51
|
Molina-Hidalgo FJ, Medina-Puche L, Cañete-Gómez C, Franco-Zorrilla JM, López-Vidriero I, Solano R, Caballero JL, Rodríguez-Franco A, Blanco-Portales R, Muñoz-Blanco J, Moyano E. The fruit-specific transcription factor FaDOF2 regulates the production of eugenol in ripe fruit receptacles. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4529-4543. [PMID: 28981772 DOI: 10.1093/jxb/erx257] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Only a few transcription factors have been described in the regulation of the strawberry (Fragaria x ananassa) fruit ripening process. Using a transcriptomic approach, we identified and functionally characterized FaDOF2, a DOF-type ripening-related transcription factor, which is hormonally regulated and specific to the receptacle, though high expression levels were also found in petals. The expression pattern of FaDOF2 correlated with eugenol content, a phenylpropanoid volatile, in both fruit receptacles and petals. When FaDOF2 expression was silenced in ripe strawberry receptacles, the expression of FaEOBII and FaEGS2, two key genes involved in eugenol production, were down-regulated. These fruits showed a concomitant decrease in eugenol content, which confirmed that FaDOF2 is a transcription factor that is involved in eugenol production in ripe fruit receptacles. By using the yeast two-hybrid system and bimolecular fluorescence complementation, we demonstrated that FaDOF2 interacts with FaEOBII, a previously reported regulator of eugenol production, which determines fine-tuning of the expression of key genes that are involved in eugenol production. These results provide evidence that FaDOF2 plays a subsidiary regulatory role with FaEOBII in the expression of genes encoding enzymes that control eugenol production. Taken together, our results provide new insights into the regulation of the volatile phenylpropanoid pathway in ripe strawberry receptacles.
Collapse
Affiliation(s)
- Francisco Javier Molina-Hidalgo
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Laura Medina-Puche
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba, Spain
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Carlos Cañete-Gómez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | | | | | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049-Madrid, Spain
| | - José Luis Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Enriqueta Moyano
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| |
Collapse
|
52
|
Wang QH, Zhao C, Zhang M, Li YZ, Shen YY, Guo JX. Transcriptome analysis around the onset of strawberry fruit ripening uncovers an important role of oxidative phosphorylation in ripening. Sci Rep 2017; 7:41477. [PMID: 28195221 PMCID: PMC5307319 DOI: 10.1038/srep41477] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/07/2016] [Indexed: 11/09/2022] Open
Abstract
Although much progress has been made towards understanding the ripening of non-climacteric fruit using the strawberry as a model plant, the defined molecular mechanisms remain unclear. Here, RNA-sequencing was performed using four cDNA libraries around the onset of ripening, and a total of 31,793 unigenes and 335 pathways were annotated including the top five pathways, which were involved in ribosome, spliceosome, protein processing, plant-pathogen interaction and plant hormone signaling, and the important DEGs related to ripening were annotated to be mainly involved in protein translation and processing, sugar metabolism, energy metabolism, phytohormones, antioxidation, pigment and softening, especially finding a decreased trend of oxidative phosphorylation during red-coloring. VIGS-mediated downregulation of the pyruvate dehydrogenase gene PDHE1α, a key gene for glycolysis-derived oxidative phosphorylation, could inhibit respiration and ATP biosynthesis, whilst promote the accumulation of sugar, ABA, ETH, and PA, ultimately accelerating the ripening. In conclusion, our results demonstrate that a set of metabolism transition occurred during green-to-white-to-red stages that are coupled with more-to-less DEGs, and the oxidative phosphorylation plays an important role in the regulation of ripening. On the basis of our results, we discuss an oxidative phosphorylation-based model underlying strawberry fruit ripening.
