51
|
Topical vitamin D analogue calcipotriol reduces skin fibrosis in experimental scleroderma. Arch Dermatol Res 2014; 306:757-61. [DOI: 10.1007/s00403-014-1466-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/10/2014] [Accepted: 04/13/2014] [Indexed: 11/25/2022]
|
52
|
Dobrota R, Mihai C, Distler O. Personalized Medicine in Systemic Sclerosis: Facts and Promises. Curr Rheumatol Rep 2014; 16:425. [DOI: 10.1007/s11926-014-0425-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
53
|
López-Isac E, Bossini-Castillo L, Simeon CP, Egurbide MV, Alegre-Sancho JJ, Callejas JL, Roman-Ivorra JA, Freire M, Beretta L, Santaniello A, Airó P, Lunardi C, Hunzelmann N, Riemekasten G, Witte T, Kreuter A, Distler JHW, Schuerwegh AJ, Vonk MC, Voskuyl AE, Shiels PG, van Laar JM, Fonseca C, Denton C, Herrick A, Worthington J, Assassi S, Koeleman BP, Mayes MD, Radstake TRDJ, Martin J. A genome-wide association study follow-up suggests a possible role for PPARG in systemic sclerosis susceptibility. Arthritis Res Ther 2014; 16:R6. [PMID: 24401602 PMCID: PMC3978735 DOI: 10.1186/ar4432] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/18/2013] [Indexed: 02/06/2023] Open
Abstract
Introduction A recent genome-wide association study (GWAS) comprising a French cohort of systemic sclerosis (SSc) reported several non-HLA single-nucleotide polymorphisms (SNPs) showing a nominal association in the discovery phase. We aimed to identify previously overlooked susceptibility variants by using a follow-up strategy. Methods Sixty-six non-HLA SNPs showing a P value <10-4 in the discovery phase of the French SSc GWAS were analyzed in the first step of this study, performing a meta-analysis that combined data from the two published SSc GWASs. A total of 2,921 SSc patients and 6,963 healthy controls were included in this first phase. Two SNPs, PPARG rs310746 and CHRNA9 rs6832151, were selected for genotyping in the replication cohort (1,068 SSc patients and 6,762 healthy controls) based on the results of the first step. Genotyping was performed by using TaqMan SNP genotyping assays. Results We observed nominal associations for both PPARG rs310746 (PMH = 1.90 × 10-6, OR, 1.28) and CHRNA9 rs6832151 (PMH = 4.30 × 10-6, OR, 1.17) genetic variants with SSc in the first step of our study. In the replication phase, we observed a trend of association for PPARG rs310746 (P value = 0.066; OR, 1.17). The combined overall Mantel-Haenszel meta-analysis of all the cohorts included in the present study revealed that PPARG rs310746 remained associated with SSc with a nominal non-genome-wide significant P value (PMH = 5.00 × 10-7; OR, 1.25). No evidence of association was observed for CHRNA9 rs6832151 either in the replication phase or in the overall pooled analysis. Conclusion Our results suggest a role of PPARG gene in the development of SSc.
Collapse
|
54
|
Mayes M, Bossini-Castillo L, Gorlova O, Martin J, Zhou X, Chen W, Assassi S, Ying J, Tan F, Arnett F, Reveille J, Guerra S, Teruel M, Carmona F, Gregersen P, Lee A, López-Isac E, Ochoa E, Carreira P, Simeón C, Castellví I, González-Gay M, Zhernakova A, Padyukov L, Alarcón-Riquelme M, Wijmenga C, Brown M, Beretta L, Riemekasten G, Witte T, Hunzelmann N, Kreuter A, Distler JH, Voskuyl AE, Schuerwegh AJ, Hesselstrand R, Nordin A, Airó P, Lunardi C, Shiels P, van Laar JM, Herrick A, Worthington J, Denton C, Wigley FM, Hummers LK, Varga J, Hinchcliff ME, Baron M, Hudson M, Pope JE, Furst DE, Khanna D, Phillips K, Schiopu E, Segal BM, Molitor JA, Silver RM, Steen VD, Simms RW, Lafyatis RA, Fessler BJ, Frech TM, AlKassab F, Docherty P, Kaminska E, Khalidi N, Jones HN, Markland J, Robinson D, Broen J, Radstake TR, Fonseca C, Koeleman BP, Martin J, Ortego-Centeno N, Ríos R, Callejas J, Navarrete N, García Portales R, Camps M, Fernández-Nebro A, González-Escribano M, Sánchez-Román J, García-Hernández F, Castillo M, Aguirre M, Gómez-Gracia I, Fernández-Gutiérrez B, Rodríguez-Rodríguez L, Vicente E, Andreu J, Fernández de Castro M, García de la Peña P, López-Longo F, Martínez L, Fonollosa V, Espinosa G, Tolosa C, Pros A, Rodríguez Carballeira M, Narváez F, Rubio Rivas M, Ortiz Santamaría V, Díaz B, Trapiella L, Freire M, Sousa A, Egurbide M, Fanlo Mateo P, Sáez-Comet L, Díaz F, Hernández V, Beltrán E, Román-Ivorra J, Grau E, Alegre Sancho J, Blanco García F, Oreiro N, Fernández Sueiro L. Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis. Am J Hum Genet 2014; 94:47-61. [PMID: 24387989 DOI: 10.1016/j.ajhg.2013.12.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022] Open
Abstract
In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci.
