51
|
Cimino C, Rivera CG, Pearson JC, Colton B, Slain D, Mahoney MV. Pharmacotherapeutic Considerations in the Treatment of Nontuberculous Mycobacterial Infections: A Primer for Clinicians. Open Forum Infect Dis 2024; 11:ofae128. [PMID: 38560605 PMCID: PMC10977864 DOI: 10.1093/ofid/ofae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) can cause a variety of infections, including serious pulmonary disease. Treatment encompasses polypharmacy, with a targeted regimen of 2-5 active medications, depending on site of infection, species, and clinical characteristics. Medications may include oral, intravenous, and inhalational routes. Medication acquisition can be challenging for numerous reasons, including investigational status, limited distribution models, and insurance prior authorization. Additionally, monitoring and managing adverse reactions and drug interactions is a unique skill set. While NTM is primarily medically managed, clinicians may not be familiar with the intricacies of medication selection, procurement, and monitoring. This review offers insights into the pharmacotherapeutic considerations of this highly complex disease state, including regimen design, medication acquisition, safety monitoring, relevant drug-drug interactions, and adverse drug reactions.
Collapse
Affiliation(s)
- Christo Cimino
- Department of Pharmaceutical Services, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Jeffrey C Pearson
- Department of Pharmacy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Benjamin Colton
- Pharmacy Department, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Douglas Slain
- Department of Clinical Pharmacy, School of Pharmacy and Section of Infectious Diseases, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Monica V Mahoney
- Department of Pharmacy, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
52
|
Agarwal R, Sehgal IS, Muthu V, Denning DW, Chakrabarti A, Soundappan K, Garg M, Rudramurthy SM, Dhooria S, Armstrong-James D, Asano K, Gangneux JP, Chotirmall SH, Salzer HJF, Chalmers JD, Godet C, Joest M, Page I, Nair P, Arjun P, Dhar R, Jat KR, Joe G, Krishnaswamy UM, Mathew JL, Maturu VN, Mohan A, Nath A, Patel D, Savio J, Saxena P, Soman R, Thangakunam B, Baxter CG, Bongomin F, Calhoun WJ, Cornely OA, Douglass JA, Kosmidis C, Meis JF, Moss R, Pasqualotto AC, Seidel D, Sprute R, Prasad KT, Aggarwal AN. Revised ISHAM-ABPA working group clinical practice guidelines for diagnosing, classifying and treating allergic bronchopulmonary aspergillosis/mycoses. Eur Respir J 2024; 63:2400061. [PMID: 38423624 PMCID: PMC10991853 DOI: 10.1183/13993003.00061-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The International Society for Human and Animal Mycology (ISHAM) working group proposed recommendations for managing allergic bronchopulmonary aspergillosis (ABPA) a decade ago. There is a need to update these recommendations due to advances in diagnostics and therapeutics. METHODS An international expert group was convened to develop guidelines for managing ABPA (caused by Aspergillus spp.) and allergic bronchopulmonary mycosis (ABPM; caused by fungi other than Aspergillus spp.) in adults and children using a modified Delphi method (two online rounds and one in-person meeting). We defined consensus as ≥70% agreement or disagreement. The terms "recommend" and "suggest" are used when the consensus was ≥70% and <70%, respectively. RESULTS We recommend screening for A. fumigatus sensitisation using fungus-specific IgE in all newly diagnosed asthmatic adults at tertiary care but only difficult-to-treat asthmatic children. We recommend diagnosing ABPA in those with predisposing conditions or compatible clinico-radiological presentation, with a mandatory demonstration of fungal sensitisation and serum total IgE ≥500 IU·mL-1 and two of the following: fungal-specific IgG, peripheral blood eosinophilia or suggestive imaging. ABPM is considered in those with an ABPA-like presentation but normal A. fumigatus-IgE. Additionally, diagnosing ABPM requires repeated growth of the causative fungus from sputum. We do not routinely recommend treating asymptomatic ABPA patients. We recommend oral prednisolone or itraconazole monotherapy for treating acute ABPA (newly diagnosed or exacerbation), with prednisolone and itraconazole combination only for treating recurrent ABPA exacerbations. We have devised an objective multidimensional criterion to assess treatment response. CONCLUSION We have framed consensus guidelines for diagnosing, classifying and treating ABPA/M for patient care and research.
Collapse
Affiliation(s)
- Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Kathirvel Soundappan
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mandeep Garg
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Darius Armstrong-James
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, UK
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Jean-Pierre Gangneux
- Université Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France
- CHU Rennes, Laboratoire de Parasitologie-Mycologie, ECMM Excellence Center in Medical Mycology, Rennes, France
- National Reference Center on Mycoses and Antifungals (CNRMA LA-Asp C), Rennes, France
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU) and Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Helmut J F Salzer
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine-Pneumology, Kepler University Hospital and Medical Faculty, Johannes Kepler University, Linz, Austria
| | | | - Cendrine Godet
- Université Paris Sorbonne, AP-HP, Hôpital Tenon, Service de Pneumologie et Oncologie Thoracique, Centre Constitutif Maladies Pulmonaires Rares Paris, Paris, France
| | | | - Iain Page
- NHS Lothian, Regional Infectious Diseases Unit, Western General Hospital, Edinburgh, UK
| | - Parameswaran Nair
- McMaster University, McGill University, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - P Arjun
- KIMS Hospital, Trivandrum, India
| | - Raja Dhar
- Department of Pulmonology, CK Birla Hospitals, Kolkata, India
| | - Kana Ram Jat
- Division of Pediatric Pulmonology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Joseph L Mathew
- Pediatric Pulmonology Division, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Alok Nath
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute, Lucknow, India
| | - Dharmesh Patel
- City Clinic and Bhailal Amin General Hospital, Vadodara, India
| | - Jayanthi Savio
- Department of Microbiology, St John's Medical College and Hospital, Bengaluru, India
| | - Puneet Saxena
- Pulmonary and Critical Care Medicine, Army Hospital (R&R), New Delhi, India
| | - Rajeev Soman
- Department of Infectious Diseases, Jupiter Hospital, Pune, India
| | | | - Caroline G Baxter
- Department of Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - William J Calhoun
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Oliver A Cornely
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Jo A Douglass
- University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| | - Chris Kosmidis
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jacques F Meis
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- Center of Expertise in Mycology Radboudumc/CWZ Nijmegen, Nijmegen, The Netherlands
| | - Richard Moss
- Center of Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alessandro C Pasqualotto
- Molecular Biology Laboratory, Santa Casa de Misericordia de Porto Alegre, Porto Alegre, Brazil
- Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Danila Seidel
- Department of Internal Medicine, University Hospital, Cologne, Germany
| | - Rosanne Sprute
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Kuruswamy Thurai Prasad
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashutosh N Aggarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
53
|
Hinze CA, Fuge J, Grote-Koska D, Brand K, Slevogt H, Cornberg M, Simon S, Joean O, Welte T, Rademacher J. Factors influencing voriconazole plasma level in intensive care patients. JAC Antimicrob Resist 2024; 6:dlae045. [PMID: 38500519 PMCID: PMC10946233 DOI: 10.1093/jacamr/dlae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Background In clinical routine, voriconazole plasma trough levels (Cmin) out of target range are often observed with little knowledge about predisposing influences. Objectives To determine the distribution and influencing factors on voriconazole blood levels of patients treated on intensive- or intermediate care units (ICU/IMC). Patients and methods Data were collected retrospectively from patients with at least one voriconazole trough plasma level on ICU/IMC (n = 153) to determine the proportion of sub-, supra- or therapeutic plasma levels. Ordinal logistic regression analysis was used to assess factors hindering patients to reach voriconazole target range. Results Of 153 patients, only 71 (46%) reached the target range at the first therapeutic drug monitoring, whereas 66 (43%) patients experienced too-low and 16 (10%) too-high plasma levels. Ordinal logistic regression analysis identified the use of extra corporeal membrane oxygenation (ECMO), low international normalized ratio (INR) and aspartate-aminotransferase (AST) serum levels as predictors for too-low plasma levels. Conclusion Our data highlight an association of ECMO, INR and AST levels with voriconazole plasma levels, which should be considered in the care of critically ill patients to optimize antifungal therapy with voriconazole.
Collapse
Affiliation(s)
| | - Jan Fuge
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Denis Grote-Koska
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Hortense Slevogt
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Respiratory Infection Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Centre for Individualized Infection Medicine, Hannover, Germany
- German Center for Infection Research (DZIF), partner-site Hannover-Braunschweig, Hannover, Germany
| | - Susanne Simon
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| | - Oana Joean
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Jessica Rademacher
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
54
|
Gupta AK, Mann A, Polla Ravi S, Wang T. Navigating fungal infections and antifungal stewardship: drug resistance, susceptibility testing, therapeutic drug monitoring and future directions. Ital J Dermatol Venerol 2024; 159:105-117. [PMID: 38088126 DOI: 10.23736/s2784-8671.23.07694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
Antifungal stewardship refers to the rational use of antifungal agents. Historically, in some instances, the misuse or overuse of antifungal agents has predisposed patients to an elevated risk of systemic side-effects and treatment resistance, as well as increased healthcare costs. Superficial mycoses, such as onychomycosis, are sometimes treated without any diagnostic testing and is associated with a high likelihood of self-diagnosis and self-treatment, potentially leading to the emergence of resistance against commonly used antifungals like terbinafine. Practitioners need to ensure that a proper clinical diagnosis is backed up by appropriate testing. This may include the traditional light microscopy and culture; additionally, molecular techniques (such as polymerase chain reaction, terbinafine gene mutational analysis) and antifungal susceptibility testing are considerations as appropriate. The choice of antifungal agent should be guided by what is the standard of care in the location where the clinician practices as well as more broadly state and national prescription patterns. Recently, reports of treatment resistance concerning both superficial and deep fungal infections have added another layer of difficulty to clinical practice. This review aims to explore the phenomenon of antifungal drug resistance, and highlights the importance of adopting antifungal stewardship programs. We provide an overview of treatment resistance and mechanisms of resistance reported thus far in dermatophytes. Challenges of performing antifungal susceptibility testing and therapeutic drug monitoring are discussed, as well as principles, recommendations and future directions of antifungal stewardship programs.
Collapse
Affiliation(s)
- Aditya K Gupta
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada -
- Mediprobe Research Inc, London, ON, Canada -
| | | | | | - Tong Wang
- Mediprobe Research Inc, London, ON, Canada
| |
Collapse
|
55
|
Pungprasert T, Dhirachaikulpanich D, Phutthasakda W, Tantai N, Maneeon S, Nganthavee V, Atipas K, Tanpong S, Krithin S, Tanglitanon S, Jutidamrongphan W, Chayakulkeeree M, Srinonprasert V, Phikulsod P. The cost-utility analysis of antifungal prophylaxis for invasive fungal infections in acute myeloid leukaemia patients receiving chemotherapy: a study from a middle-income country. J Hosp Infect 2024; 145:118-128. [PMID: 38219835 DOI: 10.1016/j.jhin.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Invasive fungal infections (IFIs) contribute to morbidity and mortality during acute myeloid leukaemia (AML) treatment. Without prophylaxis, IFI rate during AML treatment in Thailand is high and results in a high mortality rate and a prolonged hospital stay. AIM To evaluate the cost-utility of antifungal therapy (AFT) prophylaxis during AML treatment. METHODS We assessed the cost-utility of AFT available in Thailand, including posaconazole (solution), itraconazole (solution and capsule), and voriconazole. A hybrid model consisting of a decision tree and the Markov model was established. RESULTS The costs to prevent overall IFI using any AFT were all lower than the treatment cost of a non-prophylaxis group, resulting in a saving of 808-1507 USD per patient. Prevention with voriconazole prophylaxis showed the highest quality-adjusted life years (QALYs = 3.51, incremental QALYs = 0.23), followed by posaconazole (QALYs = 3.46, incremental QALY = 0.18) and itraconazole solution (QALYs = 3.45, incremental QALYs = 0.17). Itraconazole capsule reduced QALY in the model. For invasive aspergillosis prevention, posaconazole and voriconazole both resulted in better QALYs and life year savings compared with no prophylaxis. However, posaconazole prophylaxis was the only cost-saving option (976 USD per patient). CONCLUSION Posaconazole, itraconazole solution and voriconazole were all cost saving compared with no prophylaxis for overall IFI prophylaxis, with voriconazole being the most cost-effective option. Posaconazole and voriconazole were both cost effective for invasive aspergillosis prevention but only posaconazole was cost saving. A change in reimbursement policy for the use of AFT prophylaxis during intensive AML treatment could provide both clinical benefits to patients and substantial economic benefits to healthcare systems.