Collapse
Affiliation(s)
- Qing-Hua Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Cheng Zhao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Miao Zhang
- Beijing Yuanquanyike Biological Technology Company, Beijing 100197, China
| | - Yu-Zhong Li
- Water Resources and Dryland Farming Laboratory, Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yuan-Yue Shen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jia-Xuan Guo
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
53
|
Jia H, Jiu S, Zhang C, Wang C, Tariq P, Liu Z, Wang B, Cui L, Fang J. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2045-65. [PMID: 27005823 PMCID: PMC5043491 DOI: 10.1111/pbi.12563] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/16/2016] [Accepted: 03/12/2016] [Indexed: 05/18/2023]
Abstract
Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA-stress-ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress- and ripening-induced proteins and water-deficit stress-induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole-3-acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening-related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross-signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development.
Collapse
Affiliation(s)
- Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Songtao Jiu
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Cheng Zhang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Chen Wang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Pervaiz Tariq
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Zhongjie Liu
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Baoju Wang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Liwen Cui
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
54
|
Sin IN, Perini MA, Martínez GA, Civello PM. Analysis of the carbohydrate-binding-module from Fragaria x ananassa α-L-arabinofuranosidase 1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:96-103. [PMID: 27262101 DOI: 10.1016/j.plaphy.2016.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
α-L-arabinofuranosidases (EC 3.2.1.55) are enzymes involved in the catabolism of several cell-wall polysaccharides such as pectins and hemicelluloses, catalyzing the hydrolysis of terminal non-reducing α-L-arabinofuranosil residues. Bioinformatic analysis of the aminoacidic sequences of Fragaria x ananassa α-L-arabinofuranosidases predict a putative carbohydrate-binding-module of the family CBM_4_9, associated to a wide range of carbohydrate affinities. In this study, we report the characterization of the binding affinity profile to different cell wall polysaccharides of the putative CBM of α-L-arabinofuranosidase 1 from Fragaria x ananassa (CBM-FaARA1). The sequence encoding for the putative CBM was cloned and expressed in Escherichia coli, and the resultant recombinant protein was purified from inclusion bodies by a Nickel affinity chromatography under denaturing conditions. The refolded recombinant protein was then subjected to binding assays and affinity gel electrophoresis, which indicated its ability to bind cellulose and also high affinity for homogalacturonans.
Collapse
Affiliation(s)
- I N Sin
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 n°495 - C.c 327, 1900, La Plata, Argentina
| | - M A Perini
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 n°495 - C.c 327, 1900, La Plata, Argentina
| | - G A Martínez
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Avenida Intendente Marino km 8,2, B7130IWA, Chascomús, Pcia. Buenos Aires, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, 1900, La Plata, Argentina
| | - P M Civello
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 n°495 - C.c 327, 1900, La Plata, Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, 1900, La Plata, Argentina.
| |
Collapse
|
55
|
Medina-Puche L, Blanco-Portales R, Molina-Hidalgo FJ, Cumplido-Laso G, García-Caparrós N, Moyano-Cañete E, Caballero-Repullo JL, Muñoz-Blanco J, Rodríguez-Franco A. Extensive transcriptomic studies on the roles played by abscisic acid and auxins in the development and ripening of strawberry fruits. Funct Integr Genomics 2016; 16:671-692. [PMID: 27614432 DOI: 10.1007/s10142-016-0510-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 11/29/2022]
Abstract
Strawberry is an ideal model for studying the molecular biology of the development and ripening of non-climacteric fruits. Hormonal regulation of gene expression along all these processes in strawberries is still to be fully elucidated. Although auxins and ABA have been pointed out as the major regulatory hormones, few high-throughput analyses have been carried out to date. The role for ethylene and gibberellins as regulatory hormones during the development and ripening of the strawberry fruit remain still elusive. By using a custom-made and high-quality oligo microarray platform done with over 32,000 probes including all of the genes actually described in the strawberry genome, we have analysed the expression of genes during the development and ripening in the receptacles of these fruits. We classify these genes into two major groups depending upon their temporal and developmental expression. First group are genes induced during the initial development stages. The second group encompasses genes induced during the final maturation and ripening processes. Each of these two groups has been also divided into four sub-groups according their pattern of hormonal regulation. By analyzing gene expression, we clearly show that auxins and ABA are the main and key hormones that combined or independently are responsible of the development and ripening process. Auxins are responsible for the receptacle fruit development and, at the same time¸ prevent ripening by repressing crucial genes. ABA regulates the expression of the vast majority of genes involved in the ripening. The main genes expressed under the control of these hormones are presented and their physiological rule discussed. We also conclude that ethylene and gibberellins do not seem to play a prominent role during these processes.
