51
|
Bedu M, Marmagne A, Masclaux-Daubresse C, Chardon F. Transcriptional Plasticity of Autophagy-Related Genes Correlates with the Genetic Response to Nitrate Starvation in Arabidopsis Thaliana. Cells 2020; 9:E1021. [PMID: 32326055 PMCID: PMC7226452 DOI: 10.3390/cells9041021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/22/2023] Open
Abstract
In eukaryotes, autophagy, a catabolic mechanism for macromolecule and protein recycling, allows the maintenance of amino acid pools and nutrient remobilization. For a better understanding of the relationship between autophagy and nitrogen metabolism, we studied the transcriptional plasticity of autophagy genes (ATG) in nine Arabidopsis accessions grown under normal and nitrate starvation conditions. The status of the N metabolism in accessions was monitored by measuring the relative expression of 11 genes related to N metabolism in rosette leaves. The transcriptional variation of the genes coding for enzymes involved in ammonium assimilation characterize the genetic diversity of the response to nitrate starvation. Starvation enhanced the expression of most of the autophagy genes tested, suggesting a control of autophagy at transcriptomic level by nitrogen. The diversity of the gene responses among natural accessions revealed the genetic variation existing for autophagy independently of the nutritive condition, and the degree of response to nitrate starvation. We showed here that the genetic diversity of the expression of N metabolism genes correlates with that of the ATG genes in the two nutritive conditions, suggesting that the basal autophagy activity is part of the integral response of the N metabolism to nitrate availability.
Collapse
Affiliation(s)
- Magali Bedu
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (M.B.); (A.M.); (C.M.-D.)
- Bureau International des Poids et Mesures (BIPM), Pavillon de Breteuil, F-92312 Sèvres, France
| | - Anne Marmagne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (M.B.); (A.M.); (C.M.-D.)
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (M.B.); (A.M.); (C.M.-D.)
| | - Fabien Chardon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (M.B.); (A.M.); (C.M.-D.)
| |
Collapse
|
52
|
Sink/Source Balance of Leaves Influences Amino Acid Pools and Their Associated Metabolic Fluxes in Winter Oilseed Rape ( Brassica napus L.). Metabolites 2020; 10:metabo10040150. [PMID: 32295054 PMCID: PMC7240945 DOI: 10.3390/metabo10040150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/26/2020] [Accepted: 04/09/2020] [Indexed: 11/18/2022] Open
Abstract
Nitrogen remobilization processes from source to sink tissues in plants are determinant for seed yield and their implementation results in a complete reorganization of the primary metabolism during sink/source transition. Here, we decided to characterize the impact of the sink/source balance on amino acid metabolism in the leaves of winter oilseed rape grown at the vegetative stage. We combined a quantitative metabolomics approach with an instationary 15N-labeling experiment by using [15N]L-glycine as a metabolic probe on leaf ranks with a gradual increase in their source status. We showed that the acquisition of the source status by leaves was specifically accompanied by a decrease in asparagine, glutamine, proline and S-methyl-l-cysteine sulphoxide contents and an increase in valine and threonine contents. Dynamic analysis of 15N enrichment and concentration of amino acids revealed gradual changes in the dynamics of amino acid metabolism with respect to the sink/source status of leaf ranks. Notably, nitrogen assimilation into valine, threonine and proline were all decreased in source leaves compared to sink leaves. Overall, our results suggested a reduction in de novo amino acid biosynthesis during sink/source transition at the vegetative stage.
Collapse
|
53
|
Dier M, Hüther L, Schulze WX, Erbs M, Köhler P, Weigel HJ, Manderscheid R, Zörb C. Elevated Atmospheric CO 2 Concentration Has Limited Effect on Wheat Grain Quality Regardless of Nitrogen Supply. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3711-3721. [PMID: 32105067 DOI: 10.1021/acs.jafc.9b07817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elevated atmospheric CO2 concentrations (e[CO2]) can decrease the grain quality of wheat. However, little information exists concerning interactions between e[CO2] and nitrogen fertilization on important grain quality traits. To investigate this, a 2-year free air CO2 enrichment (FACE) experiment was conducted with two CO2 (393 and 600 ppm) and three (deficiency, adequate, and excess) nitrogen levels. Concentrations of flour proteins (albumins/globulins, gliadins, and glutenins) and key minerals (iron, zinc, and sulfur) and baking quality (loaf volume) were markedly increased by increasing nitrogen levels and varied between years. e[CO2] resulted in slightly decreased albumin/globulin and total gluten concentration under all nitrogen conditions, whereas loaf volume and mineral concentrations remained unaffected. Two-dimensional gel electrophoresis revealed strong effects of nitrogen supply and year on the grain proteome. Under adequate nitrogen, the grain proteome was affected by e[CO2] with 19 downregulated and 17 upregulated protein spots. The downregulated proteins comprised globulins but no gluten proteins. e[CO2] resulted in decreased crude protein concentration at maximum loaf volume. The present study contrasts with other FACE studies showing markedly stronger negative impacts of e[CO2] on chemical grain quality, and the reasons for that might be differences between genotypes, soil conditions, or the extent of growth stimulation by e[CO2].
