51
|
Abstract
Despite their differences, human language and the vocal communication of nonhuman primates share many features. Both constitute forms of coordinated activity, rely on many shared neural mechanisms, and involve discrete, combinatorial cognition that includes rich pragmatic inference. These common features suggest that during evolution the ancestors of all modern primates faced similar social problems and responded with similar systems of communication and cognition. When language later evolved from this common foundation, many of its distinctive features were already present.
Collapse
|
52
|
Ruch H, Zürcher Y, Burkart JM. The function and mechanism of vocal accommodation in humans and other primates. Biol Rev Camb Philos Soc 2017; 93:996-1013. [PMID: 29111610 DOI: 10.1111/brv.12382] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 11/30/2022]
Abstract
The study of non-human animals, in particular primates, can provide essential insights into language evolution. A critical element of language is vocal production learning, i.e. learning how to produce calls. In contrast to other lineages such as songbirds, vocal production learning of completely new signals is strikingly rare in non-human primates. An increasing body of research, however, suggests that various species of non-human primates engage in vocal accommodation and adjust the structure of their calls in response to environmental noise or conspecific vocalizations. To date it is unclear what role vocal accommodation may have played in language evolution, in particular because it summarizes a variety of heterogeneous phenomena which are potentially achieved by different mechanisms. In contrast to non-human primates, accommodation research in humans has a long tradition in psychology and linguistics. Based on theoretical models from these research traditions, we provide a new framework which allows comparing instances of accommodation across species, and studying them according to their underlying mechanism and ultimate biological function. We found that at the mechanistic level, many cases of accommodation can be explained with an automatic perception-production link, but some instances arguably require higher levels of vocal control. Functionally, both human and non-human primates use social accommodation to signal social closeness or social distance to a partner or social group. Together, this indicates that not only some vocal control, but also the communicative function of vocal accommodation to signal social closeness and distance must have evolved prior to the emergence of language, rather than being the result of it. Vocal accommodation as found in other primates has thus endowed our ancestors with pre-adaptations that may have paved the way for language evolution.
Collapse
Affiliation(s)
- Hanna Ruch
- University Research Priority Program Language and Space, University of Zurich, 8032, Zürich, Switzerland
| | - Yvonne Zürcher
- Department of Anthropology, University of Zurich, 8057, Zürich, Switzerland
| | - Judith M Burkart
- Department of Anthropology, University of Zurich, 8057, Zürich, Switzerland
| |
Collapse
|
53
|
de Groot NG, Heijmans CMC, de Ru AH, Janssen GMC, Drijfhout JW, Otting N, Vangenot C, Doxiadis GGM, Koning F, van Veelen PA, Bontrop RE. A Specialist Macaque MHC Class I Molecule with HLA-B*27-like Peptide-Binding Characteristics. THE JOURNAL OF IMMUNOLOGY 2017; 199:3679-3690. [PMID: 29021373 DOI: 10.4049/jimmunol.1700502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022]
Abstract
In different macaque species, the MHC A2*05 gene is present in abundance, and its gene products are characterized by low cell-surface expression and a highly conserved peptide-binding cleft. We have characterized the peptide-binding motif of Mamu-A2*05:01, and elucidated the binding capacity for virus-derived peptides. The macaque A2*05 allotype prefers the basic amino acid arginine at the second position of the peptide, and hydrophobic and polar amino acids at the C-terminal end. These preferences are shared with HLA-B*27 and Mamu-B*008, molecules shown to be involved in elite control in human HIV type 1 and macaque SIV infections, respectively. In contrast, however, Mamu-A2*05 preferentially binds 8-mer peptides. Retention in the endoplasmic reticulum seems to be the cause of the lower cell-surface expression. Subsequent peptide-binding studies have illustrated that Mamu-A2*05:01 is able to bind SIV-epitopes known to evoke a strong CD8+ T cell response in the context of the Mamu-B*008 allotype in SIV-infected rhesus macaques. Thus, the macaque A2*05 gene encodes a specialized MHC class I molecule, and is most likely transported to the cell surface only when suitable peptides become available.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands;
| | - Corrine M C Heijmans
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Arnoud H de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - George M C Janssen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Nel Otting
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Christelle Vangenot
- Anthropology Unit, Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland; and
| | - Gaby G M Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Frits Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands.,Department of Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
54
|
Jayaswal PK, Dogra V, Shanker A, Sharma TR, Singh NK. A tree of life based on ninety-eight expressed genes conserved across diverse eukaryotic species. PLoS One 2017; 12:e0184276. [PMID: 28922368 PMCID: PMC5603157 DOI: 10.1371/journal.pone.0184276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/21/2017] [Indexed: 01/07/2023] Open
Abstract
Rapid advances in DNA sequencing technologies have resulted in the accumulation of large data sets in the public domain, facilitating comparative studies to provide novel insights into the evolution of life. Phylogenetic studies across the eukaryotic taxa have been reported but on the basis of a limited number of genes. Here we present a genome-wide analysis across different plant, fungal, protist, and animal species, with reference to the 36,002 expressed genes of the rice genome. Our analysis revealed 9831 genes unique to rice and 98 genes conserved across all 49 eukaryotic species analysed. The 98 genes conserved across diverse eukaryotes mostly exhibited binding and catalytic activities and shared common sequence motifs; and hence appeared to have a common origin. The 98 conserved genes belonged to 22 functional gene families including 26S protease, actin, ADP–ribosylation factor, ATP synthase, casein kinase, DEAD-box protein, DnaK, elongation factor 2, glyceraldehyde 3-phosphate, phosphatase 2A, ras-related protein, Ser/Thr protein phosphatase family protein, tubulin, ubiquitin and others. The consensus Bayesian eukaryotic tree of life developed in this study demonstrated widely separated clades of plants, fungi, and animals. Musa acuminata provided an evolutionary link between monocotyledons and dicotyledons, and Salpingoeca rosetta provided an evolutionary link between fungi and animals, which indicating that protozoan species are close relatives of fungi and animals. The divergence times for 1176 species pairs were estimated accurately by integrating fossil information with synonymous substitution rates in the comprehensive set of 98 genes. The present study provides valuable insight into the evolution of eukaryotes.