Collapse
Affiliation(s)
- Laura Medina-Puche
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Francisco Javier Molina-Hidalgo
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Guadalupe Cumplido-Laso
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Nicolás García-Caparrós
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Enriqueta Moyano-Cañete
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - José Luis Caballero-Repullo
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain.
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| |
Collapse
|
56
|
Paniagua C, Blanco-Portales R, Barceló-Muñoz M, García-Gago JA, Waldron KW, Quesada MA, Muñoz-Blanco J, Mercado JA. Antisense down-regulation of the strawberry β-galactosidase gene FaβGal4 increases cell wall galactose levels and reduces fruit softening. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:619-31. [PMID: 26585222 PMCID: PMC4737064 DOI: 10.1093/jxb/erv462] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Strawberry softening is characterized by an increase in the solubilization and depolymerization of pectins from cell walls. Galactose release from pectin side chains by β-galactosidase enzymes has been proposed as one reason for the increase in soluble pectins. A putative β-galactosidase gene, FaβGal4, has been identified using a custom-made oligonucleotide-based strawberry microarray platform. FaβGal4 was expressed mainly in the receptacle during fruit ripening, and was positively regulated by abscisic acid and negatively regulated by auxins. To ascertain the role of FaβGal4 in strawberry softening, transgenic plants containing an antisense sequence of this gene under the control of the CaMV35S promoter were generated. Phenotypic analyses were carried out in transgenic plants during three consecutive growing seasons, using non-transformed plants as control. Two out of nine independent transgenic lines yielded fruits that were 30% firmer than control at the ripe stage. FaβGal4 mRNA levels were reduced by 70% in ripe fruits from these selected transgenic lines, but they also showed significant silencing of FaβGal1, although the genes did not share significant similarity. These two transgenic lines also showed an increase in pectin covalently bound to the cell wall, extracted using Na2CO3. The amount of galactose in cell walls from transgenic fruits was 30% higher than in control; notably, the galactose increase was larger in the 1 M KOH fraction, which is enriched in hemicellulose. These results suggest that FaβGal4 participates in the solubilization of covalently bound pectins during ripening, reducing strawberry fruit firmness.
Collapse
Affiliation(s)
- Candelas Paniagua
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, 29071 Málaga, Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | - Juan A García-Gago
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, 29071 Málaga, Spain
| | - Keith W Waldron
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | - Miguel A Quesada
- Departamento de Biología Vegetal, Universidad de Málaga, 29071 Málaga, Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, 14071 Córdoba, Spain
| | - José A Mercado
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
57
|
Molina-Hidalgo FJ, Medina-Puche L, Gelis S, Ramos J, Sabir F, Soveral G, Prista C, Iglesias-Fernández R, Caballero JL, Muñoz-Blanco J, Blanco-Portales R. Functional characterization of FaNIP1;1 gene, a ripening-related and receptacle-specific aquaporin in strawberry fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:198-211. [PMID: 26259188 DOI: 10.1016/j.plantsci.2015.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/11/2015] [Accepted: 06/13/2015] [Indexed: 05/23/2023]
Abstract
Strawberry fruit (Fragaria × ananassa) is a soft fruit with high water content at ripe stage (more than 90% of its fresh weight). Aquaporins play an important role in plant water homeostasis, through the facilitation of water transport and solutes. We report the role played by FaNIP1;1 in the receptacle ripening process. The analysis by qRT-PCR of FaNIP1;1 showed that this gene is mainly expressed in fruit receptacle and has a ripening-related expression pattern that was accompanied by an increase in both the abscisic acid and water content of the receptacle throughout fruit ripening. Moreover, FaNIP1;1 was induced in situations of water deficit. Additionally, we show that FaNIP1;1 expression was positively regulated by abscisic acid and negatively regulated by auxins. The water transport capacity of FaNIP1;1 was determined by a stopped-flow spectroscopy in yeast over-expressing FaNIP1;1. Glycerol, H2O2 and boron transport were also demonstrated in yeast. On the other hand, GFP-FaNIP1;1 fusion protein was located in plasma membrane. In conclusion, FaNIP1;1 seems to play an important role increasing the plasma membrane permeability, that allows the water accumulation in the strawberry fruit receptacle throughout the ripening process.
