51
|
Bickford CP, Hanson DT, McDowell NG. Influence of diurnal variation in mesophyll conductance on modelled 13C discrimination: results from a field study. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3223-33. [PMID: 20501745 PMCID: PMC2905191 DOI: 10.1093/jxb/erq137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 05/07/2023]
Abstract
Mesophyll conductance to CO(2) (g(m)) limits carbon assimilation and influences carbon isotope discrimination (Delta) under most environmental conditions. Current work is elucidating the environmental regulation of g(m), but the influence of g(m) on model predictions of Delta remains poorly understood. In this study, field measurements of Delta and g(m) were obtained using a tunable diode laser spectroscope coupled to portable photosynthesis systems. These data were used to test the importance of g(m) in predicting Delta using the comprehensive Farquhar model of Delta (Delta(comp)), where g(m) was parameterized using three methods based on: (i) mean g(m); (ii) the relationship between stomatal conductance (g(s)) and g(m); and (iii) the relationship between time of day (TOD) and g(m). Incorporating mean g(m), g(s)-based g(m), and TOD-based g(m) did not consistently improve Delta(comp) predictions of field-grown juniper compared with the simple model of Delta (Delta(simple)) that omits fractionation factors associated with g(m) and decarboxylation. Sensitivity tests suggest that b, the fractionation due to carboxylation, was lower (25 per thousand) than the value commonly used in Delta(comp) (29 per thousand) and Delta(simple) (27 per thousand). These results demonstrate the limits of all tested models in predicting observed juniper Delta, largely due to unexplained offsets between predicted and observed values that were not reconciled in sensitivity tests of variability in g(m), b, or e, the day respiratory fractionation.
Collapse
Affiliation(s)
- Christopher P Bickford
- University of New Mexico, Department of Biology, MSC03-2020, Albuquerque, NM 87131, USA.
| | | | | |
Collapse
|
52
|
Effects of atmospheric CO2 concentration, irradiance, and soil nitrogen availability on leaf photosynthetic traits of Polygonum sachalinense around natural CO2 springs in northern Japan. Oecologia 2010; 164:41-52. [DOI: 10.1007/s00442-010-1635-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
|
53
|
Limousin JM, Misson L, Lavoir AV, Martin NK, Rambal S. Do photosynthetic limitations of evergreen Quercus ilex leaves change with long-term increased drought severity? PLANT, CELL & ENVIRONMENT 2010; 33:863-75. [PMID: 20051039 DOI: 10.1111/j.1365-3040.2009.02112.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Seasonal drought can severely impact leaf photosynthetic capacity. This is particularly important for Mediterranean forests, where precipitation is expected to decrease as a consequence of climate change. Impacts of increased drought on the photosynthetic capacity of the evergreen Quercus ilex were studied for two years in a mature forest submitted to long-term throughfall exclusion. Gas exchange and chlorophyll fluorescence were measured on two successive leaf cohorts in a control and a dry plot. Exclusion significantly reduced leaf water potential in the dry treatment. In both treatments, light-saturated net assimilation rate (A(max)), stomatal conductance (g(s)), maximum carboxylation rate (V(cmax)), maximum rate of electron transport (J(max)), mesophyll conductance to CO2 (g(m)) and nitrogen investment in photosynthesis decreased markedly with soil water limitation during summer. The relationships between leaf photosynthetic parameters and leaf water potential remained identical in the two treatments. Leaf and canopy acclimation to progressive, long-term drought occurred through changes in leaf area index, leaf mass per area and leaf chemical composition, but not through modifications of physiological parameters.
Collapse
Affiliation(s)
- Jean-Marc Limousin
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
54
|
Yamori W, Evans JR, Von Caemmerer S. Effects of growth and measurement light intensities on temperature dependence of CO(2) assimilation rate in tobacco leaves. PLANT, CELL & ENVIRONMENT 2010; 33:332-43. [PMID: 19895395 DOI: 10.1111/j.1365-3040.2009.02067.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Effects of growth light intensity on the temperature dependence of CO(2) assimilation rate were studied in tobacco (Nicotiana tabacum) because growth light intensity alters nitrogen allocation between photosynthetic components. Leaf nitrogen, ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) and cytochrome f (cyt f) contents increased with increasing growth light intensity, but the cyt f/Rubisco ratio was unaltered. Mesophyll conductance to CO(2) diffusion (g(m)) measured with carbon isotope discrimination increased with growth light intensity but not with measuring light intensity. The responses of CO(2) assimilation rate to chloroplast CO(2) concentration (C(c)) at different light intensities and temperatures were used to estimate the maximum carboxylation rate of Rubisco (V(cmax)) and the chloroplast electron transport rate (J). Maximum electron transport rates were linearly related to cyt f content at any given temperature (e.g. 115 and 179 micromol electrons mol(-1) cyt f s(-1) at 25 and 40 degrees C, respectively). The chloroplast CO(2) concentration (C(trans)) at which the transition from RuBP carboxylation to RuBP regeneration limitation occurred increased with leaf temperature and was independent of growth light intensity, consistent with the constant ratio of cyt f/Rubisco. In tobacco, CO(2) assimilation rate at 380 micromol mol(-1) CO(2) concentration and high light was limited by RuBP carboxylation above 32 degrees C and by RuBP regeneration below 32 degrees C.