Collapse
Affiliation(s)
- T Pungprasert
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - W Phutthasakda
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - N Tantai
- Siriaj Health Policy Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Pharmacy, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - S Maneeon
- Siriaj Health Policy Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Pharmacy, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - V Nganthavee
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - K Atipas
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - S Tanpong
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - S Krithin
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - S Tanglitanon
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - W Jutidamrongphan
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - M Chayakulkeeree
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - V Srinonprasert
- Siriaj Health Policy Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - P Phikulsod
- Division of Haematology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
56
|
Wei XC, Zhao MF, Xiao X. Supratherapeutic posaconazole concentrations associated with hyperlipidemia in a patient with HSCT. J Infect Chemother 2024; 30:255-257. [PMID: 37832823 DOI: 10.1016/j.jiac.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Posaconazole is a potent, extended-spectrum triazole antifungal used for the treatment and prophylaxis of serious fungal infections. Previous reports have demonstrated hyperlipidemia resulted in significant changes in posaconazole pharmacokinetics and tissue distribution in rats. However, the effect of hyperlipidemia on the pharmacokinetics of posaconazole in patients has not yet been reported. We report a case of a 34-year-old woman who experienced a supratherapeutic posaconazole trough concentration (PTC) associated with hyperlipidemia after haploidentical hematopoietic stem cell transplantation (HSCT). The patient was admitted 13 months after HSCT for recurrent cough and sputum. She was treated with caspofungin due to developing invasive fungal infection of Candida tropicalis. After 10 days, caspofungin was discontinued due to the poor therapeutic efficacy and replaced with amphotericin B. Afterwards, the condition of the patient improved significantly and she was switched to daily oral posaconazole tablet. Therapeutic drug monitoring (TDM) of posaconazole showed a PTC was 3.2 mg/L. After discharge, she continued to receive posaconazole tablet as antifungal treatment. Two months later, laboratory tests at outpatient showed her blood lipid levels were significantly elevated and PTC was increased to 9.38 mg/L. Therefore, the posaconazole tablet was discontinued and she received lipid-lowering therapy. A few days later, the PTC was down to 5.22 mg/L. No medication errors and significant drug interactions were found. Hence, supratherapeutic PTC for this patient may be caused by hyperlipidemia which altered pharmacokinetics of posaconazole. Our findings highlight the need for close TDM in order to avoid supratherapeutic PTC if hyperlipidimia occurs during posaconazole use.
Collapse
Affiliation(s)
- Xiao-Chen Wei
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, PR China.
| | - Ming-Feng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, PR China
| | - Xia Xiao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, PR China
| |
Collapse
|
57
|
Bewersdorf TN, Hofmann J, Findeisen S, Schamberger C, Lingner T, Sommer U, Schmidmaier G, Grossner T. Impact of Anti-Mycotic Drugs on the Osteogenic Response of Bone Marrow Mesenchymal Stem Cells In Vitro. Antibiotics (Basel) 2024; 13:186. [PMID: 38391572 PMCID: PMC10886247 DOI: 10.3390/antibiotics13020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
The treatment of fungal bone infections and infected non-unions is a huge challenge in modern trauma and orthopedics, which normally contain the local and systemic administration of anti-fungal drugs. Although frequently used, little is known about the impact of systemic and locally administered fungicides on the osteogenic regenerative capabilities of infected bone tissue, especially upon the osteogenesis of human bone marrow mesenchymal stem cells (BM-hMSCs). This study evaluates the effects of the three most common fungicides for the systemic treatment of bone infections, Voriconazole (VOR), liposomal Amphotericin B (LAMB), and Fluconazole (FLU), as well as the effects of VOR and LAMB-loaded Polymethylmethacrylate (PMMA) cement chips in different concentrations upon the osteogenic response of BM-hMSCs in vitro. Within this study, we compared the ability of BM-hMSC to differentiate into osteoblast-like cells and synthesize hydroxyapatite as assessed by radioactive 99mTechnetium-Hydroxydiphosphonate (99mTc-HDP) labeling, cell proliferation, and analyses of supernatants upon various osteogenic parameters. Our results revealed that VOR added to the cell culture medium affects the osteogenic potential of BM-hMSC negatively, while there were no detectable effects of LAMB and FLU. Moreover, we showed dose-dependent negative effects of high- and extended-dose fungicide-loaded PMMA cement due to cytotoxicity, with a higher cytotoxic potential of VOR than LAMB, while low-dose fungicide-loaded PMMA had no significant effect on the osteogenic potential of BM-hMSC in vitro.
Collapse
Affiliation(s)
- Tim Niklas Bewersdorf
- Clinic for Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jakob Hofmann
- Clinic for Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sebastian Findeisen
- Clinic for Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christian Schamberger
- Clinic for Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Lingner
- Genevention GmbH, Rudolf-Wissell-Str. 28A, 37079 Göttingen, Germany
| | - Ulrike Sommer
- Clinic for Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Gerhard Schmidmaier
- Clinic for Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tobias Grossner
- Clinic for Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
58
|
Barros N, Wheat LJ. Histoplasmosis in Solid Organ Transplantation. J Fungi (Basel) 2024; 10:124. [PMID: 38392796 PMCID: PMC10890191 DOI: 10.3390/jof10020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Histoplasma capsulatum, the etiological agent for histoplasmosis, is a dimorphic fungus that grows as a mold in the environment and as a yeast in human tissues. It has a broad global distribution with shifting epidemiology during recent decades. While in immunocompetent individuals infection is usually self-resolving, solid organ transplant recipients are at increased risk of symptomatic disease with dissemination to extrapulmonary tissue. Diagnosis of histoplasmosis relies on direct observation of the pathogen (histopathology, cytopathology, and culture) or detection of antigens, antibodies, or nucleic acids. All transplant recipients with histoplasmosis warrant therapy, though the agent of choice and duration of therapy depends on the severity of disease. In the present article, we describe the pathogenesis, epidemiology, clinical manifestations and management of histoplasmosis in solid organ transplant recipients.
Collapse
Affiliation(s)
- Nicolas Barros
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Infectious Diseases, Indiana University Health, Indianapolis, IN 46202, USA
- Miravista Diagnostics, Indianapolis, IN 46241, USA;
| | | |
Collapse
|
59
|
Jendoubi A, Pressiat C, De Roux Q, Hulin A, Ghaleh B, Tissier R, Kohlhauer M, Mongardon N. The impact of extracorporeal membrane oxygenation on antifungal pharmacokinetics: A systematic review. Int J Antimicrob Agents 2024; 63:107078. [PMID: 38161046 DOI: 10.1016/j.ijantimicag.2023.107078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/09/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND OBJECTIVE The use of extracorporeal membrane oxygenation (ECMO) as a cardiocirculatory or respiratory support has tremendously increased in critically ill patients. In the setting of ECMO support, invasive fungal infections are a severe cause of morbidity and mortality. This vulnerable population is at risk of suboptimal antifungal exposure due to an increased volume of distribution (Vd), drug sequestration and decreased clearance. Here, we aimed to summarize ex-vivo and clinical studies on the potential impact of ECMO on the pharmacokinetics (PK) of antifungal agents and dosing requirements. METHODS A systematic search of the literature within electronic databases PubMed and EMBASE was conducted from database inception to 30 April 2023. Inclusion criteria were as follows: critically ill patients receiving ECMO regardless of age and reporting at least one PK parameter. RESULTS Thirty-six studies met inclusion criteria, including seven ex-vivo experiments and 29 clinical studies evaluating three classes of antifungals: polyenes, triazoles and echinocandins. Based on the available ex-vivo PK data, we found a significant sequestration of highly lipophilic and protein-bound antifungals within the ECMO circuit such as voriconazole, posaconazole and micafungin but the PK of several antifungals remains to be addressed such as amphotericin B, isavuconazole and anidulafungin. Most clinical studies have shown increased Vd of some antifungals like fluconazole and micafungin, particularly in the pediatric population. Conflicting data exist about caspofungin exposure. CONCLUSIONS The available literature on the antifungal PK changes in ECMO setting is scarce. Whenever possible, therapeutic drug monitoring is highly advised to personalize antifungal therapy.
Collapse
Affiliation(s)
- Ali Jendoubi
- Inserm U955-IMRB, Équipe 03 "Pharmacologie et Technologies pour les Maladies Cardiovasculaires (PROTECT)", École Nationale Vétérinaire d'Alfort (EnVA), Université Paris Est Créteil (UPEC), Maisons-Alfort, France; Service d'Anesthésie-Réanimation Chirurgicale, DMU CARE, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Claire Pressiat
- Inserm U955-IMRB, Équipe 03 "Pharmacologie et Technologies pour les Maladies Cardiovasculaires (PROTECT)", École Nationale Vétérinaire d'Alfort (EnVA), Université Paris Est Créteil (UPEC), Maisons-Alfort, France; Faculté de Santé, Université Paris Est Créteil, Créteil, France; Laboratoire de Pharmacologie, DMU Biologie-Pathologie, Assistance Publique des Hôpitaux de Paris (APHP), Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Quentin De Roux
- Inserm U955-IMRB, Équipe 03 "Pharmacologie et Technologies pour les Maladies Cardiovasculaires (PROTECT)", École Nationale Vétérinaire d'Alfort (EnVA), Université Paris Est Créteil (UPEC), Maisons-Alfort, France; Service d'Anesthésie-Réanimation Chirurgicale, DMU CARE, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Anne Hulin
- Inserm U955-IMRB, Équipe 03 "Pharmacologie et Technologies pour les Maladies Cardiovasculaires (PROTECT)", École Nationale Vétérinaire d'Alfort (EnVA), Université Paris Est Créteil (UPEC), Maisons-Alfort, France; Faculté de Santé, Université Paris Est Créteil, Créteil, France; Laboratoire de Pharmacologie, DMU Biologie-Pathologie, Assistance Publique des Hôpitaux de Paris (APHP), Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Bijan Ghaleh
- Inserm U955-IMRB, Équipe 03 "Pharmacologie et Technologies pour les Maladies Cardiovasculaires (PROTECT)", École Nationale Vétérinaire d'Alfort (EnVA), Université Paris Est Créteil (UPEC), Maisons-Alfort, France; Faculté de Santé, Université Paris Est Créteil, Créteil, France; Laboratoire de Pharmacologie, DMU Biologie-Pathologie, Assistance Publique des Hôpitaux de Paris (APHP), Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Renaud Tissier
- Inserm U955-IMRB, Équipe 03 "Pharmacologie et Technologies pour les Maladies Cardiovasculaires (PROTECT)", École Nationale Vétérinaire d'Alfort (EnVA), Université Paris Est Créteil (UPEC), Maisons-Alfort, France
| | - Matthias Kohlhauer
- Inserm U955-IMRB, Équipe 03 "Pharmacologie et Technologies pour les Maladies Cardiovasculaires (PROTECT)", École Nationale Vétérinaire d'Alfort (EnVA), Université Paris Est Créteil (UPEC), Maisons-Alfort, France
| | - Nicolas Mongardon
- Inserm U955-IMRB, Équipe 03 "Pharmacologie et Technologies pour les Maladies Cardiovasculaires (PROTECT)", École Nationale Vétérinaire d'Alfort (EnVA), Université Paris Est Créteil (UPEC), Maisons-Alfort, France; Service d'Anesthésie-Réanimation Chirurgicale, DMU CARE, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Henri Mondor, Créteil, France; Faculté de Santé, Université Paris Est Créteil, Créteil, France.
| |
Collapse
|
60
|
Wu Z, Jiang M, Yan M, Li G, Zeng Z, Zhang X, Li N, Jiang Y, Gong G, Zhang M. Therapeutic Drug Monitoring of Voriconazole in Patients with End-Stage Liver Disease. Ther Drug Monit 2024; 46:89-94. [PMID: 38192036 DOI: 10.1097/ftd.0000000000001139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
BACKGROUND This study aimed to identify the factors that influence voriconazole (VCZ) plasma concentrations and optimize the doses of VCZ in patients with end-stage liver disease (ESLD). METHODS Patients with ESLD who received a VCZ maintenance dose of 100 mg twice daily (group A, n = 57) or the VCZ maintenance dose of 50 mg twice daily (group B, n = 37), orally or intravenously, were enrolled in this study. Trough plasma concentrations (Cmin) of VCZ between 1 and 5 mg/L were considered within the therapeutic target range. RESULTS The VCZ Cmin was determined in 94 patients with ESLD. The VCZ Cmin of patients in group A was remarkably higher than those in group B (4.85 ± 2.53 mg/L vs 2.75 ± 1.40 mg/L; P < 0.001). Compared with group A, fewer patients in group B had VCZ Cmin outside the therapeutic target (23/57 vs. 6/37, P = 0.021). Univariate and multivariate analyses suggested that both body weight and Model for End-Stage Liver Disease scores were closely associated with the VCZ Cmin in group B. CONCLUSIONS These data indicate that dose optimization based on body weight and Model for End-Stage Liver Disease scores is required to strike an efficacy-safety balance during VCZ treatment in patients with ESLD.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Infectious Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Jiang
- Department of Infectious Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; and
| | - Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Zhihao Zeng
- Department of Infectious Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiangling Zhang
- Department of Infectious Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Naiping Li
- Department of Infectious Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yongfang Jiang
- Department of Infectious Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guozhong Gong
- Department of Infectious Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Zhang
- Department of Infectious Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
61
|
Vena A, Bassetti M, Mezzogori L, Marchesi F, Hoenigl M, Giacobbe DR, Corcione S, Bartoletti M, Stemler J, Pagano L, Cornely OA, Salmanton-García J. Laboratory and clinical management capacity for invasive fungal infections: the Italian landscape. Infection 2024; 52:197-208. [PMID: 37656348 PMCID: PMC10811091 DOI: 10.1007/s15010-023-02084-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND We assessed the laboratory diagnosis and treatment of invasive fungal disease (IFD) in Italy to detect limitations and potential for improvement. METHODS The survey was available online at www.clinicalsurveys.net/uc/IFI management capacity/, and collected variables such as (a) institution profile, (b) perceptions of IFD in the respective institution, (c) microscopy, (d) culture and fungal identification, (e) serology, (f) antigen detection, (g) molecular tests, (h) susceptibility testing and (i) therapeutic drug monitoring (TDM). RESULTS The laboratory capacity study received responses from 49 Italian centres, with an equitable geographical distribution of locations. The majority of respondents (n = 36, 73%) assessed the occurrence of IFD as moderate-high, with Aspergillus spp. being the pathogen of highest concern, followed by Candida spp. and Mucorales. Although 46 (94%) of the institutions had access to microscopy, less than half of them performed direct microscopy on clinical specimens always when IFD was suspected. Cultures were available in all assessed laboratories, while molecular testing and serology were available in 41 (83%), each. Antigen detection tests and antifungal drugs were also generally accessible (> 90%) among the participating institutions. Nevertheless, access to TDM was limited (n = 31, 63%), with a significant association established between therapeutic drug monitoring availability and higher gross domestic product per capita. CONCLUSIONS Apart from TDM, Italy is adequately prepared for the diagnosis and treatment of IFD, with no significant disparities depending on gross domestic product. Future efforts may need to focus on enhancing the availability and application of direct microscopic methods, as well as TDM, to promote optimal treatment and better patient outcomes.