Collapse
Affiliation(s)
- Francisco J Molina-Hidalgo
- Department of Biochemistry and Molecular Biology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| | - Laura Medina-Puche
- Department of Biochemistry and Molecular Biology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| | - Samuel Gelis
- Department of Microbiology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| | - José Ramos
- Department of Microbiology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| | - Farzana Sabir
- CBAA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-003, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Portugal
| | - Graça Soveral
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Portugal; Departamento de Bioquímica e Biologia Humana, Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Portugal
| | - Catarina Prista
- CBAA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-003, Portugal
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid 28223, Spain
| | - José L Caballero
- Department of Biochemistry and Molecular Biology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| | - Juan Muñoz-Blanco
- Department of Biochemistry and Molecular Biology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain.
| | - Rosario Blanco-Portales
- Department of Biochemistry and Molecular Biology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| |
Collapse
|
58
|
Guidarelli M, Baraldi E. Transient transformation meets gene function discovery: the strawberry fruit case. FRONTIERS IN PLANT SCIENCE 2015; 6:444. [PMID: 26124771 PMCID: PMC4464107 DOI: 10.3389/fpls.2015.00444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/29/2015] [Indexed: 05/20/2023]
Abstract
Beside the well known nutritional and health benefits, strawberry (FragariaXananassa) crop draws increasing attention as plant model system for the Rosaceae family, due to the short generation time, the rapid in vitro regeneration, and to the availability of the genome sequence of F.Xananassa and F. vesca species. In the last years, the use of high-throughput sequence technologies provided large amounts of molecular information on the genes possibly related to several biological processes of this crop. Nevertheless, the function of most genes or gene products is still poorly understood and needs investigation. Transient transformation technology provides a powerful tool to study gene function in vivo, avoiding difficult drawbacks that typically affect the stable transformation protocols, such as transformation efficiency, transformants selection, and regeneration. In this review we provide an overview of the use of transient expression in the investigation of the function of genes important for strawberry fruit development, defense and nutritional properties. The technical aspects related to an efficient use of this technique are described, and the possible impact and application in strawberry crop improvement are discussed.