Collapse
Affiliation(s)
- Pawan Kumar Jayaswal
- National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, India
- Banasthali University, Banasthali, Rajasthan, India
| | - Vivek Dogra
- National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, India
| | - Asheesh Shanker
- Bioinformatics Programme, Centre for Biological Sciences, Central University of South Bihar, Patna, Bihar, India
| | - Tilak Raj Sharma
- National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, India
| | - Nagendra Kumar Singh
- National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, India
- * E-mail:
| |
Collapse
|
55
|
|
56
|
Ezran C, Karanewsky CJ, Pendleton JL, Sholtz A, Krasnow MR, Willick J, Razafindrakoto A, Zohdy S, Albertelli MA, Krasnow MA. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health. Genetics 2017; 206:651-664. [PMID: 28592502 PMCID: PMC5499178 DOI: 10.1534/genetics.116.199448] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/08/2017] [Indexed: 01/24/2023] Open
Abstract
Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs (Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while providing an example of how hands-on science education can help transform developing countries.
Collapse
Affiliation(s)
- Camille Ezran
- Department of Biochemistry
- Howard Hughes Medical Institute, and
| | | | | | - Alex Sholtz
- Department of Biochemistry
- Howard Hughes Medical Institute, and
| | - Maya R Krasnow
- Department of Biochemistry
- Howard Hughes Medical Institute, and
| | - Jason Willick
- Department of Biochemistry
- Howard Hughes Medical Institute, and
| | - Andriamahery Razafindrakoto
- Department of Animal Biology, Faculty of Science, University of Antananarivo, Antananarivo 101, BP 566, Madagascar, and
| | - Sarah Zohdy
- School of Forestry and Wildlife Sciences and College of Veterinary Medicine, Auburn University, Alabama 36849
| | - Megan A Albertelli
- Department of Comparative Medicine, Stanford University School of Medicine, California 94305
| | - Mark A Krasnow
- Department of Biochemistry
- Howard Hughes Medical Institute, and
| |
Collapse
|
57
|
Nelson ADL, Devisetty UK, Palos K, Haug-Baltzell AK, Lyons E, Beilstein MA. Evolinc: A Tool for the Identification and Evolutionary Comparison of Long Intergenic Non-coding RNAs. Front Genet 2017; 8:52. [PMID: 28536600 PMCID: PMC5422434 DOI: 10.3389/fgene.2017.00052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/12/2017] [Indexed: 11/25/2022] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) are an abundant and functionally diverse class of eukaryotic transcripts. Reported lincRNA repertoires in mammals vary, but are commonly in the thousands to tens of thousands of transcripts, covering ~90% of the genome. In addition to elucidating function, there is particular interest in understanding the origin and evolution of lincRNAs. Aside from mammals, lincRNA populations have been sparsely sampled, precluding evolutionary analyses focused on their emergence and persistence. Here we present Evolinc, a two-module pipeline designed to facilitate lincRNA discovery and characterize aspects of lincRNA evolution. The first module (Evolinc-I) is a lincRNA identification workflow that also facilitates downstream differential expression analysis and genome browser visualization of identified lincRNAs. The second module (Evolinc-II) is a genomic and transcriptomic comparative analysis workflow that determines the phylogenetic depth to which a lincRNA locus is conserved within a user-defined group of related species. Here we validate lincRNA catalogs generated with Evolinc-I against previously annotated Arabidopsis and human lincRNA data. Evolinc-I recapitulated earlier findings and uncovered an additional 70 Arabidopsis and 43 human lincRNAs. We demonstrate the usefulness of Evolinc-II by examining the evolutionary histories of a public dataset of 5,361 Arabidopsis lincRNAs. We used Evolinc-II to winnow this dataset to 40 lincRNAs conserved across species in Brassicaceae. Finally, we show how Evolinc-II can be used to recover the evolutionary history of a known lincRNA, the human telomerase RNA (TERC). These latter analyses revealed unexpected duplication events as well as the loss and subsequent acquisition of a novel TERC locus in the lineage leading to mice and rats. The Evolinc pipeline is currently integrated in CyVerse's Discovery Environment and is free for use by researchers.
