51
|
Salas-Espejo E, Terrón-Camero LC, Ruiz JL, Molina NM, Andrés-León E. Exploring the Microbiome in Human Reproductive Tract: High-Throughput Methods for the Taxonomic Characterization of Microorganisms. Semin Reprod Med 2023; 41:125-143. [PMID: 38320576 DOI: 10.1055/s-0044-1779025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Microorganisms are important due to their widespread presence and multifaceted roles across various domains of life, ecology, and industries. In humans, they underlie the proper functioning of multiple systems crucial to well-being, including immunological and metabolic functions. Emerging research addressing the presence and roles of microorganisms within human reproduction is increasingly relevant. Studies implementing new methodologies (e.g., to investigate vaginal, uterine, and semen microenvironments) can now provide relevant insights into fertility, reproductive health, or pregnancy outcomes. In that sense, cutting-edge sequencing techniques, as well as others such as meta-metabolomics, culturomics, and meta-proteomics, are becoming more popular and accessible worldwide, allowing the characterization of microbiomes at unprecedented resolution. However, they frequently involve rather complex laboratory protocols and bioinformatics analyses, for which researchers may lack the required expertise. A suitable pipeline would successfully enable both taxonomic classification and functional profiling of the microbiome, providing easy-to-understand biological interpretations. However, the selection of an appropriate methodology would be crucial, as it directly impacts the reproducibility, accuracy, and quality of the results and observations. This review focuses on the different current microbiome-related techniques in the context of human reproduction, encompassing niches like vagina, endometrium, and seminal fluid. The most standard and reliable methods are 16S rRNA gene sequencing, metagenomics, and meta-transcriptomics, together with complementary approaches including meta-proteomics, meta-metabolomics, and culturomics. Finally, we also offer case examples and general recommendations about the most appropriate methods and workflows and discuss strengths and shortcomings for each technique.
Collapse
Affiliation(s)
- Eduardo Salas-Espejo
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Laura C Terrón-Camero
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| | - José L Ruiz
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| | - Nerea M Molina
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| |
Collapse
|
52
|
Garg A, Ellis LB, Love RL, Grewal K, Bowden S, Bennett PR, Kyrgiou M. Vaginal microbiome in obesity and its impact on reproduction. Best Pract Res Clin Obstet Gynaecol 2023; 90:102365. [PMID: 37399714 DOI: 10.1016/j.bpobgyn.2023.102365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 07/05/2023]
Abstract
A number of reproductive outcomes have been increasingly found to be affected by the vaginal microbiota. Obesity has become a global epidemic, affecting increasing numbers of reproductive-age women, and has been shown to be a risk factor for a number of adverse female health outcomes. A healthy vaginal microbiome is characterized by Lactobacillus-dominance, in particular Lactobacillus crispatus; obesity has been found to be associated with higher diversity and a lower likelihood of Lactobacillus-dominance. In this review, we summarize the evidence on the vaginal microbiome in obese women and the impact on reproductive outcomes such as conception rates, early pregnancy, and preterm birth. We further explore the mechanisms by which obesity may result in an altered microbial composition and highlight future avenues for therapeutic targeting of the vaginal microbiota.