Collapse
Affiliation(s)
- Wataru Yamori
- Molecular Plant Physiology Group, Research School of Biology, Building 46, The Australian National University, Canberra, ACT, 2601, Australia.
| | | | | |
Collapse
|
55
|
Duan B, Li Y, Zhang X, Korpelainen H, Li C. Water deficit affects mesophyll limitation of leaves more strongly in sun than in shade in two contrasting Picea asperata populations. TREE PHYSIOLOGY 2009; 29:1551-1561. [PMID: 19825867 DOI: 10.1093/treephys/tpp085] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aim of this study was to examine the response of internal conductance to CO(2) (g(i)) to soil water deficit and contrasting light conditions, and their consequences on photosynthetic physiology in two Picea asperata Mast. populations originating from wet and dry climate regions of China. Four-year-old trees were subjected to two light treatments (30% and 100% of full sunlight) and two watering regimes (well watered, drought) for 2 years. In both tested populations, drought significantly decreased g(i) and the net photosynthesis rate (A) and increased carbon isotope composition (delta(13)C) values in both light treatments, in particular in the sun. Moreover, drought resulted in a significantly higher relative limitation due to stomatal conductance (L(s)) in both light treatments and higher relative limitation due to internal conductance (L(i)) and abscisic acid (ABA) in the sun plants. The results also showed that L(i) (0.26-0.47) was always greater than L(s) (0.12-0.28). On the other hand, drought significantly decreased the ratio of chloroplastic to internal CO(2) concentration (C(c)/C(i)), photosynthetic nitrogen utilization efficiency (PNUE) and total biomass in the sun plants of the wet climate population, whereas there were no significant changes in these parameters in the dry climate population. Our results also showed that the dry climate population possessed higher delta(13)C values with higher ratio of internal conductance to stomatal conductance (g(i)/g(s)), suggesting that increasing the g(i)/g(s) ratio enhances water-use efficiency (WUE) in plants evolved in arid environments. Thus, we propose that the use of the g(i)/g(s) parameter to screen P. asperata plants with higher water deficit tolerance is certainly worthy of consideration. Furthermore, g(i) is an important variable, which reflects the population differences in PNUE, and it should thus be included in plant physiological investigations related to leaf economics.
Collapse
Affiliation(s)
- Baoli Duan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | | | | | | | | |
Collapse
|
56
|
Soares-Cordeiro AS, Driscoll SP, Pellny TK, Olmos E, Arrabaça MC, Foyer CH. Variations in the dorso-ventral organization of leaf structure and Kranz anatomy coordinate the control of photosynthesis and associated signalling at the whole leaf level in monocotyledonous species. PLANT, CELL & ENVIRONMENT 2009; 32:1833-1844. [PMID: 19712063 DOI: 10.1111/j.1365-3040.2009.02043.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photosynthesis and associated signalling are influenced by the dorso-ventral properties of leaves. The degree of adaxial/abaxial symmetry in stomatal numbers, photosynthetic regulation with respect to light orientation and the total section areas of the bundle sheath (BS) cells and the surrounding mesophyll (M) cells on the adaxial and abaxial sides of the vascular bundles were compared in two C(4)[Zea mays (maize) and Paspalum dilatatum] and one C(3)[Triticum turgidum (Durum wheat)] monocotyledonous species. The C(3) leaves had a higher degree of dorso-ventral symmetry than the C(4) leaves. Photosynthetic regulation was the same on each side of the wheat leaves, as were stomatal numbers and the section area of the BS relative to that of the M cells (BS/M section area ratio). In contrast, photosynthetic regulation in maize and P. dilatatum leaves showed a marked surface-specific response to light orientation. Compared to the adaxial sides of the C(4) monocotyledonous leaves, the abaxial surfaces had more stomata and the BS/M section area ratio was significantly higher. Differences in dorso-ventral structure, particularly in Kranz anatomy, serve not only to maximize photosynthetic capacity with respect light orientation in C(4) monocotyledonous leaves but also allow adaxial and abaxial-specific signalling from the respective M cells.
Collapse
Affiliation(s)
- Ana Sofia Soares-Cordeiro
- Centro de Engenharia Biológica e Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
57
|
Bown HE, Watt MS, Mason EG, Clinton PW, Whitehead D. The influence of nitrogen and phosphorus supply and genotype on mesophyll conductance limitations to photosynthesis in Pinus radiata. TREE PHYSIOLOGY 2009; 29:1143-1151. [PMID: 19617215 DOI: 10.1093/treephys/tpp051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mesophyll conductance, g(m), may pose significant limitations to photosynthesis and may be differentially affected by nutrition and genotype in Pinus radiata D. Don. Simultaneous measurements of gas exchange and chlorophyll fluorescence were made to determine g(m), using the constant J method (Harley, P.C., F. Loreto, G. Di Marco and T.D. Sharkey. 1992. Theoretical considerations when estimating the mesophyll conductance to CO(2) flux by analysis of the response of photosynthesis to CO(2). Plant Physiol. 98:1429-1436), in a fast- and a slow-growing clone of P. radiata grown in a greenhouse with a factorial combination of nitrogen (N) and phosphorus (P) supply. Values of g(m) increased linearly with the rate of photosynthesis at saturating irradiance and ambient CO(2) concentration, A(sat) (g(m) = 0.020A(sat), r(2) = 0.25, P < 0.001) and with stomatal conductance to CO(2) transfer, g(s) (g(m) = 1.16g(s), r(2) = 0.14, P < 0.001). Values of g(m) were greater than those of stomatal conductance, g(s), and the ratio (g(m)/g(s)) was not influenced by single or combined N and P additions or clone with a mean (+/-SE) value of 1.22 +/- 0.06. Relative limitations to mesophyll conductance, L(m) (16%) to photosynthesis, were generally greater than those imposed by stomata, L(s) (13%). The mean (+/-SE) CO(2) concentration in the intercellular air spaces (C(i)) was 53 +/- 3 mumol mol(-1) lower than that in the atmosphere (C(a)). Mean (+/-SE) CO(2) concentration in the chloroplasts (C(c)) was 48 +/- 2 mumol mol(-1) lower than C(i). Values of L(s), L(m) and CO(2) diffusion gradients posed by g(s) (C(a) - C(i)) and g(m) (C(i) - C(c)) did not significantly differ with nutrient supply or clone. Mean values of V(cmax) and J(max) calculated on a C(c) basis were 15.4% and 3.1% greater than those calculated on a C(i) basis, which translated into different slopes of the J(max)/V(cmax) relationship (C(c) basis: J(max) = 2.11V(cmax), r(2) = 0.88, P < 0.001; C(i) basis: J(max) = 2.43V(cmax), r(2) = 0.86, P < 0.001). These results will be useful for correcting estimates of V(cmax) and J(max) used to characterize the biochemical properties of photosynthesis for P. radiata.