Collapse
Affiliation(s)
- Markus Dier
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Emil-Wolff-Str. 25, D-70599 Stuttgart, Germany
- Thünen Institute of Biodiversity, Bundesallee 65, D-38116 Braunschweig, Germany
| | - Liane Hüther
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Bundesallee 37, D-38116 Braunschweig, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Garbenstr. 30, D-70593 Stuttgart, Germany
| | - Martin Erbs
- German Agricultural Research Alliance-Deutsche Agrarforschungsallianz (DAFA), Bundesallee 50, D-38116 Braunschweig, Germany
- Thünen Institute of Biodiversity, Bundesallee 65, D-38116 Braunschweig, Germany
| | - Peter Köhler
- Biotask AG, Schelztorstr. 54-56, D-73728 Esslingen, Germany
| | - Hans-Joachim Weigel
- Thünen Institute of Biodiversity, Bundesallee 65, D-38116 Braunschweig, Germany
| | - Remy Manderscheid
- Thünen Institute of Biodiversity, Bundesallee 65, D-38116 Braunschweig, Germany
| | - Christian Zörb
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Emil-Wolff-Str. 25, D-70599 Stuttgart, Germany
| |
Collapse
|
54
|
Integrated Transcriptional and Proteomic Profiling Reveals Potential Amino Acid Transporters Targeted by Nitrogen Limitation Adaptation. Int J Mol Sci 2020; 21:ijms21062171. [PMID: 32245240 PMCID: PMC7139695 DOI: 10.3390/ijms21062171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 01/10/2023] Open
Abstract
Nitrogen (N) is essential for plant growth and crop productivity. Organic N is a major form of remobilized N in plants’ response to N limitation. It is necessary to understand the regulatory role of N limitation adaption (NLA) in organic N remobilization for this adaptive response. Transcriptional and proteomic analyses were integrated to investigate differential responses of wild-type (WT) and nla mutant plants to N limitation and to identify the core organic N transporters targeted by NLA. Under N limitation, the nla mutant presented an early senescence with faster chlorophyll loss and less anthocyanin accumulation than the WT, and more N was transported out of the aging leaves in the form of amino acids. High-throughput transcriptomic and proteomic analyses revealed that N limitation repressed genes involved in photosynthesis and protein synthesis, and promoted proteolysis; these changes were higher in the nla mutant than in the WT. Both transcriptional and proteomic profiling demonstrated that LHT1, responsible for amino acid remobilization, were only significantly upregulated in the nla mutant under N limitation. These findings indicate that NLA might target LHT1 and regulate organic N remobilization, thereby improving our understanding of the regulatory role of NLA on N remobilization under N limitation.
Collapse
|
55
|
Wojciechowska N, Wilmowicz E, Marzec-Schmidt K, Ludwików A, Bagniewska-Zadworna A. Abscisic Acid and Jasmonate Metabolisms Are Jointly Regulated During Senescence in Roots and Leaves of Populus trichocarpa. Int J Mol Sci 2020; 21:ijms21062042. [PMID: 32192046 PMCID: PMC7139941 DOI: 10.3390/ijms21062042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022] Open
Abstract
Plant senescence is a highly regulated process that allows nutrients to be mobilized from dying tissues to other organs. Despite that senescence has been extensively studied in leaves, the senescence of ephemeral organs located underground is still poorly understood, especially in the context of phytohormone engagement. The present study focused on filling this knowledge gap by examining the roles of abscisic acid (ABA) and jasmonate in the regulation of senescence of fine, absorptive roots and leaves of Populus trichocarpa. Immunohistochemical (IHC), chromatographic, and molecular methods were utilized to achieve this objective. A transcriptomic analysis identified significant changes in gene expression that were associated with the metabolism and signal transduction of phytohormones, especially ABA and jasmonate. The increased level of these phytohormones during senescence was detected in both organs and was confirmed by IHC. Based on the obtained data, we suggest that phytohormonal regulation of senescence in roots and leaves is organ-specific. We have shown that the regulation of ABA and JA metabolism is tightly regulated during senescence processes in both leaves and roots. The results were discussed with respect to the role of ABA in cold tolerance and the role of JA in resistance to pathogens.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
- Correspondence: (N.W.); (A.B.-Z.)
| | - Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland;
| | - Katarzyna Marzec-Schmidt
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Agnieszka Ludwików
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
- Correspondence: (N.W.); (A.B.-Z.)
