51
|
Alché JDD. A concise appraisal of lipid oxidation and lipoxidation in higher plants. Redox Biol 2019; 23:101136. [PMID: 30772285 PMCID: PMC6859586 DOI: 10.1016/j.redox.2019.101136] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 01/06/2023] Open
Abstract
Polyunsaturated fatty acids present in plant membranes react with reactive oxygen species through so-called lipid oxidation events. They generate great diversity of highly-reactive lipid-derived chemical species, which may be further degraded enzymatically or non-enzymatically originating new components like Reactive Carbonyl Species (RCS). Such RCS are able to selectively react with proteins frequently producing loss of function through lipoxidation reactions. Although a basal concentration of lipoxidation products exists in plants (likely involved in signaling), their concentration and variability growth exponentially when plants are subjected to biotic/abiotic stresses. Such conditions typically increase the presence of ROS and the expression of antioxidant enzymes, together with RCS and also metabolites resulting from their reaction with proteins (advanced lipoxidation endproducts, ALE), in those plants susceptible to stress. On the contrary, plants designed as resistant may or may not display enhanced levels of ROS and antioxidant enzymes, whereas levels of lipid oxidation markers as malondialdehyde (MDA) are typically reduced. Great efforts have been made in order to develop methods to identify and quantify RCS, ALE, and other adducts with high sensitivity. Many of these methods are applied to the analysis of plant physiology and stress resistance, although their use has been extended to the control of the processing and conservation parameters of foodstuffs derived from plants. These foods may accumulate either lipid oxidation/lipoxidation products, or antioxidants like polyphenols, which are sometimes critical for their organoleptic properties, nutritional value, and health-promoting or detrimental characteristics. Future directions of research on different topics involving these chemical changes are also discussed. Lipid (per)oxidation occurs in plants as a signaling mechanism and after stress. Electrophylic mediators are widely used to assess plant physiology. Few lypoxidation targets have been identified in plants, mainly related to stress. Lipoxidation frequently inactivates or highly affects enzyme activity in plants. Lipid oxidation/lipoxidation affect the quality and healthy properties of plant foods.
Collapse
Affiliation(s)
- Juan de Dios Alché
- Plant Reproductive Biology Laboratory. Estación Experimental del Zaidín. Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
52
|
Lakra N, Kaur C, Singla-Pareek SL, Pareek A. Mapping the 'early salinity response' triggered proteome adaptation in contrasting rice genotypes using iTRAQ approach. RICE (NEW YORK, N.Y.) 2019; 12:3. [PMID: 30701331 PMCID: PMC6357216 DOI: 10.1186/s12284-018-0259-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/11/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND To delineate the adaptive mechanisms operative under salinity stress, it is essential to study plant responses at the very early stages of stress which are very crucial for governing plant survival and adaptation. We believe that it is the initial perception and response phase which sets the foundation for stress adaptation in rice seedlings where plants can be considered to be in a state of osmotic shock and ion buildup. RESULTS An isobaric Tags for Relative and Absolute Quantitation (iTRAQ) approach was used to analyze the pre-existing differences as well as the very early salt shock responsive changes in the proteome of seedlings of contrasting rice genotypes, viz salt-sensitive IR64 and salt-tolerant Pokkali. In response to a quick salt shock, shoots of IR64 exhibited hyperaccumulation of Na+, whereas in Pokkali, these ions accumulated more in roots. Interestingly, we could find 86 proteins to be differentially expressed in shoots of Pokkali seedlings under non-stress conditions whereas under stress, 63 proteins were differentially expressed in Pokkali shoots in comparison to IR64. However, only, 40 proteins under non-stress and eight proteins under stress were differentially expressed in Pokkali roots. A higher abundance of proteins involved in photosynthesis (such as, oxygen evolving enhancer proteins OEE1 & OEE3, PsbP) and stress tolerance (such as, ascorbate peroxidase, superoxide dismutase, peptidyl-prolyl cis-trans isomerases and glyoxalase II), was observed in shoots of Pokkali in comparison to IR64. In response to salinity, selected proteins such as, ribulose bisphosphate carboxylase/oxygenase activase, remained elevated in Pokkali shoots. Glutamate dehydrogenase - an enzyme which serves as an important link between Krebs cycle and metabolism of amino acids was found to be highly induced in Pokkali in response to stress. Similarly, other enzymes such as peroxidases and triose phosphate isomerase (TPI) were also altered in roots in response to stress. CONCLUSION We conclude that Pokkali rice seedlings are primed to face stress conditions where the proteins otherwise induced under stress in IR64, are naturally expressed in high abundance. Through specific alterations in its proteome, this proactive stress machinery contributes towards the observed salinity tolerance in this wild rice germplasm.
Collapse
Affiliation(s)
- Nita Lakra
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Charanpreet Kaur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
53
|
Zeng X, Xu Y, Jiang J, Zhang F, Ma L, Wu D, Wang Y, Sun W. iTRAQ-Based Comparative Proteomic Analysis of the Roots of TWO Winter Turnip Rapes ( Brassica rapa L.) with Different Freezing-Tolerance. Int J Mol Sci 2018; 19:E4077. [PMID: 30562938 PMCID: PMC6321220 DOI: 10.3390/ijms19124077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 01/08/2023] Open
Abstract
The freezing tolerance of roots is crucial for winter turnip rape (Brassica rapa L.) survival in the winter in Northwest China. Cold acclimation (CA) can alleviate the root damage caused by freezing stress. To acknowledge the molecular mechanisms of freezing tolerance in winter turnip rape, two Brassica rapa genotypes, freezing stressed after the induction of cold acclimation, were used to compare the proteomic profiles of roots by isobaric tags for relative and absolute quantification (iTRAQ). Under freezing stress (-4 °C) for 8 h, 139 and 96 differentially abundant proteins (DAPs) were identified in the roots of "Longyou7" (freezing-tolerant) and "Tianyou4" (freezing-sensitive), respectively. Among these DAPs, 91 and 48 proteins were up- and down-accumulated in "Longyou7", respectively, and 46 and 50 proteins were up- and down-accumulated in "Tianyou4", respectively. Under freezing stress, 174 DAPs of two varieties were identified, including 9 proteins related to ribosome, 19 DAPs related to the biosynthesis of secondary metabolites (e.g., phenylpropanoid and the lignin pathway), and 22 down-accumulated DAPs enriched in oxidative phosphorylation, the pentose phosphate pathway, fructose and mannose metabolism, alpha-linolenic acid metabolism, carbon fixation in photosynthetic organisms, ascorbate and aldarate metabolism. The expressional pattern of the genes encoding the 15 significant DAPs were consistent with the iTRAQ data. This work indicates that protein biosynthesis, lignin synthesis, the reduction of energy consumption and a higher linolenic acid content contribute to the freezing tolerance of winter turnip rape. Functional analyses of these DAPs would be helpful in dissecting the molecular mechanisms of the stress responses in B. rapa.
Collapse
Affiliation(s)
- Xiucun Zeng
- College of Agronomy and Biotechnology/Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, China.
| | - Yaozhao Xu
- College of Agronomy and Biotechnology/Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, China.
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Fenqin Zhang
- College of Agronomy and Biotechnology/Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, China.
| | - Li Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Wancang Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
54
|
Ji FS, Tang L, Li YY, Wang WC, Yang Z, Li XG, Zeng C. Differential proteomic analysis reveals the mechanism of Musa paradisiaca responding to salt stress. Mol Biol Rep 2018; 46:1057-1068. [DOI: 10.1007/s11033-018-4564-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/10/2018] [Indexed: 01/10/2023]
|
55
|
Liu B, Shan X, Wu Y, Su S, Li S, Liu H, Han J, Yuan Y. iTRAQ-Based Quantitative Proteomic Analysis of Embryogenic and Non-embryogenic Calli Derived from a Maize ( Zea mays L.) Inbred Line Y423. Int J Mol Sci 2018; 19:ijms19124004. [PMID: 30545080 PMCID: PMC6321184 DOI: 10.3390/ijms19124004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 11/16/2022] Open
Abstract
Somatic embryos (SE) have potential to rapidly form a whole plant. Generally, SE is thought to be derived from embryogenic calli (EC). However, in maize, not only embryogenic calli (EC, can generate SE) but also nonembryogenic calli (NEC, can’t generate SE) can be induced from immature embryos. In order to understand the differences between EC and NEC and the mechanism of EC, which can easily form SE in maize, differential abundance protein species (DAPS) of EC and NEC from the maize inbred line Y423 were identified by using the isobaric tags for relative and absolute quantification (iTRAQ) proteomic technology. We identified 632 DAPS in EC compared with NEC. The results of bioinformatics analysis showed that EC development might be related to accumulation of pyruvate caused by the DAPS detected in some pathways, such as starch and sucrose metabolism, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle, fatty acid metabolism and phenylpropanoid biosynthesis. Based on the differentially accumulated proteins in EC and NEC, a series of DAPS related with pyruvate biosynthesis and suppression of acetyl-CoA might be responsible for the differences between EC and NEC cells. Furthermore, we speculate that the decreased abundance of enzymes/proteins involved in phenylpropanoid biosynthesis pathway in the EC cells results in reducing of lignin substances, which might affect the maize callus morphology.
Collapse
Affiliation(s)
- Beibei Liu
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Xiaohui Shan
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Ying Wu
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Shengzhong Su
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Shipeng Li
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Hongkui Liu
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Junyou Han
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Yaping Yuan
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
56
|
Abstract
INTRODUCTION Depression and posttraumatic stress disorder (PTSD) are two complex and debilitating psychiatric disorders that result in poor life and destructive behaviors against self and others. Currently, diagnosis is based on subjective rather than objective determinations leading to misdiagnose and ineffective treatments. Advances in novel neurobiological methods have allowed assessment of promising biomarkers to diagnose depression and PTSD, which offers a new means of appropriately treating patients. Areas covered: Biomarkers discovery in blood represents a fundamental tool to predict, diagnose, and monitor treatment efficacy in depression and PTSD. The potential role of altered HPA axis, epigenetics, NPY, BDNF, neurosteroid biosynthesis, the endocannabinoid system, and their function as biomarkers for mood disorders is discussed. Insofar, we propose the identification of a biomarker axis to univocally identify and discriminate disorders with large comorbidity and symptoms overlap, so as to provide a base of support for development of targeted treatments. We also weigh in on the feasibility of a future blood test for early diagnosis. Expert commentary: Potential biomarkers have already been assessed in patients' blood and need to be further validated through multisite large clinical trial stratification. Another challenge is to assess the relation among several interdependent biomarkers to form an axis that identifies a specific disorder and secures the best-individualized treatment. The future of blood-based tests for PTSD and depression is not only on the horizon but, possibly, already around the corner.
Collapse
Affiliation(s)
- Dario Aspesi
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| | - Graziano Pinna
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
57
|
Sohail W, Majeed F, Afroz A. Differential proteome analysis of diabetes mellitus type 2 and its pathophysiological complications. Diabetes Metab Syndr 2018; 12:1125-1131. [PMID: 29907545 DOI: 10.1016/j.dsx.2018.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 06/05/2018] [Indexed: 01/18/2023]
Abstract
The prevalence of Diabetes Mellitus Type 2 (DM 2) is increasing every passing year due to some global changes in lifestyles of people. The exact underlying mechanisms of the progression of this disease are not yet known. However recent advances in the combined omics more particularly in proteomics and genomics have opened a gateway towards the understanding of predetermined genetic factors, progression, complications and treatment of this disease. Here we shall review the recent advances in proteomics that have led to an early and better diagnostic approaches in controlling DM 2 more importantly the comparison of structural and functional protein biomarkers that are modified in the diseased state. By applying these advanced and promising proteomic strategies with bioinformatics applications and bio-statistical tools the prevalence of DM 2 and its associated disorders i-e nephropathy and retinopathy are expected to be controlled.
