51
|
Phyo AP, von Seidlein L. Challenges to replace ACT as first-line drug. Malar J 2017; 16:296. [PMID: 28738892 PMCID: PMC5525298 DOI: 10.1186/s12936-017-1942-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/15/2017] [Indexed: 01/15/2023] Open
Abstract
The spread of artemisinin and partner drug resistance through Asia requires changes in first-line therapy. The traditional modus has been the replacement of one first-line anti-malarial regimen with another. The number of anti-malarial drug candidates currently in development may have given false confidence in the expectation that resistance to artemisinin-based combination therapy (ACT) can be solved with a switch to the next anti-malarial drug regimen. A number of promising anti-malarial drug regimens did not succeed in becoming first-line drugs due to safety concerns or rapid development of resistance. Currently promising candidates for inclusion in first-line regimens, such as KAE 609, KAF 156, OZ 439, and OZ 277, have already triggered safety concerns or fears that point mutations could render the drugs inefficacious. An additional challenge for a new first-line drug is finding an appropriate partner drug. There is hope that none of the above-mentioned concerns will be substantiated in larger, upcoming trials. Meanwhile, combining already licensed anti-malarials may be a promising stop-gap measure. Practitioners in Vietnam have empirically started to add mefloquine to the current dihydroartemisinin-piperaquine. Practitioners in Africa could do worse than empirically combine already licensed co-artemether and amodiaquine when treatment with ACT no longer clears Plasmodium falciparum. Both combinations are currently undergoing trials.
Collapse
Affiliation(s)
- Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
52
|
Wong YK, Xu C, Kalesh KA, He Y, Lin Q, Wong WSF, Shen HM, Wang J. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action. Med Res Rev 2017. [PMID: 28643446 DOI: 10.1002/med.21446] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Artemisinin and its derivatives (collectively termed as artemisinins) are among the most important and effective antimalarial drugs, with proven safety and efficacy in clinical use. Beyond their antimalarial effects, artemisinins have also been shown to possess selective anticancer properties, demonstrating cytotoxic effects against a wide range of cancer types both in vitro and in vivo. These effects appear to be mediated by artemisinin-induced changes in multiple signaling pathways, interfering simultaneously with multiple hallmarks of cancer. Great strides have been taken to characterize these pathways and to reveal their anticancer mechanisms of action of artemisinin. Moreover, encouraging data have also been obtained from a limited number of clinical trials to support their anticancer property. However, there are several key gaps in knowledge that continue to serve as significant barriers to the repurposing of artemisinins as effective anticancer agents. This review focuses on important and emerging aspects of this field, highlighting breakthroughs in unresolved questions as well as novel techniques and approaches that have been taken in recent studies. We discuss the mechanism of artemisinin activation in cancer, novel and significant findings with regards to artemisinin target proteins and pathways, new understandings in artemisinin-induced cell death mechanisms, as well as the practical issues of repurposing artemisinin. We believe these will be important topics in realizing the potential of artemisinin and its derivatives as safe and potent anticancer agents.
Collapse
Affiliation(s)
- Yin Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chengchao Xu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Karunakaran A Kalesh
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Yingke He
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jigang Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
53
|
Dong Y, Wang X, Kamaraj S, Bulbule VJ, Chiu FCK, Chollet J, Dhanasekaran M, Hein CD, Papastogiannidis P, Morizzi J, Shackleford DM, Barker H, Ryan E, Scheurer C, Tang Y, Zhao Q, Zhou L, White KL, Urwyler H, Charman WN, Matile H, Wittlin S, Charman SA, Vennerstrom JL. Structure–Activity Relationship of the Antimalarial Ozonide Artefenomel (OZ439). J Med Chem 2017; 60:2654-2668. [DOI: 10.1021/acs.jmedchem.6b01586] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Sriraghavan Kamaraj
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Vivek J. Bulbule
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Francis C. K. Chiu
- Centre for
Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jacques Chollet
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Manickam Dhanasekaran
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Christopher D. Hein
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Petros Papastogiannidis
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Julia Morizzi
- Centre for
Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - David M. Shackleford
- Centre for
Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Helena Barker
- Centre for
Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Eileen Ryan
- Centre for
Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Christian Scheurer
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Yuanqing Tang
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Qingjie Zhao
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Lin Zhou
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Karen L. White
- Centre for
Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Heinrich Urwyler
- Basilea Pharmaceutica Ltd., Grenzacherstrasse 487, CH-4058 Basel, Switzerland
| | - William N. Charman
- Centre for
Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Hugues Matile
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Susan A. Charman
- Centre for
Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jonathan L. Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
54
|
Burrows JN, Duparc S, Gutteridge WE, Hooft van Huijsduijnen R, Kaszubska W, Macintyre F, Mazzuri S, Möhrle JJ, Wells TNC. New developments in anti-malarial target candidate and product profiles. Malar J 2017; 16:26. [PMID: 28086874 PMCID: PMC5237200 DOI: 10.1186/s12936-016-1675-x] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/30/2016] [Indexed: 11/10/2022] Open
Abstract
A decade of discovery and development of new anti-malarial medicines has led to a renewed focus on malaria elimination and eradication. Changes in the way new anti-malarial drugs are discovered and developed have led to a dramatic increase in the number and diversity of new molecules presently in pre-clinical and early clinical development. The twin challenges faced can be summarized by multi-drug resistant malaria from the Greater Mekong Sub-region, and the need to provide simplified medicines. This review lists changes in anti-malarial target candidate and target product profiles over the last 4 years. As well as new medicines to treat disease and prevent transmission, there has been increased focus on the longer term goal of finding new medicines for chemoprotection, potentially with long-acting molecules, or parenteral formulations. Other gaps in the malaria armamentarium, such as drugs to treat severe malaria and endectocides (that kill mosquitoes which feed on people who have taken the drug), are defined here. Ultimately the elimination of malaria requires medicines that are safe and well-tolerated to be used in vulnerable populations: in pregnancy, especially the first trimester, and in those suffering from malnutrition or co-infection with other pathogens. These updates reflect the maturing of an understanding of the key challenges in producing the next generation of medicines to control, eliminate and ultimately eradicate malaria.