Collapse
Affiliation(s)
- Andrew D L Nelson
- Beilstein Lab, School of Plant Sciences, University of ArizonaTucson, AZ, USA
| | | | - Kyle Palos
- Beilstein Lab, School of Plant Sciences, University of ArizonaTucson, AZ, USA
| | - Asher K Haug-Baltzell
- Lyons Lab, Genetics Graduate Interdisciplinary Group, University of ArizonaTucson, AZ, USA
| | - Eric Lyons
- CyVerse, Bio5, University of ArizonaTucson, AZ, USA.,Lyons Lab, Genetics Graduate Interdisciplinary Group, University of ArizonaTucson, AZ, USA
| | - Mark A Beilstein
- Beilstein Lab, School of Plant Sciences, University of ArizonaTucson, AZ, USA
| |
Collapse
|
58
|
Dougherty ML, Nuttle X, Penn O, Nelson BJ, Huddleston J, Baker C, Harshman L, Duyzend MH, Ventura M, Antonacci F, Sandstrom R, Dennis MY, Eichler EE. The birth of a human-specific neural gene by incomplete duplication and gene fusion. Genome Biol 2017; 18:49. [PMID: 28279197 PMCID: PMC5345166 DOI: 10.1186/s13059-017-1163-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/27/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Gene innovation by duplication is a fundamental evolutionary process but is difficult to study in humans due to the large size, high sequence identity, and mosaic nature of segmental duplication blocks. The human-specific gene hydrocephalus-inducing 2, HYDIN2, was generated by a 364 kbp duplication of 79 internal exons of the large ciliary gene HYDIN from chromosome 16q22.2 to chromosome 1q21.1. Because the HYDIN2 locus lacks the ancestral promoter and seven terminal exons of the progenitor gene, we sought to characterize transcription at this locus by coupling reverse transcription polymerase chain reaction and long-read sequencing. RESULTS 5' RACE indicates a transcription start site for HYDIN2 outside of the duplication and we observe fusion transcripts spanning both the 5' and 3' breakpoints. We observe extensive splicing diversity leading to the formation of altered open reading frames (ORFs) that appear to be under relaxed selection. We show that HYDIN2 adopted a new promoter that drives an altered pattern of expression, with highest levels in neural tissues. We estimate that the HYDIN duplication occurred ~3.2 million years ago and find that it is nearly fixed (99.9%) for diploid copy number in contemporary humans. Examination of 73 chromosome 1q21 rearrangement patients reveals that HYDIN2 is deleted or duplicated in most cases. CONCLUSIONS Together, these data support a model of rapid gene innovation by fusion of incomplete segmental duplications, altered tissue expression, and potential subfunctionalization or neofunctionalization of HYDIN2 early in the evolution of the Homo lineage.
Collapse
Affiliation(s)
- Max L Dougherty
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Xander Nuttle
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Osnat Penn
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Bradley J Nelson
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - John Huddleston
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Carl Baker
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Lana Harshman
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Michael H Duyzend
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
| | - Mario Ventura
- Department of Biology, University of Bari, Bari, 70121, Italy
| | | | | | - Megan Y Dennis
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, 95616, CA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15 Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
59
|
Abstract
The great apes (orangutans, gorillas, chimpanzees, bonobos and humans) descended from a common ancestor around 13 million years ago, and since then their sex chromosomes have followed very different evolutionary paths. While great-ape X chromosomes are highly conserved, their Y chromosomes, reflecting the general lability and degeneration of this male-specific part of the genome since its early mammalian origin, have evolved rapidly both between and within species. Understanding great-ape Y chromosome structure, gene content and diversity would provide a valuable evolutionary context for the human Y, and would also illuminate sex-biased behaviours, and the effects of the evolutionary pressures exerted by different mating strategies on this male-specific part of the genome. High-quality Y-chromosome sequences are available for human and chimpanzee (and low-quality for gorilla). The chromosomes differ in size, sequence organisation and content, and while retaining a relatively stable set of ancestral single-copy genes, show considerable variation in content and copy number of ampliconic multi-copy genes. Studies of Y-chromosome diversity in other great apes are relatively undeveloped compared to those in humans, but have nevertheless provided insights into speciation, dispersal, and mating patterns. Future studies, including data from larger sample sizes of wild-born and geographically well-defined individuals, and full Y-chromosome sequences from bonobos, gorillas and orangutans, promise to further our understanding of population histories, male-biased behaviours, mutation processes, and the functions of Y-chromosomal genes.