Collapse
Affiliation(s)
- Waleed Sohail
- Department of Biochemistry and Molecular Biology, University of Gujrat, Pakistan.
| | - Fatimah Majeed
- Department of Biochemistry and Molecular Biology, University of Gujrat, Pakistan
| | - Amber Afroz
- Department of Biochemistry and Molecular Biology, University of Gujrat, Pakistan
| |
Collapse
|
58
|
Gao Y, Long R, Kang J, Wang Z, Zhang T, Sun H, Li X, Yang Q. Comparative Proteomic Analysis Reveals That Antioxidant System and Soluble Sugar Metabolism Contribute to Salt Tolerance in Alfalfa ( Medicago sativa L.) Leaves. J Proteome Res 2018; 18:191-203. [PMID: 30359026 DOI: 10.1021/acs.jproteome.8b00521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Soil salinity poses a serious threat to alfalfa ( Medicago sativa L.) productivity. To characterize the molecular mechanisms of salinity tolerance in Medicago, the comparative proteome of leaves from Medicago sativa cv. Zhongmu No.1 (ZM1, salt-tolerant) and Medicago truncatula cv. Jemalong A17 (A17, salt-sensitive) was performed using the iTRAQ approach. A total of 438 differentially expressed proteins (DEPs) were identified, among which 282 and 120 DEPs were specific to A17 and ZM1, respectively. In salt-tolerant ZM1, key DEPs were primarily enriched in antioxidant system, starch and sucrose metabolism, and secondary metabolism. ZM1 possessed a greater ability to remove reactive oxygen species and methylglyoxal under salt stress, as demonstrated by enhancement of the antioxidant system and secondary metabolism. Moreover, ZM1 orchestrated starch and sucrose metabolism to accumulate various soluble sugars (sucrose, maltose, glucose, and trehalose), which in turn facilitate osmotic homeostasis. Salt stress dramatically inhibited photosynthesis of A17 due to the downregulation of the light-harvesting complex and photosystem II related protein. Quantitative analyses of photochemical efficiency, antioxidant enzyme activities, hydrogen peroxide, malondialdehyde, and soluble sugar contents were consistent with the alterations predicted on the basis of DEP functions. These results shed light on our understanding of the mechanisms underlying the salt tolerance of alfalfa.
Collapse
Affiliation(s)
- Yanli Gao
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Ruicai Long
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Junmei Kang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Zhen Wang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Tiejun Zhang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Hao Sun
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Xiao Li
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Qingchuan Yang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| |
Collapse
|
59
|
Wang F, Zhong X, Huang L, Fang W, Chen F, Teng N. Cellular and molecular characteristics of pollen abortion in chrysanthemum cv. Kingfisher. PLANT MOLECULAR BIOLOGY 2018; 98:233-247. [PMID: 30203234 DOI: 10.1007/s11103-018-0777-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/04/2018] [Indexed: 05/21/2023]
Abstract
Microspore degeneration at the tetrad stage is associated with tapetum degeneration retardation. Some genes and proteins related to cell senescence and death are the key factors for pollen abortion. Chrysanthemum (Chrysanthemum morifolium) is a major floriculture crop in the world, but pollen contamination is an urgent problem to be solved in chrysanthemum production. C. morifolium 'Kingfisher' is a chrysanthemum cultivar that does not contain any pollen in mature anthers, thus it is a very important material for developing chrysanthemum without pollen contamination. However, the mechanism of its pollen abortion remains unclear. In this study, the cellular and molecular mechanisms of 'Kingfisher' pollen abortion were investigated using transmission electron microscopy, RNA sequencing, isobaric tags for relative and absolute quantitation, and bioinformatics. It was found that the meiosis of microspore mother cells was normal before the tetrad stage, the microspores began to degenerate at the tetrad stage, and no microspores were observed in the anthers after the tetrad stage. In addition, transcriptomic and proteomic analyses showed that some genes and proteins related to cell senescence and death were identified to be implicated in chrysanthemum pollen abortion. These results indicated that the tetrad stage was the main period of pollen abortion, and the genes and proteins related to cell senescence and death contributed to pollen abortion. These add to our understanding of chrysanthemum pollen abortion and will be helpful for development of flowers without pollen contamination in the future.
Collapse
Affiliation(s)
- Fan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Xinghua Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Lulu Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China.
| |
Collapse
|
60
|
He Y, Li W, Tian Y, Chen X, Cheng K, Xu K, Li C, Wang H, Qu C, Wang C, Li P, Chen H, Xie P. iTRAQ-based proteomics suggests LRP6, NPY and NPY2R perturbation in the hippocampus involved in CSDS may induce resilience and susceptibility. Life Sci 2018; 211:102-117. [DOI: 10.1016/j.lfs.2018.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
|
61
|
Meng Y, Yin C, Zhou Z, Meng F. Increased salinity triggers significant changes in the functional proteins of ANAMMOX bacteria within a biofilm community. CHEMOSPHERE 2018; 207:655-664. [PMID: 29852465 DOI: 10.1016/j.chemosphere.2018.05.076] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/21/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
Anaerobic ammonium oxidation (ANAMMOX) processes can potentially be influenced by salinity related to variable salinity in water environment. Here, we used 16S rRNA sequencing analysis combining with iTRAQ-based quantitative proteomic approach to reveal the response of microbial community and functional proteins to salinity, which was increased from 0 to 20 g L-1 with a step of 5 g L-1 (designed as S5, S10, S15 and S20) compared to control reactor (without salinity stress desined as S0). The 16S rRNA sequencing analysis showed that a high salinity (20 g L-1, S20) decreased the abundance of genus Candidatus Jettenia but increased that of Candidatus Kuenenia. A total of 1609 differentially expressed proteins were acquired in the three comparison groups (S5:S0, S20:S0 and S20:S5). Of these, 39 proteins co-occurred in the three salt-exposed samples. Hydrazine dehydrogenase (HDH; Q1PW30) and nitrate reductase (Q1PZD8) were up-regulated more than 3-folds in the exposure of 20 g-NaCl/L. The functional enrichment analysis further showed that some proteins responsible for ion binding, catalysis and oxidation-reduction reaction were up-regulated, which explained the physiological resilience of ANAMMOX bacteria under salinity stress. Additionally, ANAMMOX bacteria responded to salinity by modulating the electron transport systems, indicating that the cells retained a high potential for proton pumping, as well as the ATP production. Furthermore, the over-expression of HDH which associated with ANAMMOX metabolism, was potentially related to the increased abundance of halophilic Candidatus Kuenenia. These findings provide a comprehensive baseline for understanding the roles of salinity stresses in shaping the functional proteins of ANAMMOX bacteria.
Collapse
Affiliation(s)
- Yabing Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control, Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Cuiqin Yin
- Hefei Water Supply Group Co., Ltd, Anhui 230011, China
| | - Zhongbo Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control, Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control, Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China.
| |
Collapse
|
62
|
Yang F, Gao J, Che J, Jia G, Wang C. A Dimethyl-Labeling-Based Strategy for Site-Specifically Quantitative Chemical Proteomics. Anal Chem 2018; 90:9576-9582. [PMID: 29989794 DOI: 10.1021/acs.analchem.8b02426] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Activity-based protein profiling (ABPP) has emerged as a powerful functional chemoproteomic strategy which enables global profiling of proteome reactivity toward bioactive small molecules in complex biological and/or pathological processes. To quantify the degree of reactivity in a site-specific manner, an isotopic tandem orthogonal proteolysis (isoTOP)-ABPP strategy has been developed; however, the high cost and long workflow associated with the synthesis of isotopically labeled cleavable tags limit its wide use. Herein, we combined reductive dimethyl labeling with TOP-ABPP to develop a fast, affordable, and efficient method, termed "rdTOP-ABPP", for quantitative chemical proteomics with site-specific precision and triplex quantification. The rdTOP-ABPP method shows high accuracy and precision, good reproducibility, and better capacity for site identification and quantification and is highly compatible with many commercially available cleavable tags. We demonstrated the power of rdTOP-ABPP by profiling the target of (1 S,3 R)-RSL3, a canonical inducer for cell ferroptosis, and provided the first global portrait of its proteome reactivity in a quantitative and site-specific manner.
Collapse
|
63
|
Quantitative Proteomic Analysis Provides Insights into Rice Defense Mechanisms against Magnaporthe oryzae. Int J Mol Sci 2018; 19:ijms19071950. [PMID: 29970857 PMCID: PMC6073306 DOI: 10.3390/ijms19071950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 11/30/2022] Open
Abstract
Blast disease is one of the major rice diseases, and causes nearly 30% annual yield loss worldwide. Resistance genes that have been cloned, however, are effective only against specific strains. In cultivation practice, broad-spectrum resistance to various strains is highly valuable, and requires researchers to investigate the basal defense responses that are effective for diverse types of pathogens. In this study, we took a quantitative proteomic approach and identified 634 rice proteins responsive to infections by both Magnaporthe oryzae strains Guy11 and JS153. These two strains have distinct pathogenesis mechanisms. Therefore, the common responding proteins represent conserved basal defense to a broad spectrum of blast pathogens. Gene ontology analysis indicates that the “responding to stimulus” biological process is explicitly enriched, among which the proteins responding to oxidative stress and biotic stress are the most prominent. These analyses led to the discoveries of OsPRX59 and OsPRX62 that are robust callose inducers, and OsHSP81 that is capable of inducing both ROS production and callose deposition. The identified rice proteins and biological processes may represent a conserved rice innate immune machinery that is of great value for breeding broad-spectrum resistant rice in the future.
Collapse
|
64
|
Su H, Zhang H, Wei X, Pan D, Jing L, Zhao D, Zhao Y, Qi B. Comparative Proteomic Analysis of Rana chensinensis Oviduct. Molecules 2018; 23:1384. [PMID: 29890619 PMCID: PMC6099995 DOI: 10.3390/molecules23061384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
As one of most important traditional Chinese medicine resources, the oviduct of female Rana chensinensis (Chinese brown frog) was widely used in the treatment of asthenia after sickness or delivery, deficiency in vigor, palpitation, and insomnia. Unlike other vertebrates, the oviduct of Rana chensinensis oviduct significantly expands during prehibernation, in contrast to the breeding period. To explain this phenomenon at the molecular level, the protein expression profiles of Rana chensinensis oviduct during the breeding period and prehibernation were observed using isobaric tags for relative and absolute quantitation (iTRAQ) technique. Then, all identified proteins were used to obtain gene ontology (GO) annotation. Ultimately, KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis was performed to predict the pathway on differentially expressed proteins (DEPs). A total of 4479 proteins were identified, and 312 of them presented different expression profiling between prehibernation and breeding period. Compared with prehibernation group, 86 proteins were upregulated, and 226 proteins were downregulated in breeding period. After KEGG enrichment analysis, 163 DEPs were involved in 6 pathways, which were lysosome, RNA transport, glycosaminoglycan degradation, extracellular matrix (ECM)⁻receptor interaction, metabolic pathways and focal adhesion. This is the first report on the protein profiling of Rana chensinensis oviduct during the breeding period and prehibernation. Results show that this distinctive physiological phenomenon of Rana chensinensis oviduct was mainly involved in ECM⁻receptor interaction, metabolic pathways, and focal adhesion.