| |
Collapse
|
56
|
Anderegg J, Yu K, Aasen H, Walter A, Liebisch F, Hund A. Spectral Vegetation Indices to Track Senescence Dynamics in Diverse Wheat Germplasm. FRONTIERS IN PLANT SCIENCE 2020; 10:1749. [PMID: 32047504 PMCID: PMC6997566 DOI: 10.3389/fpls.2019.01749] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 12/12/2019] [Indexed: 05/18/2023]
Abstract
The ability of a genotype to stay green affects the primary target traits grain yield (GY) and grain protein concentration (GPC) in wheat. High throughput methods to assess senescence dynamics in large field trials will allow for (i) indirect selection in early breeding generations, when yield cannot yet be accurately determined and (ii) mapping of the genomic regions controlling the trait. The aim of this study was to develop a robust method to assess senescence based on hyperspectral canopy reflectance. Measurements were taken in three years throughout the grain filling phase on >300 winter wheat varieties in the spectral range from 350 to 2500 nm using a spectroradiometer. We compared the potential of spectral indices (SI) and full-spectrum models to infer visually observed senescence dynamics from repeated reflectance measurements. Parameters describing the dynamics of senescence were used to predict GY and GPC and a feature selection algorithm was used to identify the most predictive features. The three-band plant senescence reflectance index (PSRI) approximated the visually observed senescence dynamics best, whereas full-spectrum models suffered from a strong year-specificity. Feature selection identified visual scorings as most predictive for GY, but also PSRI ranked among the most predictive features while adding additional spectral features had little effect. Visually scored delayed senescence was positively correlated with GY ranging from r = 0.173 in 2018 to r = 0.365 in 2016. It appears that visual scoring remains the gold standard to quantify leaf senescence in moderately large trials. However, using appropriate phenotyping platforms, the proposed index-based parameterization of the canopy reflectance dynamics offers the critical advantage of upscaling to very large breeding trials.
Collapse
Affiliation(s)
- Jonas Anderegg
- Crop Science Group, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Kang Yu
- Crop Science Group, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
- Division of Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Helge Aasen
- Crop Science Group, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Achim Walter
- Crop Science Group, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Frank Liebisch
- Crop Science Group, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Andreas Hund
- Crop Science Group, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
57
|
Handing off iron to the next generation: how does it get into seeds and what for? Biochem J 2020; 477:259-274. [DOI: 10.1042/bcj20190188] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 01/24/2023]
Abstract
To ensure the success of the new generation in annual species, the mother plant transfers a large proportion of the nutrients it has accumulated during its vegetative life to the next generation through its seeds. Iron (Fe) is required in large amounts to provide the energy and redox power to sustain seedling growth. However, free Fe is highly toxic as it leads to the generation of reactive oxygen species. Fe must, therefore, be tightly bound to chelating molecules to allow seed survival for long periods of time without oxidative damage. Nevertheless, when conditions are favorable, the seed's Fe stores have to be readily remobilized to achieve the transition toward active photosynthesis before the seedling becomes able to take up Fe from the environment. This is likely critical for the vigor of the young plant. Seeds constitute an important dietary source of Fe, which is essential for human health. Understanding the mechanisms of Fe storage in seeds is a key to improve their Fe content and availability in order to fight Fe deficiency. Seed longevity, germination efficiency and seedling vigor are also important traits that may be affected by the chemical form under which Fe is stored. In this review, we summarize the current knowledge on seed Fe loading during development, long-term storage and remobilization upon germination. We highlight how this knowledge may help seed Fe biofortification and discuss how Fe storage may affect the seed quality and germination efficiency.
Collapse
|
58
|
Dellero Y. Manipulating Amino Acid Metabolism to Improve Crop Nitrogen Use Efficiency for a Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2020; 11:602548. [PMID: 33329673 PMCID: PMC7733991 DOI: 10.3389/fpls.2020.602548] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/03/2020] [Indexed: 05/06/2023]
Abstract
In a context of a growing worldwide food demand coupled to the need to develop a sustainable agriculture, it is crucial to improve crop nitrogen use efficiency (NUE) while reducing field N inputs. Classical genetic approaches based on natural allelic variations existing within crops have led to the discovery of quantitative trait loci controlling NUE under low nitrogen conditions; however, the identification of candidate genes from mapping studies is still challenging. Amino acid metabolism is the cornerstone of plant N management, which involves N uptake, assimilation, and remobilization efficiencies, and it is finely regulated during acclimation to low N conditions and other abiotic stresses. Over the last two decades, biotechnological engineering of amino acid metabolism has led to promising results for the improvement of crop NUE, and more recently under low N conditions. This review summarizes current work carried out in crops and provides perspectives on the identification of new candidate genes and future strategies for crop improvement.
Collapse
|
59
|
Fan H, Quan S, Qi S, Xu N, Wang Y. Novel Aspects of Nitrate Regulation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:574246. [PMID: 33362808 PMCID: PMC7758431 DOI: 10.3389/fpls.2020.574246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/18/2020] [Indexed: 05/04/2023]
Abstract
Nitrogen (N) is one of the most essential macronutrients for plant growth and development. Nitrate (NO3 -), the major form of N that plants uptake from the soil, acts as an important signaling molecule in addition to its nutritional function. Over the past decade, significant progress has been made in identifying new components involved in NO3 - regulation and starting to unravel the NO3 - regulatory network. Great reviews have been made recently by scientists on the key regulators in NO3 - signaling, NO3 - effects on plant development, and its crosstalk with phosphorus (P), potassium (K), hormones, and calcium signaling. However, several novel aspects of NO3 - regulation have not been previously reviewed in detail. Here, we mainly focused on the recent advances of post-transcriptional regulation and non-coding RNA (ncRNAs) in NO3 - signaling, and NO3 - regulation on leaf senescence and the circadian clock. It will help us to extend the general picture of NO3 - regulation and provide a basis for further exploration of NO3 - regulatory network.