Collapse
Affiliation(s)
- Horacio E Bown
- Faculty of Forestry, University of Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|
58
|
Yin X, Struik PC, Romero P, Harbinson J, Evers JB, VAN DER Putten PEL, Vos J. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. PLANT, CELL & ENVIRONMENT 2009; 32:448-64. [PMID: 19183300 DOI: 10.1111/j.1365-3040.2009.01934.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We appraised the literature and described an approach to estimate the parameters of the Farquhar, von Caemmerer and Berry model using measured CO(2) assimilation rate (A) and photosystem II (PSII) electron transport efficiency (Phi(2)). The approach uses curve fitting to data of A and Phi(2) at various levels of incident irradiance (I(inc)), intercellular CO(2) (C(i)) and O(2). Estimated parameters include day respiration (R(d)), conversion efficiency of I(inc) into linear electron transport of PSII under limiting light [kappa(2(LL))], electron transport capacity (J(max)), curvature factor (theta) for the non-rectangular hyperbolic response of electron flux to I(inc), ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) CO(2)/O(2) specificity (S(c/o)), Rubisco carboxylation capacity (V(cmax)), rate of triose phosphate utilization (T(p)) and mesophyll conductance (g(m)). The method is used to analyse combined gas exchange and chlorophyll fluorescence measurements on leaves of various ages and positions in wheat plants grown at two nitrogen levels. Estimated S(c/o) (25 degrees C) was 3.13 mbar microbar(-1); R(d) was lower than respiration in the dark; J(max) was lower and theta was higher at 2% than at 21% O(2); kappa(2(LL)), V(cmax), J(max) and T(p) correlated to leaf nitrogen content; and g(m) decreased with increasing C(i) and with decreasing I(inc). Based on the parameter estimates, we surmised that there was some alternative electron transport.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
59
|
Niinemets U, Wright IJ, Evans JR. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2433-49. [PMID: 19255061 DOI: 10.1093/jxb/erp045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Foliage structure, chemistry, photosynthetic potentials (V(cmax) and J(max)), and mesophyll diffusion conductance (g(m)) were quantified for 35 broad-leaved species from four sites with contrasting rainfall and soil fertility in eastern Australia. The aim of the study was to estimate the extent to which g(m) and related leaf properties limited photosynthesis (A), focusing on highly sclerophyllous species typical of the 'slow-return' end of the leaf economics spectrum. Leaf dry mass per unit area (M(A)) varied approximately 5-fold, leaf life span (L(L)) and N (N(M)) and P (P(M)) contents per dry mass approximately 8-fold, and various characteristics of foliage photosynthetic machinery 6- to 12-fold across the data set. As is characteristic of the 'leaf economics spectrum', more robust leaves with greater M(A) and longevity were associated with lower nutrient contents and lower foliage photosynthetic potentials. g(m) was positively correlated with V(cmax) and J(max), and these correlations were stronger on a mass basis. Only g(m)/mass was negatively associated with M(A). CO(2) drawdown from substomatal cavities to chloroplasts (C(i)-C(C)) characterizing mesophyll CO(2) diffusion limitations was larger in leaves with greater M(A), lower g(m)/mass, and lower photosynthetic potentials. Relative limitation of A due to finite mesophyll diffusion conductance, i.e. 1-A(infinite g(m))/A(actual g(m)), was always >0.2 and up to 0.5 in leaves with most robust leaf structure, demonstrating the profound effect of finite g(m) on realized photosynthesis rates. Data from different sites were overlapping in bivariate relationships, and the variability of average values between the sites was less than among the species within the sites. Nevertheless, photosynthesis was more strongly limited by g(m) in low rain/high nutrient and high rain/low nutrient sites that supported vegetation with more sclerophyllous foliage. These data collectively highlight a strong relationship between leaf structure and g(m), and demonstrate that realized photosynthesis rates are strongly limited by g(m) in this highly sclerophyllous flora.
Collapse
Affiliation(s)
- Ulo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia.
| | | | | |
Collapse
|
60
|
Montpied P, Granier A, Dreyer E. Seasonal time-course of gradients of photosynthetic capacity and mesophyll conductance to CO2 across a beech (Fagus sylvatica L.) canopy. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2407-18. [PMID: 19457983 DOI: 10.1093/jxb/erp093] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Leaf photosynthesis is known to acclimate to the actual irradiance received by the different layers of a canopy. This acclimation is usually described in terms of changes in leaf structure, and in photosynthetic capacity. Photosynthetic capacity is likely to be affected by mesophyll conductance to CO(2) which has seldom been assessed in tree species, and whose plasticity in response to local irradiance is still poorly known. Structural [N and chlorophyll content, leaf mass to area ratio (LMA)] and functional leaf traits [maximum carboxylation rate (V(cmax)), maximum light-driven electron flux (J(max)), and mesophyll conductance (g(i))] were assessed by measuring leaf response curves of net CO(2) assimilation versus intercellular CO(2) partial pressure, along a vertical profile across a beech canopy, and by fitting a version of the Farquhar model including g(i). The measurements were repeated five times during a growth season to catch potential seasonal variation. Irradiance gradients resulted in large decreasing gradients of LMA, g(i), V(cmax), and J(max). Relative allocation of leaf N to the different photosynthetic processes was only slightly affected by local irradiance. Seasonal changes after leaf expansion and before induction of leaf senescence were only minor. Structural equation modelling confirmed that LMA was the main driving force for changes in photosynthetic traits, with only a minor contribution of leaf Nitrogen content. In conclusion, mesophyll conductance to CO(2) displays a large plasticity that scales with photosynthetic capacity across a tree canopy, and that it is only moderately (if at all) affected by seasonal changes in the absence of significant soil water depletion.