Collapse
Affiliation(s)
- Hang Su
- Practice Innovations Center, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - He Zhang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Xinghua Wei
- Jilin Science Service Center, Changchun 130021, China.
| | - Daian Pan
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Li Jing
- Practice Innovations Center, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yu Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Bin Qi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
65
|
A phosphatidic acid-binding protein is important for lipid homeostasis and adaptation to anaerobic biofilm conditions in Pseudomonas aeruginosa. Biochem J 2018; 475:1885-1907. [DOI: 10.1042/bcj20180257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 01/22/2023]
Abstract
A quantitative Pseudomonas aeruginosa proteomics approach revealed increased abundance of the so-far uncharacterized protein PA3911 in anaerobic biofilms grown under conditions of the cystic fibrosis lung. Physiological relevance of ORF PA3911 was demonstrated, inter alia, using phenotype microarray experiments. The mutant strain showed increased susceptibility in the presence of antimicrobials (minocycline, nafcillin, oxacillin, chloramphenicol and thiamphenicol), enhanced twitching motility and significantly impaired biofilm formation. PA3911 is a soluble, cytoplasmic protein in P. aeruginosa. In protein–lipid overlay experiments, purified PA3911 bound specifically to phosphatidic acid (PA), the central hub of phospholipid metabolism. Structure-guided site-directed mutagenesis was used to explore the proposed ligand-binding cavity of PA3911. Protein variants of Leu56, Leu58, Val69 and Leu114 were shown to impair PA interaction. A comparative shotgun lipidomics approach demonstrated a multifaceted response of P. aeruginosa to anaerobic conditions at the lipid head group and fatty acid level. Lipid homeostasis in the PA3911 mutant strain was imbalanced with respect to lysophosphatidylcholine, phosphatidylcholine and diacylglycerol under anaerobic and/or aerobic conditions. The impact of the newly identified PA-binding protein on lipid homeostasis and the related macroscopic phenotypes of P. aeruginosa are discussed.
Collapse
|
66
|
Wang J, Tian L, Zhang DD, Short DPG, Zhou L, Song SS, Liu Y, Wang D, Kong ZQ, Cui WY, Ma XF, Klosterman SJ, Subbarao KV, Chen JY, Dai XF. SNARE-Encoding Genes VdSec22 and VdSso1 Mediate Protein Secretion Required for Full Virulence in Verticillium dahliae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:651-664. [PMID: 29419372 DOI: 10.1094/mpmi-12-17-0289-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Proteins that mediate cellular and subcellular membrane fusion are key factors in vesicular trafficking in all eukaryotic cells, including the secretion and transport of plant pathogen virulence factors. In this study, we identified vesicle-fusion components that included 22 soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), four Sec1/Munc18 (SM) family proteins, and 10 Rab GTPases encoded in the genome of the vascular wilt pathogen Verticillium dahliae Vd991. Targeted deletion of two SNARE-encoding genes in V. dahliae, VdSec22 and VdSso1, significantly reduced virulence of both mutants on cotton, relative to the wild-type Vd991 strain. Comparative analyses of the secreted protein content (exoproteome) revealed that many enzymes involved in carbohydrate hydrolysis were regulated by VdSec22 or VdSso1. Consistent with a role of these enzymes in plant cell-wall degradation, pectin, cellulose, and xylan utilization were reduced in the VdSec22 or VdSso1 mutant strains along with a loss of exoproteome cytotoxic activity on cotton leaves. Comparisons with a pathogenicity-related exoproteome revealed that several known virulence factors were not regulated by VdSec22 or VdSso1, but some of the proteins regulated by VdSec22 or VdSso1 displayed different characteristics, including the lack of a typical signal peptide, suggesting that V. dahliae employs more than one secretory route to transport proteins to extracellular sites during infection.
Collapse
Affiliation(s)
- Jie Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Tian
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Dan-Dan Zhang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dylan P G Short
- 2 Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, U.S.A
| | - Lei Zhou
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuang-Shuang Song
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Yan Liu
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Dan Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhi-Qiang Kong
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei-Ye Cui
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue-Feng Ma
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- 4 United States Department of Agriculture, Agricultural Research Service, Salinas, CA, U.S.A
| | - Krishna V Subbarao
- 2 Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, U.S.A
| | - Jie-Yin Chen
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Feng Dai
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
67
|
Cao Z, Meng B, Fan R, Liu M, Gao M, Xing Z, Luan X. Comparative proteomic analysis of ovaries from Huoyan geese between pre-laying and laying periods using an iTRAQ-based approach. Poult Sci 2018; 97:2170-2182. [DOI: 10.3382/ps/pey029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/22/2018] [Indexed: 01/12/2023] Open
|
68
|
Li Z, Zhang Y, Peng D, Peng Y, Zhang X, Ma X, Huang L, Yan Y. The inhibition of polyamine biosynthesis weakens the drought tolerance in white clover (Trifolium repens) associated with the alteration of extensive proteins. PROTOPLASMA 2018; 255:803-817. [PMID: 29181726 DOI: 10.1007/s00709-017-1186-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Changes of endogenous polyamine (PA) levels could be a key adaptive response to drought in plants. White clover pretreated with or without dicyclohexylamine (DCHA), an inhibitor of PA biosynthesis, was subjected to drought stress induced by 18% polyethylene glycol 6000 for 8 days in controlled growth chambers. Results showed that drought stress significantly increased endogenous PA content, whereas DCHA significantly decreased PA accumulation under drought stress. The attenuate PA biosynthesis was unfavorable for plant growth and drought tolerance, as reflected by significantly lower relative water content, relative growth rate, instantaneous water use efficiency, and cell membrane stability in leaves in response to drought. On the basis of proteomic analysis, the inhibition of PA synthesis decreased the accumulation of many key differentially expressed proteins including (1) ribosomal structure and biogenesis: elongation factor, ribosomal protein S10E, and 30S ribosomal protein; (2) amino acid transport and metabolism: cysteine synthase, delta-1-pyrroline-5-carboxylate synthetase, and glutamate decarboxylase; (3) carbohydrate metabolism and energy production: photosystem apoprotein, sucrose-phosphate synthase, phosphogluconate dehydrogenase, sucrose-phosphatase, NADH oxidoreductase, and ATP synthase; (4) antioxidant metabolism: catalase, peroxidase I, ascorbate peroxidase, and glutathione S-transferase; and (5) other biological processes: heat shock protein 70, heat shock protein 90, and calcium-dependent protein kinase associated with the decreased drought tolerance in white clover. These findings indicate that PAs play a critical role in the regulation of growth, ribosome, amino acid and energy metabolism, and antioxidant reactions in white clover under drought stress. Drought-induced increases in endogenous PAs could be one of key adaptive responses against drought stress in white clover.
Collapse
Affiliation(s)
- Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dandan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiao Ma
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Linkai Huang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanhong Yan
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
69
|
Cao Z, Fan R, Meng B, Xing Z, Liu M, Gao M, Luan X. Comparative proteomic analysis of hypothalamus tissue from Huoyan geese between pre-laying period and laying period using an iTRAQ-based approach. Anim Sci J 2018; 89:946-955. [PMID: 29708631 DOI: 10.1111/asj.13012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/16/2018] [Indexed: 01/05/2023]
Abstract
The hypothalamus plays a central role in controlling poultry endocrine and reproductive activities. So far there is limited information focused on the proteome profiles of the hypothalamus from geese during different stages of the egg-laying cycle. In order to identify proteins regulating the egg-laying process of Huoyan geese, we investigated the proteome profiles of the hypothalamus from Huoyan geese during the laying period and pre-laying period by applying an isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic technology. A total number of 3,337 were identified and quantified, of which 18 were significantly up-regulated and 16 were significantly down-regulated. These differentially expressed proteins were subjected to bioinformatics analyses based on the Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway. Some of these were revealed to be involved in hormone and neurotransmitter secretion, exocytosis, calcium ion transport and synaptic transmission. Subsequently, excitatory amino acid transporter 2, complexin-1 and inositol 1,4,5-trisphosphate receptor, type 3 were confirmed at the messenger RNA level using quantitative real-time RT-PCR. Then, the abundance change of these proteins was verified further using Western blotting analysis. These data may aid in elucidating the molecular mechanism of higher laying performance in Huoyan geese.
Collapse
Affiliation(s)
- Zhongzan Cao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ruiming Fan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Bo Meng
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhe Xing
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Mei Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ming Gao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinhong Luan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
70
|
Shum AMY, Poljak A, Bentley NL, Turner N, Tan TC, Polly P. Proteomic profiling of skeletal and cardiac muscle in cancer cachexia: alterations in sarcomeric and mitochondrial protein expression. Oncotarget 2018; 9:22001-22022. [PMID: 29774118 PMCID: PMC5955146 DOI: 10.18632/oncotarget.25146] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/10/2018] [Indexed: 01/06/2023] Open
Abstract
Background Cancer cachexia is observed in more than 50% of advanced cancer patients, and impairs quality of life and prognosis. A variety of pathways are likely to be dysregulated. Hence, a broad-spectrum understanding of the disease process is best achieved by a discovery based approach such as proteomics. Results More than 300 proteins were identified with > 95% confidence in correct sequence identification, of which 5–10% were significantly differentially expressed in cachectic tissues (p-value of 0.05; 27 proteins from gastrocnemius, 34 proteins from soleus and 24 proteins from heart). The two most pronounced functional groups being sarcomeric proteins (mostly upregulated across all three muscle types) and energy/metabolism proteins (mostly downregulated across all muscle types). Electron microscopy revealed disintegration of the sarcomere and morphological aberrations of mitochondria in the cardiac muscle of colon 26 (C26) carcinoma mice. Materials and Methods The colon 26 (C26) carcinoma mouse model of cachexia was used to analyse soleus, gastrocnemius and cardiac muscles using two 8-plex iTRAQ proteomic experiments and tandem mass spectrometry (LCMSMS). Differentially expressed proteomic lists for protein clustering and enrichment of biological processes, molecular pathways, and disease related pathways were analysed using bioinformatics. Cardiac muscle ultrastructure was explored by electron microscopy. Conclusions Morphological and proteomic analyses suggested molecular events associated with disintegrated sarcomeric structure with increased dissolution of Z-disc and M-line proteins. Altered mitochondrial morphology, in combination with the reduced expression of proteins regulating substrate and energy metabolism, suggest that muscle cells are likely to be undergoing a state of energy crisis which ultimately results in cancer-induced cachexia.