Collapse
Affiliation(s)
- Hongmei Fan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Shuxuan Quan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Shengdong Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Na Xu
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- *Correspondence: Yong Wang,
| |
Collapse
|
60
|
Chen Q, Shinozaki D, Luo J, Pottier M, Havé M, Marmagne A, Reisdorf-Cren M, Chardon F, Thomine S, Yoshimoto K, Masclaux-Daubresse C. Autophagy and Nutrients Management in Plants. Cells 2019; 8:cells8111426. [PMID: 31726766 PMCID: PMC6912637 DOI: 10.3390/cells8111426] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 02/07/2023] Open
Abstract
Nutrient recycling and mobilization from organ to organ all along the plant lifespan is essential for plant survival under changing environments. Nutrient remobilization to the seeds is also essential for good seed production. In this review, we summarize the recent advances made to understand how plants manage nutrient remobilization from senescing organs to sink tissues and what is the contribution of autophagy in this process. Plant engineering manipulating autophagy for better yield and plant tolerance to stresses will be presented.
Collapse
Affiliation(s)
- Qinwu Chen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; (Q.C.); (J.L.); (M.H.); (A.M.); (M.R.-C.); (F.C.)
| | - Daiki Shinozaki
- Department of Life Science, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan; (D.S.); (K.Y.)
- Life Science Program, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Jie Luo
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; (Q.C.); (J.L.); (M.H.); (A.M.); (M.R.-C.); (F.C.)
| | - Mathieu Pottier
- Institut de Biologie Intégrative de la Cellule, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France; (M.P.); (S.T.)
| | - Marien Havé
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; (Q.C.); (J.L.); (M.H.); (A.M.); (M.R.-C.); (F.C.)
| | - Anne Marmagne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; (Q.C.); (J.L.); (M.H.); (A.M.); (M.R.-C.); (F.C.)
| | - Michèle Reisdorf-Cren
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; (Q.C.); (J.L.); (M.H.); (A.M.); (M.R.-C.); (F.C.)
| | - Fabien Chardon
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; (Q.C.); (J.L.); (M.H.); (A.M.); (M.R.-C.); (F.C.)
| | - Sébastien Thomine
- Institut de Biologie Intégrative de la Cellule, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France; (M.P.); (S.T.)
| | - Kohki Yoshimoto
- Department of Life Science, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan; (D.S.); (K.Y.)
- Life Science Program, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; (Q.C.); (J.L.); (M.H.); (A.M.); (M.R.-C.); (F.C.)
- Correspondence: ; Tel.: +33-13083-3088
| |
Collapse
|
61
|
Bovet L, Cheval C, Hilfiker A, Battey J, Langlet D, Broye H, Schwaar J, Ozelley P, Lang G, Bakaher N, Laparra H, Goepfert S. Asparagine Synthesis During Tobacco Leaf Curing. PLANTS 2019; 8:plants8110492. [PMID: 31718005 PMCID: PMC6918383 DOI: 10.3390/plants8110492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
Senescence is a genetically controlled mechanism that modifies leaf chemistry. This involves significant changes in the accumulation of carbon- and nitrogen-containing compounds, including asparagine through the activity of asparagine synthetases. These enzymes are required for nitrogen re-assimilation and remobilization in plants; however, their mechanisms are not fully understood. Here, we report how leaf curing—a senescence-induced process that allows tobacco leaves to dry out—modifies the asparagine metabolism. We show that leaf curing strongly alters the concentration of the four main amino acids, asparagine, glutamine, aspartate, and glutamate. We demonstrate that detached tobacco leaf or stalk curing has a different impact on the expression of asparagine synthetase genes and accumulation of asparagine. Additionally, we characterize the main asparagine synthetases involved in the production of asparagine during curing. The expression of ASN1 and ASN5 genes is upregulated during curing. The ASN1-RNAi and ASN5-RNAi tobacco plant lines display significant alterations in the accumulation of asparagine, glutamine, and aspartate relative to wild-type plants. These results support the idea that ASN1 and ASN5 are key regulators of asparagine metabolism during leaf curing.
Collapse
|
62
|
Ahmad S, Guo Y. Signal Transduction in Leaf Senescence: Progress and Perspective. PLANTS 2019; 8:plants8100405. [PMID: 31658600 PMCID: PMC6843215 DOI: 10.3390/plants8100405] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
Leaf senescence is a degenerative process that is genetically controlled and involves nutrient remobilization prior to the death of leaf tissues. Age is a key developmental determinant of the process along with other senescence inducing factors. At the cellular level, different hormones, signaling molecules, and transcription factors contribute to the regulation of senescence. This review summarizes the recent progress in understanding the complexity of the senescence process with primary focuses on perception and transduction of senescence signals as well as downstream regulatory events. Future directions in this field and potential applications of related techniques in crop improvement will be discussed.