Collapse
Affiliation(s)
- Pierre Montpied
- INRA, UMR, Ecologie et Ecophysiologie Forestières, Champenoux, France.
| | | | | |
Collapse
|
61
|
Monti A, Bezzi G, Venturi G. Internal conductance under different light conditions along the plant profile of Ethiopian mustard (Brassica carinata A. Brown.). JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2341-50. [PMID: 19237547 DOI: 10.1093/jxb/erp032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This study focused on the internal conductance (g(i)) along the plant profile of Ethiopian mustard under two light conditions: (i) light from the top only (I1); (ii) light from the top integrated by supplementary lateral light along the whole plant profile (I2). Lateral light strongly increased the productivity (e.g. +104% of seed oil) and net photosynthesis (A). The latter appeared more driven by g(i) (r=0.78**) than by stomatal conductance (g(s)) (r=0.51*). Importantly, irradiance also considerably shortened the time from leaf appearance to senescence, which means that corresponding leaves in I1 and I2 had different ages. Therefore, since leaf age and irradiance have counteracting effects on g(i), I1 sometimes showed higher g(i) values than I2. With respect to irradiance, leaf age had clearly higher effects on g(i), which radically declined from the top to the basal leaves, even under constant light conditions. The internal conductance caused a significant drawdown of CO(2) from the sub-stomatal cavity (C(i)) to the site of carboxylation (C(c)) that, in turn, led to a substantial underestimation of V(cmax) calculated using the A/C(i) model. Again, the trends of g(i) and g(s) were not consistent along the plant profile, and so the ratio between stomatal and internal limitations to A changed from top to bottom leaves, accordingly. This study suggests that g(i) may be a valuable trait for increasing photosynthetic capacity and productivity; nonetheless, it suggests caution in selecting leaves for high g(i), as the latter can considerably change along the plant profile due to leaf age and irradiance effects.
Collapse
Affiliation(s)
- Andrea Monti
- Department of Agroenvironmental Science and Technology, University of Bologna, Italy.
| | | | | |
Collapse
|
62
|
Priault P, Wegener F, Werner C. Pronounced differences in diurnal variation of carbon isotope composition of leaf respired CO2 among functional groups. THE NEW PHYTOLOGIST 2009; 181:400-412. [PMID: 19121035 DOI: 10.1111/j.1469-8137.2008.02665.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The first broad species survey of diurnal variation in carbon (C) isotope signatures of leaf dark-respired CO(2) (delta(13)C(res)) is presented here and functional differences and diurnal dynamics are linked to fractionation in different respiratory pathways, based on (13)C-labelling experiments. delta(13)C(res) was analysed with a rapid in-tube incubation technique in 16 species. A large diurnal increase in delta(13)C(res) (4-8 per thousand) occurred in evergreen, slow-growing and aromatic species and correlated significantly with cumulative photosynthesis, whereas no variation occurred in herbaceous, fast-growing plants or temperate trees. The diurnal increase in delta(13)C(res) declined almost proportionally to reductions in cumulative light and was reduced in growing compared with mature leaves. Pyruvate positional labelling provided direct evidence that functional groups differ in C allocation between respiratory pathways owing to different metabolic demands for growth, maintenance and secondary metabolism. Diurnal increase in C flux through pyruvate dehydrogenase (for investment in, for example, isoprene or aromatic compounds) combined with consistently low Krebs cycle activity resulted in pronounced increase in delta(13)C(res) in evergreen and aromatic species. By contrast, fast growing herbs with high respiratory demand exhibited no diurnal changes since C was fully respired. Hence, diurnal delta(13)C(res) pattern may provide information for C allocation in plants.
Collapse
Affiliation(s)
- Pierrick Priault
- Experimental and Systems Ecology, University of Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany;Present address: Université Henri Poincaré Nancy I, Faculté des Sciences, UMR UHP/INRA 1137 'Ecologie et Ecophysiologie Forestières'- BP 239, F-54506 Vandoeuvre-lès-Nancy cedex, France
| | - Frederik Wegener
- Experimental and Systems Ecology, University of Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany;Present address: Université Henri Poincaré Nancy I, Faculté des Sciences, UMR UHP/INRA 1137 'Ecologie et Ecophysiologie Forestières'- BP 239, F-54506 Vandoeuvre-lès-Nancy cedex, France
| | - Christiane Werner
- Experimental and Systems Ecology, University of Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany;Present address: Université Henri Poincaré Nancy I, Faculté des Sciences, UMR UHP/INRA 1137 'Ecologie et Ecophysiologie Forestières'- BP 239, F-54506 Vandoeuvre-lès-Nancy cedex, France
| |
Collapse
|
63
|
Niinemets U, Díaz-Espejo A, Flexas J, Galmés J, Warren CR. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2249-70. [PMID: 19395391 DOI: 10.1093/jxb/erp036] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Limited mesophyll diffusion conductance to CO(2) (g(m)) can significantly constrain plant photosynthesis, but the extent of g(m)-limitation is still imperfectly known. As g(m) scales positively with foliage photosynthetic capacity (A), the CO(2) drawdown from substomatal cavities (C(i)) to chloroplasts (C(C), C(i)-C(C)=A/g(m)) rather than g(m) alone characterizes the mesophyll diffusion limitations of photosynthesis. The dependencies of g(m) on A, foliage structure (leaf dry mass per unit area, M(A)), and the resulting drawdowns across a dataset of 81 species of contrasting foliage structure and photosynthetic potentials measured under non-stressed conditions were analysed to describe the structure-driven potential photosynthetic limitations due to g(m). Further the effects of key environmental stress factors and leaf and plant developmental alterations on g(m) and CO(2) drawdown were evaluated and the implications of varying g(m) on foliage photosynthesis in the field were simulated. The meta-analysis demonstrated that g(m) of non-stressed leaves was negatively correlated with M(A), and despite the positive relationship between g(m) and A, the CO(2) drawdown was larger in leaves with more robust structure. The correlations were stronger with mass-based g(m) and A, probably reflecting the circumstance that mesophyll diffusion is a complex three-dimensional process that scales better with mesophyll volume-weighted than with leaf area-weighted traits. The analysis of key environmental stress effects on g(m) and CO(2) drawdowns demonstrated that the effect of individual stresses on CO(2) drawdowns varies depending on the stress effects on foliage structure and assimilation rates. Leaf diffusion limitations are larger in non-senescent older leaves and also in senescent leaves, again reflecting more robust leaf structure and/or non-co-ordinated alterations in leaf photosynthesis and g(m). According to simulation analyses, in plants with a larger part of the overall diffusion conductance from the ambient atmosphere to the chloroplasts in the mesophyll, photosynthesis is less sensitive to changes in stomatal conductance. Accordingly, in harsher environments that support vegetation with tougher long-living stress-tolerant leaves with lower g(m), reductions in stomatal conductance that are common during stress periods are expected to alter photosynthesis less than in species where a larger part of the total diffusion limitation is determined by stomata. While structural robustness improves plant performance under environmental stress, low g(m) and inherently large CO(2) drawdown in robust leaves limits the photosynthesis of these plants more severely under favourable conditions when stomatal conductance is high. The differences in overall responsiveness to environmental modifications of plants with varying g(m) need consideration in current large-scale ecosystem productivity models.