Collapse
Affiliation(s)
- Angie M Y Shum
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Department of Pathology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Anne Poljak
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Bioanalytical Mass Spectrometry Facility, UNSW Sydney, New South Wales, Australia.,Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, New South Wales, Australia
| | - Nicholas L Bentley
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Timothy C Tan
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Department of Pathology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Western Clinical School and Westmead Hospital, Westmead, New South Wales, Australia
| | - Patsie Polly
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Department of Pathology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| |
Collapse
|
71
|
Liu JY, Chang MC, Meng JL, Feng CP, Wang Y. A Comparative Proteome Approach Reveals Metabolic Changes Associated with Flammulina velutipes Mycelia in Response to Cold and Light Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3716-3725. [PMID: 29584419 DOI: 10.1021/acs.jafc.8b00383] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In some industrial processes, cold and light stresses are recognized as two important environmental triggers for the transformation of mycelia into fruit-bodies via intermediate primordia in Flammulina velutipes cultivation. To gain insights into the mechanism of regulation of F. velutipes mycelia in response to cold and light stress, proteins expressed abundantly and characteristically at particular stress states were investigated by using the isobaric tags for the relative and absolute quantitation labeling technique. Among the 1046 nonredundant proteins identified with a high degree of confidence, 264 proteins, which were detected as differentially expressed proteins, were associated with 176 specific KEGG pathways. In-depth data analysis revealed that the regulatory network underlying the cold and light response mechanisms of F. velutipes mycelia was complex and multifaceted, as it included varied functions such as rapid energy supply, the biosynthesis of lysine, phenylalanine, tyrosine, and γ-aminobutyric acid, the calcium signal transduction process, dynein-dependent actin and microtubule cytoskeleton formation, autolysis, oxidative stress adaptation, pigment secretion, tissue and organ morphogenesis, and other interesting stress-related processes. Insights into the proteins might shed light on an intuitive understanding of the cold and light stress response mechanism underlying the fruiting processes of F. velutipes. Furthermore, the data might also provide further insights into the stress response mechanism of macro-fungi and valuable information for scientific improvement of some mushroom cultivation techniques in practice.
Collapse
Affiliation(s)
- Jing-Yu Liu
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Ming-Chang Chang
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Jun-Long Meng
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Cui-Ping Feng
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Yu Wang
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
| |
Collapse
|
72
|
OuYang Q, Tao N, Zhang M. A Damaged Oxidative Phosphorylation Mechanism Is Involved in the Antifungal Activity of Citral against Penicillium digitatum. Front Microbiol 2018; 9:239. [PMID: 29503638 PMCID: PMC5820319 DOI: 10.3389/fmicb.2018.00239] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/31/2018] [Indexed: 11/13/2022] Open
Abstract
Citral exhibits strong antifungal activity against Penicillium digitatum. In this study, 41 over-expressed and 84 repressed proteins in P. digitatum after 1.0 μL/mL of citral exposure for 30 min were identified by the iTRAQ technique. The proteins were closely related with oxidative phosphorylation, the TCA cycle and RNA transport. The mitochondrial complex I, complex II, complex III, complex IV and complex V, which are involved in oxidative phosphorylation were drastically affected. Among of them, the activities of mitochondrial complex I and complex IV were apparently suppressed, whereas those of mitochondrial complex II, complex III and complex V were significantly induced. Meanwhile, citral apparently triggered a reduction in the intracellular ATP, the mitochondrial membrane potential (MMP) and glutathione content, in contrast to an increase in the glutathione S-transferase activity and the accumulation of reactive oxygen species (ROS). Addition of exogenous cysteine decreased the antifungal activity. In addition, cysteine maintained the basal ROS level, deferred the decrease of MMP and the membrane damage. These results indicate that citral inhibited the growth of P. digitatum by damaging oxidative phosphorylation and cell membranes through the massive accumulation of ROS.
Collapse
Affiliation(s)
- Qiuli OuYang
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Miaoling Zhang
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
73
|
Zhang K, Tang C, Liang X, Zhao Q, Zhang J. Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-Based Untargeted Quantitative Proteomic Approach To Identify Change of the Plasma Proteins by Salbutamol Abuse in Beef Cattle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:378-386. [PMID: 29240408 DOI: 10.1021/acs.jafc.7b04397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Salbutamol, a selective β2-agonist, endangers the safety of animal products as a result of illegal use in food animals. In this study, an iTRAQ-based untargeted quantitative proteomic approach was applied to screen potential protein biomarkers in plasma of cattle before and after treatment with salbutamol for 21 days. A total of 62 plasma proteins were significantly affected by salbutamol treatment, which can be used as potential biomarkers to screen for the illegal use of salbutamol in beef cattle. Enzyme-linked immunosorbent assay measurements of five selected proteins demonstrated the reliability of iTRAQ-based proteomics in screening of candidate biomarkers among the plasma proteins. The plasma samples collected before and after salbutamol treatment were well-separated by principal component analysis (PCA) using the differentially expressed proteins. These results suggested that an iTRAQ-based untargeted quantitative proteomic strategy combined with PCA pattern recognition methods can discriminate differences in plasma protein profiles collected before and after salbutamol treatment.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing 100193, People's Republic of China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China, Ministry of Agriculture , Beijing 100125, People's Republic of China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing 100193, People's Republic of China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China, Ministry of Agriculture , Beijing 100125, People's Republic of China
| | - Xiaowei Liang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing 100193, People's Republic of China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China, Ministry of Agriculture , Beijing 100125, People's Republic of China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing 100193, People's Republic of China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China, Ministry of Agriculture , Beijing 100125, People's Republic of China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing 100193, People's Republic of China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China, Ministry of Agriculture , Beijing 100125, People's Republic of China
| |
Collapse
|
74
|
Abstract
Cellular functions are often performed by multiprotein structures called protein complexes. These complexes are dynamic structures that evolve during the cell cycle or in response to external and internal stimuli, and are tightly regulated by protein expression in different tissues resulting in quantitative and qualitative variation of protein complexes. Advances in high-throughput techniques, such as mass-spectrometry and yeast two-hybrid provided a large amount of data on protein-protein interactions. This sparked the development of computational methods able to predict protein complex formation under a variety of biological and clinical conditions. However, the challenges that need to be addressed for successful computational protein complex prediction are highly complex.The post-genomic era saw an emerging number of algorithms and software, which are able to predict protein complexes from protein-protein interaction networks and a variety of other sources. Despite the high capacity of these methods to qualitatively predict protein complexes, they could provide only limited or no quantitative information of the predicted complexes. Recently, a new large-scale simulation of protein complexes was able to achieve this task by simulating protein complex formation on the proteome scale.In this chapter, we review representative methods that can predict multiple protein complexes at different scales and discuss how these can be combined with emerging sources of data in order to improve protein complex characterization.
Collapse
|
75
|
Chen Z, Long L, Wang K, Cui F, Zhu L, Tao Y, Wu Q, Xiang M, Liang Y, Qiu S, Xiao Z, Yi B. Identification of nasopharyngeal carcinoma metastasis-related biomarkers by iTRAQ combined with 2D-LC-MS/MS. Oncotarget 2017; 7:34022-37. [PMID: 27145374 PMCID: PMC5085135 DOI: 10.18632/oncotarget.9067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/16/2016] [Indexed: 12/15/2022] Open
Abstract
To identify metastasis-related proteins in nasopharyngeal carcinoma (NPC), iTRAQ-tagging combined with 2D LC-MS/MS analysis was performed to identify the differentially expressed proteins (DEPs) in high metastatic NPC 5-8F cells and non-metastatic NPC 6-10B cells, and qRT-PCR and Western blotting were used to confirm DEPs. As a result, 101 DEPs were identified by proteomics, and 12 DEPs were selectively validated. We further detected expression of three DEPs (RAN, SQSTM1 and TRIM29) in a cohort of NPC tissue specimens to assess their value as NPC metastatic biomarkers, and found that combination of RAN, SQSTM1 and TRIM29 could discriminate metastatic NPC from non-metastatic NPC with a sensitivity of 88% and a specificity of 91%. TRIM29 and RAN expression level were closely correlated with lymph node and distant metastasis and clinical stage (P <0.05) in NPC patients. Finally, a combination of loss-of-function and gain-of-function approaches was performed to determine the effects of TRIM29 on NPC cell proliferation, migration, invasion and metastasis. The results showed that TRIM29 knockdown significantly attenuated while TRIM29 overexpression promoted NPC cell in vitro proliferation, migration and invasion and in vivo metastasis. The present data first time show that SQSTM1, RAN and TRIM29 are novel potential biomarkers for predicting NPC metastasis, demonstrate that TRIM29 is a metastasis-promoted protein of NPC.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lu Long
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Kun Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Facai Cui
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lepan Zhu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ya Tao
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qiong Wu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Manlin Xiang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yunlai Liang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Shiyang Qiu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhiqiang Xiao
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
76
|
Ren J, Zhao G, Sun X, Liu H, Jiang P, Chen J, Wu Z, Peng D, Fang Y, Zhang C. Identification of plasma biomarkers for distinguishing bipolar depression from major depressive disorder by iTRAQ-coupled LC-MS/MS and bioinformatics analysis. Psychoneuroendocrinology 2017; 86:17-24. [PMID: 28910601 DOI: 10.1016/j.psyneuen.2017.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/28/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
Abstract
It is important to differentiate between bipolar disorder (BD) and major depressive disorder (MDD) in the first depressive episode because of the potential treatment implications. Previous studies have mainly focused on the different clinical features or pathological biomarkers to distinguish these two diseases; however, a better understanding of the proteomics profiling of BD may help aid future therapeutic strategies. Here, we applied isobaric tags for relative and absolute quantification (iTRAQ) technology combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify differentially expressed proteins between MDD and bipolar depression (BP). In total, 30 MDD, 30 BP and 30 healthy subjects were included. Proteins from depleted plasma samples were digested into peptides, individually labeled with iTRAQ reagents, combined and subjected to LC-MS/MS and further bioinformatics analyses. Our results showed that 9 proteins were significantly altered between MDD and BP. Briefly, B2RAN2, B4E1B2, APOA1, ENG, SBSN and QSOX2 were up-regulated, whereas ORM1, MRC2 and SLPI were down-regulated. Most identified proteins were related to the immune system. The bioinformatics analysis showed that B2RAN2 (highly similar to vanin-1) was involved in the significantly enriched KEGG pathways "pantothenate and CoA biosynthesis" (P=0.009). B2RAN2 and ENG may play important roles in depression. They may serve as candidate biomarkers for distinguishing MDD and BP. Further validation and investigation are required to illuminate the roles of B2RAN2 and ENG in MDD and BP. The current study provided a potential and novel biomarker panel that may, in turn, aid the diagnosis of BD.
Collapse
Affiliation(s)
- Juanjuan Ren
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqing Zhao
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiujia Sun
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Liu
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Jiang
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Chen
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguo Wu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chen Zhang
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
77
|
Thomas A, Lenglet S, Chaurand P, Déglon J, Mangin P, Mach F, Steffens S, Wolfender JL, Staub C. Mass spectrometry for the evaluation of cardiovascular diseases based on proteomics and lipidomics. Thromb Haemost 2017; 106:20-33. [DOI: 10.1160/th10-12-0812] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/18/2011] [Indexed: 01/05/2023]
Abstract
SummaryThe identification and quantification of proteins and lipids is of major importance for the diagnosis, prognosis and understanding of the molecular mechanisms involved in disease development. Owing to its selectivity and sensitivity, mass spectrometry has become a key technique in analytical platforms for proteomic and lipidomic investigations. Using this technique, many strategies have been developed based on unbiased or targeted approaches to highlight or monitor molecules of interest from biomatrices. Although these approaches have largely been employed in cancer research, this type of investigation has been met by a growing interest in the field of cardiovascular disorders, potentially leading to the discovery of novel biomarkers and the development of new therapies. In this paper, we will review the different mass spectrometry- based proteomic and lipidomic strategies applied in cardiovascular diseases, especially atherosclerosis. Particular attention will be given to recent developments and the role of bioinformatics in data treatment. This review will be of broad interest to the medical community by providing a tutorial of how mass spectrometric strategies can support clinical trials.