Collapse
Affiliation(s)
- Jeremy N Burrows
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva 15, Switzerland
| | - Stephan Duparc
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva 15, Switzerland
| | | | | | - Wiweka Kaszubska
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva 15, Switzerland
| | - Fiona Macintyre
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva 15, Switzerland
| | | | - Jörg J Möhrle
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva 15, Switzerland
| | - Timothy N C Wells
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva 15, Switzerland.
| |
Collapse
|
55
|
McCarthy JS, Rückle T, Djeriou E, Cantalloube C, Ter-Minassian D, Baker M, O'Rourke P, Griffin P, Marquart L, Hooft van Huijsduijnen R, Möhrle JJ. A Phase II pilot trial to evaluate safety and efficacy of ferroquine against early Plasmodium falciparum in an induced blood-stage malaria infection study. Malar J 2016; 15:469. [PMID: 27624471 PMCID: PMC5022189 DOI: 10.1186/s12936-016-1511-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/31/2016] [Indexed: 01/13/2023] Open
Abstract
Background Ferroquine (SSR97193) is a candidate anti-malarial currently undergoing clinical trials for malaria. To better understand its pharmacokinetic (PK) and pharmacodynamic (PD) parameters the compound was tested in the experimentally induced blood stage malaria infection model in volunteers. Methods Male and non-pregnant female aged 18–50 years were screened for this phase II, controlled, single-centre clinical trial. Subjects were inoculated with ~1800 viable Plasmodium falciparum 3D7A-infected human erythrocytes, and treated with a single-dose of 800 mg ferroquine. Blood samples were taken at defined time-points to measure PK and PD parameters. The blood concentration of ferroquine and its active metabolite, SSR97213, were measured on dry blood spot samples by ultra-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS). Parasitaemia and emergence of gametocytes were monitored by quantitative PCR. Safety was determined by recording adverse events and monitoring clinical laboratory assessments during the course of the study. Results Eight subjects were enrolled into the study, inoculated with infected erythrocytes and treated with 800 mg ferroquine. Ferroquine was rapidly absorbed with maximal exposure after 4–8 and 4–12 h exposure for SSR97213. Non-compartmental PK analysis resulted in estimates for half-lives of 10.9 and 23.8 days for ferroquine and SSR97213, respectively. Parasite clearance as reported by parasite reduction ratio was 162.9 (95 % CI 141–188) corresponding to a parasite clearance half-life of 6.5 h (95 % CI: 6.4–6.7 h). PK/PD modelling resulted in a predicted minimal parasiticidal concentration of 20 ng/mL, and the single dosing tested in this study was predicted to maintain an exposure above this threshold for 454 h (37.8 days). Although ferroquine was overall well tolerated, transient elevated transaminase levels were observed in three subjects. Paracetamol was the only concomitant treatment among the two out of these three subjects that may have played a role in the elevated transaminases levels. No clinically significant ECG abnormalities were observed. Conclusions The parameters and PK/PD model derived from this study pave the way to the further rational development of ferroquine as an anti-malarial partner drug. The safety of ferroquine has to be further explored in controlled human trials. Trial registration anzctr.org.au (registration number: ACTRN12613001040752), registered 18/09/2013 Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1511-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - Thomas Rückle
- Medicines for Malaria Venture, Route de Pré-Bois 20, 1215, Meyrin, Geneva, Switzerland
| | - Elhadj Djeriou
- Sanofi Aventis Recherche Développement, Chilly-Mazarin, France
| | | | | | - Mark Baker
- Medicines for Malaria Venture, Route de Pré-Bois 20, 1215, Meyrin, Geneva, Switzerland.,Novartis Consumer Health SA, 2 route de l'Etraz, Case Postale 1279, 1260, Nyon, Switzerland
| | - Peter O'Rourke
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Paul Griffin
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,University of Queensland, Brisbane, Australia.,Mater Health Services, Brisbane, Australia.,Q-Pharm Pty Ltd, Brisbane, Australia
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Jörg J Möhrle
- Medicines for Malaria Venture, Route de Pré-Bois 20, 1215, Meyrin, Geneva, Switzerland.
| |
Collapse
|