Collapse
Affiliation(s)
- Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, San Martino Policlinico Hospital, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, San Martino Policlinico Hospital, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Laura Mezzogori
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, San Martino Policlinico Hospital, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | | | - Martin Hoenigl
- Division of Infectious Diseases, Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Division of Infectious Diseases, ECMM Center of Excellence for Medical Mycology, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, San Martino Policlinico Hospital, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
- Tufts University School of Medicine, Boston, MA, USA
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Jannik Stemler
- Faculty of Medicine, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Herderstraße 52-54, 50931, Cologne, Germany
- Partner Site Bonn-Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
| | - Livio Pagano
- Hematology Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Hematology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Oliver A Cornely
- Faculty of Medicine, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Herderstraße 52-54, 50931, Cologne, Germany
- Partner Site Bonn-Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
- Faculty of Medicine, Center for Molecular Medicine Cologne (CMMC), University of Cologne, University Hospital Cologne, Cologne, Germany
- Faculty of Medicine, University of Cologne, University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Jon Salmanton-García
- Faculty of Medicine, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Cologne, Germany.
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Herderstraße 52-54, 50931, Cologne, Germany.
- Partner Site Bonn-Cologne, German Centre for Infection Research (DZIF), Cologne, Germany.
| |
Collapse
|
62
|
Melhem MSC, Leite Júnior DP, Takahashi JPF, Macioni MB, de Oliveira L, de Araújo LS, Fava WS, Bonfietti LX, Paniago AMM, Venturini J, Espinel-Ingroff A. Antifungal Resistance in Cryptococcal Infections. Pathogens 2024; 13:128. [PMID: 38392866 PMCID: PMC10891860 DOI: 10.3390/pathogens13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Antifungal therapy, especially with the azoles, could promote the incidence of less susceptible isolates of Cryptococcus neoformans and C. gattii species complexes (SC), mostly in developing countries. Given that these species affect mostly the immunocompromised host, the infections are severe and difficult to treat. This review encompasses the following topics: 1. infecting species and their virulence, 2. treatment, 3. antifungal susceptibility methods and available categorical endpoints, 4. genetic mechanisms of resistance, 5. clinical resistance, 6. fluconazole minimal inhibitory concentrations (MICs), clinical outcome, 7. environmental influences, and 8. the relevance of host factors, including pharmacokinetic/pharmacodynamic (PK/PD) parameters, in predicting the clinical outcome to therapy. As of now, epidemiologic cutoff endpoints (ECVs/ECOFFs) are the most reliable antifungal resistance detectors for these species, as only one clinical breakpoint (amphotericin B and C. neoformans VNI) is available.
Collapse
Affiliation(s)
- Marcia S. C. Melhem
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil; (D.P.L.J.); (M.B.M.)
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
- Graduate Program in Tropical Diseases, State University of São Paulo, Botucatu 18618-687, SP, Brazil
| | - Diniz Pereira Leite Júnior
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil; (D.P.L.J.); (M.B.M.)
| | - Juliana P. F. Takahashi
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
- Pathology Division, Adolfo Lutz Institute, São Paulo 01246-002, SP, Brazil
| | - Milena Bronze Macioni
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil; (D.P.L.J.); (M.B.M.)
| | | | - Lisandra Siufi de Araújo
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
- Central Public Health Laboratory-LACEN, Mycology Unit, Adolfo Lutz Institut, São Paulo 01246-002, SP, Brazil;
| | - Wellington S. Fava
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
| | - Lucas X. Bonfietti
- Central Public Health Laboratory-LACEN, Mycology Unit, Adolfo Lutz Institut, São Paulo 01246-002, SP, Brazil;
| | - Anamaria M. M. Paniago
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
| | - James Venturini
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
| | - Ana Espinel-Ingroff
- Central Public Health Laboratory-LACEN, Campo Grande 79074-460, MS, Brazil;
- VCU Medical Center, Richmond, VA 23284, USA
| |
Collapse
|
63
|
Chiang YH, Cheng CN, Chuang PJ, Chen YC, Chen YJ, Kuo CH, Lin SW, Chang LC. Enhancing the identification of voriconazole-associated hepatotoxicity by targeted metabolomics. Int J Antimicrob Agents 2024; 63:107028. [PMID: 37931850 DOI: 10.1016/j.ijantimicag.2023.107028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Voriconazole-associated hepatotoxicity is a common condition that generally manifests as elevated liver enzymes and can lead to drug discontinuation. Careful monitoring of voriconazole-associated hepatotoxicity is needed but there are no specific plasma biomarkers for this condition. Metabolomics has emerged as a promising technique for investigating biomarkers associated with drug-induced toxicity. The aim of this study was to use targeted metabolomics to evaluate seven endogenous metabolites as potential biomarkers of voriconazole-associated hepatotoxicity. Patients undergoing therapeutic drug monitoring of voriconazole were classified into a hepatotoxicity group (18 patients) or a control group (153 patients). Plasma samples were analysed using ultra-high-performance liquid chromatography coupled to mass spectrometry. Metabolite concentrations in the two groups were compared. Areas under the receiver operating characteristic (AUROC) curves generated from logistic regressions were used to correlate the concentrations of these seven metabolites with voriconazole trough concentrations and conventional liver biochemistry tests. Glycocholate and α-ketoglutarate levels were significantly higher in the hepatotoxicity group compared with the control group (false discovery rate-corrected P < 0.001 and P = 0.024, respectively). The metabolites glycocholate (AUROC = 0.795) and α-ketoglutarate (AUROC = 0.696) outperformed voriconazole trough concentrations (AUROC = 0.555) and approached the performance of alkaline phosphatase (AUROC = 0.876) and total bilirubin (AUROC = 0.815). A panel of glycocholate combined with voriconazole trough concentrations (AUROC = 0.827) substantially improved the performance of voriconazole trough concentrations alone in predicting hepatotoxicity. In conclusion, the panel integrating glycocholate with voriconazole trough concentrations has great potential for identifying voriconazole-associated hepatotoxicity.
Collapse
Affiliation(s)
- Yi-Hsuan Chiang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Ning Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jiun Chuang
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Jing Chen
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacy, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Shu-Wen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacy, National Taiwan University Cancer Center, Taipei, Taiwan.
| | - Lin-Chau Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
64
|
Yagi Y, Yamagishi Y, Hamada Y. Optimized Antifungal Therapy for Chronic Pulmonary Aspergillosis. Med Mycol J 2024; 65:59-65. [PMID: 39218648 DOI: 10.3314/mmj.24.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chronic pulmonary aspergillosis (CPA) represents a spectrum of lung disorders caused by local proliferation of Aspergillus hyphae in individuals with non-systemic or mildly systemic immunodepression or altered pulmonary integrity due to underlying disease. While long-term systemic antifungal treatment is still the mainstay for management, surgery is considered mainly in rarer invasive disease manifestations such as sinusitis and osteomyelitis. Optimal application of existing antifungal agents with suitable pharmacokinetic properties is important for the treatment of diseases such as CPA, which requires long-term use. Appropriate management of side effects by therapeutic drug monitoring, maintenance of adherence, and assessment of drug resistance to Aspergillus can provide safe and effective treatment in the future. Most available antifungal agents for the management of mycoses in humans have disadvantages that can limit their use in clinical practice. By contrast, second generation antifungals such as triazoles have advantages of extended antifungal spectrum and availability in both oral and intravenous formulations. Isavuconazole, a new extended spectrum triazole, has been shown to be effective against Aspergillus. The safety profile and excellent pharmacokinetic characteristics of isavuconazole make it an attractive option for treatment of invasive fungal infections including CPA. With this drug now available in Japan, new evidence is expected to expand treatment options. This review focuses on the selection of antifungal agents based on national and international guidelines and the characteristics of each agent for their appropriate use in CPA.
Collapse
Affiliation(s)
- Yusuke Yagi
- Department of Pharmacy, Kochi Medical School Hospital
- Department of Infection Prevention and Control, Kochi Medical School Hospital
| | - Yuka Yamagishi
- Department of Infection Prevention and Control, Kochi Medical School Hospital
- Department of Clinical Infectious Diseases, Kochi Medical School, Kochi University
| | | |
Collapse
|
65
|
Carter C, Kahai R, Cunningham J, Kilduff J, Hough N, Baxter C, Connell D, Shah A. Chronic pulmonary aspergillosis - a guide for the general physician. Clin Med (Lond) 2024; 24:100019. [PMID: 38281665 PMCID: PMC11024841 DOI: 10.1016/j.clinme.2024.100019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
This collaborative article presents a review of chronic pulmonary aspergillosis (CPA) from the perspective of a multidisciplinary team comprising of respiratory physicians, radiologists, mycologists, dietitians, pharmacists, physiotherapists and palliative care specialists. The review synthesises current knowledge on CPA, emphasising the intricate interplay between clinical, radiological, and microbiological aspects. We highlight the importance of assessing each patient as multidisciplinary team to ensure personalised treatment strategies and a holistic approach to patient care.
Collapse
Affiliation(s)
- Charlotte Carter
- Registrar in respiratory medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Rasleen Kahai
- Respiratory dietitian, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Josie Cunningham
- Pharmacist independent prescriber, Frimley Park NHS Foundation Trust, Frimley, UK
| | - Jennifer Kilduff
- Physiotherapist in respiratory medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Natasha Hough
- Consultant physician in respiratory medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Caroline Baxter
- Consultant physician in respiratory medicine, National Aspergillosis Centre, Manchester NHS Foundation Trust, Manchester, UK
| | - David Connell
- Consultant physician in respiratory medicine, NHS Tayside, Dundee, UK
| | - Anand Shah
- Consultant physician in respiratory medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK, and MRC Centre of Global Infectious Disease Analysis, Imperial College London, London, UK
| |
Collapse
|
66
|
Girton M, Tomsig J, Bazydlo L. Triazole Antifungal Quantification for Therapeutic Drug Monitoring in Serum by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS): Posaconazole, Voriconazole, Itraconazole, and Hydroxyitraconazole. Methods Mol Biol 2024; 2737:55-65. [PMID: 38036810 DOI: 10.1007/978-1-0716-3541-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Antifungal therapy with triazole drugs including posaconazole, voriconazole, itraconazole, and its active metabolite hydroxyitraconazole is routinely accompanied by therapeutic drug monitoring to ensure optimal dosing. The method presented here simultaneously quantitates these compounds in serum by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Specimen preparation includes protein precipitation with a methanol and acetonitrile mixture, centrifugation, and filtration. Analyte separation is achieved by reverse-phase chromatography using a dC18 column and a linear gradient of methanol in water. Analytes are detected by multiple reaction monitoring mass spectrometry and quantitated by comparison to a standard curve.
Collapse
Affiliation(s)
- Mark Girton
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Jose Tomsig
- Medical Laboratories, UVA Health, Charlottesville, VA, USA
| | - Lindsay Bazydlo
- Department of Pathology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
67
|
Noppè E, Eloff JRP, Keane S, Martin-Loeches I. A Narrative Review of Invasive Candidiasis in the Intensive Care Unit. THERAPEUTIC ADVANCES IN PULMONARY AND CRITICAL CARE MEDICINE 2024; 19:29768675241304684. [PMID: 39748830 PMCID: PMC11693998 DOI: 10.1177/29768675241304684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/15/2024] [Indexed: 01/04/2025]
Abstract
Candida species is the most common cause of invasive fungal infection in the critically ill population admitted to the intensive care unit (ICU). Numerous risk factors for developing invasive candidiasis (IC) have been identified, and some, like the breach of protective barriers, abound within the ICU. Given that IC carries a significant mortality, morbidity, and healthcare cost burden, early diagnosis and treatment have become an essential topic of discussion. Several expert panels and task forces have been established to provide clear guidance on the management of IC. Unfortunately, IC remains a diagnostic and therapeutic challenge attributable to the changing fungal ecology of Candida species and the emergence of multidrug-resistant strains. This narrative review will focus on the following: (1) the incidence, outcomes, and changing epidemiology of IC globally; (2) the risk factors for developing IC; (3) IC risk stratification tools and their appropriate use; (4) diagnosis of IC; and (5) therapeutic agents and regimens.
Collapse
Affiliation(s)
- Elnè Noppè
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization, (MICRO), St James' Hospital, Dublin, Ireland
| | | | - Sean Keane
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization, (MICRO), St James' Hospital, Dublin, Ireland
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization, (MICRO), St James' Hospital, Dublin, Ireland
| |
Collapse
|
68
|
McHale TC, Boulware DR, Kasibante J, Ssebambulidde K, Skipper CP, Abassi M. Diagnosis and management of cryptococcal meningitis in HIV-infected adults. Clin Microbiol Rev 2023; 36:e0015622. [PMID: 38014977 PMCID: PMC10870732 DOI: 10.1128/cmr.00156-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Cryptococcal meningitis is a leading cause of morbidity and mortality globally, especially in people with advanced HIV disease. Cryptococcal meningitis is responsible for nearly 20% of all deaths related to advanced HIV disease, with the burden of disease predominantly experienced by people in resource-limited countries. Major advancements in diagnostics have introduced low-cost, easy-to-use antigen tests with remarkably high sensitivity and specificity. These tests have led to improved diagnostic accuracy and are essential for screening campaigns to reduce the burden of cryptococcosis. In the last 5 years, several high-quality, multisite clinical trials have led to innovations in therapeutics that have allowed for simplified regimens, which are better tolerated and result in less intensive monitoring and management of medication adverse effects. One trial found that a shorter, 7-day course of deoxycholate amphotericin B is as effective as the longer 14-day course and that flucytosine is an essential partner drug for reducing mortality in the acute phase of disease. Single-dose liposomal amphotericin B has also been found to be as effective as a 7-day course of deoxycholate amphotericin B. These findings have allowed for simpler and safer treatment regimens that also reduce the burden on the healthcare system. This review provides a detailed discussion of the latest evidence guiding the clinical management and special circumstances that make cryptococcal meningitis uniquely difficult to treat.