Collapse
Affiliation(s)
| | - Elena Baraldi
- Laboratory of Plant Pathology and Biotechnology, Department of Agricultural Sciences, University of BolognaBologna, Italy
| |
Collapse
|
59
|
Medina-Puche L, Molina-Hidalgo FJ, Boersma M, Schuurink RC, López-Vidriero I, Solano R, Franco-Zorrilla JM, Caballero JL, Blanco-Portales R, Muñoz-Blanco J. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles. PLANT PHYSIOLOGY 2015; 168:598-614. [PMID: 25931522 PMCID: PMC4453772 DOI: 10.1104/pp.114.252908] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/29/2015] [Indexed: 05/18/2023]
Abstract
Eugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria × ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown. We have identified and functionally characterized an R2R3 MYB transcription factor (emission of benzenoid II [FaEOBII]) that seems to be the orthologous gene of PhEOBII from Petunia hybrida, which contributes to the regulation of eugenol biosynthesis in petals. The expression of FaEOBII was ripening related and fruit receptacle specific, although high expression values were also found in petals. This expression pattern of FaEOBII correlated with eugenol content in both fruit receptacle and petals. The expression of FaEOBII was repressed by auxins and activated by abscisic acid, in parallel to the ripening process. In ripe strawberry receptacles, where the expression of FaEOBII was silenced, the expression of cinnamyl alcohol dehydrogenase1 and FaEGS2, two structural genes involved in eugenol production, was down-regulated. A subsequent decrease in eugenol content in ripe receptacles was also observed, confirming the involvement of FaEOBII in eugenol metabolism. Additionally, the expression of FaEOBII was under the control of FaMYB10, another R2R3 MYB transcription factor that regulates the early and late biosynthetic genes from the flavonoid/phenylpropanoid pathway. In parallel, the amount of eugenol in FaMYB10-silenced receptacles was also diminished. Taken together, these data indicate that FaEOBII plays a regulating role in the volatile phenylpropanoid pathway gene expression that gives rise to eugenol production in ripe strawberry receptacles.
Collapse
Affiliation(s)
- Laura Medina-Puche
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Francisco Javier Molina-Hidalgo
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Maaike Boersma
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Robert C Schuurink
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Irene López-Vidriero
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Roberto Solano
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - José-Manuel Franco-Zorrilla
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - José Luis Caballero
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| |
Collapse
|
60
|
Dautt-Castro M, Ochoa-Leyva A, Contreras-Vergara CA, Pacheco-Sanchez MA, Casas-Flores S, Sanchez-Flores A, Kuhn DN, Islas-Osuna MA. Mango (Mangifera indica L.) cv. Kent fruit mesocarp de novo transcriptome assembly identifies gene families important for ripening. FRONTIERS IN PLANT SCIENCE 2015; 6:62. [PMID: 25741352 PMCID: PMC4332321 DOI: 10.3389/fpls.2015.00062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/24/2015] [Indexed: 05/04/2023]
Abstract
Fruit ripening is a physiological and biochemical process genetically programmed to regulate fruit quality parameters like firmness, flavor, odor and color, as well as production of ethylene in climacteric fruit. In this study, a transcriptomic analysis of mango (Mangifera indica L.) mesocarp cv. "Kent" was done to identify key genes associated with fruit ripening. Using the Illumina sequencing platform, 67,682,269 clean reads were obtained and a transcriptome of 4.8 Gb. A total of 33,142 coding sequences were predicted and after functional annotation, 25,154 protein sequences were assigned with a product according to Swiss-Prot database and 32,560 according to non-redundant database. Differential expression analysis identified 2,306 genes with significant differences in expression between mature-green and ripe mango [1,178 up-regulated and 1,128 down-regulated (FDR ≤ 0.05)]. The expression of 10 genes evaluated by both qRT-PCR and RNA-seq data was highly correlated (R = 0.97), validating the differential expression data from RNA-seq alone. Gene Ontology enrichment analysis, showed significantly represented terms associated to fruit ripening like "cell wall," "carbohydrate catabolic process" and "starch and sucrose metabolic process" among others. Mango genes were assigned to 327 metabolic pathways according to Kyoto Encyclopedia of Genes and Genomes database, among them those involved in fruit ripening such as plant hormone signal transduction, starch and sucrose metabolism, galactose metabolism, terpenoid backbone, and carotenoid biosynthesis. This study provides a mango transcriptome that will be very helpful to identify genes for expression studies in early and late flowering mangos during fruit ripening.