Collapse
Affiliation(s)
- Akanksha Garg
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, W12 0NN, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - Laura Burney Ellis
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, W12 0NN, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - Ryan Laurence Love
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, W12 0NN, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - Karen Grewal
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, W12 0NN, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - Sarah Bowden
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, W12 0NN, London, UK
| | - Phillip R Bennett
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, W12 0NN, London, UK
| | - Maria Kyrgiou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, W12 0NN, London, UK; Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
53
|
Doroftei B, Ilie OD, Armeanu T, Stoian IL, Anton N, Babici RG, Ilea C. A Narrative Review Discussing the Obstetric Repercussions Due to Alterations of Personalized Bacterial Sites Developed within the Vagina, Cervix, and Endometrium. J Clin Med 2023; 12:5069. [PMID: 37568471 PMCID: PMC10419759 DOI: 10.3390/jcm12155069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The reproductive tract microbiota that evolved as an integrative component has been studied intensively in the last decade. As a result, novel research, clinical opportunities, and perspectives have been derived following the close investigation of this microecological environment. This has paved the way for an update to and improvement of the management strategies and therapeutic approaches. However, obscurities, contradictions, and controversies arise regarding the ascension route from the vagina to the endometrium via the cervix, with finality in adverse obstetric outcomes. METHODS Starting from these considerations, we aimed to gather all existing data and information from four major academic databases (PubMed, ISI Web of Knowledge, Scopus, and ScienceDirect) published in the last 13 years (2010-2023) using a controlled vocabulary and dedicated terminology to enhance the coverage, identification, and sorting of potentially eligible studies. RESULTS Despite the high number of returned entries (n = 804), only a slight percentage (2.73%) of all manuscripts were deemed eligible following two rounds of evaluation. Cumulatively, a low level of Lactobacillus spp. and of other core microbiota members is mandatory, with a possible eubiosis-to-dysbiosis transition leading to an impairment of metabolic and endocrine network homeostasis. This transposes into a change in the pro-inflammatory landscape and activation of signaling pathways due to activity exerted by the bacterial lipopolysaccharides (LPSs)/endotoxins that further reflect a high risk of miscarriage in various stages. While the presence of some pathogenic entities may be suggestive of an adverse obstetric predisposition, there are still pros and cons of the role of specific strains, as only the vagina and cervix have been targeted as opposed to the endometrium, which recently started to be viewed as the key player in the vagina-cervix-endometrium route. Consequently, based on an individual's profile, diet, and regime, antibiotics and probiotics might be practical or not. CONCLUSIONS Resident bacteria have a dual facet and are beneficial for women's health, but, at the same time, relaying on the abundance, richness, and evenness that are definitory indexes standing as intermediaries of a miscarriage.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street No. 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street No. 3C, 700032 Iasi, Romania
| | | | - Theodora Armeanu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street No. 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street No. 3C, 700032 Iasi, Romania
| | - Irina-Liviana Stoian
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Nicoleta Anton
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Ramona-Geanina Babici
- Department of Genetics, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Ciprian Ilea
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street No. 34, 700038 Iasi, Romania
| |
Collapse
|
54
|
Dass M, Singh Y, Ghai M. A Review on Microbial Species for Forensic Body Fluid Identification in Healthy and Diseased Humans. Curr Microbiol 2023; 80:299. [PMID: 37491404 PMCID: PMC10368579 DOI: 10.1007/s00284-023-03413-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Microbial communities present in body fluids can assist in distinguishing between types of body fluids. Metagenomic studies have reported bacterial genera which are core to specific body fluids and are greatly influenced by geographical location and ethnicity. Bacteria in body fluids could also be due to bacterial infection; hence, it would be worthwhile taking into consideration bacterial species associated with diseases. The present review reports bacterial species characteristic of diseased and healthy body fluids across geographical locations, and bacteria described in forensic studies, with the aim of collating a set of bacteria to serve as the core species-specific markers for forensic body fluid identification. The most widely reported saliva-specific bacterial species are Streptococcus salivarius, Prevotella melaninogenica, Neisseria flavescens, with Fusobacterium nucleatum associated with increased diseased state. Lactobacillus crispatus and Lactobacillus iners are frequently dominant in the vaginal microbiome of healthy women. Atopobium vaginae, Prevotella bivia, and Gardnerella vaginalis are more prevalent in women with bacterial vaginosis. Semen and urine-specific bacteria at species level have not been reported, and menstrual blood bacteria are indistinguishable from vaginal fluid. Targeting more than one bacterial species is recommended for accurate body fluid identification. Although metagenomic sequencing provides information of a broad microbial profile, the specific bacterial species could be used to design biosensors for rapid body fluid identification. Validation of microbial typing methods and its application in identifying body fluids in a mixed sample would allow regular use of microbial profiling in a forensic workflow.