Collapse
Affiliation(s)
- Ulo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia.
| | | | | | | | | |
Collapse
|
64
|
Li Z, Zhang S, Hu H, Li D. Photosynthetic performance along a light gradient as related to leaf characteristics of a naturally occurring Cypripedium flavum. JOURNAL OF PLANT RESEARCH 2008; 121:559-569. [PMID: 18807119 DOI: 10.1007/s10265-008-0186-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 08/19/2008] [Indexed: 05/26/2023]
Abstract
Photosynthesis, leaf structure, nitrogen content and nitrogen allocation in photosynthetic functions of Cypripedium flavum were studied in a naturally varying light regime. Light-saturated leaf net photosynthetic rate (A max) was strongly correlated with leaf dry mass per area (LMA), mesophyll conductance (g (m)) and area-based leaf nitrogen content (N area), with all variables increasing with increasing irradiance. Such coordinate variation of all these parameters illustrates the plastic response of leaf structure to high light (HL). Leaf N area was greater under HL than in low light (LL). The fractions of leaf nitrogen partitioning in carboxylation (P (R)) and bioenergetics (P (B)) were positively related to LMA. In contrast, P (R) and P (B) decreased with increasing mass-based leaf nitrogen content (N mass). However, no correlation was found between leaf nitrogen investment in light harvesting (P (L)) and either LMA or N mass. Like maximum rate of carboxylation (V cmax) and electron transport (J max), the J max/V cmax ratio, which was strongly correlated to LMA, also increased significantly with irradiance. Under HL, leaf maximum photosynthetic nitrogen efficiency (ANUE) and intrinsic water use efficiency (WUE) were greater than in LL conditions, despite a small difference in WUE. This suggests that a functional balance in the photosynthetic machinery favors leaf photosynthetic plasticity of C. flavum in response to different light conditions. Given an ample soil nitrogen supply, C. flavum may offset its susceptibility to HL by efficient nitrogen use and higher stomatal and mesophyll conductance against photoinhibition so as to keep leaf photosynthesis positive.
Collapse
Affiliation(s)
- Zhongrong Li
- Kunming Institute of Botany, Chinese Academy of Sciences, 650204, Kunming, China
| | | | | | | |
Collapse
|
65
|
Shi K, Ding XT, Dong DK, Zhou YH, Yu JQ. Putrescine enhancement of tolerance to root-zone hypoxia in Cucumis sativus: a role for increased nitrate reduction. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:337-345. [PMID: 32688789 DOI: 10.1071/fp08029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 04/22/2008] [Indexed: 06/11/2023]
Abstract
Cucumber (Cucumis sativus L.) plants were subjected to hypoxic stress with or without a pretreatment of putrescine (Put) to investigate whether nitrate reduction is involved in the enhancement effects of Put on tolerance to root-zone hypoxia. Both hypoxic stress and exogenous Put application significantly increased the contents of endogenous Put, spermidine and spermine. Plants grown under hypoxic conditions exhibited reductions in plant growth rate, NAD+/NADH ratio, ATP concentration, and consequent lowered cell viability in roots. The detrimental effects, however, were significantly alleviated by the addition of Put into the nutrient solution 24 h before the administration of hypoxia. Transcript levels of NR (nitrate reductase) and its cofactor binding domain genes FAD (FAD binding) and CYP51G1 (Heme binding), the activity of nitrate reductase (NR, EC 1.6.6.1) and the nitrate reduction process were each greatly enhanced by Put application, particularly in roots exposed to hypoxia. Lactate dehydrogenase (EC 1.1.1.27) activity was independent of aeration condition and Put application, whereas alcohol dehydrogenase (EC 1.1.1.1) activity was significantly increased after exposure to hypoxia, but did not increase after Put application. Put failed to alleviate the hypoxia injury of root electrolyte leakage when NR was inhibited by tungstate in the nutrient solution. These results suggest that Put enhances tolerance to hypoxia by increasing the transcript levels of NR and its cofactor binding domain genes, thereby stimulating the activities of NR and nitrate reduction to maintain the redox and energy status.
Collapse
Affiliation(s)
- Kai Shi
- Department of Horticulture, Huajiachi Campus, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | - Xiao-Tao Ding
- Department of Horticulture, Huajiachi Campus, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | - De-Kun Dong
- The Institute of Crop and Nuclear Technology Utilisation, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yan-Hong Zhou
- Department of Horticulture, Huajiachi Campus, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | - Jing Quan Yu
- Department of Horticulture, Huajiachi Campus, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| |
Collapse
|
66
|
Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H. Mesophyll conductance to CO2: current knowledge and future prospects. PLANT, CELL & ENVIRONMENT 2008; 31:602-21. [PMID: 17996013 DOI: 10.1111/j.1365-3040.2007.01757.x] [Citation(s) in RCA: 559] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
During photosynthesis, CO2 moves from the atmosphere (C(a)) surrounding the leaf to the sub-stomatal internal cavities (C(i)) through stomata, and from there to the site of carboxylation inside the chloroplast stroma (C(c)) through the leaf mesophyll. The latter CO2 diffusion component is called mesophyll conductance (g(m)), and can be divided in at least three components, that is, conductance through intercellular air spaces (g(ias)), through cell wall (g(w)) and through the liquid phase inside cells (g(liq)). A large body of evidence has accumulated in the past two decades indicating that g(m) is sufficiently small as to significantly decrease C(c) relative to C(i), therefore limiting photosynthesis. Moreover, g(m) is not constant, and it changes among species and in response to environmental factors. In addition, there is now evidence that g(liq) and, in some cases, g(w), are the main determinants of g(m). Mesophyll conductance is very dynamic, changing in response to environmental variables as rapid or even faster than stomatal conductance (i.e. within seconds to minutes). A revision of current knowledge on g(m) is presented. Firstly, a historical perspective is given, highlighting the founding works and methods, followed by a re-examination of the range of variation of g(m) among plant species and functional groups, and a revision of the responses of g(m) to different external (biotic and abiotic) and internal (developmental, structural and metabolic) factors. The possible physiological bases for g(m), including aquaporins and carbonic anhydrases, are discussed. Possible ecological implications for variable g(m) are indicated, and the errors induced by neglecting g(m) when interpreting photosynthesis and carbon isotope discrimination models are highlighted. Finally, a series of research priorities for the near future are proposed.