Collapse
Affiliation(s)
- Thomas C. McHale
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - David R. Boulware
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - John Kasibante
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | | | - Caleb P. Skipper
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mahsa Abassi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
69
|
Yu M, Yang J, Xiong L, Zhan S, Cheng L, Chen Y, Liu F. Comparison of ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and enzyme-multiplied immunoassay technique (EMIT) for quantification of voriconazole plasma concentration from Chinese patients. Heliyon 2023; 9:e22015. [PMID: 38045154 PMCID: PMC10692776 DOI: 10.1016/j.heliyon.2023.e22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Voriconazole (VRZ) is the recommended standard treatment for life-threatening invasive aspergillosis. The plasma concentration of VRZ should be determined to optimise treatment results and reduce side effects. This study aimed to compare the correlation and concordance of ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and enzyme-multiplied immunoassay technique (EMIT) to determine VRZ plasma concentration in clinical practice. Methods An isotopically labelled internal standard UPLC-MS/MS method was established, validated, and subsequently applied to determine VRZ concentration. The UPLC-MS/MS method was also compared with a commercial EMIT method regarding results correlation and concordance. Results The calibration curve of UPLC-MS/MS was linear from 0.1 to 10 mg/L, the inter- and intra-day relative standard deviations (RSDs), and the stability of quality control samples were less than 15 %, satisfying the Bioanalytical Method Validation Guidelines. A total of 122 plasma samples were collected and analyzed using both methods. UPLC-MS/MS and EMIT showed a high correlation (r = 0.9534), and Bland-Altman analysis indicated a mean absolute bias of 1.035 mg/L and an average bias of 27.56 % between UPLC-MS/MS and EMIT. The paired Wilcoxon test and Bland-Altman analysis revealed poor consistency between the two methods. Furthermore, we compared the effects of different methods in clinical applications. Two threshold values for treatment efficacy (1.0 mg/L) and safety (5.5 mg/L) were established, and considerable discordance was observed between the original EMIT and UPLC-MS/MS results at both thresholds (p < 0.05). Nevertheless, the adjusted EMIT results were not inconsistent with the UPLC-MS/MS results regarding the efficacy (p = 0.125) and safety (p = 1.0) thresholds. Conclusions The isotopically labelled internal standard UPLC-MS/MS method is established and well applied in the clinical setting. A strong correlation but discordance was found between UPLC-MS/MS and EMIT, indicating that switching from UPLC-MS/MS to EMIT was unsuitable. However, the adjusted EMIT results may serve as a reliable surrogate when UPLC-MS/MS results cannot be obtained when necessary.
Collapse
Affiliation(s)
| | | | - Lirong Xiong
- Pharmacy Department, Southwest Hospital of Army Medical University, Chongqing, 400038, People's Republic of China
| | - Shipeng Zhan
- Pharmacy Department, Southwest Hospital of Army Medical University, Chongqing, 400038, People's Republic of China
| | - Lin Cheng
- Pharmacy Department, Southwest Hospital of Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yongchuan Chen
- Pharmacy Department, Southwest Hospital of Army Medical University, Chongqing, 400038, People's Republic of China
| | - Fang Liu
- Pharmacy Department, Southwest Hospital of Army Medical University, Chongqing, 400038, People's Republic of China
| |
Collapse
|
70
|
Pattanaik S, Gota V, Tripathi SK, Kshirsagar NA. Therapeutic drug monitoring in India: A strength, weakness, opportunity and threats analysis. Br J Clin Pharmacol 2023; 89:3247-3261. [PMID: 37259249 DOI: 10.1111/bcp.15808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Over the last three to four decades, Therapeutic Drug Monitoring (TDM) has shaped itself as therapeutic drug management, an integral component of precision medicine. The practice of TDM is not extensive in India, despite being one of the fastest-growing economies in the world. It is currently limited to a few academic medical centres and teaching hospitals. Apart from the immunosuppressive drugs, several other therapeutic areas, such as anticancer, antifungal, antibiotic and antitubercular, have demonstrated great potential to improve patient outcomes in Indian settings. Factors such as the higher prevalence of nutritional deficiencies, tropical diseases, widespread use of alternative medicines, unalike pharmacogenomics and sparse population-specific data available on therapeutic ranges of several drugs make the population of this subcontinent unique regarding the relevance of TDM. Despite the impact of TDM in clinical science and its widespread application, TDM has failed to receive the attention it deserves in India. This review intends to bring out a strength, weakness, opportunity and threats (SWOT) analysis for TDM in India so that appropriate steps for fostering the growth of TDM could be envisioned. The need of the hour is the creation of a cooperative group including all the stakeholders, such as TDM professionals, clinicians and the government and devising a National Action Plan to strengthen TDM. Nodal TDM centres should be established, and pilot programmes should be rolled out to identify the thrust areas for TDM in the country, capacity building and creating awareness to integrate TDM into mainstream clinical medicine.
Collapse
Affiliation(s)
- Smita Pattanaik
- Clinical Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vikram Gota
- Advanced Centre for Treatment Education and Research in Cancer, Tata Memorial Centre, Kharghar Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | | | - Nilima A Kshirsagar
- Clinical Pharmacology, Indian Council of Medical Research, New Delhi, India
- Seth Gordhandas Sunderdas, Medical College and King Edward Memorial Hospital, Mumbai, India
| |
Collapse
|
71
|
Moni BM, Wise BL, Loots GG, Weilhammer DR. Coccidioidomycosis Osteoarticular Dissemination. J Fungi (Basel) 2023; 9:1002. [PMID: 37888258 PMCID: PMC10607509 DOI: 10.3390/jof9101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Valley fever or coccidioidomycosis is a pulmonary infection caused by species of Coccidioides fungi that are endemic to California and Arizona. Skeletal coccidioidomycosis accounts for about half of disseminated infections, with the vertebral spine being the preferred site of dissemination. Most cases of skeletal coccidioidomycosis progress to bone destruction or spread to adjacent structures such as joints, tendons, and other soft tissues, causing significant pain and restricting mobility. Manifestations of such cases are usually nonspecific, making diagnosis very challenging, especially in non-endemic areas. The lack of basic knowledge and research data on the mechanisms defining susceptibility to extrapulmonary infection, especially when it involves bones and joints, prompted us to survey available clinical and animal data to establish specific research questions that remain to be investigated. In this review, we explore published literature reviews, case reports, and case series on the dissemination of coccidioidomycosis to bones and/or joints. We highlight key differential features with other conditions and opportunities for mechanistic and basic research studies that can help develop novel diagnostic, prognostic, and treatment strategies.
Collapse
Affiliation(s)
- Benedicte M. Moni
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Barton L. Wise
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Health, 2700 Stockton Blvd., Sacramento, CA 95817, USA; (B.L.W.)
| | - Gabriela G. Loots
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Health, 2700 Stockton Blvd., Sacramento, CA 95817, USA; (B.L.W.)
| | - Dina R. Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
72
|
de Oliveira VF, Taborda M, Arcieri VC, Kruschewsky WLL, Costa AN, Duarte NJC, Romano P, de Almeida Rezende Ebner P, Magri ASGK, Abdala E, Levin AS, Magri MMC. Itraconazole Serum Trough Concentrations Using Oral Capsules for the Treatment of Chronic Pulmonary Aspergillosis: What is the Target? Mycopathologia 2023; 188:693-698. [PMID: 37526790 DOI: 10.1007/s11046-023-00781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND In regions where there is only itraconazole capsule as a therapeutic option for treatment of chronic pulmonary aspergillosis (CPA), measuring the serum concentrations becomes even more important for therapeutic success. OBJECTIVE Evaluate the initial itraconazole serum trough concentrations after the administration of oral capsule of itraconazole for the treatment of CPA. METHODS The measurement was performed at least 7-days after initiation of therapy. The standard treatment at our institution was a 200 mg capsule every 12 h. We defined that an adequate serum trough concentration of itraconazole during treatment was 1-4 mg/L. RESULTS This study recruited 28 patients. The median value was 0.30 mg/L (IQR 0.01-0.70). Only 11% (n = 3) had adequate serum concentrations based on guideline recommendation. All patients with clinical deterioration had itraconazole serum levels ≤ 0.8 mg/L. CONCLUSION The initial serum concentrations of itraconazole after capsule formulation administration were low. Increasing the dose should be considered when the itraconazole concentration is low, especially if it is ≤ 0.8 mg/L, and the patient presents with clinical deterioration. Larger studies are needed to evaluate the adequate concentrations recommended for CPA.
Collapse
Affiliation(s)
- Vítor Falcão de Oliveira
- Department of Infectious and Parasitic Diseases, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil.
| | - Mariane Taborda
- Department of Infectious and Parasitic Diseases, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Vitor Ciampone Arcieri
- Department of Infectious and Parasitic Diseases, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Wdson Luis Lima Kruschewsky
- Department of Infectious and Parasitic Diseases, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Andre Nathan Costa
- Department of Pneumology, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Nilo José Coêlho Duarte
- Central Laboratory Division, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Paschoalina Romano
- Central Laboratory Division, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Edson Abdala
- Department of Infectious and Parasitic Diseases, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Anna S Levin
- Department of Infectious and Parasitic Diseases, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
73
|
Menna P, Marchesi F, Cattaneo C, Candoni A, Delia M, Nadali G, Vatteroni A, Pasciolla C, Perrone S, Verga L, Armiento D, Del Principe MI, Fracchiolla NS, Salvatorelli E, Lupisella S, Terrenato I, Busca A, Minotti G, Pagano L. Posaconazole and midostaurin in patients with FLT3-mutated acute myeloid leukemia: Pharmacokinetic interactions and clinical facts in a real life study. Clin Transl Sci 2023; 16:1876-1885. [PMID: 37515369 PMCID: PMC10582652 DOI: 10.1111/cts.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Midostaurin is used in combination with chemotherapy to treat patients with newly diagnosed FLT3-mutated acute myeloid leukemia. Chemotherapy-induced neutropenia exposes these patients to a significant risk of invasive fungal infections (IFIs). International guidelines recommend primary antifungal prophylaxis with posaconazole (PCZ) but nested analysis of a phase III trial showed that strong PCZ inhibition of CYP3A4 diminished midostaurin metabolism and increased midostaurin plasma levels; however, midostaurin-related adverse events (AEs) were only moderately exacerbated. We conducted a prospective multicenter real-life study to evaluate (i) how often concerns around PCZ-midostaurin interactions made the hematologist prescribe antifungals other than PCZ, (ii) how remarkably PCZ increased midostaurin plasma levels, and (iii) how significantly PCZ-midostaurin interactions influenced hematologic and safety outcomes of induction therapy. Although the hematologists were blinded to pharmacokinetic findings, as many as 16 of 35 evaluable patients were prescribed antifungal prophylaxis with micafungin, weak CYP3A4 inhibitor, in place of PCZ (p < 0.001 for deviation from guidelines). In the 19 patients managed as per guidelines, PCZ-midostaurin interactions were more remarkable than previously characterized, such that at the end of induction therapy midostaurin minimum plasma concentration (Cmin ) was greater than three times higher than reported; moreover, midostaurin Cmin , maximum plasma concentration, and area under the curve were more than or equal to four times higher with PCZ than micafungin. Hematologic outcomes (complete remission and duration of severe neutropenia) and safety outcomes (midostaurin-related any grade or grade ≥3 AEs) were nonetheless similar for patients exposed to PCZ or micafungin, as was the number of breakthrough IFIs. In waiting for randomized phase III trials of new prophylaxis regimens, these findings show that PCZ should remain the antifungal of choice for the midostaurin-treated patient.