Collapse
Affiliation(s)
- Mitzuko Dautt-Castro
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y DesarrolloHermosillo, Sonora, Mexico
| | - Adrian Ochoa-Leyva
- Instituto Nacional de Medicina Genómica, Unidad de Genómica de Poblaciones, Aplicada a la Salud, Facultad de Qumica UNAM, DelegaciónTlalpan, Mexico DF
| | - Carmen A. Contreras-Vergara
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y DesarrolloHermosillo, Sonora, Mexico
| | - Magda A. Pacheco-Sanchez
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y DesarrolloHermosillo, Sonora, Mexico
| | - Sergio Casas-Flores
- Laboratorio de Genómica Funcional y Comparativa, División de Biología Molecular, Instituto Potosino de Investigación Científica y TecnológicaSan Luis Potosí (SLP), Mexico
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva de DNA, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Morelos, Mexico
| | - David N. Kuhn
- United States Department of Agriculture – Agricultural Research Service, Subtropical Horticulture Research StationMiami, FL, USA
| | - Maria A. Islas-Osuna
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y DesarrolloHermosillo, Sonora, Mexico
- *Correspondence: Maria A. Islas-Osuna, Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, Carretera Ejido La Victoria Km 0.6, Hermosillo, Sonora 83304, Mexico e-mail:
| |
Collapse
|
61
|
Paniagua C, Posé S, Morris VJ, Kirby AR, Quesada MA, Mercado JA. Fruit softening and pectin disassembly: an overview of nanostructural pectin modifications assessed by atomic force microscopy. ANNALS OF BOTANY 2014; 114:1375-83. [PMID: 25063934 PMCID: PMC4195560 DOI: 10.1093/aob/mcu149] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 05/28/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND One of the main factors that reduce fruit quality and lead to economically important losses is oversoftening. Textural changes during fruit ripening are mainly due to the dissolution of the middle lamella, the reduction of cell-to-cell adhesion and the weakening of parenchyma cell walls as a result of the action of cell wall modifying enzymes. Pectins, major components of fruit cell walls, are extensively modified during ripening. These changes include solubilization, depolymerization and the loss of neutral side chains. Recent evidence in strawberry and apple, fruits with a soft or crisp texture at ripening, suggests that pectin disassembly is a key factor in textural changes. In both these fruits, softening was reduced as result of antisense downregulation of polygalacturonase genes. Changes in pectic polymer size, composition and structure have traditionally been studied by conventional techniques, most of them relying on bulk analysis of a population of polysaccharides, and studies focusing on modifications at the nanostructural level are scarce. Atomic force microscopy (AFM) allows the study of individual polymers at high magnification and with minimal sample preparation; however, AFM has rarely been employed to analyse pectin disassembly during fruit ripening. SCOPE In this review, the main features of the pectin disassembly process during fruit ripening are first discussed, and then the nanostructural characterization of fruit pectins by AFM and its relationship with texture and postharvest fruit shelf life is reviewed. In general, fruit pectins are visualized under AFM as linear chains, a few of which show long branches, and aggregates. Number- and weight-average values obtained from these images are in good agreement with chromatographic analyses. Most AFM studies indicate reductions in the length of individual pectin chains and the frequency of aggregates as the fruits ripen. Pectins extracted with sodium carbonate, supposedly located within the primary cell wall, are the most affected.