Collapse
|
78
|
Sun Y, Gao C, Wang X, Liu Y. Preliminary quantitative proteomics analysis in chronic and latent Keshan disease by iTRAQ labeling approach. Oncotarget 2017; 8:105761-105774. [PMID: 29285290 PMCID: PMC5739677 DOI: 10.18632/oncotarget.22397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/05/2017] [Indexed: 12/02/2022] Open
Abstract
Keshan disease is a congestive cardiomyopathy. Dietary selenium deficiency combined with additional stressors are recognized to cause the cardiomyopathies. In this study, clinical condition of individuals with different subtypes including chronic and latent were analyzed. ECG abnormalities, chest radiography, echocardiography and blood selenium concentration were assessed. Subsequently, in effort to uncover proteins that were reliably changed in patients, isobaric tags for absolute and relative quantitation technology was applied. Bioinformatics analysis of the differentially expressed proteins were performed by means of Gene Ontology classification, KEGG pathway, and Ingenuity Pathway Analysis. ELISA experiment was used to detect the interesting proteins. As a result, chronic patients showed more EGC abnormalities compared to Latent. All patients had low blood selenium level. Proteomics data revealed 28 differentially expressed proteins. By ELISA variation, LGALS3BP was increased in chronic patients. PZP was elevated specially in latent patients. The above results might be beneficial for further biomarkers discovery and Keshan disease pathological mechanism study.
Collapse
Affiliation(s)
- Yuxiao Sun
- Department of Cardiology, Zhengzhou University, People's Hospital, Zhengzhou, Henan 450003, PR China.,Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, PR China
| | - Chuanyu Gao
- Department of Cardiology, Zhengzhou University, People's Hospital, Zhengzhou, Henan 450003, PR China.,Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, PR China
| | - Xianqing Wang
- Department of Cardiology, Zhengzhou University, People's Hospital, Zhengzhou, Henan 450003, PR China.,Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, PR China
| | - Yuhao Liu
- Department of Cardiology, Zhengzhou University, People's Hospital, Zhengzhou, Henan 450003, PR China.,Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, PR China
| |
Collapse
|
79
|
Kanayama M, Hayano T, Koebis M, Maeda T, Tabe Y, Horie S, Aiba A. Hyperactive mTOR induces neuroendocrine differentiation in prostate cancer cell with concurrent up-regulation of IRF1. Prostate 2017; 77:1489-1498. [PMID: 28905415 DOI: 10.1002/pros.23425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/23/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Neuroendocrine-differentiated prostate cancer (NEPCa) is refractory to androgen deprivation therapy and shows a poor prognosis. The underlying mechanisms responsible for neuroendocrine differentiation (NED) are yet to be clarified. In this study, we investigated the role of mammalian target of rapamycin (mTOR) in NEPCa. METHODS We utilized a gain-of-function analysis by establishing a human PCa LNCaP stable line that expresses hyperactive mTOR (LNCaP-mTOR). Then, we employed a comprehensive mass spectrometric analysis to identify a key transcription factor in LNCaP-mTOR, followed by a loss-of-function analysis using CRISPR/Cas system. RESULTS The activation of mTOR induced NED. We observed significant cell growth arrest in NED of LNCaP-mTOR, which accompanied increased expression of p21WAF1/CIP1 . A comprehensive mass spectrometric analysis identified interferon regulatory factor 1 (IRF1) as a key transcription factor in growth arrest of LNCaP-mTOR. The disruption of IRF1 gene in LNCaP-mTOR reversed cell growth arrest along with the suppression of its target p21WAF1/CIP1 . These results indicate that the growth arrest in NED is at least in part dependent on IRF1 through the induction of p21WAF1/CIP1 . CONCLUSIONS We identified active mTOR as a novel inducer of NED, and elucidated a mechanism underlying the malignant transformation of NEPCa by recapitulating NED in vitro.
Collapse
Affiliation(s)
- Mayuko Kanayama
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiya Hayano
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Maeda
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
80
|
Luan X, Cao Z, Xing Z, Liu M, Gao M, Meng B, Fan R. Comparative proteomic analysis of pituitary glands from Huoyan geese between pre-laying and laying periods using an iTRAQ-based approach. PLoS One 2017; 12:e0185253. [PMID: 28945779 PMCID: PMC5612699 DOI: 10.1371/journal.pone.0185253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 09/08/2017] [Indexed: 12/31/2022] Open
Abstract
In this study, we performed a comprehensive evaluation of the proteomic profile of the pituitary gland of the Huoyan goose during the laying period compared to the pre-laying period using an iTRAQ-based approach. Protein samples were prepared from pituitary gland tissues of nine pre-laying period and nine laying period geese. Then the protein samples from three randomly selected geese within each period were pooled in equal amounts to generate one biological sample pool. We identified 684 differentially expressed proteins, including 418 up-regulated and 266 down-regulated proteins. GO annotation and KEGG pathway analyses of these proteins were conducted. Some of these proteins were found to be associated with hormone and neurotransmitter secretion and transport, neuropeptide signalling and GnRH signalling pathways, among others. Subsequently, the modification of the abundance of three proteins (prolactin, chromogranin-A and ITPR3) was verified using western blotting. Our results will provide a new source for mining genes and gene products related to the egg-laying performance of Huoyan geese, and may provide important information for the conservation and utilization of local goose breeds.
Collapse
Affiliation(s)
- Xinhong Luan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
- * E-mail:
| | - Zhongzan Cao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Zhe Xing
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Mei Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Ming Gao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Bo Meng
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Ruiming Fan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| |
Collapse
|
81
|
Höper T, Mussotter F, Haase A, Luch A, Tralau T. Application of proteomics in the elucidation of chemical-mediated allergic contact dermatitis. Toxicol Res (Camb) 2017; 6:595-610. [PMID: 30090528 PMCID: PMC6062186 DOI: 10.1039/c7tx00058h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/07/2017] [Indexed: 12/23/2022] Open
Abstract
Allergic contact dermatitis (ACD) is a widespread hypersensitivity reaction of the skin. The cellular mechanisms underlying its development are complex and involve close interaction of different cell types of the immune system. It is this very complexity which has long prevented straightforward replacement of the corresponding regulatory in vivo tests. Recent efforts have already resulted in the development of several in vitro testing alternatives that address key steps of ACD. Yet identification of suitable biomarkers is still a subject of intense research. Search strategies for the latter encompass transcriptomics, proteomics as well as metabolomics approaches. The scope of this review shall be the application and use of proteomics in the context of ACD. This includes highlighting relevant aspects of the molecular and cellular mechanisms underlying ACD, the exploitation of these mechanisms for testing and biomarkers (e.g., in the context of the OECD's adverse outcome pathway initiative) as well as an outlook on emerging proteome targets, for example during the allergen-induced activation of dendritic cells (DCs).
Collapse
Affiliation(s)
- Tessa Höper
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Franz Mussotter
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Andrea Haase
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Andreas Luch
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Tewes Tralau
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| |
Collapse
|
82
|
Proteomic analysis of phytase transgenic and non-transgenic maize seeds. Sci Rep 2017; 7:9246. [PMID: 28835691 PMCID: PMC5569035 DOI: 10.1038/s41598-017-09557-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023] Open
Abstract
Proteomics has become a powerful technique for investigating unintended effects in genetically modified crops. In this study, we performed a comparative proteomics of the seeds of phytase-transgenic (PT) and non-transgenic (NT) maize using 2-DE and iTRAQ techniques. A total of 148 differentially expressed proteins (DEPs), including 106 down-regulated and 42 up-regulated proteins in PT, were identified. Of these proteins, 32 were identified through 2-DE and 116 were generated by iTRAQ. It is noteworthy that only three proteins could be detected via both iTRAQ and 2-DE, and most of the identified DEPs were not newly produced proteins but proteins with altered abundance. These results indicated that many DEPs could be detected in the proteome of PT maize seeds and the corresponding wild type after overexpression of the target gene, but the changes in these proteins were not substantial. Functional classification revealed many DEPs involved in posttranscriptional modifications and some ribosomal proteins and heat-shock proteins that may generate adaptive effects in response to the insertion of exogenous genes. Protein-protein interaction analysis demonstrated that the detected interacting proteins were mainly ribosomal proteins and heat-shock proteins. Our data provided new information on such unintended effects through a proteomic analysis of maize seeds.
Collapse
|
83
|
Wong YK, Zhang J, Hua ZC, Lin Q, Shen HM, Wang J. Recent advances in quantitative and chemical proteomics for autophagy studies. Autophagy 2017; 13:1472-1486. [PMID: 28820289 DOI: 10.1080/15548627.2017.1313944] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macroautophagy/autophagy is an evolutionarily well-conserved cellular degradative process with important biological functions that is closely implicated in health and disease. In recent years, quantitative mass spectrometry-based proteomics and chemical proteomics have emerged as important tools for the study of autophagy, through large-scale unbiased analysis of the proteome or through highly specific and accurate analysis of individual proteins of interest. At present, a variety of approaches have been successfully applied, including (i) expression and interaction proteomics for the study of protein post-translational modifications, (ii) investigating spatio-temporal dynamics of protein synthesis and degradation, and (iii) direct determination of protein activity and profiling molecular targets in the autophagic process. In this review, we attempted to provide an overview of principles and techniques relevant to the application of quantitative and chemical proteomics methods to autophagy, and outline the current landscape as well as future outlook of these methods in autophagy research.
Collapse
Affiliation(s)
- Yin-Kwan Wong
- a Department of Physiology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore
| | - Jianbin Zhang
- b Department of Oncology, Clinical Research Institute , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Zi-Chun Hua
- c Changzhou High-Tech Research Institute of Nanjing University and the State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences , Nanjing University , Nanjing , China
| | - Qingsong Lin
- d Department of Biological Sciences , National University of Singapore , Singapore
| | - Han-Ming Shen
- a Department of Physiology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore.,e NUS Graduate School for Integrative Sciences and Engineering , National University of Singapore , Singapore
| | - Jigang Wang
- a Department of Physiology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore.,c Changzhou High-Tech Research Institute of Nanjing University and the State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences , Nanjing University , Nanjing , China
| |
Collapse
|
84
|
Differential Proteomic Analysis Reveals the Effect of Calcium on Malus baccata Borkh. Leaves under Temperature Stress. Int J Mol Sci 2017; 18:ijms18081755. [PMID: 28800123 PMCID: PMC5578145 DOI: 10.3390/ijms18081755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 12/17/2022] Open
Abstract
In the cool apple-producing areas of northern China, air temperature during early spring changes in a rapid and dramatic manner, which affects the growth and development of apple trees at the early stage of the growing season. Previous studies have shown that the treatment of calcium can increase the cold tolerance of Malus baccata Borkh., a widely-used rootstock apple tree in northern China. To better understand the physiological function of calcium in the response of M. baccata to temperature stress, we analyzed the effect of calcium treatment (2% CaCl₂) on M. baccata leaves under temperature stress. Physiological analysis showed that temperature stress aggravated membrane lipid peroxidation, reduced chlorophyll content and induced photo-inhibition in leaves, whereas these indicators of stress injuries were alleviated by the application of calcium. An isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics approach was used in this study. Among the 2114 proteins that were detected in M. baccata leaves, 41, 25, and 34 proteins were differentially regulated by the increasing, decreasing, and changing temperature treatments, respectively. Calcium treatment induced 9 and 15 proteins after increasing and decreasing temperature, respectively, in comparison with non-treated plants. These calcium-responsive proteins were mainly related to catalytic activity, binding, and structural molecule activity. Hierarchical cluster analysis indicated that the changes in abundance of the proteins under increasing temperature and changing temperature treatments were similar, and the changes in protein abundance under decreasing temperature and increasing temperature with calcium treatment were similar. The findings of this study will allow a better understanding of the mechanisms underlying the role of calcium in M. baccata leaves under temperature stress.