Collapse
|
60
|
Robinson LM, Morton FB, Gartner MC, Widness J, Paukner A, Essler JL, Brosnan SF, Weiss A. Divergent personality structures of brown (Sapajus apella) and white-faced capuchins (Cebus capucinus). J Comp Psychol 2016; 130:305-312. [PMID: 27841454 PMCID: PMC5119626 DOI: 10.1037/com0000037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One way to gain insights into personality evolution is by comparing the personality structures of related species. We compared the personality structure of 240 wild white-faced capuchin monkeys to the personality structure of 100 captive brown capuchin monkeys. An ancillary goal was to test the degree to which different personality questionnaires yielded similar personality dimensions. Both species were rated on a common set of 26 antonym pairs. The brown capuchin monkeys were also rated on the 54-item Hominoid Personality Questionnaire. Our cross-species comparisons revealed 3 personality dimensions-Assertiveness, Openness, and Neuroticism-shared by brown and white-faced capuchins, suggesting that these dimensions were present in the common ancestor of these species. Our comparison of the dimensions derived from the antonym pairs and the Hominoid Personality Questionnaire revealed that three common dimensions were identified by both questionnaires. In addition, the dimension Attentiveness was only identified using the Hominoid Personality Questionnaire. These results indicate that major features of capuchin personality are conserved and that the structure of some traits, such as those related to focus, persistence, and attention, diverged. Further work is needed to identify the evolutionary bases that led to the conservation of some dimensions but not others. (PsycINFO Database Record
Collapse
Affiliation(s)
- Lauren M. Robinson
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh
- Jeanne Marchig International Centre for Animal Welfare Education, Royal (Dick) School of Veterinary Studies, University of Edinburgh
- Scottish Primate Research Group, United Kingdom
| | - F. Blake Morton
- Scottish Primate Research Group, United Kingdom
- Department of Psychology, Franklin & Marshall College
| | | | | | - Annika Paukner
- Laboratory of Comparative Ethology, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Jennifer L. Essler
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria
| | | | - Alexander Weiss
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh
- Scottish Primate Research Group, United Kingdom
| |
Collapse
|
61
|
Ravignani A, Fitch WT, Hanke FD, Heinrich T, Hurgitsch B, Kotz SA, Scharff C, Stoeger AS, de Boer B. What Pinnipeds Have to Say about Human Speech, Music, and the Evolution of Rhythm. Front Neurosci 2016; 10:274. [PMID: 27378843 PMCID: PMC4913109 DOI: 10.3389/fnins.2016.00274] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/31/2016] [Indexed: 12/19/2022] Open
Abstract
Research on the evolution of human speech and music benefits from hypotheses and data generated in a number of disciplines. The purpose of this article is to illustrate the high relevance of pinniped research for the study of speech, musical rhythm, and their origins, bridging and complementing current research on primates and birds. We briefly discuss speech, vocal learning, and rhythm from an evolutionary and comparative perspective. We review the current state of the art on pinniped communication and behavior relevant to the evolution of human speech and music, showing interesting parallels to hypotheses on rhythmic behavior in early hominids. We suggest future research directions in terms of species to test and empirical data needed.
Collapse
Affiliation(s)
- Andrea Ravignani
- Artificial Intelligence Lab, Vrije Universiteit BrusselBrussels, Belgium; Sensory and Cognitive Ecology, Institute for Biosciences, University of RostockRostock, Germany
| | - W Tecumseh Fitch
- Department of Cognitive Biology, University of Vienna Vienna, Austria
| | - Frederike D Hanke
- Sensory and Cognitive Ecology, Institute for Biosciences, University of Rostock Rostock, Germany
| | - Tamara Heinrich
- Sensory and Cognitive Ecology, Institute for Biosciences, University of Rostock Rostock, Germany
| | | | - Sonja A Kotz
- Basic and Applied NeuroDynamics Lab, Department of Neuropsychology and Psychopharmacology, Maastricht UniversityMaastricht, Netherlands; Department of Neuropsychology, Max-Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
| | - Constance Scharff
- Department of Animal Behavior, Institute of Biology, Freie Universität Berlin Berlin, Germany
| | - Angela S Stoeger
- Department of Cognitive Biology, University of Vienna Vienna, Austria
| | - Bart de Boer
- Artificial Intelligence Lab, Vrije Universiteit Brussel Brussels, Belgium
| |
Collapse
|
62
|
Bailey J. Monkey-based research on human disease: the implications of genetic differences. Altern Lab Anim 2016; 42:287-317. [PMID: 25413291 DOI: 10.1177/026119291404200504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Assertions that the use of monkeys to investigate human diseases is valid scientifically are frequently based on a reported 90-93% genetic similarity between the species. Critical analyses of the relevance of monkey studies to human biology, however, indicate that this genetic similarity does not result in sufficient physiological similarity for monkeys to constitute good models for research, and that monkey data do not translate well to progress in clinical practice for humans. Salient examples include the failure of new drugs in clinical trials, the highly different infectivity and pathology of SIV/HIV, and poor extrapolation of research on Alzheimer's disease, Parkinson's disease and stroke. The major molecular differences underlying these inter-species phenotypic disparities have been revealed by comparative genomics and molecular biology - there are key differences in all aspects of gene expression and protein function, from chromosome and chromatin structure to post-translational modification. The collective effects of these differences are striking, extensive and widespread, and they show that the superficial similarity between human and monkey genetic sequences is of little benefit for biomedical research. The extrapolation of biomedical data from monkeys to humans is therefore highly unreliable, and the use of monkeys must be considered of questionable value, particularly given the breadth and potential of alternative methods of enquiry that are currently available to scientists.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society (NEAVS), Boston, MA, USA
| |
Collapse
|
63
|
Escalera-Zamudio M, Greenwood AD. On the classification and evolution of endogenous retrovirus: human endogenous retroviruses may not be 'human' after all. APMIS 2016; 124:44-51. [PMID: 26818261 DOI: 10.1111/apm.12489] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
Abstract
Retroviruses, as part of their replication cycle, become integrated into the genome of their host. When this occurs in the germline the integrated proviruses can become an endogenous retrovirus (ERV) which may eventually become fixed in the population. ERVs are present in the genomes of all vertebrates including humans, where more than 50 groups of human endogenous retrovirus (HERVs) have been described within the last 30 years. Despite state-of-the-art genomic tools available for retroviral discovery and the large number of retroviral sequences described to date, there are still gaps in understanding retroviral macroevolutionary patterns and host-retrovirus interactions and a lack of a coherent systematic classification particularly for HERVs. Here, we discuss the current knowledge on ERV (and HERV) classification, distribution and origins focusing on the role of cross-species transmission in retroviral diversity.