Collapse
Affiliation(s)
- Candelas Paniagua
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| | - Sara Posé
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| | - Victor J Morris
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Andrew R Kirby
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Miguel A Quesada
- Departamento de Biología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| | - José A Mercado
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| |
Collapse
|
62
|
Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffmann T, Ring L, Rodríguez-Franco A, Caballero JL, Schwab W, Muñoz-Blanco J, Blanco-Portales R. MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:401-17. [PMID: 24277278 DOI: 10.1093/jxb/ert377] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This work characterized the role of the R2R3-MYB10 transcription factor (TF) in strawberry fruit ripening. The expression of this TF takes place mainly in the fruit receptacle and is repressed by auxins and activated by abscisic acid (ABA), in parallel to the ripening process. Anthocyanin was not produced when FaMYB10 expression was transiently silenced in fruit receptacles. An increase in FaMYB10 expression was observed in water-stressed fruits, which was accompanied by an increase in both ABA and anthocyanin content. High-throughput transcriptomic analyses performed in fruits with downregulated FaMYB10 expression indicated that this TF regulates the expression of most of the Early-regulated Biosynthesis Genes (EBGs) and the Late-regulated Biosynthesis Genes (LBGs) genes involved in anthocyanin production in ripened fruit receptacles. Besides, the expression of FaMYB10 was not regulated by FaMYB1 and vice versa. Taken together, all these data clearly indicate that the Fragaria × ananassa MYB10 TF plays a general regulatory role in the flavonoid/phenylpropanoid pathway during the ripening of strawberry.
Collapse
Affiliation(s)
- Laura Medina-Puche
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Li Q, Ji K, Sun Y, Luo H, Wang H, Leng P. The role of FaBG3 in fruit ripening and B. cinerea fungal infection of strawberry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:24-35. [PMID: 23802911 DOI: 10.1111/tpj.12272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 05/24/2023]
Abstract
In plants, β-glucosidases (BG) have been implicated in developmental and pathogen defense, and are thought to take part in abscisic acid (ABA) synthesis via hydrolysis of ABA glucose ester to release active ABA; however, there is no genetic evidence for the role of BG genes in ripening and biotic/abiotic stress in fruits. To clarify the role of BG genes in fruit, eight Fa/FvBG genes encoding β-glucosidase were isolated using information from the GenBank strawberry nucleotide database. Of the Fa/FvBG genes examined, expression of FaBG3 was the highest, showing peaks at the mature stage, coincident with the changes observed in ABA content. To verify the role of this gene, we suppressed the expression of FaBG3 via inoculation with Agrobacterium tumefaciens containing tobacco rattle virus carrying a FaBG3 fragment (RNAi). The expression of FaBG3 in FaBG3-RNAi-treated fruit was markedly reduced, and the ABA content was lower than that of the control. FaBG3-RNAi-treated fruit did not exhibit full ripening, and were firmer, had lower sugar content, and were pale compared with the control due to down-regulation of ripening-related genes. FaBG3-RNAi-treated fruit with reduced ABA levels were much more resistant to Botrytis cinerea fungus but were more sensitive to dehydration stress than control fruit. These results indicate that FaBG3 may play key roles in fruit ripening, dehydration stress and B. cinerea fungal infection in strawberries via modulation of ABA homeostasis and transcriptional regulation of ripening-related genes.
Collapse
Affiliation(s)
- Qian Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
64
|
Aritua V, Achor D, Gmitter FG, Albrigo G, Wang N. Transcriptional and microscopic analyses of citrus stem and root responses to Candidatus Liberibacter asiaticus infection. PLoS One 2013; 8:e73742. [PMID: 24058486 PMCID: PMC3772824 DOI: 10.1371/journal.pone.0073742] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/30/2013] [Indexed: 11/18/2022] Open
Abstract
Huanglongbing (HLB) is the most destructive disease that affects citrus worldwide. The disease has been associated with Candidatus Liberibacter. HLB diseased citrus plants develop a multitude of symptoms including zinc and copper deficiencies, blotchy mottle, corky veins, stunting, and twig dieback. Ca. L. asiaticus infection also seriously affects the roots. Previous study focused on gene expression of leaves and fruit to Ca. L. asiaticus infection. In this study, we compared the gene expression levels of stems and roots of healthy plants with those in Ca. L. asiaticus infected plants using microarrays. Affymetrix microarray analysis showed a total of 988 genes were significantly altered in expression, of which 885 were in the stems, and 111 in the roots. Of these, 551 and 56 were up-regulated, while 334 and 55 were down-regulated in the stem and root samples of HLB diseased trees compared to healthy plants, respectively. Dramatic differences in the transcriptional responses were observed between citrus stems and roots to Ca. L. asiaticus infection, with only 8 genes affected in both the roots and stems. The affected genes are involved in diverse cellular functions, including carbohydrate metabolism, cell wall biogenesis, biotic and abiotic stress responses, signaling and transcriptional factors, transportation, cell organization, protein modification and degradation, development, hormone signaling, metal handling, and redox. Microscopy analysis showed the depletion of starch in the roots of the infected plants but not in healthy plants. Collapse and thickening of cell walls were observed in HLB affected roots, but not as severe as in the stems. This study provides insight into the host response of the stems and roots to Ca. L. asiaticus infection.