Collapse
|
55
|
Prostaglandin E₂ promotes Th1 differentiation via synergistic amplification of IL-12 signalling by cAMP and PI3-kinase. Nat Commun 2013; 4:1685. [PMID: 23575689 PMCID: PMC3644078 DOI: 10.1038/ncomms2684] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 02/28/2013] [Indexed: 01/08/2023] Open
Abstract
T helper 1 (Th1) cells have critical roles in various autoimmune and proinflammatory diseases. cAMP has long been believed to act as a suppressor of IFN-γ production and Th1 cell-mediated immune inflammation. Here we show that cAMP actively promotes Th1 differentiation by inducing gene expression of cytokine receptors involved in this process. PGE2 signalling through EP2/EP4 receptors mobilizes the cAMP-PKA pathway, which induces CREB- and its co-activator CRTC2-mediated transcription of IL-12Rβ2 and IFN-γR1. Meanwhile, cAMP-mediated suppression of T-cell receptor signalling is overcome by simultaneous activation of PI3-kinase through EP2/EP4 and/or CD28. Loss of EP4 in T cells restricts expression of IL-12Rβ2 and IFN-γR1, and attenuates Th1 cell-mediated inflammation in vivo. These findings clarify the molecular mechanisms and pathological contexts of cAMP-mediated Th1 differentiation and have clinical and therapeutic implications for deployment of cAMP modulators as immunoregulatory drugs.
Collapse
|
56
|
de Paus RA, Geilenkirchen MA, van Riet S, van Dissel JT, van de Vosse E. Differential expression and function of human IL-12Rβ2 polymorphic variants. Mol Immunol 2013; 56:380-9. [PMID: 23911393 DOI: 10.1016/j.molimm.2013.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/28/2013] [Accepted: 07/05/2013] [Indexed: 11/13/2022]
Abstract
The receptor for interleukin-12, formed by IL-12Rβ1 and IL-12Rβ2, mediates the type I immune responses of various types of lymphocytes. Polymorphisms in IL12RB2, the gene encoding IL-12Rβ2, were reported to be associated with several immune related diseases, such as Crohn's disease. Because the IL23R and IL12RB2 genes are located in close proximity on the genome, the reported associations might also be attributable to linked polymorphisms in IL23R, which were found to be associated with immune related diseases as well. To clarify the role of IL-12Rβ2 in immune diseases, we investigated the functional consequences of thirteen amino acid substitutions in IL-12Rβ2. We developed a model with retroviral expression of IL-12Rβ2 in B cell lines. With the use of this model the expression and function of the variants was compared within the same genetic background. Four of the IL-12Rβ2 variants, N271Y, R313G, A604V and L808R showed reduced IL-12 responses compared to the wild type variant. Two of these are relatively common in some populations and may be used in future association studies to reveal a role for IL-12 in infectious and/or immune related diseases.
Collapse
Affiliation(s)
- Roelof A de Paus
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
57
|
Systemic sclerosis: genetics and epigenetics. J Autoimmun 2013; 41:161-7. [PMID: 23415078 DOI: 10.1016/j.jaut.2013.01.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 01/10/2013] [Accepted: 01/13/2013] [Indexed: 12/26/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by immune abnormalities, vascular obliteration, excessive extracellular matrix deposition, and fibrosis of the skin and/or internal organs. To date, the exact etiology of this complicated disease remains unknown. Over the past few years, however, the role of genetic susceptibility and epigenetic modifications caused by environmental factors have been intensively studied in relation to the pathogenesis of this disease, and important advances have been made. This review focuses on the recent progress in the field of SSc research, including HLA and non-HLA susceptibility genes identified in genome-wide association studies (GWAS), and aberrant epigenetic modifications of gene loci associated with SSc. HLA genes most closely linked with SSc susceptibility include HLA-A, -B, -C, -DR, -DP and -DQ. A large number of non-HLA genes were also reported. It has also been noted that different genetic variants can be linked to specific clinical patterns. Finally, DNA demethylation of regulatory genes (eNOS, CD40L and CD70), therapeutic effects associated with Trichostatin A (TSA) treatment, and abnormal expression of a large spectrum of microRNAs (miR-21, -31, -146, -503, -145, -29b, etc.) are all observed in SSc. Overall, the findings presented in this review illustrate how both genetic and epigenetic aberrations play important roles in the development of SSc; however, several unanswered questions continue to impede our understanding of this complex disease. Future research should focus on the identification of new biomarkers for early diagnosis and prognosis, which will help improve the clinical outcome of patients with SSc.