Collapse
Affiliation(s)
- Jaume Flexas
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Balears, Spain.
| | | | | | | | | |
Collapse
|
67
|
Warren CR. Soil water deficits decrease the internal conductance to CO2 transfer but atmospheric water deficits do not. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:327-34. [PMID: 18238801 DOI: 10.1093/jxb/erm314] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The internal conductance to CO2 supply from substomatal cavities to sites of carboxylation poses a large limitation to photosynthesis. It is known that internal conductance is decreased by soil water deficits, but it is not known if it is affected by atmospheric water deficits (i.e. leaf to air vapour pressure deficit, VPD). The aim of this paper was to examine the responses of internal conductance to atmospheric and soil water deficits in seedlings of the evergreen perennial Eucalyptus regnans F. Muell and the herbaceous plants Solanum lycopersicum (formerly Lycopersicon esculentum) Mill. and Phaseolus vulgaris L. Internal conductance was estimated with the variable J method from concurrent measurements of gas exchange and fluorescence. In all three species steady-state stomatal conductance decreased by approximately 30% as VPD increased from 1 kPa to 2 kPa. In no species was internal conductance affected by VPD despite large effects on stomatal conductance. In contrast, soil water deficits decreased stomatal conductance and internal conductance of all three species. Decreases in stomatal and internal conductance under water deficit were proportional, but this proportionality differed among species, and thus the relationship between stomatal and internal conductance differed among species. These findings indicate that soil water deficits affect internal conductance while atmospheric water deficits do not. The reasons for this distinction are unknown but are consistent with soil and atmospheric water deficits having differing effects on leaf physiology and/or root-shoot communication.
Collapse
Affiliation(s)
- C R Warren
- School of Biological Sciences, Heydon-Laurence Building A08, The University of Sydney, Sydney NSW 2006, Australia.
| |
Collapse
|
68
|
Abstract
Photosynthesis depends on the diffusion of gaseous CO(2) inside the leaf spaces from the stomatal entry point to the mesophyll cell walls. Although most research considers only the vertical diffusion from stomata on upper and/or leaf lower surfaces, some of the gas will diffuse in the lateral (paradermal) direction. The importance of lateral CO(2) diffusion is reviewed, and the anatomical characteristics of leaves, including the variation of air space volume between species and conditions are discussed. The contribution of the air space conductance to the limitation of photosynthesis by the overall CO(2) diffusion pathway is usually ignored. However, the need to consider three-dimensional diffusion at the small scale of a few stomata is emphasized because stomata are discrete, and separated by 20-300 microm. At the large scale of 100s of micrometres, there may be barriers to CO(2) caused by the vascular tissue, particularly if there are bundle sheath extensions. The possible extent and controls on CO(2) lateral and vertical diffusion in different species and conditions are illustrated using chlorophyll a fluorescence imaging techniques. It is clear that there is a range of effective lateral permeabilities depending on the particular vascular patterns and cell arrangements, and that species cannot be simply divided into homobaric and heterobaric anatomies. Lateral diffusion in more permeable leaves can be sufficient to affect measurements of leaf gas exchange, particularly when fluxes are low, although its contribution to leaf photosynthesis in natural conditions needs clarification.
Collapse
Affiliation(s)
- James I L Morison
- Department of Biological Sciences, University of Essex, Colchester, UK.
| | | |
Collapse
|
69
|
Niinemets U. Photosynthesis and resource distribution through plant canopies. PLANT, CELL & ENVIRONMENT 2007; 30:1052-71. [PMID: 17661747 DOI: 10.1111/j.1365-3040.2007.01683.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant canopies are characterized by dramatic gradients of light between canopy top and bottom, and interactions between light, temperature and water vapour deficits. This review summarizes current knowledge of potentials and limitations of acclimation of foliage photosynthetic capacity (A(max)) and light-harvesting efficiency to complex environmental gradients within the canopies. Acclimation of A(max) to high light availability involves accumulation of rate-limiting photosynthetic proteins per unit leaf area as the result of increases in leaf thickness in broad-leaved species and volume: total area ratio and mesophyll thickness in species with complex geometry of leaf cross-section. Enhancement of light-harvesting efficiency in low light occurs through increased chlorophyll production per unit dry mass, greater leaf area per unit dry mass investment in leaves and shoot architectural modifications that improve leaf exposure and reduce within-shoot shading. All these acclimation responses vary among species, resulting in species-specific use efficiencies of low and high light. In fast-growing canopies and in evergreen species, where foliage developed and acclimated to a certain light environment becomes shaded by newly developing foliage, leaf senescence, age-dependent changes in cell wall characteristics and limited foliage re-acclimation capacity can constrain adjustment of older leaves to modified light availabilities. The review further demonstrates that leaves in different canopy positions respond differently to dynamic fluctuations in light availability and to multiple environmental stresses. Foliage acclimated to high irradiance respond more plastically to rapid changes in leaf light environment, and is more resistant to co-occurring heat and water stress. However, in higher light, co-occurring stresses can more strongly curb the efficiency of foliage photosynthetic machinery through reductions in internal diffusion conductance to CO(2). This review demonstrates strong foliage potential for acclimation to within-canopy environmental gradients, but also highlights complex constraints on acclimation and foliage functioning resulting from light x foliage age interactions, multiple environmental stresses, dynamic light fluctuations and species-specific leaf and shoot structural constraints.