Collapse
Affiliation(s)
- Valente Aritua
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, Florida, United States of America
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Frederick G. Gmitter
- Citrus Research and Education Center, Department of Horticultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Gene Albrigo
- Citrus Research and Education Center, Department of Horticultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
65
|
Posé S, Paniagua C, Cifuentes M, Blanco-Portales R, Quesada MA, Mercado JA. Insights into the effects of polygalacturonase FaPG1 gene silencing on pectin matrix disassembly, enhanced tissue integrity, and firmness in ripe strawberry fruits. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3803-15. [PMID: 23873994 PMCID: PMC3745733 DOI: 10.1093/jxb/ert210] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Antisense-mediated down-regulation of the fruit-specific polygalacturonase (PG) gene FaPG1 in strawberries (Fragaria×ananassa Duch.) has been previously demonstrated to reduce fruit softening and to extend post-harvest shelf life, despite the low PG activity detected in this fruit. The improved fruit traits were suggested to be attributable to a reduced cell wall disassembly due to FaPG1 silencing. This research provides empirical evidence that supports this assumption at the biochemical, cellular, and tissue levels. Cell wall modifications of two independent transgenic antisense lines that demonstrated a >90% reduction in FaPG1 transcript levels were analysed. Sequential extraction of cell wall fractions from control and ripe fruits exhibited a 42% decrease in pectin solubilization in transgenic fruits. A detailed chromatographic analysis of the gel filtration pectin profiles of the different cell wall fractions revealed a diminished depolymerization of the more tightly bound pectins in transgenic fruits, which were solubilized with both a chelating agent and sodium carbonate. The cell wall extracts from antisense FaPG1 fruits also displayed less severe in vitro swelling. A histological analysis revealed more extended cell-cell adhesion areas and an enhanced tissue integrity in transgenic ripe fruits. An immunohistological analysis of fruit sections using the JIM5 antibody against low methyl-esterified pectins demonstrated a higher labelling in transgenic fruit sections, whereas minor differences were observed with JIM7, an antibody that recognizes highly methyl-esterified pectins. These results support that the increased firmness of transgenic antisense FaPG1 strawberry fruits is predominantly due to a decrease in pectin solubilization and depolymerization that correlates with more tightly attached cell wall-bound pectins. This limited disassembly in the transgenic lines indicates that these pectin fractions could play a key role in tissue integrity maintenance that results in firmer ripe fruit.
Collapse
Affiliation(s)
- Sara Posé
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, IHSM-UMA-CSIC, Departamento de Biología Vegetal, Universidad de Málaga, Campus Teatinos s/n, 29071, Málaga, Spain
| | - Candelas Paniagua
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, IHSM-UMA-CSIC, Departamento de Biología Vegetal, Universidad de Málaga, Campus Teatinos s/n, 29071, Málaga, Spain
| | - Manuel Cifuentes
- Centro de Investigaciones Biomédicas en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos s/n, 29071, Málaga, Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Miguel A. Quesada
- Departamento de Biología Vegetal, Universidad de Málaga, Campus Teatinos s/n, 29071, Málaga, Spain
| | - José A. Mercado
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, IHSM-UMA-CSIC, Departamento de Biología Vegetal, Universidad de Málaga, Campus Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|