Collapse
Affiliation(s)
- Pierantonio Menna
- University Campus Bio‐Medico andFondazione Policlinico Universitario Campus Bio‐MedicoRomeItaly
| | - Francesco Marchesi
- Hematology and Stem Cell Transplant UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Chiara Cattaneo
- Azienda Socio Sanitaria Territoriale and Spedali CiviliBresciaItaly
| | - Anna Candoni
- Azienda Sanitaria Universitaria IntegrataUniversity HospitalUdineItaly
| | - Mario Delia
- Hematology Section, Department of Emergency and Organ TransplantUniveristy of BariBariItaly
| | - Gianpaolo Nadali
- U.O.C. Ematologia, Azienda Ospedaliera Universitaria Integrata di Verona, Ospedale Borgo Roma, Verona, ItalyAzienda Ospedaliera Universitaria IntegrataVeronaItaly
| | - Alessandra Vatteroni
- U.O.C. Ematologia, Azienda Ospedaliera Universitaria Integrata di Verona, Ospedale Borgo Roma, Verona, ItalyAzienda Ospedaliera Universitaria IntegrataVeronaItaly
| | | | | | | | - Daniele Armiento
- University Campus Bio‐Medico andFondazione Policlinico Universitario Campus Bio‐MedicoRomeItaly
| | | | | | | | | | - Irene Terrenato
- Hematology and Stem Cell Transplant UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Alessandro Busca
- Department of Hematology and Stem Cell Transplant UnitAzienda Ospedaliera Universitaria Citta' della Salute e della ScienzaTorinoItaly
| | - Giorgio Minotti
- University Campus Bio‐Medico andFondazione Policlinico Universitario Campus Bio‐MedicoRomeItaly
| | - Livio Pagano
- Fondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
| |
Collapse
|
74
|
Kluwe F, Michelet R, Huisinga W, Zeitlinger M, Mikus G, Kloft C. Towards Model-Informed Precision Dosing of Voriconazole: Challenging Published Voriconazole Nonlinear Mixed-Effects Models with Real-World Clinical Data. Clin Pharmacokinet 2023; 62:1461-1477. [PMID: 37603216 PMCID: PMC10520167 DOI: 10.1007/s40262-023-01274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Model-informed precision dosing (MIPD) frequently uses nonlinear mixed-effects (NLME) models to predict and optimize therapy outcomes based on patient characteristics and therapeutic drug monitoring data. MIPD is indicated for compounds with narrow therapeutic range and complex pharmacokinetics (PK), such as voriconazole, a broad-spectrum antifungal drug for prevention and treatment of invasive fungal infections. To provide guidance and recommendations for evidence-based application of MIPD for voriconazole, this work aimed to (i) externally evaluate and compare the predictive performance of a published so-called 'hybrid' model for MIPD (an aggregate model comprising features and prior information from six previously published NLME models) versus two 'standard' NLME models of voriconazole, and (ii) investigate strategies and illustrate the clinical impact of Bayesian forecasting for voriconazole. METHODS A workflow for external evaluation and application of MIPD for voriconazole was implemented. Published voriconazole NLME models were externally evaluated using a comprehensive in-house clinical database comprising nine voriconazole studies and prediction-/simulation-based diagnostics. The NLME models were applied using different Bayesian forecasting strategies to assess the influence of prior observations on model predictivity. RESULTS The overall best predictive performance was obtained using the aggregate model. However, all NLME models showed only modest predictive performance, suggesting that (i) important PK processes were not sufficiently implemented in the structural submodels, (ii) sources of interindividual variability were not entirely captured, and (iii) interoccasion variability was not adequately accounted for. Predictive performance substantially improved by including the most recent voriconazole observations in MIPD. CONCLUSION Our results highlight the potential clinical impact of MIPD for voriconazole and indicate the need for a comprehensive (pre-)clinical database as basis for model development and careful external model evaluation for compounds with complex PK before their successful use in MIPD.
Collapse
Affiliation(s)
- Franziska Kluwe
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin/Potsdam, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gerd Mikus
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 419, 69120 Heidelberg, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| |
Collapse
|
75
|
Jackson KD, Achour B, Lee J, Geffert RM, Beers JL, Latham BD. Novel Approaches to Characterize Individual Drug Metabolism and Advance Precision Medicine. Drug Metab Dispos 2023; 51:1238-1253. [PMID: 37419681 PMCID: PMC10506699 DOI: 10.1124/dmd.122.001066] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023] Open
Abstract
Interindividual variability in drug metabolism can significantly affect drug concentrations in the body and subsequent drug response. Understanding an individual's drug metabolism capacity is important for predicting drug exposure and developing precision medicine strategies. The goal of precision medicine is to individualize drug treatment for patients to maximize efficacy and minimize drug toxicity. While advances in pharmacogenomics have improved our understanding of how genetic variations in drug-metabolizing enzymes (DMEs) affect drug response, nongenetic factors are also known to influence drug metabolism phenotypes. This minireview discusses approaches beyond pharmacogenetic testing to phenotype DMEs-particularly the cytochrome P450 enzymes-in clinical settings. Several phenotyping approaches have been proposed: traditional approaches include phenotyping with exogenous probe substrates and the use of endogenous biomarkers; newer approaches include evaluating circulating noncoding RNAs and liquid biopsy-derived markers relevant to DME expression and function. The goals of this minireview are to 1) provide a high-level overview of traditional and novel approaches to phenotype individual drug metabolism capacity, 2) describe how these approaches are being applied or can be applied to pharmacokinetic studies, and 3) discuss perspectives on future opportunities to advance precision medicine in diverse populations. SIGNIFICANCE STATEMENT: This minireview provides an overview of recent advances in approaches to characterize individual drug metabolism phenotypes in clinical settings. It highlights the integration of existing pharmacokinetic biomarkers with novel approaches; also discussed are current challenges and existing knowledge gaps. The article concludes with perspectives on the future deployment of a liquid biopsy-informed physiologically based pharmacokinetic strategy for patient characterization and precision dosing.
Collapse
Affiliation(s)
- Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
76
|
McCreary EK, Davis MR, Narayanan N, Andes DR, Cattaneo D, Christian R, Lewis RE, Watt KM, Wiederhold NP, Johnson MD. Utility of triazole antifungal therapeutic drug monitoring: Insights from the Society of Infectious Diseases Pharmacists: Endorsed by the Mycoses Study Group Education and Research Consortium. Pharmacotherapy 2023; 43:1043-1050. [PMID: 37459118 DOI: 10.1002/phar.2850] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 08/15/2023]
Abstract
Triazole antifungals (i.e., fluconazole, itraconazole, voriconazole, posaconazole, and isavuconazole) are commonly used in clinical practice to prevent or treat invasive fungal infections. Most triazole antifungals require therapeutic drug monitoring (TDM) due to highly variable pharmacokinetics, known drug interactions, and established relationships between exposure and response. On behalf of the Society of Infectious Diseases Pharmacists (SIDP), this insight describes the pharmacokinetic principles and pharmacodynamic targets of commonly used triazole antifungals and provides the rationale for utility of TDM within each agent.
Collapse
Affiliation(s)
- Erin K McCreary
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Matthew R Davis
- Infectious Disease Connect, Inc., Pittsburgh, Pennsylvania, USA
| | - Navaneeth Narayanan
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - David R Andes
- Departments of Medicine and Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, Department of Laboratory Medicine, Luigi Sacco University Hospital, Milan, Italy
| | - Robbie Christian
- Department of Pharmacy, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Russell E Lewis
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Kevin M Watt
- Division of Pediatric Clinical Pharmacology and Division of Critical Care, University of Utah, Salt Lake City, Utah, USA
| | - Nathan P Wiederhold
- Department of Pathology and Laboratory Medicine, Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Melissa D Johnson
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
77
|
Hu L, Huang S, Huang Q, Huang J, Feng Z, He G. Population pharmacokinetics of voriconazole and the role of CYP2C19 genotype on treatment optimization in pediatric patients. PLoS One 2023; 18:e0288794. [PMID: 37695751 PMCID: PMC10495004 DOI: 10.1371/journal.pone.0288794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/04/2023] [Indexed: 09/13/2023] Open
Abstract
The aim of this study was to evaluate factors that impact on voriconazole (VRC) population pharmacokinetic (PPK) parameters and explore the optimal dosing regimen for different CYP2C19 genotypes in Chinese paediatric patients. PPK analysis was used to identify the factors contributing to the variability in VRC plasma trough concentrations. A total of 210 VRC trough concentrations from 91 paediatric patients were included in the study. The median VRC trough concentration was 1.23 mg/L (range, 0.02 to 8.58 mg/L). At the measurement of all the trough concentrations, the target range (1.0~5.5 mg/L) was achieved in 52.9% of the patients, while subtherapeutic and supratherapeutic concentrations were obtained in 40.9% and 6.2% of patients, respectively. VRC trough concentrations were adjusted for dose (Ctrough/D), with normal metabolizers (NMs) and intermediate metabolizers (IMs) having significantly lower levels than poor metabolizers (PMs) (PN-P < 0.001, PI-P = 0.039). A one-compartment model with first-order absorption and elimination was suitable to describe the VRC pharmacokinetic characteristics. The final model of VRC PPK analysis contained CYP2C19 phenotype as a significant covariate for clearance. Dose simulations suggested that a maintenance dose of 9 mg/kg orally or 8 mg/kg intravenously twice daily was appropriate for NMs to achieve the target concentration. A maintenance dose of 9 mg/kg orally or 5 mg/kg intravenously twice daily was appropriate for IMs. Meanwhile, PMs could use lower maintenance dose and an oral dose of 6 mg/kg twice daily or an intravenous dose of 5mg/kg twice daily was appropriate. To increase the probability of achieving the therapeutic range and improving efficacy, CYP2C19 phenotype can be used to predict VRC trough concentrations and guide dose adjustments in Chinese pediatric patients.
Collapse
Affiliation(s)
- Lin Hu
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| | - Shiqiong Huang
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juanjuan Huang
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| | - Zeying Feng
- Clinical Trial Institution Office, Liuzhou Hospital of Guangzhou Women and Children’s Medical Center, Liuzhou, Guangxi, China
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gefei He
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| |
Collapse
|
78
|
Barros N, Rosenblatt RE, Phipps MM, Fomin V, Mansour MK. Invasive fungal infections in liver diseases. Hepatol Commun 2023; 7:e0216. [PMID: 37639701 PMCID: PMC10462082 DOI: 10.1097/hc9.0000000000000216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/07/2023] [Indexed: 08/31/2023] Open
Abstract
Patients with liver diseases, including decompensated cirrhosis, alcohol-associated hepatitis, and liver transplant recipients are at increased risk of acquiring invasive fungal infections (IFIs). These infections carry high morbidity and mortality. Multiple factors, including host immune dysfunction, barrier failures, malnutrition, and microbiome alterations, increase the risk of developing IFI. Candida remains the most common fungal pathogen causing IFI. However, other pathogens, including Aspergillus, Cryptococcus, Pneumocystis, and endemic mycoses, are being increasingly recognized. The diagnosis of IFIs can be ascertained by the direct observation or isolation of the pathogen (culture, histopathology, and cytopathology) or by detecting antigens, antibodies, or nucleic acid. Here, we provide an update on the epidemiology, pathogenesis, diagnosis, and management of IFI in patients with liver disease and liver transplantation.
Collapse
Affiliation(s)
- Nicolas Barros
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Infectious Diseases, Department of Medicine, Indiana University Health, Indianapolis, Indiana, USA
| | - Russell E. Rosenblatt
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
| | - Meaghan M. Phipps
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Vladislav Fomin
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
| | - Michael K. Mansour
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
79
|
Roy M, Karhana S, Shamsuzzaman M, Khan MA. Recent drug development and treatments for fungal infections. Braz J Microbiol 2023; 54:1695-1716. [PMID: 37219748 PMCID: PMC10484882 DOI: 10.1007/s42770-023-00999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Fungal infections are now becoming a hazard to individuals which has paved the way for research to expand the therapeutic options available. Recent advances in drug design and compound screening have also increased the pace of the development of antifungal drugs. Although several novel potential molecules are reported, those discoveries have yet to be translated from bench to bedside. Polyenes, azoles, echinocandins, and flucytosine are among the few antifungal agents that are available for the treatment of fungal infections, but such conventional therapies show certain limitations like toxicity, drug interactions, and the development of resistance which limits the utility of existing antifungals, contributing to significant mortality and morbidity. This review article focuses on the existing therapies, the challenges associated with them, and the development of new therapies, including the ongoing and recent clinical trials, for the treatment of fungal infections. Advancements in antifungal treatment: a graphical overview of drug development, adverse effects, and future prospects.
Collapse
Affiliation(s)
- Madhura Roy
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sonali Karhana
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Md Shamsuzzaman
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Sahqra, Kingdom of Saudi Arabia
| | - Mohd Ashif Khan
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
80
|
Benedict K, Gold JAW, Beekmann SE, Polgreen PM, Toda M, Smith DJ. Antifungal Therapeutic Drug Monitoring Practices: Results of an Emerging Infections Network Survey. Open Forum Infect Dis 2023; 10:ofad468. [PMID: 37771852 PMCID: PMC10533201 DOI: 10.1093/ofid/ofad468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
In a survey of 523 infectious disease specialists, a moderate to high percentage reported using any antifungal therapeutic drug monitoring (TDM) during itraconazole (72%), posaconazole (72%), and voriconazole (90%) treatment, and a low to moderate percentage reported using any antifungal TDM during prophylaxis (32%, 55%, and 65%, respectively). Long turnaround times for send-out TDM testing and logistical difficulties were frequent barriers.
Collapse
Affiliation(s)
- Kaitlin Benedict
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jeremy A W Gold
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Susan E Beekmann
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Philip M Polgreen
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mitsuru Toda
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dallas J Smith
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
81
|
Khurana A, Sharath S, Sardana K, Chowdhary A, Panesar S. Therapeutic Updates on the Management of Tinea Corporis or Cruris in the Era of Trichophyton Indotineae: Separating Evidence from Hype-A Narrative Review. Indian J Dermatol 2023; 68:525-540. [PMID: 38099117 PMCID: PMC10718250 DOI: 10.4103/ijd.ijd_832_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
The emergence and spread of Trichophyton indotineae (T. indotineae) has led to a sea change in the prescription practices of clinicians regarding the management of dermatophytic skin infections. An infection easily managed with a few weeks of antifungals, tinea corporis or cruris, is now often chronic and recurrent and requires prolonged treatment. Rising resistance to terbinafine, with documented squalene epoxidase (SQLE) gene mutations, and slow clinical response to itraconazole leave clinicians with limited treatment choices. However, in these testing times, it is essential that the tenets of antifungal stewardship be followed in making therapeutic decisions, and that the existing armamentarium of antifungals be used in rationale ways to counter this extremely common cutaneous infection, while keeping the growing drug resistance among dermatophytes in check. This review provides updated evidence on the use of various systemic antifungals for dermatophytic infection of the glabrous skin, especially with respect to the emerging T. indotineae species, which is gradually becoming a worldwide concern.