Collapse
|
85
|
Dong WT, Xiao LF, Hu JJ, Zhao XX, Liu JX, Zhang Y. iTRAQ proteomic analysis of the interactions between Bombyx mori nuclear polyhedrosis virus and silkworm. J Proteomics 2017; 166:138-145. [PMID: 28755911 DOI: 10.1016/j.jprot.2017.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/10/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
The silkworm hemolymph is an important defense system against bacteria and viruses. In this study, silkworms were infected with Bombyx mori nuclear polyhedrosis virus to investigate the subsequent immune response at the protein level. Proteomes were analyzed before and after infection using isobaric tags for relative and absolute quantitation and LC-MS. A total of 456 differentially expressed proteins were identified, of which 179 were upregulated and 193 were downregulated. Changes in expression were validated by western blot for several proteins. Eleven of the differentially expressed proteins were involved in immunity. For example, modular serine protease and cecropin, which were downregulated, facilitate Toll and Imd signaling, while autophagy-related protein 3, which was upregulated, protects cells against oxidative damage. Collectively, the data highlight the unique interactions of baculovirus with the silkworm immune system. BIOLOGICAL SIGNIFICANCE This is the first time isobaric tags for relative and absolute quantitation were used to analyze B. mori proteins mobilized against B. mori nuclear polyhedrosis virus, and to investigate the immunity-associated proteome in B. mori. The results are a significant step towards a deeper understanding of immunoregulation in B. mori. SIGNIFICANCE This is the first time isobaric tags for relative and absolute quantitation were used to analyze B. mori proteins mobilized against B. mori nuclear polyhedrosis virus, and to investigate the immunity-associated proteome in B. mori. The results are a significant step towards a deeper understanding of immunoregulation in B. mori.
Collapse
Affiliation(s)
- Wei-Tao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Long-Fei Xiao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jun-Jie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Xin-Xu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Ji-Xing Liu
- Product R & D, Lanzhou Weitesen Biological Technology Co. Ltd., Lanzhou 730030, China.
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
86
|
Takahashi R, Fujioka S, Oe T, Lee SH. Stable isotope labeling by fatty acids in cell culture (SILFAC) coupled with isotope pattern dependent mass spectrometry for global screening of lipid hydroperoxide-mediated protein modifications. J Proteomics 2017; 166:101-114. [PMID: 28735093 DOI: 10.1016/j.jprot.2017.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/01/2017] [Accepted: 07/09/2017] [Indexed: 01/25/2023]
Abstract
Lipid hydroperoxide-mediated modifications of proteins are receiving increasing attention because of their possible involvement in various degenerative diseases. These biological effects are attributed to the ability of lipid peroxidation-derived aldehydes to react with the nucleophilic sites of proteins. Here we describe a methodology involving metabolic labeling coupled with mass spectrometry-based proteomic analysis that enables global screening of lipid hydroperoxide-mediated protein modifications in a cell system. The lipidome of MCF-7 cells was labeled by incubating the cells with 1.4μM [13C18]-linoleic acid (LA) until the LA to [13C18]-LA ratio became 1:1. This approach was termed SILFAC (stable isotope labeling by fatty acids in cell culture). Analysis of the cellular phospholipids indicated that [13C18]-LA was incorporated quantitatively. The labeled cells were subjected to oxidative stress using a calcium ionophore and l-ascorbic acid, which promote the generation of reactive aldehydes from cellular LA and [13C18]-LA. After protein extraction and digestion with trypsin, isotope pattern dependent MS was used to analyze peptides modified by 1:1 ratios of the 12C and 13C aldehyde isomers. Using the current methodology, we identified the major lipid hydroperoxide-mediated modifications to proteins in MCF-7 cells without the need for chemical labeling or further affinity purification. SIGNIFICANCE Lipid peroxidation-derived aldehydes (LPDAs) such as 4-oxo-2(E)-nonenal and 4-hydroxy-2(E)-nonenal can readily react with proteins and peptides to produce a variety of covalent modifications and cross-linkages, resulting in protein dysfunction and altered gene regulation. Various analytical approaches have therefore been developed to detect and characterize protein modifications mediated by LPDAs. However, most of the methods are not specific for LPDA modifications or designed for proteins modified by a target aldehyde. Here we describe the coupling of stable isotope labeling by fatty acids in cell culture (SILFAC) with an isotope pattern dependent MS-based proteomic strategy to provide a global screening tool for the identification of lipid hydroperoxide-mediated protein modifications.
Collapse
Affiliation(s)
- Ryo Takahashi
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Shuhei Fujioka
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Tomoyuki Oe
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
| | - Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
87
|
Desoubeaux G, Piqueras MDC, Pantin A, Bhattacharya SK, Peschke R, Joachim A, Cray C. Application of mass spectrometry to elucidate the pathophysiology of Encephalitozoon cuniculi infection in rabbits. PLoS One 2017; 12:e0177961. [PMID: 28723944 PMCID: PMC5516978 DOI: 10.1371/journal.pone.0177961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/05/2017] [Indexed: 11/30/2022] Open
Abstract
Encephalitozoon cuniculi is a microsporidian species which can induce subclinical to serious disease in mammals including rabbits, a definitive natural host. The pathophysiology of infection has not been comprehensively elucidated. In this exploratory study, we utilized two mass spectrometry approaches: first, the analysis of the humoral response by profiling the microsporidian antigens as revealed by Western blot screening, and second, implementing the iTRAQ®-labeling protocol to focus on the changes within the host proteome during infection. Seven E. cuniculi proteins were identified at one-dimensional gel regions where specific seropositive reaction was observed by Western blot, including polar tube protein 3, polar tube protein 2, and for the first time reported: heat shock related 70kDa protein, polysaccharide deacetylase domain-containing protein, zinc finger protein, spore wall and anchoring disk complex protein EnP1, and translation elongation factor 1 alpha. In addition, there was a significant increase of nine host proteins in blood samples from E. cuniculi-diseased rabbits in comparison with non-diseased control subjects undergoing various inflammatory processes. This included serum paraoxonase, alpha-1-antiproteinase F precursor and alpha-1-antiproteinase S-1 which have presumptive catalytic activity likely related to infection control, and cystatin fetuin-B-type, an enzyme regulator that has been poorly studied to date. Notably, 11 proteins were found to be statistically increased in rabbits with neurological versus renal clinical presentation of E. cuniculi infection. Overall, this novel analysis based on mass spectrometry has provided new insights on the inflammatory and humoral responses during E. cuniculi infection in rabbits.
Collapse
Affiliation(s)
- Guillaume Desoubeaux
- University of Miami - Miller School of Medicine, Division of Comparative Pathology, Department of Pathology & Laboratory Medicine, Miami, Florida, United States of America
- CHU de Tours, Service de Parasitologie – Mycologie – Médecine tropicale, Tours, France
- Université François-Rabelais, Faculté de Médecine, CEPR - INSERM U1100 / Équipe 3, Tours, France
| | - Maria del Carmen Piqueras
- University of Miami, Mass Spectrometry Core Facility, Miller School of Medicin–, Miami, Florida, United States of America
| | - Ana Pantin
- University of Miami - Miller School of Medicine, Division of Comparative Pathology, Department of Pathology & Laboratory Medicine, Miami, Florida, United States of America
| | - Sanjoy K. Bhattacharya
- University of Miami, Mass Spectrometry Core Facility, Miller School of Medicin–, Miami, Florida, United States of America
| | - Roman Peschke
- University of Veterinary Medicine, Institute of Parasitology, Department of Pathobiology, Vienna, Austria
| | - Anja Joachim
- University of Veterinary Medicine, Institute of Parasitology, Department of Pathobiology, Vienna, Austria
| | - Carolyn Cray
- University of Miami - Miller School of Medicine, Division of Comparative Pathology, Department of Pathology & Laboratory Medicine, Miami, Florida, United States of America
| |
Collapse
|
88
|
Zhang M, Song X, Lv K, Yao Y, Gong Z, Zheng C. Differential proteomic analysis revealing the ovule abortion in the female-sterile line of Pinus tabulaeformis Carr. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 260:31-49. [PMID: 28554473 DOI: 10.1016/j.plantsci.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 05/26/2023]
Abstract
Ovule abortion affects the yield and quality of Pinus tabulaeformis Carr. seeds. Research into ovule abortion has importance for improving the seed setting rate and establishing artificial seed production techniques. Fertile line (FL) ovules (FL-E) and sterile line (SL) ovules (SL-E) in the early stage of free nuclear mitosis of megagametophyte (FNMM), FL ovules (FL-L) and SL ovules (SL-L) in the late stage of FNMM of P. tabulaeformis were collected as materials. 4192 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ)-based analysis. Bioinformatics analysis implied that in SL ovules, substances and energy might be deficient, perhaps leading to abnormal DNA replication. Because the incomplete antioxidant system and the abnormal expression levels of enzymes involved in cell signal transduction, DNA DSBs probably occurs. Facing the abnormities of DNA replication and damage, the cell cycle was arrested and the DNA damage failed to be repaired, potentially resulting in the occurrence of PCD. Taken together, an inference can be drawn from our study - substance and energy deficiencies, reactive oxygen stress, and the failure of both cell cycle progression and DNA damage repair, which possibly hinder FNMM, leading to ovule abortion in the female-sterile line of P. tabulaeformis.