Collapse
Affiliation(s)
- Mishka Dass
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal South Africa
| | - Yashna Singh
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal South Africa
| | - Meenu Ghai
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal South Africa
| |
Collapse
|
55
|
Navarro S, Abla H, Delgado B, Colmer-Hamood JA, Ventolini G, Hamood AN. Glycogen availability and pH variation in a medium simulating vaginal fluid influence the growth of vaginal Lactobacillus species and Gardnerella vaginalis. BMC Microbiol 2023; 23:186. [PMID: 37442975 PMCID: PMC10339506 DOI: 10.1186/s12866-023-02916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Glycogen metabolism by Lactobacillus spp. that dominate the healthy vaginal microbiome contributes to a low vaginal pH (3.5-4.5). During bacterial vaginosis (BV), strict and facultative anaerobes including Gardnerella vaginalis become predominant, leading to an increase in the vaginal pH (> 4.5). BV enhances the risk of obstetrical complications, acquisition of sexually transmitted infections, and cervical cancer. Factors critical for the maintenance of the healthy vaginal microbiome or the transition to the BV microbiome are not well defined. Vaginal pH may affect glycogen metabolism by the vaginal microflora, thus influencing the shift in the vaginal microbiome. RESULTS The medium simulating vaginal fluid (MSVF) supported growth of L. jensenii 62G, L. gasseri 63 AM, and L. crispatus JV-V01, and G. vaginalis JCP8151A at specific initial pH conditions for 30 d. L. jensenii at all three starting pH levels (pH 4.0, 4.5, and 5.0), G. vaginalis at pH 4.5 and 5.0, and L. gasseri at pH 5.0 exhibited the long-term stationary phase when grown in MSVF. L. gasseri at pH 4.5 and L. crispatus at pH 5.0 displayed an extended lag phase over 30 d suggesting inefficient glycogen metabolism. Glycogen was essential for the growth of L. jensenii, L. crispatus, and G. vaginalis; only L. gasseri was able to survive in MSVF without glycogen, and only at pH 5.0, where it used glucose. All four species were able to survive for 15 d in MSVF with half the glycogen content but only at specific starting pH levels - pH 4.5 and 5.0 for L. jensenii, L. gasseri, and G. vaginalis and pH 5.0 for L. crispatus. CONCLUSIONS These results suggest that variations in the vaginal pH critically influence the colonization of the vaginal tract by lactobacilli and G. vaginalis JCP8151A by affecting their ability to metabolize glycogen. Further, we found that L. jensenii 62G is capable of glycogen metabolism over a broader pH range (4.0-5.0) while L. crispatus JV-V01 glycogen utilization is pH sensitive (only functional at pH 5.0). Finally, our results showed that G. vaginalis JCP8151A can colonize the vaginal tract for an extended period as long as the pH remains at 4.5 or above.
Collapse
Affiliation(s)
- Stephany Navarro
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Habib Abla
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Betsaida Delgado
- Honors College, Texas Tech University, Lubbock, TX USA
- Woody L. Hunt School of Dental Medicine, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Jane A. Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Gary Ventolini
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center Permian Basin, Odessa, TX USA
| | - Abdul N. Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX USA
| |
Collapse
|
56
|
Ebersole J, Kirakodu S, Nguyen L, Gonzalez O. Sex and Age Effects on Healthy Gingival Transcriptomic Patterns. J Dent Res 2023; 102:947-956. [PMID: 37232535 PMCID: PMC10399078 DOI: 10.1177/00220345231166310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Many chronic inflammatory diseases demonstrate demographic associations such as sex, age, and race-ethnicity. Periodontitis has been found to be increased with age and in males. This study used nonhuman primates representing a human-like model for periodontitis and examined the gingival transcriptome stratified on sex and age. Thirty-six Macaca mulatta in 4 age groups-young (<3 y), adolescent (3-7 y), adult (12-15 y), and aged (>17 y)-with a healthy periodontium were used to characterize gene expression in healthy gingival tissues. Gene expression was compared to clinical measures of bleeding on probing (BOP) and probing pocket depth (PPD). The results demonstrated sex differences in number of up- and downregulated genes that increased with age. Female animals generally showed elevated expression of genes related to host immunoinflammatory responses, and males showed increased expression of tissue structural genes. Gene expression correlations with BOP and/or PPD showed minimal overlap between the sexes, while male animals demonstrated substantial overlap in genes that correlated with both BOP and PPD clinical features. A cluster analysis of genes significantly different between sexes showed a clear sex and age discrimination in the young and adolescent animals. In the older groups, the genes clustered predominately by sex, irrespective of age group. A pathway analysis identified that significant gene expression patterns were quite similar in adolescent and adult animals, while the young and aged samples were quite distinct. The results confirmed substantial sex related variations in gingival tissue biology that were affected by age and observed even in adolescent animals. This suggests that "programming" of the gingival tissues related to sex can occur rather early in life and presage variations in future risk for periodontitis.