Collapse
Affiliation(s)
- Ulo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.
| |
Collapse
|
70
|
Flexas J, Ortuño MF, Ribas-Carbo M, Diaz-Espejo A, Flórez-Sarasa ID, Medrano H. Mesophyll conductance to CO2 in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2007; 175:501-511. [PMID: 17635225 DOI: 10.1111/j.1469-8137.2007.02111.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The close rosette growth form, short petioles and small leaves of Arabidopsis thaliana make measurements with commercial gas exchange cuvettes difficult. This difficulty can be overcome by growing A. thaliana plants in 'ice-cream cone-like' soil pots. This design permitted simultaneous gas exchange and chlorophyll fluorescence measurements from which the first estimates of mesophyll conductance to CO(2) (g(m)) in Arabidopsis were obtained and used to determine photosynthetic limitations during plant ageing from c. 30-45 d. Estimations of g(m) showed maximum values of 0.2 mol CO(2) m(-2) s(-1) bar(-1), lower than expected for a thin-leaved annual species. The parameterization of the response of net photosynthesis (A(N)) to chloroplast CO(2) concentrations (C(c)) yielded estimations of the maximum velocity of carboxylation (V(c,max_Cc)) which were also lower than those reported for other annual species. As A. thaliana plants aged from 30 to 45 d, there was a 40% decline of A(N) that was entirely the result of increased diffusional limitations to CO(2) transfer, with g(m) being the largest. The results suggest that in A. thaliana A(N) is limited by low g(m) and low capacity for carboxylation. Decreased g(m) is the main factor involved in early age-induced photosynthetic decline.
Collapse
Affiliation(s)
- J Flexas
- Laboratori de Fisiologia Vegetal, Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Balears, Spain
| | - M F Ortuño
- Departamento Botânica e Engenharia Biológica, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - M Ribas-Carbo
- Laboratori de Fisiologia Vegetal, Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Balears, Spain
| | - A Diaz-Espejo
- Instituto de Recursos Naturales y Agrobiología, CSIC, Apartado 1052, 41080 Sevilla, Spain
| | - I D Flórez-Sarasa
- Laboratori de Fisiologia Vegetal, Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Balears, Spain
| | - H Medrano
- Laboratori de Fisiologia Vegetal, Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Balears, Spain
| |
Collapse
|
71
|
Pincebourde S, Frak E, Sinoquet H, Regnard JL, Casas J. Herbivory mitigation through increased water-use efficiency in a leaf-mining moth-apple tree relationship. PLANT, CELL & ENVIRONMENT 2006; 29:2238-47. [PMID: 17081256 DOI: 10.1111/j.1365-3040.2006.01598.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Herbivory alters plant gas exchange but the effects depend on the type of leaf damage. In contrast to ectophagous insects, leaf miners, by living inside the leaf tissues, do not affect the integrity of the leaf surface. Thus, the effect of leaf miners on CO2 uptake and water-use efficiency by leaves remains unclear. We explored the impacts of the leaf-mining moth Phyllonorycter blancardella (Lepidoptera: Gracillariidae) on light responses of the apple leaf gas exchanges to determine the balance between the negative effects of reduced photosynthesis and potential positive impacts of increased water-use efficiency (WUE). Gas exchange in intact and mined leaf tissues was measured using an infrared gas analyser. The maximal assimilation rate was slightly reduced but the light response of net photosynthesis was not affected in mined leaf tissues. The transpiration rate was far more affected than the assimilation rate in the mine integument as a result of stomatal closure from moderate to high irradiance level. The WUE was about 200% higher in the mined leaf tissues than in intact leaf portions. Our results illustrate a novel mechanism by which plants might minimize losses from herbivore attacks; via trade-offs between the negative impacts on photosynthesis and the positive effects of increased WUE.
Collapse
Affiliation(s)
- Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte (IRBI, CNRS UMR 6035), Université François Rabelais, Faculté des Sciences et Techniques, 37200 Tours, France.
| | | | | | | | | |
Collapse
|
72
|
Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R. Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:427-39. [PMID: 17010114 DOI: 10.1111/j.1365-313x.2006.02879.x] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Leaf mesophyll conductance to CO(2) (g(m)) has been recognized to be finite and variable, rapidly adapting to environmental conditions. The physiological basis for fast changes in g(m) is poorly understood, but current reports suggest the involvement of protein-facilitated CO(2) diffusion across cell membranes. A good candidate for this could be the Nicotiana tabacum L. aquaporin NtAQP1, which was shown to increase membrane permeability to CO(2) in Xenopus oocytes. The objective of the present work was to evaluate its effect on the in vivo mesophyll conductance to CO(2), using plants either deficient in or overexpressing NtAQP1. Antisense plants deficient in NtAQP1 (AS) and NtAQP1 overexpressing tobacco plants (O) were compared with their respective wild-type (WT) genotypes (CAS and CO). Plants grown under optimum conditions showed different photosynthetic rates at saturating light, with a decrease of 13% in AS and an increase of 20% in O, compared with their respective controls. CO(2) response curves of photosynthesis also showed significant differences among genotypes. However, in vitro analysis demonstrated that these differences could not be attributed to alterations in Rubisco activity or ribulose-1,5-bisphosphate content. Analyses of chlorophyll fluorescence and on-line (13)C discrimination indicated that the observed differences in net photosynthesis (A(N)) among genotypes were due to different leaf mesophyll conductances to CO(2), which was estimated to be 30% lower in AS and 20% higher in O compared with their respective WT. These results provide evidence for the in vivo involvement of aquaporin NtAQP1 in mesophyll conductance to CO(2).
