variations in the DNA sequences of these genes between human and chimpanzee. And, to do this as accurately as possible, it's also important to require an appropriate reference group to act as a benchmark against which the differences can be measured. We therefore compared publicly available genomic sequences of chimps and humans with complementary DNA sequences of several thousand genes expressed in the brain of another closely related primate—the macaque, an Old World monkey—as well as the more distantly related mouse. Our analyses of the rates of protein evolution in these species suggest that genes expressed in the human brain have in fact slowed down in their evolution since the split between human and chimpanzee, contrary to some previously published reports. We suggest that advanced brains are driven primarily by the increasing complexity in the network of gene interactions. As a result, brain-expressed genes are constrained in their sequence evolution, although their expression levels may change rapidly.
Collapse
Affiliation(s)
- Hurng-Yi Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | | | - Naoki Osada
- Division of Biomedical Research Resources, National Institute of Biomedical Innovation, Osaka, Japan
| | - Katsuyuki Hashimoto
- Division of Genetic Resources, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sumio Sugano
- Laboratory of Functional Genomics, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Takashi Gojobori
- Center of Information Biology, National Institute of Genetics, Mishima, Japan
| | - Chen-Kung Chou
- Department of Life Science, Chang Gung University, Tao-Yuan, Taiwan
| | - Shih-Feng Tsai
- Division of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Chung-I Wu
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- * To whom correspondence should be addressed. E-mail: (CIW); (CKJS)
| | - C.-K. James Shen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * To whom correspondence should be addressed. E-mail: (CIW); (CKJS)
| |
Collapse
|