Collapse
Affiliation(s)
- J.L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, NV, USA
| | - S.S. Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - L.M. Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, NV, USA
| | - O.A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
57
|
Grobeisen-Duque O, Mora-Vargas CD, Aguilera-Arreola MG, Helguera-Repetto AC. Cycle Biodynamics of Women's Microbiome in the Urinary and Reproductive Systems. J Clin Med 2023; 12:4003. [PMID: 37373695 DOI: 10.3390/jcm12124003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The genitourinary microbiome plays a crucial role in the establishment and maintenance of urinary and reproductive health in women throughout their lives. Particularly during the reproductive stage, resident microorganisms contribute to implantation and protect against perinatal complications, including preterm birth, stillbirth, and low birth weight, while also serving as the first line of defense against pathogens that can cause infections, such as urinary tract infections and bacterial vaginosis. This review aimed to elucidate the relationship between a healthy microbiome environment and women's overall health. We examine the variability and dynamics of the microbiome during different developmental stages, ranging from the prepubertal to the postmenopausal stage. Furthermore, we explore the significance of a healthy microbiota in successful implantation and pregnancy development and investigate potential differences between women experiencing infertility. In addition, we analyze the local and systemic inflammatory responses associated with the establishment of a dysbiotic state and compare it to a condition where a healthy microbiome was established. Lastly, we present the most recent evidence regarding preventive measures, such as dietary interventions and the use of probiotics to promote and maintain a healthy microbiome, thereby ensuring comprehensive women's health. By highlighting the importance of the genitourinary microbiome in reproductive health, this review aimed to enhance this microbiome's visibility and significance in the field.
Collapse
Affiliation(s)
- Orly Grobeisen-Duque
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de Mexico 11000, Mexico
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico, Ciudad de Mexico 52786, Mexico
| | - Carlos Daniel Mora-Vargas
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de Mexico 11000, Mexico
- Escuela Nacional de Ciencias Biologicas del Instituto Politecnico Nacional, Ciudad de Mexico 11350, Mexico
| | | | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de Mexico 11000, Mexico
| |
Collapse
|
58
|
Mori R, Hayakawa T, Hirayama M, Ozawa F, Yoshihara H, Goto S, Kitaori T, Ozaki Y, Sugiura-Ogasawara M. Cervicovaginal microbiome in patients with recurrent pregnancy loss. J Reprod Immunol 2023; 157:103944. [PMID: 37060795 DOI: 10.1016/j.jri.2023.103944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 04/17/2023]
Abstract
There have been few studies concerning an association between unexplained recurrent pregnancy loss (RPL) and the microbiome. A recent study including 67 patients demonstrated that an increase in Ureaplasma species in the endometrium raised the risk of miscarriage with an euploid karyotype. While endometrial sampling is invasive, cervicovaginal sampling is not. We compared vaginal and cervical microbiomes with a 16 S ribosomal RNA sequence between 88 patients with unexplained RPL and 17 healthy women with no history of miscarriage. We prospectively assessed risk factors for maternal colonization at a subsequent miscarriage without an aneuploid karyotype in patients. Cervicovaginal bacteria were dominated by Lactobacillus iners, Gardnerella vaginalis, Atopobium vaginae and Bifidobacterium breve in Japanese population. The proportions of Delftia and unknown bacteria in the cervix were significantly higher in patients with RPL than in controls. Streptococcus, Microbacterium, Delftia, Anaerobacillus and Chloroplast in the cervix were significantly higher in patients with a history of chorioamnionitis compared to the controls. The abundance of Cutibacterium and Anaerobacillus in the cervix was significantly higher in patients who had subsequently miscarried compared to those who gave birth. The miscarriage rate in patients with higher proportions of both Cutibacterium and Anaerobacillus (66.7%, 2/3) was significantly greater than that of patients who lacked these bacteria (9.2%, 6/65, adjusted odds ratio 16.90, 95% confidence interval 1.27-225.47, p = 0.032). The presence of certain bacteria could be a predictor of subsequent miscarriage without an aneuploid karyotype. The cervicovaginal microbiome might be useful for investigating a possible cause of RPL.