Collapse
Affiliation(s)
- Salman Ahmad
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Plant Breeding & Genetics Division, Nuclear Institute for Food & Agriculture, Tarnab, Peshawar P.O. Box 446, Pakistan.
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
63
|
Crane RA, Cardénas Valdez M, Castaneda N, Jackson CL, Riley CJ, Mostafa I, Kong W, Chhajed S, Chen S, Brusslan JA. Negative Regulation of Age-Related Developmental Leaf Senescence by the IAOx Pathway, PEN1, and PEN3. FRONTIERS IN PLANT SCIENCE 2019; 10:1202. [PMID: 31649689 PMCID: PMC6792297 DOI: 10.3389/fpls.2019.01202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/02/2019] [Indexed: 05/20/2023]
Abstract
Early age-related developmental senescence was observed in Arabidopsis cyp79B2/cyp79B3 double mutants that cannot produce indole-3-acetaldoxime (IAOx), the precursor to indole glucosinolates (IGs), camalexin and auxin. The early senescence phenotype was not observed when senescence was induced by darkness. The cyp79B2/cyp79B3 mutants had lower auxin levels, but did not display auxin-deficient phenotypes. Camalexin biosynthesis mutants senesced normally; however, IG transport and exosome-related pen1/pen3 double mutants displayed early senescence. The early senescence in pen1/pen3 mutants depended on salicylic acid and was not observed in pen1 or pen3 single mutants. Quantitation of IGs showed reduced levels in cyp79B2/cyp79B3 mutants, but unchanged levels in pen1/pen3, even though both of these double mutants display early senescence. We discuss how these genetic data provide evidence that IAOx metabolites are playing a protective role in leaf senescence that is dependent on proper trafficking by PEN1 and PEN3, perhaps via the formation of exosomes.
Collapse
Affiliation(s)
| | - Marielle Cardénas Valdez
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Nelly Castaneda
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Charidan L. Jackson
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Ciairra J. Riley
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Islam Mostafa
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Wenwen Kong
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Shweta Chhajed
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Judy A. Brusslan
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| |
Collapse
|
64
|
Meyer RC, Gryczka C, Neitsch C, Müller M, Bräutigam A, Schlereth A, Schön H, Weigelt-Fischer K, Altmann T. Genetic diversity for nitrogen use efficiency in Arabidopsis thaliana. PLANTA 2019; 250:41-57. [PMID: 30904943 DOI: 10.1007/s00425-019-03140-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The plasticity of plant growth response to differing nitrate availability renders the identification of biomarkers difficult, but allows access to genetic factors as tools to modulate root systems to a wide range of soil conditions. Nitrogen availability is a major determinant of crop yield. While the application of fertiliser substantially increases the yield on poor soils, it also causes nitrate pollution of water resources and high costs for farmers. Increasing nitrogen use efficiency in crop plants is a necessary step to implement low-input agricultural systems. We exploited the genetic diversity present in the worldwide Arabidopsis thaliana population to study adaptive growth patterns and changes in gene expression associated with chronic low nitrate stress, to identify biomarkers associated with good plant performance under low nitrate availability. Arabidopsis accessions were grown on agar plates with limited and sufficient supply of nitrate to measure root system architecture as well as shoot and root fresh weight. Differential gene expression was determined using Affymetrix ATH1 arrays. We show that the response to differing nitrate availability is highly variable in Arabidopsis accessions. Analyses of vegetative shoot growth and root system architecture identified accession-specific reaction modes to cope with limited nitrate availability. Transcription and epigenetic factors were identified as important players in the adaption to limited nitrogen in a global gene expression analysis. Five nitrate-responsive genes emerged as possible biomarkers for NUE in Arabidopsis. The plasticity of plant growth in response to differing nitrate availability in the substrate renders the identification of morphological and molecular features as biomarkers difficult, but at the same time allows access to a multitude of genetic factors which can be used as tools to modulate and adjust root systems to a wide range of soil conditions.
Collapse
Affiliation(s)
- Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466, Seeland, Germany.
