51
|
Marzol E, Borassi C, Bringas M, Sede A, Rodríguez Garcia DR, Capece L, Estevez JM. Filling the Gaps to Solve the Extensin Puzzle. MOLECULAR PLANT 2018; 11:645-658. [PMID: 29530817 DOI: 10.1016/j.molp.2018.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/28/2018] [Accepted: 03/04/2018] [Indexed: 05/20/2023]
Abstract
Extensins (EXTs) are highly repetitive plant O-glycoproteins that require several post-translational modifications (PTMs) to become functional in plant cell walls. First, they are hydroxylated on contiguous proline residues; then they are O-glycosylated on hydroxyproline and serine. After secretion into the apoplast, O-glycosylated EXTs form a tridimensional network organized by inter- and intra-Tyr linkages. Recent studies have made significant progress in the identification of the enzymatic machinery required to process EXTs, which includes prolyl 4-hydroxylases, glycosyltransferases, papain-type cysteine endopeptidases, and peroxidases. EXTs are abundant in plant tissues and are particularly important in rapidly expanding root hairs and pollen tubes, which grow in a polar manner. Small changes in EXT PTMs affect fast-growing cells, although the molecular mechanisms underlying this regulation are unknown. In this review, we highlight recent advances in our understanding of EXT modifications throughout the secretory pathway, EXT assembly in cell walls, and possible sensing mechanisms involving the Catharanthus roseus cell surface sensor receptor-like kinases located at the interface between the apoplast and the cytoplasmic side of the plasma membrane.
Collapse
Affiliation(s)
- Eliana Marzol
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
| | - Cecilia Borassi
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
| | - Mauro Bringas
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE-CONICET), Buenos Aires, CP C1428EGA, Argentina
| | - Ana Sede
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina; Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Diana Rosa Rodríguez Garcia
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE-CONICET), Buenos Aires, CP C1428EGA, Argentina
| | - Jose M Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina.
| |
Collapse
|
52
|
Muschietti JP, Wengier DL. How many receptor-like kinases are required to operate a pollen tube. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:73-82. [PMID: 28992536 DOI: 10.1016/j.pbi.2017.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 05/29/2023]
Abstract
Successful fertilization depends on active molecular dialogues that the male gametophyte can establish with the pistil and the female gametophyte. Pollen grains and stigmas must recognize each other; pollen tubes need to identify the pistil tissues they will penetrate, follow positional cues to exit the transmitting tract and finally, locate the ovules. These molecular dialogues directly affect pollen tube growth rate and orientation. Receptor-like kinases (RLKs) are natural candidates for the perception and decoding of extracellular signals and their transduction to downstream cytoplasmic interactors. Here, we update knowledge regarding how RLKs are involved in pollen tube growth, cell wall integrity and guidance. In addition, we use public data to build a pollen tube RLK interactome that might help direct experiments to elucidate the function of pollen RLKs and their associated proteins.
Collapse
Affiliation(s)
- Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2160, Ciudad Universitaria, Pabellón II, Buenos Aires C1428EGA, Argentina.
| | - Diego L Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| |
Collapse
|
53
|
Niu Y, Hu B, Li X, Chen H, Takáč T, Šamaj J, Xu C. Comparative Digital Gene Expression Analysis of Tissue-Cultured Plantlets of Highly Resistant and Susceptible Banana Cultivarsin Response to Fusarium oxysporum. Int J Mol Sci 2018; 19:E350. [PMID: 29364855 PMCID: PMC5855572 DOI: 10.3390/ijms19020350] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/05/2023] Open
Abstract
Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the most destructive soil-borne diseases. In this study, young tissue-cultured plantlets of banana (Musa spp. AAA) cultivars differing in Foc susceptibility were used to reveal their differential responses to this pathogen using digital gene expression (DGE). Data were evaluated by various bioinformatic tools (Venn diagrams, gene ontology (GO) annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses) and immunofluorescence labelling method to support the identification of gene candidates determining the resistance of banana against Foc. Interestingly, we have identified MaWRKY50 as an important gene involved in both constitutive and induced resistance. We also identified new genes involved in the resistance of banana to Foc, including several other transcription factors (TFs), pathogenesis-related (PR) genes and some genes related to the plant cell wall biosynthesis or degradation (e.g., pectinesterases, β-glucosidases, xyloglucan endotransglucosylase/hydrolase and endoglucanase). The resistant banana cultivar shows activation of PR-3 and PR-4 genes as well as formation of different constitutive cell barriers to restrict spreading of the pathogen. These data suggest new mechanisms of banana resistance to Foc.