Collapse
Affiliation(s)
- Ryosuke Mori
- Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Fumiko Ozawa
- Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hiroyuki Yoshihara
- Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Shinobu Goto
- Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Tamao Kitaori
- Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yasuhiko Ozaki
- Department of Obstetrics and Gynecology, Nagoya City University West Medical Center, Nagoya 462-8508, Japan
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| |
Collapse
|
59
|
Nabeh OA. New insights on the impact of gut microbiota on premenstrual disorders. Will probiotics solve this mystery? Life Sci 2023; 321:121606. [PMID: 36948390 DOI: 10.1016/j.lfs.2023.121606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
Premenstrual disorders (PMDs) refer to premenstrual syndrome (PMS) and premenstrual dysphoric disorder (PMDD), where both are characterized by physical and psychological changes occurring in the luteal phase of menstrual cycle. According to the available theories, there is no single accusation succeeded to explain the pathophysiology of PMDs. However, there is emerging evidence for the role of gut microbiota (GM) in PMDs, supported by the diverging impact of GM on our body systems. The direct secretory function of GM and their integration in hormonal, neurotransmitters and bioactive compounds secretion and activity reinforce this speculation. Moreover, the bidirectional relation between GM and steroid hormones and the impact of diet, drugs, and inflammation on both, GM and PMDs incidence and severity justify the need for more studies to determine the actual role of GM in PMDs and the possible potential of probiotics and prebiotics as therapeutic options.
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- Department of Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt; Cardiovascular Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
60
|
Mejia ME, Mercado-Evans V, Zulk JJ, Ottinger S, Ruiz K, Ballard MB, Britton RA, Patras KA. Vaginal microbial dynamics and pathogen colonization in a humanized microbiota mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527909. [PMID: 36798217 PMCID: PMC9934685 DOI: 10.1101/2023.02.09.527909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Vaginal microbiota composition is associated with differential risk of urogenital infection. Although vaginal Lactobacillus spp. are thought to confer protection through acidification, bacteriocin production, and immunomodulation, lack of an in vivo model system that closely resembles the human vaginal microbiota remains a prominent barrier to mechanistic discovery. We performed 16S rRNA amplicon sequencing of wildtype C57BL/6J mice, commonly used to study pathogen colonization, and found that the vaginal microbiome composition varies highly both within and between colonies from three distinct vivaria. Because of the strong influence of environmental exposure on vaginal microbiome composition, we assessed whether a humanized microbiota mouse ( HMb mice) would model a more human-like vaginal microbiota. Similar to humans and conventional mice, HMb mice vaginal microbiota clustered into five community state types ( h mCST). Uniquely, HMb mice vaginal communities were frequently dominated by Lactobacilli or Enterobacteriaceae . Compared to genetically-matched conventional mice, HMb mice were less susceptible to uterine ascension by urogenital pathobionts group B Streptococcus (GBS) and Prevotella bivia , but no differences were observed with uropathogenic E. coli . Specifically, vaginal Enterobacteriaceae and Lactobacillus were associated with the absence of uterine GBS. Anti-GBS activity of HMb mice vaginal E. coli and L. murinus isolates, representing Enterobacteriaceae and Lactobacillus respectively, were characterized in vitro and in vivo . Although L. murinus reduced GBS growth in vitro , vaginal pre-inoculation with HMb mouse-derived E. coli , but not L. murinus , conferred protection against vaginal GBS burden. Overall, the HMb mice are an improved model to elucidate the role of endogenous microbes in conferring protection against urogenital pathogens. IMPORTANCE An altered vaginal microbiota, typically with little to no levels of Lactobacillus , is associated with increased susceptibility to urogenital infections, although mechanisms driving this vulnerability are not fully understood. Despite known inhibitory properties of Lactobacillus against urogenital pathogens, clinical studies with Lactobacillus probiotics have shown mixed success. In this study, we characterize the impact of the vaginal microbiota on urogenital pathogen colonization using a humanized microbiota mouse model that more closely mimics the human vaginal microbiota. We found several vaginal bacterial taxa that correlated with reduced pathogen levels but showed discordant effects in pathogen inhibition between in vitro and in vivo assays. We propose that this humanized microbiota mouse platform is an improved model to describe the role of the vaginal microbiota in protection against urogenital pathogens. Furthermore, this model will be useful in testing efficacy of new probiotic strategies in the complex vaginal environment.