| | - Corina Gryczka
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Cathleen Neitsch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
- IDT Biologika GmbH, Magdeburg, Germany
| | - Margarete Müller
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
- Bayer HealthCare Pharmaceuticals, Berlin, Germany
| | - Andrea Bräutigam
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Armin Schlereth
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Kathleen Weigelt-Fischer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| |
Collapse
|
65
|
Goulet MC, Gaudreau L, Gagné M, Maltais AM, Laliberté AC, Éthier G, Bechtold N, Martel M, D’Aoust MA, Gosselin A, Pepin S, Michaud D. Production of Biopharmaceuticals in Nicotiana benthamiana-Axillary Stem Growth as a Key Determinant of Total Protein Yield. FRONTIERS IN PLANT SCIENCE 2019; 10:735. [PMID: 31244869 PMCID: PMC6579815 DOI: 10.3389/fpls.2019.00735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/16/2019] [Indexed: 05/23/2023]
Abstract
Data are scarce about the influence of basic cultural conditions on growth patterns and overall performance of plants used as heterologous production hosts for protein pharmaceuticals. Higher plants are complex organisms with young, mature, and senescing organs that show distinct metabolic backgrounds and differ in their ability to sustain foreign protein expression and accumulation. Here, we used the transient protein expression host Nicotiana benthamiana as a model to map the accumulation profile of influenza virus hemagglutinin H1, a clinically promising vaccine antigen, at the whole plant scale. Greenhouse-grown plants submitted to different light regimes, submitted to apical bud pruning, or treated with the axillary growth-promoting cytokinin 6-benzylaminopurine were vacuum-infiltrated with agrobacteria harboring a DNA sequence for H1 and allowed to express the viral antigen for 7 days in growth chamber under similar environmental conditions. Our data highlight the importance of young leaves on H1 yield per plant, unlike older leaves which account for a significant part of the plant biomass but contribute little to total antigen titer. Our data also highlight the key contribution of axillary stem leaves, which contribute more than 50% of total yield under certain conditions despite representing only one-third of the total biomass. These findings underline the relevance of both considering main stem leaves and axillary stem leaves while modeling heterologous protein production in N. benthamiana. They also demonstrate the potential of exogenously applied growth-promoting hormones to modulate host plant architecture for improvement of protein yields.
Collapse
Affiliation(s)
- Marie-Claire Goulet
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| | - Linda Gaudreau
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| | - Marielle Gagné
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| | - Anne-Marie Maltais
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| | - Ann-Catherine Laliberté
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| | - Gilbert Éthier
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| | | | | | | | - André Gosselin
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| | - Steeve Pepin
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| | - Dominique Michaud
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| |
Collapse
|
66
|
Marshall RS, Vierstra RD. Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation. Front Mol Biosci 2019; 6:40. [PMID: 31231659 PMCID: PMC6568242 DOI: 10.3389/fmolb.2019.00040] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023] Open
Abstract
All eukaryotes rely on selective proteolysis to control the abundance of key regulatory proteins and maintain a healthy and properly functioning proteome. Most of this turnover is catalyzed by the 26S proteasome, an intricate, multi-subunit proteolytic machine. Proteasomes recognize and degrade proteins first marked with one or more chains of poly-ubiquitin, the addition of which is actuated by hundreds of ligases that individually identify appropriate substrates for ubiquitylation. Subsequent proteasomal digestion is essential and influences a myriad of cellular processes in species as diverse as plants, fungi and humans. Importantly, dysfunction of 26S proteasomes is associated with numerous human pathologies and profoundly impacts crop performance, thus making an understanding of proteasome dynamics critically relevant to almost all facets of human health and nutrition. Given this widespread significance, it is not surprising that sophisticated mechanisms have evolved to tightly regulate 26S proteasome assembly, abundance and activity in response to demand, organismal development and stress. These include controls on transcription and chaperone-mediated assembly, influences on proteasome localization and activity by an assortment of binding proteins and post-translational modifications, and ultimately the removal of excess or damaged particles via autophagy. Intriguingly, the autophagic clearance of damaged 26S proteasomes first involves their modification with ubiquitin, thus connecting ubiquitylation and autophagy as key regulatory events in proteasome quality control. This turnover is also influenced by two distinct biomolecular condensates that coalesce in the cytoplasm, one attracting damaged proteasomes for autophagy, and the other reversibly storing proteasomes during carbon starvation to protect them from autophagic clearance. In this review, we describe the current state of knowledge regarding the dynamic regulation of 26S proteasomes at all stages of their life cycle, illustrating how protein degradation through this proteolytic machine is tightly controlled to ensure optimal growth, development and longevity.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
67
|
Yu J, Zhen X, Li X, Li N, Xu F. Increased Autophagy of Rice Can Increase Yield and Nitrogen Use Efficiency (NUE). FRONTIERS IN PLANT SCIENCE 2019; 10:584. [PMID: 31134120 PMCID: PMC6514234 DOI: 10.3389/fpls.2019.00584] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/18/2019] [Indexed: 05/28/2023]
Abstract
Autophagy (self-eating), a conserved pathway in eukaryotes, which is designed to handle cytoplasmic material in bulk and plays an important role in the remobilization of nutrient, such as nitrogen (N) under suboptimal nutrient conditions. Here, we identified a core component of an autophagy gene in rice (Oryza sativa), OsATG8a, with increased expression levels under N starvation conditions. Overexpression of OsATG8a significantly enhanced the level of autophagy and the number of effective tillers in the transgenic rice. In addition, the transgenic lines accumulated more N in grains than in the dry remains and the yield was significantly increased under normal N conditions. Further N allocation studies revealed that the nitrogen uptake efficiency (NUpE) and nitrogen use efficiency (NUE) significantly increased. Otherwise, under suboptimal N conditions, overexpression of OsATG8a did not seem to have any effect on yield and NUE, but NUpE was still improved significantly. Based on our findings, we consider OsATG8a to be a great candidate gene to increase NUE and yield.