Collapse
|
58
|
Abstract
The fundamental mechanisms that drive the pathogenesis of systemic sclerosis (SSc) remain elusive, despite over 50 years of investigation. Here, we review recent progress in the understanding of the immunopathogenesis of SSc. In particular, we consider interleukin-13 (IL13), and its upstream and downstream pathways, as an example of an immune system-derived mediator involved in fibrotic and vascular pathology. Emerging results linking pattern-recognition receptors and interferon pathways to SSc are also stressed. We discuss genetic data linking the immune system to SSc risk and efforts to apply animal models to subsets of patients recently resolved by gene expression profiling. These developments will help build a context for better understanding of previous observations and design of the next generation of studies that may eventually lead to effective treatment.
Collapse
Affiliation(s)
- Matthew B. Greenblatt
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Antonios O. Aliprantis
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
59
|
Selmi C, Lu Q, Humble MC. Heritability versus the role of the environment in autoimmunity. J Autoimmun 2012; 39:249-52. [DOI: 10.1016/j.jaut.2012.07.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 07/31/2012] [Indexed: 01/07/2023]
|
60
|
Abstract
PURPOSE OF REVIEW The last decade has seen enormous progress in understanding genetic associations of systemic sclerosis to explain the observed heritability. This review highlights the most recent findings and places them in the context of proposed functional roles. RECENT FINDINGS Over 30 genes and gene regions have now been identified as scleroderma susceptibility loci. These include both human leukocyte antigen (HLA) and non-HLA genes, most of which involve immune-related pathways and modifiers of immune function. Many of these associations have also been reported in other systemic autoimmune diseases and suggest that there are multiple autoimmunity genes resulting in disease occurrence. SUMMARY In spite of these advances, only a small proportion of the heritability of systemic sclerosis has been explained. Ongoing studies include fine mapping and sequencing studies to identify causal variants, whereas other studies focus on functional consequences of these variants in order to identify the link between these genetic variants and disease susceptibility. Such knowledge should lead to more targeted and effective treatment in this disease.
Collapse
Affiliation(s)
- Maureen D Mayes
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center, Houston, Texas 77030, USA.
| |
Collapse
|
61
|
Selmi C, Feghali-Bostwick CA, Lleo A, Lombardi SA, De Santis M, Cavaciocchi F, Zammataro L, Mitchell MM, Lasalle JM, Medsger T, Gershwin ME. X chromosome gene methylation in peripheral lymphocytes from monozygotic twins discordant for scleroderma. Clin Exp Immunol 2012; 169:253-62. [PMID: 22861365 DOI: 10.1111/j.1365-2249.2012.04621.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Scleroderma (SSc) is a rare connective tissue disease characterized by fibrosis, microvasculopathy and autoimmune features. The role of genetics is limited in SSc, as suggested by similar concordance rates in monozygotic and dizygotic twin pairs, while environmental factors may act through epigenetic changes, as demonstrated for specific genes. Further, sex chromosome changes have been reported in SSc and may explain the female preponderance. In the present study we compared the methylation profile of all X chromosome genes in peripheral blood mononuclear cells from monozygotic twins discordant (n=7) and concordant (n=1) for SSc. Methylated DNA immunoprecipitations from each discordant twin pair were hybridized to a custom-designed array included 998 sites encompassing promoters of all X chromosome genes and randomly chosen autosomal genes. Biostatistical tools identified sites with an elevated probability to be consistently hypermethylated (n=18) or hypomethylated (n=25) in affected twins. Identified genes include transcription factors (ARX, HSFX1, ZBED1, ZNF41) and surface antigens (IL1RAPL2, PGRMC1), and pathway analysis suggests their involvement in cell proliferation (PGK1, SMS, UTP14A, SSR4), apoptosis (MTM1), inflammation (ARAF) and oxidative stress (ENOX2). In conclusion, we propose that X chromosome genes with different methylation profiles in monozygotic twin pairs may constitute candidates for SSc susceptibility.