Collapse
|
61
|
Vemuri R, Herath MP. Beyond the Gut, Emerging Microbiome Areas of Research: A Focus on Early-Life Microbial Colonization. Microorganisms 2023; 11:microorganisms11020239. [PMID: 36838204 PMCID: PMC9962807 DOI: 10.3390/microorganisms11020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Undoubtedly, the human body harbors trillions of microbes of different kinds performing various physiological activities, such as priming the immune system, influencing host metabolism, and improving health by providing important metabolites such as short-chain fatty acids. Although the gut is considered the "microbial organ" of our body as it hosts the most microbes, there are microbes present in various other important anatomical locations differing in numbers and type. Research has shown the presence of microbes in utero, sparking a debate on the "sterile womb" concept, and there is much scope for more work in this area. It is important to understand the early-life microbiome colonization, which has a role in the developmental origins of health and disease in later life. Moreover, seminal studies have indicated the presence of microbes beyond the gut, for example, in the adipose tissue and the liver. However, it is still unclear what is the exact source of these microbes and their exact roles in health and disease. In this review, we appraise and discuss emerging microbiome areas of research and their roles in metabolic health. Further, we review the importance of the genital microbiome in early-life microbial interactions.
Collapse
Affiliation(s)
- Ravichandra Vemuri
- Department of Pathology, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
- Correspondence: (R.V.); (M.P.H.)
| | - Manoja P. Herath
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia
- Correspondence: (R.V.); (M.P.H.)
| |
Collapse
|
62
|
Dong M, Dong Y, Bai J, Li H, Ma X, Li B, Wang C, Li H, Qi W, Wang Y, Fan A, Han C, Xue F. Interactions between microbiota and cervical epithelial, immune, and mucus barrier. Front Cell Infect Microbiol 2023; 13:1124591. [PMID: 36909729 PMCID: PMC9998931 DOI: 10.3389/fcimb.2023.1124591] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
The female reproductive tract harbours hundreds of bacterial species and produces numerous metabolites. The uterine cervix is located between the upper and lower parts of the female genital tract. It allows sperm and birth passage and hinders the upward movement of microorganisms into a relatively sterile uterus. It is also the predicted site for sexually transmitted infection (STI), such as Chlamydia, human papilloma virus (HPV), and human immunodeficiency virus (HIV). The healthy cervicovaginal microbiota maintains cervical epithelial barrier integrity and modulates the mucosal immune system. Perturbations of the microbiota composition accompany changes in microbial metabolites that induce local inflammation, damage the cervical epithelial and immune barrier, and increase susceptibility to STI infection and relative disease progression. This review examined the intimate interactions between the cervicovaginal microbiota, relative metabolites, and the cervical epithelial-, immune-, and mucus barrier, and the potent effect of the host-microbiota interaction on specific STI infection. An improved understanding of cervicovaginal microbiota regulation on cervical microenvironment homeostasis might promote advances in diagnostic and therapeutic approaches for various STI diseases.
Collapse
Affiliation(s)
- Mengting Dong
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yalan Dong
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Junyi Bai
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanrong Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaotong Ma
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bijun Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Wang
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiyang Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenhui Qi
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Aiping Fan
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Cha Han
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Cha Han, ; Fengxia Xue,
| | - Fengxia Xue
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Cha Han, ; Fengxia Xue,
| |
Collapse
|
63
|
Siddiqui R, Makhlouf Z, Alharbi AM, Alfahemi H, Khan NA. The Gut Microbiome and Female Health. BIOLOGY 2022; 11:1683. [PMID: 36421397 PMCID: PMC9687867 DOI: 10.3390/biology11111683] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 07/30/2023]
Abstract