Collapse
Affiliation(s)
- Ananta Khurana
- From the Department of Dermatology, Venereology and Leprosy, ABVIMS and Dr. RML Hospital, New Delhi, India
| | - Savitha Sharath
- From the Department of Dermatology, Venereology and Leprosy, ABVIMS and Dr. RML Hospital, New Delhi, India
| | - Kabir Sardana
- From the Department of Dermatology, Venereology and Leprosy, ABVIMS and Dr. RML Hospital, New Delhi, India
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Sanjeet Panesar
- Department of Community Medicine, ABVIMS and Dr. RML Hospital, New Delhi, India
| |
Collapse
|
82
|
Yi ZM, Li X, Wang Z, Qin J, Jiang D, Tian P, Yang P, Zhao R. Status and Quality of Guidelines for Therapeutic Drug Monitoring Based on AGREE II Instrument. Clin Pharmacokinet 2023; 62:1201-1217. [PMID: 37490190 DOI: 10.1007/s40262-023-01283-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND With the progress of therapeutic drug monitoring (TDM) technology and the development of evidence-based medicine, many guidelines were developed and implemented in recent decades. OBJECTIVE The aim was to evaluate the current status of TDM guidelines and provide suggestions for their development and updates based on Appraisal of Guidelines for Research and Evaluation (AGREE) II. METHODS The TDM guidelines were systematically searched for among databases including PubMed, Embase, China National Knowledge Infrastructure, Wanfang Data, and the Chinese biomedical literature service system and the official websites of TDM-related associations. The search period was from inception to 6 April 2023. Four researchers independently screened the literature and extracted data. Any disagreement was discussed and reconciled by another researcher. The quality of guidelines was assessed using the AGREE II instrument. RESULTS A total of 92 guidelines were included, including 57 technical guidelines, three management guidelines, and 32 comprehensive guidelines. The number of TDM guidelines has gradually increased since 1979. The United States published the most guidelines (20 guidelines), followed by China (15 guidelines) and the United Kingdom (ten guidelines), and 23 guidelines were developed by international organizations. Most guidelines are aimed at adult patients only, while 28 guidelines include special populations. With respect to formulation methods, there are 23 evidence-based guidelines. As for quality evaluation results based on AGREE II, comprehensive guidelines scored higher (58.16%) than technical guidelines (51.36%) and administrative guidelines (50.00%). CONCLUSION The number of TDM guidelines, especially technical and comprehensive ones, has significantly increased in recent years. Most guidelines are confronted with the problems of unclear methodology and low quality of evidence according to AGREE II. More evidence-based research on TDM and high-quality guideline development is recommended to promote individualized therapy.
Collapse
Affiliation(s)
- Zhan-Miao Yi
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Xinya Li
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhitong Wang
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Jiguang Qin
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Dan Jiang
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Panhui Tian
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ping Yang
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Rongsheng Zhao
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China.
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China.
| |
Collapse
|
83
|
Li G, Li Q, Zhang C, Yu Q, Li Q, Zhou X, Yang R, Yang X, Liu H, Yang Y. The impact of gene polymorphism and hepatic insufficiency on voriconazole dose adjustment in invasive fungal infection individuals. Front Genet 2023; 14:1242711. [PMID: 37693307 PMCID: PMC10484623 DOI: 10.3389/fgene.2023.1242711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Voriconazole (VRZ) is a broad-spectrum antifungal medication widely used to treat invasive fungal infections (IFI). The administration dosage and blood concentration of VRZ are influenced by various factors, posing challenges for standardization and individualization of dose adjustments. On the one hand, VRZ is primarily metabolized by the liver, predominantly mediated by the cytochrome P450 (CYP) 2C19 enzyme. The genetic polymorphism of CYP2C19 significantly impacts the blood concentration of VRZ, particularly the trough concentration (Ctrough), thereby influencing the drug's efficacy and potentially causing adverse drug reactions (ADRs). Recent research has demonstrated that pharmacogenomics-based VRZ dose adjustments offer more accurate and individualized treatment strategies for individuals with hepatic insufficiency, with the possibility to enhance therapeutic outcomes and reduce ADRs. On the other hand, the security, pharmacokinetics, and dosing of VRZ in individuals with hepatic insufficiency remain unclear, making it challenging to attain optimal Ctrough in individuals with both hepatic insufficiency and IFI, resulting in suboptimal drug efficacy and severe ADRs. Therefore, when using VRZ to treat IFI, drug dosage adjustment based on individuals' genotypes and hepatic function is necessary. This review summarizes the research progress on the impact of genetic polymorphisms and hepatic insufficiency on VRZ dosage in IFI individuals, compares current international guidelines, elucidates the current application status of VRZ in individuals with hepatic insufficiency, and discusses the influence of CYP2C19, CYP3A4, CYP2C9, and ABCB1 genetic polymorphisms on VRZ dose adjustments and Ctrough at the pharmacogenomic level. Additionally, a comprehensive summary and analysis of existing studies' recommendations on VRZ dose adjustments based on CYP2C19 genetic polymorphisms and hepatic insufficiency are provided, offering a more comprehensive reference for dose selection and adjustments of VRZ in this patient population.
Collapse
Affiliation(s)
- Guolin Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinhui Li
- Department of Medical, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Changji Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qin Yu
- College of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rou Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuerong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hailin Liu
- Department of Pharmacy, The People’s Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
84
|
Gomez-Lopez A, Sanchez Galiano S, Ortega Madueño S, Carballo Gonzalez C. Observed isavuconazole exposure: 5-year experience of azole TDM from a Spanish reference laboratory. Med Mycol 2023; 61:myad086. [PMID: 37580172 DOI: 10.1093/mmy/myad086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/28/2023] [Accepted: 08/12/2023] [Indexed: 08/16/2023] Open
Abstract
We aimed to assess patient exposure to isavuconazole (ISZ) from samples received in our laboratory for therapeutic antifungal monitoring. We used liquid chromatography coupled with ultraviolet (UV) absorbance detection adapted from a multiplex-validated method with photodiode array (PDA) detection to monitor the analytes. The latter device allows the characterization of the azoles UV spectra. The method was validated according to international guidelines for efficient ISZ monitoring. The assay exhibited linearity between 0.25 and 16 mg/l for ISZ. Accuracy and intra- and inter-day precision were within acceptable ranges, and the method was successfully applied to quantify azoles and major metabolites from clinical samples collected from treated patients. We focus on ISZ blood concentrations and compared them to those of voriconazole, posaconazole, and itraconazole for a period of 5 years (2017-2021). Median ISZ concentration was 2.92 mg/l (interquartile range 1.82-5.33 mg/l) with 89% of measurements classified as adequate exposure (> 1 mg/l). Additionally, 71% of samples reach concentration values > 2 mg/l. Different ISZ exposure between adults to children were found. In conclusion, ISZ achieves excellent blood concentrations compared to other azole drugs, they are almost identical to those previously described, they exceed the MICs of most fungi for which its use was recommended and they differ depending on the patient's age. The method we describe for antifungal monitoring is simple, robust, and efficient. It simultaneously analyzes azoles and metabolites, and can be used for tailored interventions, achieve exposures associated with therapeutic success, decrease treatment-related toxicity, and help prevent resistance emergence due to continuous azole sub-optimal concentrations.
Collapse
Affiliation(s)
- Alicia Gomez-Lopez
- Mycology Reference and Research Laboratory (National Centre for Microbiology CNM-ISCIII), Instituto de Salud Carlos III Carretera Majadahonda-Pozuelo Km 2 28220 Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III. Carretera Majadahonda-Pozuelo Km 2 Madrid, Spain
| | - Susana Sanchez Galiano
- Mycology Reference and Research Laboratory (National Centre for Microbiology CNM-ISCIII), Instituto de Salud Carlos III Carretera Majadahonda-Pozuelo Km 2 28220 Madrid, Spain
| | - Sheila Ortega Madueño
- Mycology Reference and Research Laboratory (National Centre for Microbiology CNM-ISCIII), Instituto de Salud Carlos III Carretera Majadahonda-Pozuelo Km 2 28220 Madrid, Spain
| | - Cristina Carballo Gonzalez
- Mycology Reference and Research Laboratory (National Centre for Microbiology CNM-ISCIII), Instituto de Salud Carlos III Carretera Majadahonda-Pozuelo Km 2 28220 Madrid, Spain
| |
Collapse
|
85
|
Benedict K, Gold JAW, Toda M, Thompson GR, Wiederhold NP, Smith DJ. Low Rates of Antifungal Therapeutic Drug Monitoring Among Inpatients Who Received Itraconazole, Posaconazole, or Voriconazole, United States, 2019-2021. Open Forum Infect Dis 2023; 10:ofad389. [PMID: 37539059 PMCID: PMC10394719 DOI: 10.1093/ofid/ofad389] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
Antifungal therapeutic drug monitoring (TDM) is recommended for hospitalized patients receiving itraconazole, posaconazole, or voriconazole for treatment or prophylaxis. In this analysis of hospital-based data, TDM was uncommonly performed (15.8%) in a large cohort of eligible patients, suggesting missed opportunities to avoid subtherapeutic drug levels and minimize toxicity.
Collapse
Affiliation(s)
- Kaitlin Benedict
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jeremy A W Gold
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mitsuru Toda
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases, University of California, Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Nathan P Wiederhold
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Dallas J Smith
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
86
|
Liu Y, He Z, Liang H, Han M, Wang J, Liu Q, Guan Y. A high-throughput UPLC-MS/MS method for the determination of eight anti-tumor drugs in plasma. Anal Biochem 2023:115230. [PMID: 37429484 DOI: 10.1016/j.ab.2023.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Rapidly developing UPLC-MS/MS bioassays with high throughput and quality are challenging yet desired in routine clinics. METHODS & RESULTS: A high-throughput UPLC-MS/MS bioassay has been built for simultaneously quantifying gefitinib, ruxolitinib, dasatinib, imatinib, ibrutinib, methotrexate, cyclophosphamide and paclitaxel. After the protein precipitation with methanol, samples were separated on an Acquity BEH C18 column following a gradient elution system with methanol and 2 mM ammonium acetate in water at 40 °C with a run time of 3 min (flow rate 0.4 mL/min). Mass quantification in the positive ion SRM mode was then performed with electrospray ionization. The method of specificity, linearity, accuracy, precision, matrix effects, recovery, stability, dilution integrity and carryover were all validated as per the guideline of the China Food and Drug Administration whose values met the admissible limits. Application of the bioassay to therapeutic drug monitoring revealed important variability in the studied anti-tumour drugs. CONCLUSION: This validated approach was shown to be reliable and effective in clinical management, being a valuable support in therapeutic drug monitoring and subsequent individualized dosing optimization.
Collapse
Affiliation(s)
- Yao Liu
- Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Guangzhou 519000, China; Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Zhichao He
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Heng Liang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Minzhen Han
- The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China
| | - Jinxingyi Wang
- The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China
| | - Qian Liu
- The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China; Guangdong RangerBio Technologies Co., Ltd., Dongguan 523000, China.
| | - Yanping Guan
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
87
|
Bentley S, Cheong J, Gudka N, Makhecha S, Hadjisymeou-Andreou S, Standing JF. Therapeutic drug monitoring-guided dosing for pediatric cystic fibrosis patients: recent advances and future outlooks. Expert Rev Clin Pharmacol 2023; 16:715-726. [PMID: 37470695 DOI: 10.1080/17512433.2023.2238597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Medicine use in children with cystic fibrosis (CF) is complicated by inconsistent pharmacokinetics at variance with the general population, a lack of research into this and its effects on clinical outcomes. In the absence of established dose regimens, therapeutic drug monitoring (TDM) is a clinically relevant tool to optimize drug exposure and maximize therapeutic effect by the bedside. In clinical practice though, use of this is variable and limited by a lack of expert recommendations. AREAS COVERED We aimed to review the use of TDM in children with CF to summarize recent developments, current recommendations, and opportunities for future directions. We searched PubMed for relevant publications using the broad search terms "cystic fibrosis" in combination with the specific terms "therapeutic drug monitoring (TDM)" and "children." Further searches were undertaken using the name of identified drugs combined with the term "TDM." EXPERT OPINION Further research into the use of Bayesian forecasting and the relationship between exposure and response is required to personalize dosing, with the opportunity for the development of expert recommendations in children with CF. Use of noninvasive methods of TDM has the potential to improve accessibility to TDM in this cohort.
Collapse
Affiliation(s)
- Siân Bentley
- Pharmacy Department, Royal Brompton Hospital, London, UK
| | - Jamie Cheong
- Pharmacy Department, Royal Brompton Hospital, London, UK
| | - Nikesh Gudka
- Pharmacy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | | | - Joseph F Standing
- Pharmacy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Infection, Immunity and Inflammation,great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
88
|
Phoophiboon V, Brown P, Burns KEA. Systemic lupus erythematosus associated with development of macrophage activation syndrome and disseminated aspergillosis. Can J Anaesth 2023; 70:1255-1260. [PMID: 37349668 DOI: 10.1007/s12630-023-02506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 06/24/2023] Open
Abstract
PURPOSE Macrophage activation syndrome (MAS) is a rare illness, especially in critically ill adults. The diagnosis of MAS is challenging, requiring the expertise of multiple specialists, and treatments for MAS can be associated with catastrophic complications. CLINICAL FEATURES We describe the case of a 31-yr-old Vietnamese student who was diagnosed with cutaneous systemic lupus erythematosus (SLE) in November 2020 and was initiated on treatment with low-dose corticosteroids and hydroxychloroquine as an outpatient. Ten days later, she presented to hospital with decreased consciousness, fever, periorbital swelling, and hypotension necessitating intubation. Computed tomography angiography (CTA) and lumbar puncture did not show a stroke or central nervous system infection. Serology and clinical presentation were consistent with MAS. She was initially treated with 4.5 g pulse methylprednisolone and subsequently with the interleukin-1 receptor antagonist, anakinra, and maintenance corticosteroids because of persistently elevated inflammatory markers. Her intensive care unit stay was complicated by aspiration, airway obstruction due to fungal tracheobronchitis necessitating extracorporeal membrane oxygenation (ECMO), and ring-enhancing cerebral lesions, and, ultimately, massive hemoptysis resulting in death. CONCLUSIONS Four features of this case merit discussion, including the: 1) infrequent association of SLE with MAS; 2) short interval between SLE diagnosis and critical illness; 3) manifestation of fungal tracheobronchitis with airway obstruction; and 4) lack of response to antifungal treatment while receiving ECMO.