Collapse
Affiliation(s)
- C Selmi
- Division of Rheumatology, Allergy, and Clinical Immunology Medical Microbiology and Immunology, Genome Center and MIND Institute, University of California, Davis, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Bossini-Castillo L, Martin JE, Broen J, Simeon CP, Beretta L, Gorlova OY, Vonk MC, Ortego-Centeno N, Espinosa G, Carreira P, García de la Peña P, Oreiro N, Román-Ivorra JA, Castillo MJ, González-Gay MA, Sáez-Comet L, Castellví I, Schuerwegh AJ, Voskuyl AE, Hoffmann-Vold AM, Hesselstrand R, Nordin A, Lunardi C, Scorza R, van Laar JM, Shiels PG, Herrick A, Worthington J, Fonseca C, Denton C, Tan FK, Arnett FC, Assassi S, Koeleman BP, Mayes MD, Radstake TRDJ, Martin J. Confirmation of TNIP1 but not RHOB and PSORS1C1 as systemic sclerosis risk factors in a large independent replication study. Ann Rheum Dis 2012; 72:602-7. [PMID: 22896740 DOI: 10.1136/annrheumdis-2012-201888] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION A recent genome-wide association study in European systemic sclerosis (SSc) patients identified three loci (PSORS1C1, TNIP1 and RHOB) as novel genetic risk factors for the disease. The aim of this study was to replicate the previously mentioned findings in a large multicentre independent SSc cohort of Caucasian ancestry. METHODS 4389 SSc patients and 7611 healthy controls from different European countries and the USA were included in the study. Six single nucleotide polymorphisms (SNP): rs342070, rs13021401 (RHOB), rs2233287, rs4958881, rs3792783 (TNIP1) and rs3130573 (PSORS1C1) were analysed. Overall significance was calculated by pooled analysis of all the cohorts. Haplotype analyses and conditional logistic regression analyses were carried out to explore further the genetic structure of the tested loci. RESULTS Pooled analyses of all the analysed SNPs in TNIP1 revealed significant association with the whole disease (rs2233287 p(MH)=1.94×10(-4), OR 1.19; rs4958881 p(MH)=3.26×10(-5), OR 1.19; rs3792783 p(MH)=2.16×10(-4), OR 1.19). These associations were maintained in all the subgroups considered. PSORS1C1 comparison showed association with the complete set of patients and all the subsets except for the anti-centromere-positive patients. However, the association was dependent on different HLA class II alleles. The variants in the RHOB gene were not associated with SSc or any of its subsets. CONCLUSIONS These data confirmed the influence of TNIP1 on an increased susceptibility to SSc and reinforced this locus as a common autoimmunity risk factor.
Collapse
Affiliation(s)
- Lara Bossini-Castillo
- Department of Immunology, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Consejo Superior de Investigaciones Científicas, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento s/n 18100-Armilla, Granada, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Teruel M, Simeon CP, Broen J, Vonk MC, Carreira P, Camps MT, García-Portales R, Delgado-Frías E, Gallego M, Espinosa G, Beretta L, Airó P, Lunardi C, Riemekasten G, Witte T, Krieg T, Kreuter A, Distler JHW, Hunzelmann N, Koeleman BP, Voskuyl AE, Schuerwegh AJ, González-Gay MA, Radstake TRDJ, Martin J. Analysis of the association between CD40 and CD40 ligand polymorphisms and systemic sclerosis. Arthritis Res Ther 2012; 14:R154. [PMID: 22731751 PMCID: PMC3446540 DOI: 10.1186/ar3890] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/23/2012] [Accepted: 06/25/2012] [Indexed: 01/07/2023] Open
Abstract
Introduction The aim of the present study was to investigate the possible role of CD40 and CD40 ligand (CD40LG) genes in the susceptibility and phenotype expression of systemic sclerosis (SSc). Methods In total, 2,670 SSc patients and 3,245 healthy individuals from four European populations (Spain, Germany, The Netherlands, and Italy) were included in the study. Five single-nucleotide polymorphisms (SNPs) of CD40 (rs1883832, rs4810485, rs1535045) and CD40LG (rs3092952, rs3092920) were genotyped by using a predesigned TaqMan allele-discrimination assay technology. Meta-analysis was assessed to determine whether an association exists between the genetic variants and SSc or its main clinical subtypes. Results No evidence of association between CD40 and CD40LG genes variants and susceptibility to SSc was observed. Similarly, no significant statistical differences were observed when SSc patients were stratified by the clinical subtypes, the serologic features, and pulmonary fibrosis. Conclusions Our results do not suggest an important role of CD40 and CD40LG gene polymorphisms in the susceptibility to or clinical expression of SSc.
Collapse
Affiliation(s)
- María Teruel
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Avda, del Conocimiento s/n, 18010, Granada, SpainArmilla (Granada), Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|