Collapse
Affiliation(s)
- Marina Escalera-Zamudio
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany.,Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
64
|
Uno KT, Polissar PJ, Jackson KE, deMenocal PB. Neogene biomarker record of vegetation change in eastern Africa. Proc Natl Acad Sci U S A 2016; 113:6355-63. [PMID: 27274042 PMCID: PMC4988583 DOI: 10.1073/pnas.1521267113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of C4 grassland ecosystems in eastern Africa has been intensely studied because of the potential influence of vegetation on mammalian evolution, including that of our own lineage, hominins. Although a handful of sparse vegetation records exists from middle and early Miocene terrestrial fossil sites, there is no comprehensive record of vegetation through the Neogene. Here we present a vegetation record spanning the Neogene and Quaternary Periods that documents the appearance and subsequent expansion of C4 grasslands in eastern Africa. Carbon isotope ratios from terrestrial plant wax biomarkers deposited in marine sediments indicate constant C3 vegetation from ∼24 Ma to 10 Ma, when C4 grasses first appeared. From this time forward, C4 vegetation increases monotonically to present, with a coherent signal between marine core sites located in the Somali Basin and the Red Sea. The response of mammalian herbivores to the appearance of C4 grasses at 10 Ma is immediate, as evidenced from existing records of mammalian diets from isotopic analyses of tooth enamel. The expansion of C4 vegetation in eastern Africa is broadly mirrored by increasing proportions of C4-based foods in hominin diets, beginning at 3.8 Ma in Australopithecus and, slightly later, Kenyanthropus This continues into the late Pleistocene in Paranthropus, whereas Homo maintains a flexible diet. The biomarker vegetation record suggests the increase in open, C4 grassland ecosystems over the last 10 Ma may have operated as a selection pressure for traits and behaviors in Homo such as bipedalism, flexible diets, and complex social structure.
Collapse
Affiliation(s)
- Kevin T Uno
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964;
| | - Pratigya J Polissar
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964
| | - Kevin E Jackson
- Department of Geology and Environmental Geosciences, Lafayette College, Easton, PA 18042
| | - Peter B deMenocal
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964; Department of Earth and Environmental Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
65
|
Sazzini M, De Fanti S, Cherubini A, Quagliariello A, Profiti G, Martelli PL, Casadio R, Ricci C, Campieri M, Lanzini A, Volta U, Caio G, Franceschi C, Spisni E, Luiselli D. Ancient pathogen-driven adaptation triggers increased susceptibility to non-celiac wheat sensitivity in present-day European populations. GENES & NUTRITION 2016; 11:15. [PMID: 27551316 PMCID: PMC4968434 DOI: 10.1186/s12263-016-0532-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 05/11/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Non-celiac wheat sensitivity is an emerging wheat-related syndrome showing peak prevalence in Western populations. Recent studies hypothesize that new gliadin alleles introduced in the human diet by replacement of ancient wheat with modern varieties can prompt immune responses mediated by the CXCR3-chemokine axis potentially underlying such pathogenic inflammation. This cultural shift may also explain disease epidemiology, having turned European-specific adaptive alleles previously targeted by natural selection into disadvantageous ones. METHODS To explore this evolutionary scenario, we performed ultra-deep sequencing of genes pivotal in the CXCR3-inflammatory pathway on individuals diagnosed for non-celiac wheat sensitivity and we applied anthropological evolutionary genetics methods to sequence data from worldwide populations to investigate the genetic legacy of natural selection on these loci. RESULTS Our results indicate that balancing selection has maintained two divergent CXCL10/CXCL11 haplotypes in Europeans, one responsible for boosting inflammatory reactions and another for encoding moderate chemokine expression. CONCLUSIONS This led to considerably higher occurrence of the former haplotype in Western people than in Africans and East Asians, suggesting that they might be more prone to side effects related to the consumption of modern wheat varieties. Accordingly, this study contributed to shed new light on some of the mechanisms potentially involved in the disease etiology and on the evolutionary bases of its present-day epidemiological patterns. Moreover, overrepresentation of disease homozygotes for the dis-adaptive haplotype plausibly accounts for their even more enhanced CXCR3-axis expression and for their further increase in disease risk, representing a promising finding to be validated by larger follow-up studies.