Collapse
Affiliation(s)
- Jinlei Yu
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province – Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xiaoxi Zhen
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province – Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xin Li
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province – Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Nan Li
- Shenyang Product Quality Supervision and Inspection Institute, Shenyang, China
| | - Fan Xu
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province – Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
68
|
David LC, Girin T, Fleurisson E, Phommabouth E, Mahfoudhi A, Citerne S, Berquin P, Daniel-Vedele F, Krapp A, Ferrario-Méry S. Developmental and physiological responses of Brachypodium distachyon to fluctuating nitrogen availability. Sci Rep 2019; 9:3824. [PMID: 30846873 PMCID: PMC6405861 DOI: 10.1038/s41598-019-40569-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 02/12/2019] [Indexed: 02/03/2023] Open
Abstract
The Nitrogen Use Efficiency (NUE) of grain cereals depends on nitrate (NO3-) uptake from the soil, translocation to the aerial parts, nitrogen (N) assimilation and remobilization to the grains. Brachypodium distachyon has been proposed as a model species to identify the molecular players and mechanisms that affects these processes, for the improvement of temperate C3 cereals. We report on the developmental, physiological and grain-characteristic responses of the Bd21-3 accession of Brachypodium to variations in NO3- availability. As previously described in wheat and barley, we show that vegetative growth, shoot/root ratio, tiller formation, spike development, tissue NO3- and N contents, grain number per plant, grain yield and grain N content are sensitive to pre- and/or post-anthesis NO3- supply. We subsequently described constitutive and NO3--inducible components of both High and Low Affinity Transport Systems (HATS and LATS) for root NO3- uptake, and BdNRT2/3 candidate genes potentially involved in the HATS. Taken together, our data validate Brachypodium Bd21-3 as a model to decipher cereal N nutrition. Apparent specificities such as high grain N content, strong post-anthesis NO3- uptake and efficient constitutive HATS, further identify Brachypodium as a direct source of knowledge for crop improvement.
Collapse
Affiliation(s)
- L C David
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - T Girin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.
| | - E Fleurisson
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - E Phommabouth
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - A Mahfoudhi
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - S Citerne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - P Berquin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - F Daniel-Vedele
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - A Krapp
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - S Ferrario-Méry
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
69
|
Tang J, Bassham DC. Autophagy in crop plants: what's new beyond Arabidopsis? Open Biol 2018; 8:180162. [PMID: 30518637 PMCID: PMC6303781 DOI: 10.1098/rsob.180162] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a major degradation and recycling pathway in plants. It functions to maintain cellular homeostasis and is induced by environmental cues and developmental stimuli. Over the past decade, the study of autophagy has expanded from model plants to crop species. Many features of the core machinery and physiological functions of autophagy are conserved among diverse organisms. However, several novel functions and regulators of autophagy have been characterized in individual plant species. In light of its critical role in development and stress responses, a better understanding of autophagy in crop plants may eventually lead to beneficial agricultural applications. Here, we review recent progress on understanding autophagy in crops and discuss potential future research directions.
Collapse
Affiliation(s)
- Jie Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
70
|
Sade N, Del Mar Rubio-Wilhelmi M, Umnajkitikorn K, Blumwald E. Stress-induced senescence and plant tolerance to abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:845-853. [PMID: 28992323 DOI: 10.1093/jxb/erx235] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/14/2017] [Indexed: 05/20/2023]
Abstract
Senescence is an age-dependent process, ultimately leading to plant death, that in annual crop plants overlaps with the reproductive stage of development. Research on the molecular and biochemical mechanisms of leaf senescence has revealed a multi-layered regulatory network operating to control age-dependent processes. Abiotic stress-induced senescence challenges source-sink relationships and results in significant reduction in crop yields. Although processes associated with plant senescence are well studied, the mechanisms regulating stress-induced senescence are not well known. Here, we discuss the effects of abiotic stress on crop productivity, mechanisms associated with stress-induced senescence, and the possible use of these mechanisms for the generation of plant stress tolerance. We emphasize the involvement of source strength and stability of the photosynthetic apparatus in this process, and suggest a possible role of a perennial plant life strategy for the amelioration of stress-induced senescence.
Collapse
Affiliation(s)
- Nir Sade
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | | | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
71
|
Safavi-Rizi V, Franzaring J, Fangmeier A, Kunze R. Divergent N Deficiency-Dependent Senescence and Transcriptome Response in Developmentally Old and Young Brassica napus Leaves. FRONTIERS IN PLANT SCIENCE 2018; 9:48. [PMID: 29449851 PMCID: PMC5799827 DOI: 10.3389/fpls.2018.00048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/10/2018] [Indexed: 05/20/2023]
Abstract
In the spring oilseed rape (OSR) cultivar 'Mozart' grown under optimal N supply (NO) or mild N deficiency (NL) the transcriptome changes associated with progressing age until early senescence in developmentally old lower canopy leaves (leaf #4) and younger higher canopy leaves (leaf #8) were investigated. Twelve weeks old NO and NL plants appeared phenotypically and transcriptomically identical, but thereafter distinct nutrition-dependent differences in gene expression patterns in lower and upper canopy leaves emerged. In NO leaves #4 of 14-week-old compared to 13-week-old plants, ∼600 genes were up- or downregulated, whereas in NL leaves #4 ∼3000 genes were up- or downregulated. In contrast, in 15-week-old compared to 13-week-old upper canopy leaves #8 more genes were up- or downregulated in optimally N-supplied plants (∼2000 genes) than in N-depleted plants (∼750 genes). This opposing effect of N depletion on gene regulation was even more prominent among photosynthesis-related genes (PSGs). Between week 13 and 14 in leaves #4, 99 of 110 PSGs were downregulated in NL plants, but none in NO plants. In contrast, from weeks 13 to 16 in leaves #8 of NL plants only 11 PSGs were downregulated in comparison to 66 PSGs in NO plants. Different effects of N depletion in lower versus upper canopy leaves were also apparent in upregulation of autophagy genes and NAC transcription factors. More than half of the regulated NAC and WRKY transcription factor, autophagy and protease genes were specifically regulated in NL leaves #4 or NO leaves #8 and thus may contribute to differences in senescence and nutrient mobilization in these leaves. We suggest that in N-deficient plants the upper leaves retain their N resources longer than in amply fertilized plants and remobilize them only after shedding of the lower leaves.