Collapse
Affiliation(s)
- Vorakamol Phoophiboon
- Interdepartmental Division of Critical Care Medicine, Temerty School of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Paula Brown
- Department of Pharmacy, University Health Network, Toronto, ON, Canada
| | - Karen E A Burns
- Division of Critical Care Medicine, Unity Health Toronto - St. Michael's Hospital, Li Ka Shing Knowledge Institute, 30 Bond Street, Office 4-045 Donnelly Wing, Toronto, ON, M5B 1W8, Canada
| |
Collapse
|
89
|
McCann S, Sinha J, Wilson WS, McKinzie CJ, Garner LM, Gonzalez D. Population Pharmacokinetics of Posaconazole in Immune-Compromised Children and Assessment of Target Attainment in Invasive Fungal Disease. Clin Pharmacokinet 2023; 62:997-1009. [PMID: 37179512 PMCID: PMC10338595 DOI: 10.1007/s40262-023-01254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Posaconazole (PSZ) is a triazole antifungal for the management of invasive fungal disease (IFD) in adults and children. Although PSZ is available as an intravenous (IV) solution, oral suspension (OS) and delayed-release tablets (DRTs), OS is the preferred formulation for pediatric use because of potential safety concerns associated with an excipient in the IV formulation and difficulty in swallowing intact tablets by children. However, poor biopharmaceutical characteristics of the OS formulation leads to an unpredictable dose-exposure profile of PSZ in children, potentially risking therapeutic failure. The goal of this study was to characterize the population pharmacokinetics (PK) of PSZ in immunocompromised children and assess therapeutic target attainment. METHODS Serum concentrations of PSZ were collected retrospectively from records of hospitalized patients. A population PK analysis was performed in a nonlinear mixed-effects modeling framework with NONMEM (v7.4). The PK parameters were scaled to body weight, then potential covariate effects were assessed. The final PK model was used to evaluate recommended dosing schemes through simulation of target attainment (as a percentage of the population having steady-state trough concentrations above the recommended target) using Simulx (v2021R1). RESULTS Repeated measurement data of 202 serum concentrations of total PSZ were acquired from 47 immunocompromised patients between 1 and 21 years of age receiving PSZ either intravenously or orally, or both. A one-compartment PK model with first-order absorption and linear elimination best fit the data. The estimated absolute bioavailability (95% confidence interval) for suspension (Fs) was 16% (8-27%), which was significantly lower than the reported tablet bioavailability (Ft) [67%]. Fs was reduced by 62% and 75% upon concomitant administration with pantoprazole (PAN) and omeprazole (OME), respectively. Famotidine resulted in a reduction of Fs by only 22%. Both fixed dosing and weight-based adaptive dosing provided adequate target attainment when PAN or OME were not coadministered with the suspension. CONCLUSIONS The results of this study revealed that both fixed and weight-based adaptive dosing schemes can be appropriate for target attainment across all PSZ formulations, including suspension. Additionally, covariate analysis suggests that concomitant proton pump inhibitors should be contraindicated during PSZ suspension dosing.
Collapse
Affiliation(s)
- Sean McCann
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Campus Box #7569, Chapel Hill, NC, 27599-7569, USA
| | - Jaydeep Sinha
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Campus Box #7569, Chapel Hill, NC, 27599-7569, USA
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William S Wilson
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Cameron J McKinzie
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Lauren M Garner
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Campus Box #7569, Chapel Hill, NC, 27599-7569, USA.
| |
Collapse
|
90
|
Gorham J, Taccone FS, Hites M. Therapeutic Drug Monitoring of Antimicrobials in Critically Ill Obese Patients. Antibiotics (Basel) 2023; 12:1099. [PMID: 37508195 PMCID: PMC10376599 DOI: 10.3390/antibiotics12071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity is a significant global public health concern that is associated with an elevated risk of comorbidities as well as severe postoperative and nosocomial infections. The treatment of infections in critically ill obese patients can be challenging because obesity affects the pharmacokinetics and pharmacodynamics of antibiotics, leading to an increased risk of antibiotic therapy failure and toxicity due to inappropriate dosages. Precision dosing of antibiotics using therapeutic drug monitoring may help to improve the management of this patient population. This narrative review outlines the pharmacokinetic and pharmacodynamic changes that result from obesity and provides a comprehensive critical review of the current available data on dosage adjustment of antibiotics in critically ill obese patients.
Collapse
Affiliation(s)
- Julie Gorham
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (H.U.B), 1070 Brussels, Belgium
| | - Fabio S Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (H.U.B), 1070 Brussels, Belgium
| | - Maya Hites
- Clinic of Infectious Diseases, Hôpital Universitaire de Bruxelles (H.U.B), 1070 Brussels, Belgium
| |
Collapse
|
91
|
Mushtaq M, Fatima K, Ahmad A, Mohamed Ibrahim O, Faheem M, Shah Y. Pharmacokinetic interaction of voriconazole and clarithromycin in Pakistani healthy male volunteers: a single dose, randomized, crossover, open-label study. Front Pharmacol 2023; 14:1134803. [PMID: 37361220 PMCID: PMC10288581 DOI: 10.3389/fphar.2023.1134803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/26/2023] [Indexed: 06/28/2023] Open
Abstract
Background: Voriconazole an antifungal drug, has a potential for drug-drug interactions (DDIs) with administered drugs. Clarithromycin is a Cytochromes P450 CYP (3A4 and 2C19) enzyme inhibitor, and voriconazole is a substrate and inhibitor of these two enzymes. Being a substrate of the same enzyme for metabolism and transport, the chemical nature and pKa of both interacting drugs make these drugs better candidates for potential pharmacokinetic drug-drug interactions (PK-DDIs). This study aimed to evaluate the effect of clarithromycin on the pharmacokinetic profile of voriconazole in healthy volunteers. Methods: A single oral dose, open-label, randomized, crossover study was designed for assessing PK-DDI in healthy volunteers, consisting of 2 weeks washout period. Voriconazole, either alone (2 mg × 200 mg, tablet, P/O) or along with clarithromycin (voriconazole 2 mg × 200 mg, tablet + clarithromycin 500 mg, tablet, P/O), was administered to enrolled volunteers in two sequences. The blood samples (approximately 3 cc) were collected from volunteers for up to 24 h. Plasma concentrations of voriconazole were analyzed by an isocratic, reversed-phase high-performance-liquid chromatography ultraviolet-visible detector (RP HPLC UV-Vis) and a non-compartmental method. Results: In the present study, when voriconazole was administered with clarithromycin versus administered alone, a significant increase in peak plasma concentration (Cmax) of voriconazole by 52% (geometric mean ratio GMR: 1.52; 90% CI 1.04, 1.55; p = 0.000) was observed. Similarly, the area under the curve from time zero to infinity (AUC0-∞) and the area under the concentration-time curve from time zero to time-t (AUC0-t) of voriconazole also significantly increased by 21% (GMR: 1.14; 90% CI 9.09, 10.02; p = 0.013), and 16% (GMR: 1.15; 90% CI 8.08, 10.02; p = 0.007), respectively. In addition, the results also showed a reduction in the apparent volume of distribution (Vd) by 23% (GMR: 0.76; 90% CI 5.00, 6.20; p = 0.051), and apparent clearance (CL) by 13% (GMR: 0.87; 90% CI 41.95, 45.73; p = 0.019) of voriconazole. Conclusion: The alterations in PK parameters of voriconazole after concomitant administration of clarithromycin are of clinical significance. Therefore, adjustments in dosage regimens are warranted. In addition, extreme caution and therapeutic drug monitoring are necessary while co-prescribing both drugs. Clinical Trial Registration: clinicalTrials.gov, Identifier NCT05380245.
Collapse
Affiliation(s)
- Mehwish Mushtaq
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Kshaf Fatima
- University Medical and Dental College, The University of Faisalabad, Faisalabad, Pakistan
| | - Aneeqa Ahmad
- Punjab Medical College, Faisalabad Medical University, Faisalabad, Pakistan
| | - Osama Mohamed Ibrahim
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Muhammad Faheem
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Yasar Shah
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
92
|
Pan L, Fan X, Jia A, Li Y, Zhao Y, Liu Y, Wang A, Ma Y. High-throughput identification and determination of antifungal triazoles in human plasma using UPLC-QDa. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1226:123774. [PMID: 37329778 DOI: 10.1016/j.jchromb.2023.123774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Triazoles are common agents for invasive fungal infections, while therapeutic drug monitoring is needed to improve antifungal efficacy and reduce toxicity. This study aimed to exploit a simple and reliable liquid chromatography-mass spectrometry method for high-throughput monitoring of antifungal triazoles in human plasma using UPLC-QDa. Triazoles in plasma were separated by chromatography on a Waters BEH C18 column and detected using positive ions electrospray ionization fitted with single ion recording. M+ for fluconazole (m/z 307.11) and voriconazole (m/z 350.12), M2+ for posaconazole (m/z 351.17), itraconazole (m/z 353.13) and ketoconazole (m/z 266.08, IS) were selected as representative ions in single ion recording mode. The standard curves in plasma showed acceptable linearities over 1.25-40 μg/mL for fluconazole, 0.47-15 μg/mL for posaconazole and 0.39-12.5 μg/mL for voriconazole and itraconazole. The selectivity, specificity, accuracy, precision, recovery, matrix effect, and stability met acceptable practice standards under Food and Drug Administration method validation guidelines. This method was successfully applied to the therapeutic monitoring of triazoles in patients with invasive fungal infections, thereby guiding clinical medication.
Collapse
Affiliation(s)
- Lulu Pan
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Zhengzhou Key Laboratory of Molecular Detection and Individualized Drug Therapy for Cardiovascular Diseases, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China.
| | - Xiaxia Fan
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Zhengzhou Key Laboratory of Molecular Detection and Individualized Drug Therapy for Cardiovascular Diseases, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Ao Jia
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Zhengzhou Key Laboratory of Molecular Detection and Individualized Drug Therapy for Cardiovascular Diseases, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yafei Li
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Zhengzhou Key Laboratory of Molecular Detection and Individualized Drug Therapy for Cardiovascular Diseases, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yidan Zhao
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Zhengzhou Key Laboratory of Molecular Detection and Individualized Drug Therapy for Cardiovascular Diseases, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Ying Liu
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Zhengzhou Key Laboratory of Molecular Detection and Individualized Drug Therapy for Cardiovascular Diseases, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Aifeng Wang
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Zhengzhou Key Laboratory of Molecular Detection and Individualized Drug Therapy for Cardiovascular Diseases, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China.
| | - Yongcheng Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Zhengzhou Key Laboratory of Molecular Detection and Individualized Drug Therapy for Cardiovascular Diseases, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
93
|
Carmo A, Rocha M, Pereirinha P, Tomé R, Costa E. Antifungals: From Pharmacokinetics to Clinical Practice. Antibiotics (Basel) 2023; 12:884. [PMID: 37237787 PMCID: PMC10215229 DOI: 10.3390/antibiotics12050884] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The use of antifungal drugs started in the 1950s with polyenes nystatin, natamycin and amphotericin B-deoxycholate (AmB). Until the present day, AmB has been considered to be a hallmark in the treatment of invasive systemic fungal infections. Nevertheless, the success and the use of AmB were associated with severe adverse effects which stimulated the development of new antifungal drugs such as azoles, pyrimidine antimetabolite, mitotic inhibitors, allylamines and echinochandins. However, all of these drugs presented one or more limitations associated with adverse reactions, administration route and more recently the development of resistance. To worsen this scenario, there has been an increase in fungal infections, especially in invasive systemic fungal infections that are particularly difficult to diagnose and treat. In 2022, the World Health Organization (WHO) published the first fungal priority pathogens list, alerting people to the increased incidence of invasive systemic fungal infections and to the associated risk of mortality/morbidity. The report also emphasized the need to rationally use existing drugs and develop new drugs. In this review, we performed an overview of the history of antifungals and their classification, mechanism of action, pharmacokinetic/pharmacodynamic (PK/PD) characteristics and clinical applications. In parallel, we also addressed the contribution of fungi biology and genetics to the development of resistance to antifungal drugs. Considering that drug effectiveness also depends on the mammalian host, we provide an overview on the roles of therapeutic drug monitoring and pharmacogenomics as means to improve the outcome, prevent/reduce antifungal toxicity and prevent the emergence of antifungal resistance. Finally, we present the new antifungals and their main characteristics.
Collapse
Affiliation(s)
- Anália Carmo
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Marilia Rocha
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Pharmacy Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal (P.P.)
| | - Patricia Pereirinha
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Pharmacy Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal (P.P.)
| | - Rui Tomé
- Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal;
| | - Eulália Costa
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| |
Collapse
|
94
|
Tsotsolis S, Kotoulas SC, Lavrentieva A. Invasive Pulmonary Aspergillosis in Coronavirus Disease 2019 Patients Lights and Shadows in the Current Landscape. Adv Respir Med 2023; 91:185-202. [PMID: 37218799 DOI: 10.3390/arm91030016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023]
Abstract
Invasive pulmonary aspergillosis (IPA) presents a known risk to critically ill patients with SARS-CoV-2; quantifying the global burden of IPA in SARS-CoV-2 is extremely challenging. The true incidence of COVID-19-associated pulmonary aspergillosis (CAPA) and the impact on mortality is difficult to define because of indiscriminate clinical signs, low culture sensitivity and specificity and variability in clinical practice between centers. While positive cultures of upper airway samples are considered indicative for the diagnosis of probable CAPA, conventional microscopic examination and qualitative culture of respiratory tract samples have quite low sensitivity and specificity. Thus, the diagnosis should be confirmed with serum and BAL GM test or positive BAL culture to mitigate the risk of overdiagnosis and over-treatment. Bronchoscopy has a limited role in these patients and should only be considered when diagnosis confirmation would significantly change clinical management. Varying diagnostic performance, availability, and time-to-results turnaround time are important limitations of currently approved biomarkers and molecular assays for the diagnosis of IA. The use of CT scans for diagnostic purposes is controversial due to practical concerns and the complex character of lesions presented in SARS-CoV-2 patients. The key objective of management is to improve survival by avoiding misdiagnosis and by initiating early, targeted antifungal treatment. The main factors that should be considered upon selection of treatment options include the severity of the infection, concomitant renal or hepatic injury, possible drug interactions, requirement for therapeutic drug monitoring, and cost of therapy. The optimal duration of antifungal therapy for CAPA is still under debate.