The possession of two X chromosomes may come with the risk of various illnesses, females are more likely to be affected by osteoarthritis, heart disease, and anxiety. Given the reported correlations between gut microbiome dysbiosis and various illnesses, the female gut microbiome is worthy of exploration. Herein, we discuss the composition of the female gut microbiota and its dysbiosis in pathologies affecting the female population. Using PubMed, we performed a literature search, using key terms, namely: "gut microbiome", "estrogen", "menopause", "polycystic ovarian syndrome", "pregnancy", and "menstruation". In polycystic ovarian syndrome (PCOS), the abundance of Bacteroides vulgatus, Firmicutes, Streptococcus, and the ratio of Escherichia/Shigella was found to be increased while that of Tenericutes ML615J-28, Tenericutes 124-7, Akkermansia, Ruminococcaceae, and Bacteroidetes S24-7 was reduced. In breast cancer, the abundance of Clostridiales was enhanced, while in cervical cancer, Prevotella, Porphyromonas, and Dialister were enhanced but Bacteroides, Alistipes, and members of Lachnospiracea, were decreased. In ovarian cancer, Prevotella abundance was increased. Interestingly, the administration of Lactobacillus acidophilus, Bifidobacterium bifidum, Lactobacillus reuteri, and Lactobacillus fermentum ameliorated PCOS symptoms while that of a mix of Bifidobacterium lactis W51, Bifidobacterium bifidum W23, Lactobacillus brevis W63, Bifidobacterium lactis W52, Lactobacillus salivarius W24, Lactobacillus acidophilus W37, Lactococcus lactis W19, Lactobacillus casei W56, and Lactococcus lactis W58 alleviated vascular malfunction and arterial stiffness in obese postmenopausal women, and finally, while further research is needed, Prevotella maybe protective against postmenopausal bone mass loss. As several studies report the therapeutic potential of probiotics and since the gut microbiota of certain female pathological states has been relatively characterized, we speculate that the administration of certain bacterial species as probiotics is warranted, as novel independent or adjunct therapies for various female pathologies.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Zinb Makhlouf
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
64
|
Fransson E, Gudnadottir U, Hugerth LW, Itzel EW, Hamsten M, Boulund F, Pennhag A, Du J, Schuppe-Koistinen I, Brusselaers N, Engstrand L. Cohort profile: the Swedish Maternal Microbiome project (SweMaMi) - assessing the dynamic associations between the microbiome and maternal and neonatal adverse events. BMJ Open 2022; 12:e065825. [PMID: 36288838 PMCID: PMC9615996 DOI: 10.1136/bmjopen-2022-065825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE The Swedish Maternal Microbiome (SweMaMi) project was initiated to better understand the dynamics of the microbiome in pregnancy, with longitudinal microbiome sampling, shotgun metagenomics, extensive questionnaires and health registry linkage. PARTICIPANTS Pregnant women were recruited before the 20th gestational week during 2017-2021 in Sweden. In total, 5439 pregnancies (5193 unique women) were included. For 3973 pregnancies (73%), samples were provided at baseline, and for 3141 (58%) at all three timepoints (second and third trimester and postpartum). In total, 38 591 maternal microbiome samples (vaginal, faecal and saliva) and 3109 infant faecal samples were collected. Questionnaires were used to collect information on general, reproductive and mental health, diet and lifestyle, complemented by linkage to the nationwide health registries, also used to follow up the health of the offspring (up to age 10). FINDINGS TO DATE The cohort is fairly representative for the total Swedish pregnant population (data from 2019), with 41% first-time mothers. Women with university level education, born in Sweden, with normal body mass index, not using tobacco-products and aged 30-34 years were slightly over-represented. FUTURE PLANS The sample and data collection were finalised in November 2021. The next steps are the characterisation of the microbial DNA and linkage to the health and demographic information from the questionnaires and registries. The role of the microbiome on maternal and neonatal outcomes and early-childhood diseases will be explored (including preterm birth, miscarriage) and the role and interaction of other risk factors and confounders (including endometriosis, polycystic ovarian syndrome, diet, drug use). This is currently among the largest pregnancy cohorts in the world with longitudinal design and detailed and standardised microbiome sampling enabling follow-up of both mothers and children. The findings are expected to contribute greatly to the field of reproductive health focusing on pregnancy and neonatal outcomes.
Collapse
Affiliation(s)
- Emma Fransson
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Unnur Gudnadottir
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Luisa W Hugerth
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
| | - Eva Wiberg Itzel
- Department of Obstetrics and Gynecology, Södersjukhuset AB, Stockholm, Sweden
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | - Marica Hamsten
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Fredrik Boulund
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
| | - Alexandra Pennhag
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Juan Du
- Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Ina Schuppe-Koistinen
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
| | - Nele Brusselaers
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Global Health Institute, University of Antwerp, Antwerpen, Belgium
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
| |
Collapse
|
65
|
Collins MK, McCutcheon CR, Petroff MG. Impact of Estrogen and Progesterone on Immune Cells and Host–Pathogen Interactions in the Lower Female Reproductive Tract. THE JOURNAL OF IMMUNOLOGY 2022; 209:1437-1449. [DOI: 10.4049/jimmunol.2200454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/05/2022] [Indexed: 11/05/2022]
|