Collapse
Affiliation(s)
- Vajiheh Safavi-Rizi
- Institute of Biology, Dahlem Centre of Plant Sciences, Free University Berlin, Berlin, Germany
| | - Jürgen Franzaring
- Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany
| | - Andreas Fangmeier
- Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany
| | - Reinhard Kunze
- Institute of Biology, Dahlem Centre of Plant Sciences, Free University Berlin, Berlin, Germany
| |
Collapse
|
72
|
Mayta ML, Lodeyro AF, Guiamet JJ, Tognetti VB, Melzer M, Hajirezaei MR, Carrillo N. Expression of a Plastid-Targeted Flavodoxin Decreases Chloroplast Reactive Oxygen Species Accumulation and Delays Senescence in Aging Tobacco Leaves. FRONTIERS IN PLANT SCIENCE 2018; 9:1039. [PMID: 30065745 PMCID: PMC6056745 DOI: 10.3389/fpls.2018.01039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/26/2018] [Indexed: 05/02/2023]
Abstract
Leaf senescence is a concerted physiological process involving controlled degradation of cellular structures and reallocation of breakdown products to other plant organs. It is accompanied by increased production of reactive oxygen species (ROS) that are proposed to signal cell death, although both the origin and the precise role of ROS in the execution of this developmental program are still poorly understood. To investigate the contribution of chloroplast-associated ROS to natural leaf senescence, we used tobacco plants expressing a plastid-targeted flavodoxin, an electron shuttle flavoprotein present in prokaryotes and algae. When expressed in plants, flavodoxin specifically prevents ROS formation in chloroplasts during stress situations. Senescence symptoms were significantly mitigated in these transformants, with decreased accumulation of chloroplastic ROS and differential preservation of chlorophylls, carotenoids, protein contents, cell and chloroplast structures, membrane integrity and cell viability. Flavodoxin also improved maintenance of chlorophyll-protein complexes, photosynthetic electron flow, CO2 assimilation, central metabolic routes and levels of bioactive cytokinins and auxins in aging leaves. Delayed induction of senescence-associated genes indicates that the entire genetic program of senescence was affected by flavodoxin. The results suggest that ROS generated in chloroplasts are involved in the regulation of natural leaf senescence.
Collapse
Affiliation(s)
- Martín L. Mayta
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Anabella F. Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juan J. Guiamet
- Instituto de Fisiología Vegetal (INFIVE–UNLP/CONICET), La Plata, Argentina
| | - Vanesa B. Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Seeland, Germany
| | - Mohammad R. Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Seeland, Germany
- *Correspondence: Mohammad R. Hajirezaei, Néstor Carrillo,
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- *Correspondence: Mohammad R. Hajirezaei, Néstor Carrillo,
| |
Collapse
|
73
|
Masclaux-Daubresse C, Chen Q, Havé M. Regulation of nutrient recycling via autophagy. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:8-17. [PMID: 28528166 DOI: 10.1016/j.pbi.2017.05.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/24/2017] [Accepted: 05/05/2017] [Indexed: 05/18/2023]
Abstract
Autophagy is a universal mechanism in eukaryotes that promotes cell longevity and nutrient recycling through the degradation of unwanted organelles, proteins and damaged cytoplasmic compounds. Autophagy is important in plant resistance to stresses and starvations and in remobilization. Autophagy facilitates bulk and selective degradations, through the delivery of cell material to the vacuole where hydrolases and proteases reside. Large metabolite modifications are observed in autophagy mutants showing the important role of autophagy in cell homeostasis. The control of autophagic activity by nutrients and energy status is supported by several studies in plant and animal. We review how autophagy contributes to nutrient management in plants and how nutrient status control this degradation pathway for adaptation to the environment.
Collapse
Affiliation(s)
- Céline Masclaux-Daubresse
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France.
| | - Qinwu Chen
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| | - Marien Havé
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| |
Collapse
|
74
|
Metabolite Profiling for Leaf Senescence in Barley Reveals Decreases in Amino Acids and Glycolysis Intermediates. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|