Collapse
Affiliation(s)
- Yuqing Niu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Bei Hu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoquan Li
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Houbin Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, 783 01 Olomouc, Czech Republic.
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, 783 01 Olomouc, Czech Republic.
| | - Chunxiang Xu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
54
|
Yu Q, Ren JJ, Kong LJ, Wang XL. Actin filaments regulate the adhesion between the plasma membrane and the cell wall of tobacco guard cells. PROTOPLASMA 2018; 255:235-245. [PMID: 28803402 DOI: 10.1007/s00709-017-1149-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
During the opening and closing of stomata, guard cells undergo rapid and reversible changes in their volume and shape, which affects the adhesion of the plasma membrane (PM) to the cell wall (CW). The dynamics of actin filaments in guard cells are involved in stomatal movement by regulating structural changes and intracellular signaling. However, it is unclear whether actin dynamics regulate the adhesion of the PM to the CW. In this study, we investigated the relationship between actin dynamics and PM-CW adhesion by the hyperosmotic-induced plasmolysis of tobacco guard cells. We found that actin filaments in guard cells were depolymerized during mannitol-induced plasmolysis. The inhibition of actin dynamics by treatment with latrunculin B or jasplakinolide and the disruption of the adhesion between the PM and the CW by treatment with RGDS peptide (Arg-Gly-Asp-Ser) enhanced guard cell plasmolysis. However, treatment with latrunculin B alleviated the RGDS peptide-induced plasmolysis and endocytosis. Our results reveal that the actin depolymerization is involved in the regulation of the PW-CW adhesion during hyperosmotic-induced plasmolysis in tobacco guard cells.
Collapse
Affiliation(s)
- Qin Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Jing-Jing Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Lan-Jing Kong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiu-Ling Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
55
|
Hilley JL, Weers BD, Truong SK, McCormick RF, Mattison AJ, McKinley BA, Morishige DT, Mullet JE. Sorghum Dw2 Encodes a Protein Kinase Regulator of Stem Internode Length. Sci Rep 2017; 7:4616. [PMID: 28676627 PMCID: PMC5496852 DOI: 10.1038/s41598-017-04609-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/10/2017] [Indexed: 12/30/2022] Open
Abstract
Sorghum is an important C4 grass crop grown for grain, forage, sugar, and bioenergy production. While tall, late flowering landraces are commonly grown in Africa, short early flowering varieties were selected in US grain sorghum breeding programs to reduce lodging and to facilitate machine harvesting. Four loci have been identified that affect stem length (Dw1-Dw4). Subsequent research showed that Dw3 encodes an ABCB1 auxin transporter and Dw1 encodes a highly conserved protein involved in the regulation of cell proliferation. In this study, Dw2 was identified by fine-mapping and further confirmed by sequencing the Dw2 alleles in Dwarf Yellow Milo and Double Dwarf Yellow Milo, the progenitor genotypes where the recessive allele of dw2 originated. The Dw2 locus was determined to correspond to Sobic.006G067700, a gene that encodes a protein kinase that is homologous to KIPK, a member of the AGCVIII subgroup of the AGC protein kinase family in Arabidopsis.
Collapse
Affiliation(s)
- Josie L Hilley
- Interdisciplinary Program in Genetics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA
| | - Brock D Weers
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA
| | - Sandra K Truong
- Interdisciplinary Program in Genetics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA
| | - Ryan F McCormick
- Interdisciplinary Program in Genetics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA
| | - Ashley J Mattison
- Interdisciplinary Program in Genetics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA
| | - Brian A McKinley
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA
| | - Daryl T Morishige
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA
| | - John E Mullet
- Interdisciplinary Program in Genetics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA. .,Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, USA.