Collapse
Affiliation(s)
- Marco Sazzini
- Laboratory of Molecular Anthropology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
- Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
| | - Sara De Fanti
- Laboratory of Molecular Anthropology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
- Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
| | - Anna Cherubini
- Laboratory of Molecular Anthropology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
- Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
| | - Andrea Quagliariello
- Laboratory of Molecular Anthropology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
- Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
| | - Giuseppe Profiti
- Department of Biological, Biocomputing Group, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
- CIRI Health Science and Technologies, University of Bologna, 40064 Ozzano dell’Emilia, Bologna, Italy
| | - Pier Luigi Martelli
- Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
- Department of Biological, Biocomputing Group, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Rita Casadio
- Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
- Department of Biological, Biocomputing Group, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Chiara Ricci
- Department of Clinical and Experimental Sciences, Gastroenterology Unit, Spedali Civili, University of Brescia, 25123 Brescia, Italy
| | - Massimo Campieri
- Department of Medical and Surgical Sciences, Digestive Diseases and Internal Medicine Unit, St. Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
| | - Alberto Lanzini
- Department of Clinical and Experimental Sciences, Gastroenterology Unit, Spedali Civili, University of Brescia, 25123 Brescia, Italy
| | - Umberto Volta
- Department of Medical and Surgical Sciences, Digestive Diseases and Internal Medicine Unit, St. Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
| | - Giacomo Caio
- Department of Medical and Surgical Sciences, Digestive Diseases and Internal Medicine Unit, St. Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Enzo Spisni
- Department of Biological, Unit of Gut Physiopathology and Nutrition, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- Laboratory of Molecular Anthropology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
- Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, 40126 Bologna, Italy
| |
Collapse
|
66
|
de Groot NG, Blokhuis JH, Otting N, Doxiadis GGM, Bontrop RE. Co-evolution of the MHC class I and KIR gene families in rhesus macaques: ancestry and plasticity. Immunol Rev 2016; 267:228-45. [PMID: 26284481 PMCID: PMC4544828 DOI: 10.1111/imr.12313] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Researchers dealing with the human leukocyte antigen (HLA) class I and killer immunoglobulin receptor (KIR) multi‐gene families in humans are often wary of the complex and seemingly different situation that is encountered regarding these gene families in Old World monkeys. For the sake of comparison, the well‐defined and thoroughly studied situation in humans has been taken as a reference. In macaques, both the major histocompatibility complex class I and KIR gene families are plastic entities that have experienced various rounds of expansion, contraction, and subsequent recombination processes. As a consequence, haplotypes in macaques display substantial diversity with regard to gene copy number variation. Additionally, for both multi‐gene families, differential levels of polymorphism (allelic variation), and expression are observed as well. A comparative genetic approach has allowed us to answer questions related to ancestry, to shed light on unique adaptations of the species’ immune system, and to provide insights into the genetic events and selective pressures that have shaped the range of these gene families.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Jeroen H Blokhuis
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Nel Otting
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Gaby G M Doxiadis
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
67
|
Hsieh P, Woerner AE, Wall JD, Lachance J, Tishkoff SA, Gutenkunst RN, Hammer MF. Model-based analyses of whole-genome data reveal a complex evolutionary history involving archaic introgression in Central African Pygmies. Genome Res 2016; 26:291-300. [PMID: 26888264 PMCID: PMC4772012 DOI: 10.1101/gr.196634.115] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/19/2016] [Indexed: 12/25/2022]
Abstract
Comparisons of whole-genome sequences from ancient and contemporary samples have pointed to several instances of archaic admixture through interbreeding between the ancestors of modern non-Africans and now extinct hominids such as Neanderthals and Denisovans. One implication of these findings is that some adaptive features in contemporary humans may have entered the population via gene flow with archaic forms in Eurasia. Within Africa, fossil evidence suggests that anatomically modern humans (AMH) and various archaic forms coexisted for much of the last 200,000 yr; however, the absence of ancient DNA in Africa has limited our ability to make a direct comparison between archaic and modern human genomes. Here, we use statistical inference based on high coverage whole-genome data (greater than 60×) from contemporary African Pygmy hunter-gatherers as an alternative means to study the evolutionary history of the genus Homo. Using whole-genome simulations that consider demographic histories that include both isolation and gene flow with neighboring farming populations, our inference method rejects the hypothesis that the ancestors of AMH were genetically isolated in Africa, thus providing the first whole genome-level evidence of African archaic admixture. Our inferences also suggest a complex human evolutionary history in Africa, which involves at least a single admixture event from an unknown archaic population into the ancestors of AMH, likely within the last 30,000 yr.
Collapse
Affiliation(s)
- PingHsun Hsieh
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - August E Woerner
- Graduate Interdisciplinary Program in Genetics, University of Arizona, Tucson, Arizona 85721, USA; Arizona Research Laboratories Division of Biotechnology, University of Arizona, Tucson, Arizona 85721, USA
| | - Jeffrey D Wall
- Institute for Human Genetics, University of California, San Francisco, California 94143, USA
| | - Joseph Lachance
- Department of Biology and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Department of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Sarah A Tishkoff
- Department of Biology and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ryan N Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Michael F Hammer
- Arizona Research Laboratories Division of Biotechnology, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
68
|
Ashfaq M, Prosser S, Nasir S, Masood M, Ratnasingham S, Hebert PDN. High diversity and rapid diversification in the head louse, Pediculus humanus (Pediculidae: Phthiraptera). Sci Rep 2015; 5:14188. [PMID: 26373806 PMCID: PMC4570997 DOI: 10.1038/srep14188] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 08/18/2015] [Indexed: 12/15/2022] Open
Abstract