Collapse
Affiliation(s)
- Min Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China
| | - Xiaoxin Song
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China
| | - Kun Lv
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China
| | - Yang Yao
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China
| | - Zaixin Gong
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China
| | - Caixia Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China.
| |
Collapse
|
89
|
Qing S, Tulake W, Ru M, Li X, Yuemaier R, Lidifu D, Rouzibilali A, Hasimu A, Yang Y, Rouziahong R, Upur H, Abudula A. Proteomic identification of potential biomarkers for cervical squamous cell carcinoma and human papillomavirus infection. Tumour Biol 2017; 39:1010428317697547. [PMID: 28443473 DOI: 10.1177/1010428317697547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is known that high-risk human papillomavirus infection is the main etiological factor in cervical carcinogenesis. However, human papillomavirus screening is not sufficient for early diagnosis. In this study, we aimed to identify potential biomarkers common to cervical carcinoma and human papillomavirus infection by proteomics for human papillomavirus-based early diagnosis and prognosis. To this end, we collected 76 cases of fresh cervical tissues and 116 cases of paraffin-embedded tissue slices, diagnosed as cervical squamous cell carcinoma, cervical intraepithelial neoplasia II-III, or normal cervix from ethnic Uighur and Han women. Human papillomavirus infection by eight oncogenic human papillomavirus types was detected in tissue DNA samples using a quantitative polymerase chain reaction. The protein profile of cervical specimens from human papillomavirus 16-positive squamous cell carcinoma and human papillomavirus-negative normal controls was analyzed by proteomics and bioinformatics. The expression of candidate proteins was further determined by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry. We identified 67 proteins that were differentially expressed in human papillomavirus 16-positive squamous cell carcinoma compared to normal cervix. The quantitative reverse transcriptase-polymerase chain reaction analysis verified the upregulation of ASAH1, PCBP2, DDX5, MCM5, TAGLN2, hnRNPA1, ENO1, TYPH, CYC, and MCM4 in squamous cell carcinoma compared to normal cervix ( p < 0.05). In addition, the transcription of PCBP2, MCM5, hnRNPA1, TYPH, and CYC was also significantly increased in cervical intraepithelial neoplasia II-III compared to normal cervix. Immunohistochemistry staining further confirmed the overexpression of PCBP2, hnRNPA1, ASAH1, and DDX5 in squamous cell carcinoma and cervical intraepithelial neoplasia II-III compared to normal controls ( p < 0.05). Our data suggest that the expression of ASAH1, PCBP2, DDX5, and hnRNPA1, and possibly MCM4, MCM5, CYC, ENO1, and TYPH, is upregulated during cervical carcinogenesis and potentially associated with human papillomavirus infection. Further validation studies of the profile will contribute to establishing auxiliary diagnostic markers for human papillomavirus-based cancer prognosis.
Collapse
Affiliation(s)
- Song Qing
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China.,2 Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Wuniqiemu Tulake
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| | - Mingfang Ru
- 3 Department of Gynecology, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Xiaohong Li
- 4 Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Reziwanguli Yuemaier
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| | - Dilare Lidifu
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| | - Aierken Rouzibilali
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| | - Axiangu Hasimu
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| | - Yun Yang
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| | - Reziya Rouziahong
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| | - Halmurat Upur
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| | - Abulizi Abudula
- 1 Key Laboratory of Chinese Ministry of Education and Xinjiang Uighur Autonomous Region for High-Incident Diseases in Uighur Ethnic Population, Xinjiang Medical University, Urumqi, P.R. China
| |
Collapse
|
90
|
You C, Chen L, He H, Wu L, Wang S, Ding Y, Ma C. iTRAQ-based proteome profile analysis of superior and inferior Spikelets at early grain filling stage in japonica Rice. BMC PLANT BIOLOGY 2017; 17:100. [PMID: 28592253 PMCID: PMC5463490 DOI: 10.1186/s12870-017-1050-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/29/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Large-panicle rice varieties often fail to achieve their yield potential due to poor grain filling of late-flowering inferior spikelets (IS). The physiological and molecular mechanisms of poor IS grain filling, and whether an increase in assimilate supply could regulate protein abundance and consequently improve IS grain filling for japonica rice with large panicles is still partially understood. RESULTS A field experiment was performed with two spikelet removal treatments at anthesis in the large-panicle japonica rice line W1844, including removal of the top 1/3 of spikelets (T1) and removal of the top 2/3 of spikelets (T2), with no spikelet removal as a control (T0). The size, weight, setting rate, and grain filling rate of IS were significantly increased after spikelet removing. The biological functions of the differentially expressed proteins (DEPs) between superior and inferior spikelets as well as the response of IS to the removal of superior spikelets (SS) were investigated by using iTRAQ at 10 days post anthesis. A total of 159, 87, and 28 DEPs were identified from group A (T0-SS/T0-IS), group B (T0-SS/T2-IS), and group C (T2-IS/T0-IS), respectively. Among these, 104, 63, and 22 proteins were up-regulated, and 55, 24, and 6 proteins were down-regulated, respectively. Approximately half of these DEPs were involved in carbohydrate metabolism (sucrose-to-starch metabolism and energy metabolism) and protein metabolism (protein synthesis, folding, degradation, and storage). CONCLUSIONS Reduced endosperm cell division and decreased activities of key enzymes associated with sucrose-starch metabolism and nitrogen metabolism are mainly attributed to the poor sink strength of IS. In addition, due to weakened photosynthesis and respiration, IS are unable to obtain a timely supply of materials and energy after fertilization, which might be resulted in the stagnation of IS development. Finally, an increased abundance of 14-3-3 protein in IS could be involved in the inhibition of starch synthesis. The removal of SS contributed to transfer of assimilates to IS and enhanced enzymatic activities of carbon metabolism (sucrose synthase, starch branching enzyme, soluble starch synthase, and pullulanase) and nitrogen metabolism (aspartate amino transferase and alanine amino transferase), promoting starch and protein synthesis in IS. In addition, improvements in energy metabolism (greater abundance of pyrophosphate-fructose 6-phosphate 1-phosphotransferase) might be played a vital role in inducing the initiation of grain filling. These results collectively demonstrate that carbohydrate supply is the main cause of poor IS grain filling.
Collapse
Affiliation(s)
- Cuicui You
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095 People’s Republic of China
| | - Lin Chen
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095 People’s Republic of China
| | - Haibing He
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Liquan Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Shaohua Wang
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095 People’s Republic of China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 People’s Republic of China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095 People’s Republic of China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 People’s Republic of China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| |
Collapse
|
91
|
Zhang H, Wang J, Li L, Chai N, Chen Y, Wu F, Zhang W, Wang L, Shi S, Zhang L, Bian S, Xu C, Tian Y, Zhao Y. Spermine and spermidine reversed age-related cardiac deterioration in rats. Oncotarget 2017; 8:64793-64808. [PMID: 29029392 PMCID: PMC5630292 DOI: 10.18632/oncotarget.18334] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/21/2017] [Indexed: 01/08/2023] Open
Abstract
Aging is the most important risk factor for cardiovascular disease (CVD). Slowing or reversing the physiological impact of heart aging may reduce morbidity and mortality associated with age-related CVD. The polyamines, spermine (SP) and spermidine (SPD) are essential for cell growth, differentiation and apoptosis, and levels of both decline with age. To explore the effects of these polyamines on heart aging, we administered SP or SPD intraperitoneally to 22- to 24-month-old rats for 6 weeks. Both treatments reversed and inhibited age-related myocardial morphology alterations, myocardial fibrosis, and cell apoptosis. Using combined proteomics and metabolomics analyses, we identified proteins and metabolites up- or downregulated by SP and SPD in aging rat hearts. SP upregulated 51 proteins and 28 metabolites while downregulating 80 proteins and 29 metabolites. SPD upregulated 44 proteins and 24 metabolites and downregulated 84 proteins and 176 metabolites. These molecules were mainly associated with immune responses, blood coagulation, lipid metabolism, and glutathione metabolism pathways. Our study provides novel molecular information on the cardioprotective effects of polyamines in the aging heart, and supports the notion that SP and SPD are potential clinical therapeutics targeting heart disease.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Junying Wang
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Lingxu Li
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Nannan Chai
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China.,College of Nursing, Medical School of Chifeng University, Chifeng, China
| | - Yuhan Chen
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Feixiang Wu
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Weihua Zhang
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Lina Wang
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Sa Shi
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Li Zhang
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Shuling Bian
- Experiment Center of Function, Harbin Medical University, Harbin, China
| | - Changqing Xu
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Ye Tian
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yajun Zhao
- Department of Pathophysiology, The Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
92
|
Zhang Z, Zhou H, Yu Q, Li Y, Mendoza-Cózatl DG, Qiu B, Liu P, Chen Q. Quantitative proteomics analysis of leaves from two Sedum alfredii
(Crassulaceae) populations that differ in cadmium accumulation. Proteomics 2017; 17:e1600456. [DOI: 10.1002/pmic.201600456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/14/2017] [Accepted: 03/28/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Zhongchun Zhang
- School of Life Sciences; Hubei Key Laboratory of Genetic Regulation and Integrative Biology; Central China Normal University; Wuhan Hubei P. R. China
| | - Huina Zhou
- Zhengzhou Tobacco Research Institute of CNTC; Zhengzhou Henan P. R. China
| | - Qi Yu
- School of Life Sciences; Hubei Key Laboratory of Genetic Regulation and Integrative Biology; Central China Normal University; Wuhan Hubei P. R. China
| | - Yunxia Li
- School of Life Sciences; Hubei Key Laboratory of Genetic Regulation and Integrative Biology; Central China Normal University; Wuhan Hubei P. R. China
| | - David G. Mendoza-Cózatl
- Division of Plant Sciences; C.S. Bond Life Sciences Center, University of Missouri; Columbia MO USA
| | - Baosheng Qiu
- School of Life Sciences; Hubei Key Laboratory of Genetic Regulation and Integrative Biology; Central China Normal University; Wuhan Hubei P. R. China
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute of CNTC; Zhengzhou Henan P. R. China
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTC; Zhengzhou Henan P. R. China
| |
Collapse
|
93
|
Do Carmo S, Crynen G, Paradis T, Reed J, Iulita MF, Ducatenzeiler A, Crawford F, Cuello AC. Hippocampal Proteomic Analysis Reveals Distinct Pathway Deregulation Profiles at Early and Late Stages in a Rat Model of Alzheimer's-Like Amyloid Pathology. Mol Neurobiol 2017; 55:3451-3476. [PMID: 28502044 DOI: 10.1007/s12035-017-0580-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/26/2017] [Indexed: 01/01/2023]
Abstract
The cerebral accumulation and cytotoxicity of amyloid beta (Aβ) is central to Alzheimer's pathogenesis. However, little is known about how the amyloid pathology affects the global expression of brain proteins at different disease stages. In order to identify genotype and time-dependent significant changes in protein expression, we employed quantitative proteomics analysis of hippocampal tissue from the McGill-R-Thy1-APP rat model of Alzheimer-like amyloid pathology. McGill transgenic rats were compared to wild-type rats at early and late pathology stages, i.e., when intraneuronal Aβ amyloid burden is conspicuous and when extracellular amyloid plaques are abundant with more pronounced cognitive deficits. After correction for multiple testing, the expression levels of 64 proteins were found to be considerably different in transgenic versus wild-type rats at the pre-plaque stage (3 months), and 86 proteins in the post-plaque group (12 months), with only 9 differentially regulated proteins common to the 2 time-points. This minimal overlap supports the hypothesis that different molecular pathways are affected in the hippocampus at early and late stages of the amyloid pathology throughout its continuum. At early stages, disturbances in pathways related to cellular responses to stress, protein homeostasis, and neuronal structure are predominant, while disturbances in metabolic energy generation dominate at later stages. These results shed new light on the molecular pathways affected by the early accumulation of Aβ and how the evolving amyloid pathology impacts other complex metabolic pathways.