Collapse
Affiliation(s)
- Stavros Tsotsolis
- Medical School, Aristotle University of Thessaloniki, Leoforos Agiou Dimitriou, 54124 Thessaloniki, Greece
| | | | - Athina Lavrentieva
- 1st ICU, General Hospital of Thessaloniki "Georgios Papanikolaou", Leoforos Papanikolaou, 57010 Thessaloniki, Greece
| |
Collapse
|
95
|
Kanaujia R, Singh S, Rudramurthy SM. Aspergillosis: an Update on Clinical Spectrum, Diagnostic Schemes, and Management. CURRENT FUNGAL INFECTION REPORTS 2023; 17:1-12. [PMID: 37360858 PMCID: PMC10157594 DOI: 10.1007/s12281-023-00461-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2023] [Indexed: 06/28/2023]
Abstract
Purpose of Review This review gives an overview of the diseases caused by Aspergillus, including a description of the species involved and the infected clinical systems. We provide insight into the various diagnostic methods available for diagnosing aspergillosis, particularly invasive aspergillosis (IA), including the role of radiology, bronchoscopy, culture, and non-culture-based microbiological methods. We also discuss the available diagnostic algorithms for the different disease conditions. This review also summarizes the main aspects of managing infections due to Aspergillus spp., such as antifungal resistance, choice of antifungals, therapeutic drug monitoring, and new antifungal alternatives. Recent Findings The risk factors for this infection continue to evolve with the development of many biological agents that target the immune system and the increase of viral illnesses such as coronavirus disease. Due to the limitations of present mycological test methods, establishing a fast diagnosis is frequently difficult, and reports of developing antifungal resistance further complicate the management of aspergillosis. Many commercial assays, like AsperGenius®, MycAssay Aspergillus®, and MycoGENIE®, have the advantage of better species-level identification and concomitant resistance-associated mutations. Fosmanogepix, ibrexafungerp, rezafungin, and olorofim are newer antifungal agents in the pipeline exhibiting remarkable activity against Aspergillus spp. Summary The fungus Aspergillus is found ubiquitously around the world and can cause various infections, from harmless saprophytic colonization to severe IA. Understanding the diagnostic criteria to be used in different patient groups and the local epidemiological data and antifungal susceptibility profile is critical for optimal patient management.
Collapse
Affiliation(s)
- Rimjhim Kanaujia
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research PGIMER, Chandigarh, India
| | - Shreya Singh
- Department of Microbiology, Dr B R Ambedkar State Institute of Medical Sciences (AIMS), Mohali, Punjab India
| | - Shivaprakash M. Rudramurthy
- Mycology Division, Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research PGIMER, Chandigarh, India
| |
Collapse
|
96
|
Yoshii T, Nakano K, Okuda T, Citterio D, Hiruta Y. Evaluation of separation performance for eggshell-based reversed-phase HPLC columns by controlling particle size and application in quantitative therapeutic drug monitoring. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1790-1796. [PMID: 36938787 DOI: 10.1039/d3ay00219e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Eggshell-based reversed-phase packing materials were applied to an analytical column for high-performance liquid chromatography. Commercially available eggshell powder was classified by a cyclone system to obtain three types of particles with different diameters (arithmetic mean ± standard deviation: 4.3 ± 3.8, 5.6 ± 3.3, and 9.5 ± 5.5 μm). Sedimentation separation removed tiny particles from each sample, resulting in particles with arithmetic means of 6.6 ± 5.5, 7.3 ± 4.5, and 10.2 ± 5.0 μm, respectively. The unclassified particles and three particle types treated with sedimentation separation were subsequently packed into analytical columns (150 mm × 4.6 mm I.D.), and their separation efficiencies were evaluated by comparing their height equivalent to a theoretical plate (HETP). The column without sedimentation separation exhibited the highest HETP, whereas the columns with sedimentation separation showed better separation efficiency and lower back pressure. The column with the best separation efficiency was applied for the separation of 10 alkylbenzenes and 5 steroids, and all peaks were observed with complete separation (peak resolution: RS > 1.5). Finally, the column was used for quantitative analysis of voriconazole, an azole antifungal agent, and imatinib, a first-generation molecularly targeted drug for cancer treatment, in spiked whole blood. Excellent accuracy (99.1-102.8%) and precision (0.6-1.9%) were observed for the spiked drugs and long-term stability (>3000 column volumes of mobile phase flow) indicated good applicability of the developed eggshell-based column as an analytical column for routine analyses of therapeutic drugs in blood.
Collapse
Affiliation(s)
- Tomoka Yoshii
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Kohei Nakano
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Tomoaki Okuda
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| |
Collapse
|
97
|
Kundu P, Gupta N, Sood N. The Fragile Patient: Considerations in the Management of Invasive Mould Infections (IMIs) in India. Cureus 2023; 15:e38085. [PMID: 37252469 PMCID: PMC10209389 DOI: 10.7759/cureus.38085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Invasive mould infections (IMIs), which are mostly caused by Aspergillus spp. and Mucormycetes, are opportunistic infections that impose a substantial threat to patients who are considered to be 'fragile'. There is no fixed definition for fragile patients; however, patients with cancer or acquired immunodeficiency syndrome (AIDS), patients who have undergone organ transplants, and patients being treated in the intensive care units (ICUs) were considered fragile. Management of IMIs in fragile patients is challenging, owing to their compromised immune status. The diagnostic challenges associated with IMIs due to insufficient sensitivity and specificity of the current diagnostic tests lead to delayed treatment. A widening demographic of at-risk patients and a broadening spectrum of pathogenic fungi have added to the challenges to ascertain a definite diagnosis. A recent surge of mucormycosis associated with SARS-CoV-2 infections and the resultant steroid usage has been reported. Liposomal amphotericin B (L-AmB) is the mainstay for treating mucormycosis while voriconazole has displaced amphotericin B as the mainstay for treating Aspergillus infection due to its better response, improved survival, and fewer severe side effects. The selection of antifungal treatment has to be subjected to more scrutiny in fragile patients owing to their comorbidities, organ impairment, and multiple ongoing treatment modalities. Isavuconazole has been documented to have a better safety profile, stable pharmacokinetics, fewer drug-drug interactions, and a broad spectrum of coverage. Isavuconazole has thus found its place in the recommendations and can be considered a suitable option for treating fragile patients with IMIs. In this review, the authors have critically appraised the challenges in ascertaining an accurate diagnosis and current management considerations and suggested an evidence-based approach to managing IMIs in fragile patients.
Collapse
Affiliation(s)
| | - Neha Gupta
- Internal Medicine, Fortis Memorial Research Institute, Gurugram, IND
- Internal Medicine, Medanta - The Medicity, Gurugram, IND
| | - Nitin Sood
- Hematology and Oncology/Stem Cell Transplant, Cancer Institute, Medanta - The Medicity, Gurugram, IND
| |
Collapse
|
98
|
Telles JP, Morales R, Yamada CH, Marins TA, D'Amaro Juodinis V, Sztajnbok J, Silva M, Bassetti BR, Albiero J, Tuon FF. Optimization of Antimicrobial Stewardship Programs Using Therapeutic Drug Monitoring and Pharmacokinetics-Pharmacodynamics Protocols: A Cost-Benefit Review. Ther Drug Monit 2023; 45:200-208. [PMID: 36622029 DOI: 10.1097/ftd.0000000000001067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/08/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE Antimicrobial stewardship programs are important for reducing antimicrobial resistance because they can readjust antibiotic prescriptions to local guidelines, switch intravenous to oral administration, and reduce hospitalization times. Pharmacokinetics-pharmacodynamics (PK-PD) empirically based prescriptions and therapeutic drug monitoring (TDM) programs are essential for antimicrobial stewardship, but there is a need to fit protocols according to cost benefits. The cost benefits can be demonstrated by reducing toxicity and hospital stay, decreasing the amount of drug used per day, and preventing relapses in infection. Our aim was to review the data available on whether PK-PD empirically based prescriptions and TDM could improve the cost benefits of an antimicrobial stewardship program to decrease global hospital expenditures. METHODS A narrative review based on PubMed search with the relevant studies of vancomycin, aminoglycosides, beta-lactams, and voriconazole. RESULTS TDM protocols demonstrated important cost benefit for patients treated with vancomycin, aminoglycosides, and voriconazole mainly due to reduce toxicities and decreasing the hospital length of stay. In addition, PK-PD strategies that used infusion modifications to meropenem, piperacillin-tazobactam, ceftazidime, and cefepime, such as extended or continuous infusion, demonstrated important cost benefits, mainly due to reducing daily drug needs and lengths of hospital stays. CONCLUSIONS TDM protocols and PK-PD empirically based prescriptions improve the cost-benefits and decrease the global hospital expenditures.
Collapse
Affiliation(s)
- João Paulo Telles
- - AC Camargo Cancer Center, Infectious Diseases Department, São Paulo
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
| | - Ronaldo Morales
- - Clinical Pharmacokinetics Center, School of Pharmaceutical Sciences, University of São Paulo
- - Pediatric Intensive Care Unit, Department of Pediatrics, Hospital Sírio-Libanês. São Paulo
| | - Carolina Hikari Yamada
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
- - Hospital Universitário Evangélico Mackenzie, Department of Infectious Diseases, Curitiba
| | - Tatiana A Marins
- - Hospital Israelita Albert Einstein, Department of Clinical Pharmacy, São Paulo
| | | | - Jaques Sztajnbok
- - Instituto de Infectologia Emílio Ribas, São Paulo
- - Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (ICr/HC-FMUSP)
| | - Moacyr Silva
- - Hospital Israelita Albert Einstein, Department of Infection Prevention and Control, São Paulo
| | - Bil Randerson Bassetti
- - Hospital Santa Rita de Cássia, Department of Infectious Disease and Infection Control, Vitória ; and
| | - James Albiero
- - Universidade Estadual de Maringá, Pharmacy Department, Programa de Pós-Graduação em Assistência Farmacêutica, Maringá, Brazil
| | - Felipe Francisco Tuon
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
| |
Collapse
|
99
|
Yang Q, Wu Y, Li X, Bao Y, Wang W, Zheng Y. Talaromyces marneffei infection and complicate manifestation of respiratory system in HIV-negative children. BMC Pulm Med 2023; 23:100. [PMID: 36978020 PMCID: PMC10053456 DOI: 10.1186/s12890-023-02390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Respiratory symptoms are the earliest clinical manifestation of Talaromyces marneffei (TM) infection. In this study, we aimed to improve the early identification of TM infection in human immunodeficiency virus (HIV)-negative children with respiratory symptoms as the first manifestation, analyze the risk factors, and provide evidence for diagnosis and treatment. METHODS We retrospectively analyzed six cases of HIV-negative children with respiratory system infection symptoms as the first presentation. RESULTS All subjects (100%) had cough and hepatosplenomegaly, and five subjects (83.3%) had a fever; other symptoms and signs included lymph node enlargement, rash, rales, wheezing, hoarseness, hemoptysis, anemia, and thrush. Additionally, 66.7% of the cases had underlying diseases (three had malnutrition, one had severe combined immune deficiency [SCID]). The most common coinfecting pathogen was Pneumocystis jirovecii, which occurred in two cases (33.3%), followed by one case of Aspergillus sp. (16.6%). Furthermore, the value of β-D-glucan detection (G test) increased in 50% of the cases, while the proportion of NK decreased in six cases (100%). Five children (83.3%) were confirmed to have the pathogenic genetic mutations. Three children (50%) were treated with amphotericin B, voriconazole, and itraconazole, respectively; three children (50%) were treated with voriconazole and itraconazole. All children were tested for itraconazole and voriconazole plasma concentrations throughout antifungal therapy. Two cases (33.3%) relapsed after drug withdrawal within 1 year, and the average duration of antifungal treatment for all children was 17.7 months. CONCLUSION The first manifestation of TM infection in children is respiratory symptoms, which are nonspecific and easily misdiagnosed. When the effectiveness of anti-infection treatment is poor for recurrent respiratory tract infections, we must consider the condition with an opportunistic pathogen and attempt to identify the pathogen using various samples and detection methods to confirm the diagnosis. It is recommended the course for anti-TM disease be longer than one year for children with immune deficiency. Monitoring the blood concentration of antifungal drugs is important.
Collapse
Affiliation(s)
- Qin Yang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, 518038, China
| | - Yue Wu
- Department of Clinical Pharmacy, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, 518038, China
| | - Xiaonan Li
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, 518038, China
| | - Yanmin Bao
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, 518038, China
| | - Wenjian Wang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, 518038, China
| | - Yuejie Zheng
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, 518038, China.
| |
Collapse
|
100
|
Sehgal IS, Vinay K, Dhooria S, Muthu V, Prasad KT, Aggarwal AN, Chakrabarti A, Rudramurthy SM, Choudhary H, Agarwal R. Efficacy of generic forms of itraconazole capsule in treating subjects with chronic pulmonary aspergillosis. Mycoses 2023. [DOI: 10.1111/myc.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
|