The study analyzes sequence variation of two mitochondrial genes (COI, cytb) in Pediculus humanus from three countries (Egypt, Pakistan, South Africa) that have received little prior attention, and integrates these results with prior data. Analysis indicates a maximum K2P distance of 10.3% among 960 COI sequences and 13.8% among 479 cytb sequences. Three analytical methods (BIN, PTP, ABGD) reveal five concordant OTUs for COI and cytb. Neighbor-Joining analysis of the COI sequences confirm five clusters; three corresponding to previously recognized mitochondrial clades A, B, C and two new clades, "D" and "E", showing 2.3% and 2.8% divergence from their nearest neighbors (NN). Cytb data corroborate five clusters showing that clades "D" and "E" are both 4.6% divergent from their respective NN clades. Phylogenetic analysis supports the monophyly of all clusters recovered by NJ analysis. Divergence time estimates suggest that the earliest split of P. humanus clades occurred slightly more than one million years ago (MYa) and the latest about 0.3 MYa. Sequence divergences in COI and cytb among the five clades of P. humanus are 10X those in their human host, a difference that likely reflects both rate acceleration and the acquisition of lice clades from several archaic hominid lineages.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada
| | - Sean Prosser
- Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada
| | - Saima Nasir
- Pakistan Council for Science and Technology, Islamabad, Pakistan
| | - Mariyam Masood
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | | | - Paul D N Hebert
- Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
69
|
Herd KE, Barker SC, Shao R. The mitochondrial genome of the chimpanzee louse, Pediculus schaeffi: insights into the process of mitochondrial genome fragmentation in the blood-sucking lice of great apes. BMC Genomics 2015; 16:661. [PMID: 26335315 PMCID: PMC4557858 DOI: 10.1186/s12864-015-1843-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 08/14/2015] [Indexed: 11/16/2022] Open
Abstract
Background Blood-sucking lice in the genera Pediculus and Pthirus are obligate ectoparasites of great apes. Unlike most bilateral animals, which have 37 mitochondrial (mt) genes on a single circular chromosome, the sucking lice of humans have extensively fragmented mt genomes. The head louse, Pediculus capitis, and the body louse, Pe. humanus, have their 37 mt genes on 20 minichromosomes. The pubic louse, Pthirus pubis, has its 34 mt genes known on 14 minichromosomes. To understand the process of mt genome fragmentation in the sucking lice of great apes, we sequenced the mt genome of the chimpanzee louse, Pe. schaeffi, and compared it with the three human lice. Results We identified all of the 37 mt genes typical of bilateral animals in the chimpanzee louse; these genes are on 18 types of minichromosomes. Seventeen of the 18 minichromosomes of the chimpanzee louse have the same gene content and gene arrangement as their counterparts in the human head louse and the human body louse. However, five genes, cob, trnS1, trnN, trnE and trnM, which are on three minichromosomes in the human head louse and the human body louse, are together on one minichromosome in the chimpanzee louse. Conclusions Using the human pubic louse, Pt. pubis, as an outgroup for comparison, we infer that a single minichromosome has fragmented into three in the lineage leading to the human head louse and the human body louse since this lineage diverged from the chimpanzee louse ~6 million years ago. Our results provide insights into the process of mt genome fragmentation in the sucking lice in a relatively fine evolutionary scale. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1843-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kate E Herd
- Department of Parasitology, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Stephen C Barker
- Department of Parasitology, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Renfu Shao
- GeneCology Research Centre, Faculty of Science, Education and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia.
| |
Collapse
|
70
|
Abstract
To better understand human and chimpanzee personality evolution, we obtained trait ratings of personality for 154 captive bonobos (~80% of the U.S. and European population). We found factors that we labeled Assertiveness, Conscientiousness, Openness, Agreeableness, Attentiveness, and Extraversion. The interrater reliabilities and test-retest reliabilities for these factors were comparable to those found in humans and other species. Using orthogonal targeted Procrustes rotations, we compared the bonobo dimensions with those of three samples of captive chimpanzees. Overall congruence coefficients indicated a fair degree of similarity; at the factor level, there was good evidence for Assertiveness, Conscientiousness, Openness, and Agreeableness in the chimpanzee samples; evidence for Attentiveness and Extraversion was poor. These findings suggest that, as expected given their close phylogenetic relationship, bonobo personality structure resembles chimpanzee personality structure in some respects. However, divergent evolution, perhaps as a result of socioecological differences between bonobos and chimpanzees, also appears to have shaped personality structure in these species.
Collapse
Affiliation(s)
- Alexander Weiss
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh Scottish Primate Research Group
| | - Nicky Staes
- Ethology Research Group, Department of Biology, The University of Antwerp Centre for Research and Conservation, Royal Zoological Society of Antwerp
| | | | | | - Jeroen M G Stevens
- Ethology Research Group, Department of Biology, The University of Antwerp Centre for Research and Conservation, Royal Zoological Society of Antwerp
| | - Marcel Eens
- Centre for Research and Conservation, Royal Zoological Society of Antwerp
| |
Collapse
|
71
|
Abstract
As a species-typical trait of Homo sapiens, musicality represents a cognitively complex and biologically grounded capacity worthy of intensive empirical investigation. Four principles are suggested here as prerequisites for a successful future discipline of bio-musicology. These involve adopting: (i) a multicomponent approach which recognizes that musicality is built upon a suite of interconnected capacities, of which none is primary; (ii) a pluralistic Tinbergian perspective that addresses and places equal weight on questions of mechanism, ontogeny, phylogeny and function; (iii) a comparative approach, which seeks and investigates animal homologues or analogues of specific components of musicality, wherever they can be found; and (iv) an ecologically motivated perspective, which recognizes the need to study widespread musical behaviours across a range of human cultures (and not focus solely on Western art music or skilled musicians). Given their pervasiveness, dance and music created for dancing should be considered central subcomponents of music, as should folk tunes, work songs, lullabies and children's songs. Although the precise breakdown of capacities required by the multicomponent approach remains open to debate, and different breakdowns may be appropriate to different purposes, I highlight four core components of human musicality--song, drumming, social synchronization and dance--as widespread and pervasive human abilities spanning across cultures, ages and levels of expertise. Each of these has interesting parallels in the animal kingdom (often analogies but in some cases apparent homologies also). Finally, I suggest that the search for universal capacities underlying human musicality, neglected for many years, should be renewed. The broad framework presented here illustrates the potential for a future discipline of bio-musicology as a rich field for interdisciplinary and comparative research.