| |
Collapse
|
56
|
Ma Y, Yan C, Li H, Wu W, Liu Y, Wang Y, Chen Q, Ma H. Bioinformatics Prediction and Evolution Analysis of Arabinogalactan Proteins in the Plant Kingdom. FRONTIERS IN PLANT SCIENCE 2017; 8:66. [PMID: 28184232 PMCID: PMC5266747 DOI: 10.3389/fpls.2017.00066] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/12/2017] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGPs) are a family of extracellular glycoproteins implicated in plant growth and development. With a rapid growth in the number of genomes sequenced in many plant species, the family members of AGPs can now be predicted to facilitate functional investigation. Building upon previous advances in identifying Arabidopsis AGPs, an integrated strategy of systematical AGP screening for "classical" and "chimeric" family members is proposed in this study. A Python script named Finding-AGP is compiled to find AGP-like sequences and filter AGP candidates under the given thresholds. The primary screening of classical AGPs, Lys-rich classical AGPs, AGP-extensin hybrids, and non-classical AGPs was performed using the existence of signal peptides as a necessary requirement, and BLAST searches were conducted mainly for fasciclin-like, phytocyanin-like and xylogen-like AGPs. Then glycomodule index and partial PAST (Pro, Ala, Ser, and Thr) percentage are adopted to identify AGP candidates. The integrated strategy successfully discovered AGP gene families in 47 plant species and the main results are summarized as follows: (i) AGPs are abundant in angiosperms and many "ancient" AGPs with Ser-Pro repeats are found in Chlamydomonas reinhardtii; (ii) Classical AGPs, AG-peptides, and Lys-rich classical AGPs first emerged in Physcomitrella patens, Selaginella moellendorffii, and Picea abies, respectively; (iii) Nine subfamilies of chimeric AGPs are introduced as newly identified chimeric subfamilies similar to fasciclin-like, phytocyanin-like, and xylogen-like AGPs; (iv) The length and amino acid composition of Lys-rich domains are largely variable, indicating an insertion/deletion model during evolution. Our findings provide not only a powerful means to identify AGP gene families but also probable explanations of AGPs in maintaining the plant cell wall and transducing extracellular signals into the cytoplasm.
Collapse
Affiliation(s)
- Yuling Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- National Base for the Talents on Life-Science and Technology, Innovation Experimental College, Northwest A&F UniversityYangling, China
| | - Chenchao Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Huimin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- National Base for the Talents on Life-Science and Technology, Innovation Experimental College, Northwest A&F UniversityYangling, China
| | - Wentao Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- National Base for the Talents on Life-Science and Technology, Innovation Experimental College, Northwest A&F UniversityYangling, China
| | - Yaxue Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- National Base for the Talents on Life-Science and Technology, Innovation Experimental College, Northwest A&F UniversityYangling, China
| | - Yuqian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- National Base for the Talents on Life-Science and Technology, Innovation Experimental College, Northwest A&F UniversityYangling, China
| | - Qin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Haoli Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| |
Collapse
|
57
|
Duruflé H, Hervé V, Balliau T, Zivy M, Dunand C, Jamet E. Proline Hydroxylation in Cell Wall Proteins: Is It Yet Possible to Define Rules? FRONTIERS IN PLANT SCIENCE 2017; 8:1802. [PMID: 29089960 PMCID: PMC5651053 DOI: 10.3389/fpls.2017.01802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/04/2017] [Indexed: 05/08/2023]
Abstract
Cell wall proteins (CWPs) play critical and dynamic roles in plant cell walls by contributing to developmental processes and response to environmental cues. Since the CWPs go through the secretion pathway, most of them undergo post-translational modifications (PTMs) which can modify their biological activity. Glycosylation is one of the major PTMs of CWPs and refers to N-glycosylation, O-glycosylation and glypiation. Each of these PTMs occurs in different amino acid contexts which are not all well defined. This article deals with the hydroxylation of Pro residues which is a prerequisite for O-glycosylation of CWPs on hydroxyproline (Hyp) residues. The location of Hyp residues is well described in several structural CWPs, but yet rarely described in other CWPs. In this article, it is studied in detail in five Arabidopsis thaliana proteins using mass spectrometry data: one of them (At4g38770, AtPRP4) is a structural CWP containing 32.5% of Pro residues arranged in typical motifs, the others are either rich (27-28%, At1g31580 and At2g10940) or poor (6-8%, At1g09750 and At3g08030) in Pro residues. The known rules of Pro hydroxylation allowed a good prediction of Hyp location in AtPRP4. However, they could not be applied to the other proteins whatever their Pro content. In addition, variability of the Pro hydroxylation patterns was observed within some amino acid motifs in all the proteins and new patterns of Pro hydroxylation are described. Altogether, this work shows that Hyp residues are present in more protein families than initially described, and that Pro hydroxylation patterns could be different in each of them. This work paves the way for completing the existing Pro hydroxylation code.
Collapse
Affiliation(s)
- Harold Duruflé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Vincent Hervé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
- INRS – Institut Armand Frappier, Laval, Canada
| | - Thierry Balliau
- PAPPSO, GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Zivy
- PAPPSO, GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
- *Correspondence: Elisabeth Jamet,
| |
Collapse
|
58
|
Sorek N, Turner S. From the nucleus to the apoplast: building the plant’s cell wall. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:445-7. [PMID: 27119140 PMCID: PMC4699472 DOI: 10.1093/jxb/erv522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|