Collapse
Affiliation(s)
- Jaume Flexas
- Laboratori de Fisiologia Vegetal, Grup de Biologia de les Plantes en Condicions Mediterrànies, Universitat de les Illes Balears. Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Balears, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Niinemets U, Cescatti A, Rodeghiero M, Tosens T. Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. PLANT, CELL & ENVIRONMENT 2006; 29:1159-78. [PMID: 17080941 DOI: 10.1111/j.1365-3040.2006.01499.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mature non-senescent leaves of evergreen species become gradually shaded as new foliage develops and canopy expands, but the interactive effects of integrated light during leaf formation (Q(int)G), current light (Q(int)C) and leaf age on foliage photosynthetic competence are poorly understood. In Quercus ilex L., we measured the responses of leaf structural and physiological variables to Q(int)C and Q(int)G for four leaf age classes. Leaf aging resulted in increases in leaf dry mass per unit area (M(A)), and leaf dry to fresh mass ratio (D(F)) and decreases in N content per dry mass (N(M)). N content per area (N(A)) was independent of age, indicating that decreases in N(M) reflected dilution of leaf N because of accumulation of dry mass (NA = N(M) M(A)). M(A), D(F) and N(A) scaled positively with irradiance, whereas these age-specific correlations were stronger with leaf growth light than with current leaf light. Area-based maximum ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylase activity (V(cmax)A), capacity for photosynthetic electron transport (J(max)A) and the rate of non-photorespiratory respiration in light (R(d)A) were also positively associated with irradiance. Differently from leaf structural characteristics, for all data pooled, these relationships were stronger with current light with little differences among leaves of different age. Acclimation to current leaf light environment was achieved by light-dependent partitioning of N in rate-limiting proteins. Mass-based physiological activities decreased with increasing leaf age, reflecting dilution of leaf N and a larger fraction of non-photosynthetic N in older leaves. This resulted in age-dependent modification of leaf photosynthetic potentials versus N relationships. Internal diffusion conductance (g(m)) per unit area (g(m)A) increased curvilinearly with increasing irradiance for two youngest leaf age classes and was independent of light for older leaves. In contrast, g(m) per dry mass (g(m)M) was negatively associated with light in current-year leaves. Greater photosynthetic potentials and moderate changes in diffusion conductance resulted in greater internal diffusion limitations of photosynthesis in higher light. Both area- and mass-based g(m) decreased with increasing leaf age. The decrease in diffusion conductance was larger than changes in photosynthetic potentials, leading to larger CO2 drawdown from leaf internal air space to chloroplasts (delta(c)) in older leaves. The increases in diffusion limitations in older leaves and at higher light scaled with age- and light-dependent increases in MA and D(F). Overall, our study demonstrates a large potential of foliage photosynthetic acclimation to changes in leaf light environment, but also highlights enhanced structural diffusion limitations in older leaves that result from leaf structural acclimation to previous rather than to current light environment and accumulation of structural compounds with leaf age.
Collapse
Affiliation(s)
- Ulo Niinemets
- Department of Plant Physiology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia.
| | | | | | | |
Collapse
|
74
|
Warren CR, Adams MA. Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. PLANT, CELL & ENVIRONMENT 2006; 29:192-201. [PMID: 17080635 DOI: 10.1111/j.1365-3040.2005.01412.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Central paradigms of ecophysiology are that there are recognizable and even explicit and predictable patterns among species, genera, and life forms in the economics of water and nitrogen use in photosynthesis and in carbon isotope discrimination (delta). However most previous examinations have implicitly assumed an infinite internal conductance (gi) and/or that internal conductance scales with the biochemical capacity for photosynthesis. Examination of published data for 54 species and a detailed examination for three well-characterized species--Eucalyptus globulus, Pseudotsuga menziesii and Phaseolus vulgaris--show these assumptions to be incorrect. The reduction in concentration of CO2 between the substomatal cavity (Ci) and the site of carbon fixation (Cc) varies greatly among species. Photosynthesis does not scale perfectly with gi and there is a general trend for plants with low gi to have a larger draw-down from Ci to Cc, further confounding efforts to scale photosynthesis and other attributes with gi. Variation in the gi-photosynthesis relationship contributes to variation in photosynthetic 'use' efficiency of N (PNUE) and water (WUE). Delta is an information-rich signal, but for many species only about two-thirds of this information relates to A/gs with the remaining one-third related to A/gi. Using data for three well-studied species we demonstrate that at common WUE, delta may vary by up to 3 per thousand. This is as large or larger than is commonly reported in many interspecific comparisons of delta, and adds to previous warnings about simplistic interpretations of WUE based on delta. A priority for future research should be elucidation of relationships between gi and gs and how these vary in response to environmental conditions (e.g. soil water, leaf-to-air vapour pressure deficit, temperature) and among species.
Collapse
Affiliation(s)
- Charles R Warren
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick VIC 3363, Australia.
| | | |
Collapse
|
75
|
Niinemets U, Valladares F. Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints. PLANT BIOLOGY (STUTTGART, GERMANY) 2004; 6:254-68. [PMID: 15143434 DOI: 10.1055/s-2004-817881] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
There is a strong natural light gradient from the top to the bottom in plant canopies and along gap-understorey continua. Leaf structure and photosynthetic capacities change close to proportionally along these gradients, leading to maximisation of whole canopy photosynthesis. However, other environmental factors also vary within the light gradients in a correlative manner. Specifically, the leaves exposed to higher irradiance suffer from more severe heat, water, and photoinhibition stresses. Research in tree canopies and across gap-understorey gradients demonstrates that plants have a large potential to acclimate to interacting environmental limitations. The optimum temperature for photosynthetic electron transport increases with increasing growth irradiance in the canopy, improving the resistance of photosynthetic apparatus to heat stress. Stomatal constraints on photosynthesis are also larger at higher irradiance because the leaves at greater evaporative demands regulate water use more efficiently. Furthermore, upper canopy leaves are more rigid and have lower leaf osmotic potentials to improve water extraction from drying soil. The current review highlights that such an array of complex interactions significantly modifies the potential and realized whole canopy photosynthetic productivity, but also that the interactive effects cannot be simply predicted as composites of additive partial environmental stresses. We hypothesize that plant photosynthetic capacities deviate from the theoretical optimum values because of the interacting stresses in plant canopies and evolutionary trade-offs between leaf- and canopy-level plastic adjustments in light capture and use.
Collapse
Affiliation(s)
- U Niinemets
- Department of Plant Physiology, University of Tartu, Riia 23, Tartu, Estonia.
| | | |
Collapse
|
76
|
Evans JR, Terashima I, Hanba Y, Loreto F. Chloroplast to Leaf. PHOTOSYNTHETIC ADAPTATION 2004. [DOI: 10.1007/0-387-27267-4_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|