Collapse
Affiliation(s)
- Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Tiffany Paradis
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Jon Reed
- Roskamp Institute, Sarasota, FL, USA
| | - M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Adriana Ducatenzeiler
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
94
|
Bos S, Phillips M, Watts GF, Verhoeven AJM, Sijbrands EJG, Ward NC. Novel protein biomarkers associated with coronary artery disease in statin-treated patients with familial hypercholesterolemia. J Clin Lipidol 2017; 11:682-693. [PMID: 28434814 DOI: 10.1016/j.jacl.2017.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is the most common and serious monogenic disorder of lipid metabolism. The incidence of coronary artery disease (CAD) varies among both treated and untreated FH patients. OBJECTIVE The aim of the study was to utilize proteomics to identify novel protein biomarkers that differentiate genetically confirmed heterozygous patients with FH at high CAD risk from those at low CAD risk. METHODS Sixty genetically confirmed FH patients were recruited and stratified into (1) asymptomatic FH with low atherosclerotic burden (FH, n = 20); (2) asymptomatic FH with high atherosclerotic burden (FH + Ca, n = 20); and (3) FH with previously confirmed symptomatic CAD (FH + CAD, n = 20). RESULTS Six new potential proteins were identified; leucine-rich alpha-2-glycoprotein (LRG1), inter-alpha-trypsin inhibitor heavy chain H3, complement C4-B (C4B), complement C1q subcomponent subunit B (C1QB), monocyte differentiation antigen (CD14), and histidine-rich glycoprotein (HRG). There were significant associations between gender and C4B (Z = 2.31, P = .021), C1QB (Z = 2.49, P = .013), CD14 (Z = 2.17, P = .03), and HRG (Z = 2.14, P = .033). There were significant associations between smoking and LRG1 (χ22 = 6.59, P = .037), CB4 (χ22 = 7.85, P = .02), and HRG (χ22 = 6.11, P = .047). All the peptides were significantly associated with advanced CAD stages, independently of age and smoking. However, the absence of the proteins was the strongest marker. The most accurate association with CAD was HRG (area under the receiver operating characteristic curve = 0.922), whereas LRG1, C4B, and C1QB were also associated with CAD (area under the receiver operating characteristic curve >0.9). For either coronary atherosclerosis or CAD, LRG1, C4B, C1QB, and HRG were relatively well associated. CONCLUSIONS The present study has identified 6 novel protein biomarkers that are associated with more advanced stages of atherosclerotic disease and subsequent coronary events in patients with heterozygous FH.
Collapse
Affiliation(s)
- Sven Bos
- Section of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Michael Phillips
- Harry Perkins Institute for Medical Research, Perth, Australia; Royal Perth Hospital, Perth, Australia
| | - Gerald F Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia; School of Medicine, Faculty of Medical and Health Sciences, University of Western Australia, Perth, Australia
| | - Adrie J M Verhoeven
- Section of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Eric J G Sijbrands
- Section of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Natalie C Ward
- School of Medicine, Faculty of Medical and Health Sciences, University of Western Australia, Perth, Australia; School of Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| |
Collapse
|
95
|
Feng Y, Yuan F. Proteomics: A new perspective for the understanding of pterygia. Proteomics Clin Appl 2017; 11. [PMID: 28261971 DOI: 10.1002/prca.201600184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/15/2017] [Accepted: 03/01/2017] [Indexed: 11/09/2022]
Abstract
Pterygia is a common ocular surface disease bothering both the patient because of its unsightly appearance and the surgeon because of its tendency to recur. The pathogenesis of pterygia is complex and the exact mechanism(s), especially at the molecular level, remains unknown. The use of modern proteomic techniques such as iTRAQ may yield new knowledge on the underlying pathogenesis of pterygia. In this issue of Proteomics Clinical Applications, Linghu et al. (article number 1600094) identified a total of 156 proteins that expressed differently between the pterygia and healthy conjunctiva using the isobaric tags for relative and absolute quantification based quantitative proteomic analysis. Most significantly, western blotting confirmed that two candidate proteins matrix metalloproteinase 10 (MMP-10) and CD34 were significantly upregulated in pterygia, suggesting that they have potential roles in the pathogenesis of pterygia. The findings in Linhu's study may provide a new perspective for the understanding of pterygia and develop a new therapeutic target.
Collapse
Affiliation(s)
- Yifan Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
96
|
Technological advances and proteomic applications in drug discovery and target deconvolution: identification of the pleiotropic effects of statins. Drug Discov Today 2017; 22:848-869. [PMID: 28284830 DOI: 10.1016/j.drudis.2017.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 01/05/2023]
Abstract
Proteomic-based techniques provide a powerful tool for identifying the full spectrum of protein targets of a drug, elucidating its mechanism(s) of action, and identifying biomarkers of its efficacy and safety. Herein, we outline the technological advancements in the field, and illustrate the contribution of proteomics to the definition of the pharmacological profile of statins, which represent the cornerstone of the prevention and treatment of cardiovascular diseases (CVDs). Statins act by inhibiting 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, thus reducing cholesterol biosynthesis and consequently enhancing the clearance of low-density lipoproteins from the blood; however, HMG-CoA reductase inhibition can result in a multitude of additional effects beyond lipid lowering, known as 'pleiotropic effects'. The case of statins highlights the unique contribution of proteomics to the target profiling of a drug molecule.
Collapse
|
97
|
Li G, Li M, Liang X, Xiao Z, Zhang P, Shao M, Peng F, Chen Y, Li Y, Chen Z. Identifying DCN and HSPD1 as Potential Biomarkers in Colon Cancer Using 2D-LC-MS/MS Combined with iTRAQ Technology. J Cancer 2017; 8:479-489. [PMID: 28261350 PMCID: PMC5332900 DOI: 10.7150/jca.17192] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/29/2016] [Indexed: 12/31/2022] Open
Abstract
Colon cancer is one of the most common types of gastrointestinal cancers and the fourth cause of cancer death worldwide. To discover novel diagnostic biomarkers for colon cancer and investigate potential mechanisms of oncogenesis, quantitative proteomic approach using iTRAQ-tagging and 2D-LC-MS/MS was performed to characterize proteins alterations in colon cancer and non-neoplastic colonic mucosa (NNCM) using laser capture microdissection-harvested from the two types of tissues, respectively. As a result, 188 DEPs were identified, and the differential expression of two DEPs (DCN and HSPD1) was further verified by Western blotting and immunohistochemistry. KEGG pathway analysis disclosed that the DEPs were related to signaling pathways associated with cancer; furthermore, DCN and HSPD1 are in the relative central hub position among protein-protein interaction subnetwork of the DEPs. The results not only shed light on the mechanism by the DEPs contributed to colonic carcinogenesis, but also showed that DCN and HSPD1 are novel potential biomarkers for the diagnosis of colon cancer.
Collapse
Affiliation(s)
- Guoqing Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacy and Life Science, University of South China, Hengyang 421001, Hunan, China
| | - Maoyu Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xujun Liang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhefeng Xiao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Pengfei Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Meiying Shao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Fang Peng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yongheng Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanyuan Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.; Medical College, Guangxi University of Science and Technology, Liuzhou 545005, Guangxi, China
| | - Zhuchu Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
98
|
Sun L, Xu D, Xu Q, Sun J, Xing L, Zhang L, Yang H. iTRAQ reveals proteomic changes during intestine regeneration in the sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:39-49. [PMID: 28189057 DOI: 10.1016/j.cbd.2017.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 12/14/2022]
Abstract
Sea cucumbers have a striking capacity to regenerate most of their viscera after evisceration, which has drawn the interest of many researchers. In this study, the isobaric tag for relative and absolute quantitation (iTRAQ) was utilized to investigate protein abundance changes during intestine regeneration in sea cucumbers. A total of 4073 proteins were identified, and 2321 proteins exhibited significantly differential expressions, with 1100 upregulated and 1221 downregulated proteins. Our results suggest that intestine regeneration constitutes a complex life activity regulated by the cooperation of various biological processes, including cytoskeletal changes, extracellular matrix (ECM) remodeling and ECM-receptor interactions, protein synthesis, signal recognition and transduction, energy production and conversion, and substance transport and metabolism. Additionally, real-time PCR showed mRNA expression of differentially expressed genes correlated positively with their protein levels. Our results provided a basis for studying the regulatory mechanisms associated with sea cucumber regeneration.
Collapse
Affiliation(s)
- Lina Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Dongxue Xu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, China
| | - Qinzeng Xu
- Key Laboratory of Marine Ecology and Environmental Science and Engineering, First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Jingchun Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lili Xing
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Libin Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Hongsheng Yang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
99
|
Stuart RK, Bundy R, Buck K, Ghassemain M, Barbeau K, Palenik B. Copper toxicity response influences mesotrophicSynechococcuscommunity structure. Environ Microbiol 2017; 19:756-769. [DOI: 10.1111/1462-2920.13630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Rhona K. Stuart
- Scripps Institution of Oceanography, University of California at San Diego; La Jolla CA USA
| | - Randelle Bundy
- University of California at San Diego; La Jolla 92093 CA USA
| | - Kristen Buck
- Scripps Institution of Oceanography, University of California at San Diego; La Jolla CA USA
| | | | - Kathy Barbeau
- Scripps Institution of Oceanography, University of California at San Diego; La Jolla CA USA
| | - Brian Palenik
- Scripps Institution of Oceanography, University of California at San Diego; La Jolla CA USA
| |
Collapse
|
100
|
Brethour D, Mehrabian M, Williams D, Wang X, Ghodrati F, Ehsani S, Rubie EA, Woodgett JR, Sevalle J, Xi Z, Rogaeva E, Schmitt-Ulms G. A ZIP6-ZIP10 heteromer controls NCAM1 phosphorylation and integration into focal adhesion complexes during epithelial-to-mesenchymal transition. Sci Rep 2017; 7:40313. [PMID: 28098160 PMCID: PMC5241876 DOI: 10.1038/srep40313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/02/2016] [Indexed: 01/06/2023] Open
Abstract
The prion protein (PrP) evolved from the subbranch of ZIP metal ion transporters comprising ZIPs 5, 6 and 10, raising the prospect that the study of these ZIPs may reveal insights relevant for understanding the function of PrP. Building on data which suggested PrP and ZIP6 are critical during epithelial-to-mesenchymal transition (EMT), we investigated ZIP6 in an EMT paradigm using ZIP6 knockout cells, mass spectrometry and bioinformatic methods. Reminiscent of PrP, ZIP6 levels are five-fold upregulated during EMT and the protein forms a complex with NCAM1. ZIP6 also interacts with ZIP10 and the two ZIP transporters exhibit interdependency during their expression. ZIP6 contributes to the integration of NCAM1 in focal adhesion complexes but, unlike cells lacking PrP, ZIP6 deficiency does not abolish polysialylation of NCAM1. Instead, ZIP6 mediates phosphorylation of NCAM1 on a cluster of cytosolic acceptor sites. Substrate consensus motif features and in vitro phosphorylation data point toward GSK3 as the kinase responsible, and interface mapping experiments identified histidine-rich cytoplasmic loops within the ZIP6/ZIP10 heteromer as a novel scaffold for GSK3 binding. Our data suggests that PrP and ZIP6 inherited the ability to interact with NCAM1 from their common ZIP ancestors but have since diverged to control distinct posttranslational modifications of NCAM1.
Collapse
Affiliation(s)
- Dylan Brethour
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada.,Department of Laboratory Medicine &Pathobiology, University of Toronto, Ontario, Canada
| | - Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada.,Department of Laboratory Medicine &Pathobiology, University of Toronto, Ontario, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | - Xinzhu Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada.,Department of Laboratory Medicine &Pathobiology, University of Toronto, Ontario, Canada
| | - Farinaz Ghodrati
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada.,Department of Laboratory Medicine &Pathobiology, University of Toronto, Ontario, Canada
| | - Sepehr Ehsani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada.,Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Elizabeth A Rubie
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jean Sevalle
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | - Zhengrui Xi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada.,Department of Neurology, University of Toronto, Ontario, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada.,Department of Laboratory Medicine &Pathobiology, University of Toronto, Ontario, Canada
| |
Collapse
|