Collapse
Affiliation(s)
- W Tecumseh Fitch
- Department of Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
72
|
Machado LR, Ottolini B. An evolutionary history of defensins: a role for copy number variation in maximizing host innate and adaptive immune responses. Front Immunol 2015; 6:115. [PMID: 25852686 PMCID: PMC4364288 DOI: 10.3389/fimmu.2015.00115] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/01/2015] [Indexed: 12/21/2022] Open
Abstract
Defensins represent an evolutionary ancient family of antimicrobial peptides that play diverse roles in human health and disease. Defensins are cationic cysteine-containing multifunctional peptides predominantly expressed by epithelial cells or neutrophils. Defensins play a key role in host innate immune responses to infection and, in addition to their classically described role as antimicrobial peptides, have also been implicated in immune modulation, fertility, development, and wound healing. Aberrant expression of defensins is important in a number of inflammatory diseases as well as modulating host immune responses to bacteria, unicellular pathogens, and viruses. In parallel with their role in immunity, in other species, defensins have evolved alternative functions, including the control of coat color in dogs. Defensin genes reside in complex genomic regions that are prone to structural variations and some defensin family members exhibit copy number variation (CNV). Structural variations have mediated, and continue to influence, the diversification and expression of defensin family members. This review highlights the work currently being done to better understand the genomic architecture of the β-defensin locus. It evaluates current evidence linking defensin CNV to autoimmune disease (i.e., Crohn’s disease and psoriasis) as well as the contribution CNV has in influencing immune responses to HIV infection.
Collapse
Affiliation(s)
- Lee R Machado
- Institute of Health and Wellbeing, School of Health, University of Northampton , Northampton , UK
| | - Barbara Ottolini
- Department of Cancer Studies, University of Leicester , Leicester , UK
| |
Collapse
|
73
|
Cagliani R, Forni D, Biasin M, Comabella M, Guerini FR, Riva S, Pozzoli U, Agliardi C, Caputo D, Malhotra S, Montalban X, Bresolin N, Clerici M, Sironi M. Ancient and recent selective pressures shaped genetic diversity at AIM2-like nucleic acid sensors. Genome Biol Evol 2015; 6:830-45. [PMID: 24682156 PMCID: PMC4007548 DOI: 10.1093/gbe/evu066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIM2-like receptors (ALRs) are a family of nucleic acid sensors essential for innate immune responses against viruses and bacteria. We performed an evolutionary analysis of ALR genes (MNDA, PYHIN1, IFI16, and AIM2) by analyzing inter- and intraspecies diversity. Maximum-likelihood analyses indicated that IFI16 and AIM2 evolved adaptively in primates, with branch-specific selection at the catarrhini lineage for IFI16. Application of a population genetics–phylogenetics approach also allowed identification of positive selection events in the human lineage. Positive selection in primates targeted sites located at the DNA-binding interface in both IFI16 and AIM2. In IFI16, several sites positively selected in primates and in the human lineage were located in the PYD domain, which is involved in protein–protein interaction and is bound by a human cytomegalovirus immune evasion protein. Finally, positive selection was found to target nuclear localization signals in IFI16 and the spacer region separating the two HIN domains. Population genetic analysis in humans revealed that an IFI16 genic region has been a target of long-standing balancing selection, possibly acting on two nonsynonymous polymorphisms located in the spacer region. Data herein indicate that ALRs have been repeatedly targeted by natural selection. The balancing selection region in IFI16 carries a variant with opposite risk effect for distinct autoimmune diseases, suggesting antagonistic pleiotropy. We propose that the underlying scenario is the result of an ancestral and still ongoing host–pathogen arms race and that the maintenance of susceptibility alleles for autoimmune diseases at IFI16 represents an evolutionary trade-off.
Collapse
Affiliation(s)
- Rachele Cagliani
- Bioinformatics Laboratory, Scientific Institute IRCCS E. Medea, Bosisio Parini (LC), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Mao H, Guo B, Wang F, Sun Y, Lou X, Chen Y, Zhang L, Wang X, Li Z, Liu S, Qin S, Wei J, Pang Z, Chen Z, Zhang Y. A study of family clustering in two young girls with novel avian influenza A (H7N9) in Dongyang, Zhejiang Province, in 2014. J Clin Virol 2015; 63:18-24. [DOI: 10.1016/j.jcv.2014.11.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/18/2014] [Accepted: 11/27/2014] [Indexed: 01/25/2023]
|
75
|
Abstract
Metacognition, the monitoring of one's own mental states, is a fundamental aspect of human intellect. Despite tests in nonhuman animals suggestive of uncertainty monitoring, some authors interpret these results solely in terms of primitive psychological mechanisms and reinforcement regimes, where "reinforcement" is invariably considered to be the delivery and consumption of earned food rewards. Surprisingly, few studies have detailed the trial-by-trial behaviour of animals engaged in such tasks. Here we report ethology-based observations on a rhesus monkey completing sparse-dense discrimination problems, and given the option of escaping trials (i.e., responding "uncertain") at its own choosing. Uncertainty responses were generally made on trials of high objective difficulty, and were characterized by long latencies before beginning visible trials, long times taken for response, and, even after controlling for difficulty, high degrees of wavering during response. Incorrect responses were also common in trials of high objective difficulty, but were characterized by low degrees of wavering. This speaks to the likely adaptive nature of "hesitation," and is inconsistent with models which argue or predict implicit, inflexible information-seeking or "alternative option" behaviours whenever challenging problems present themselves, Confounding models which suggest that nonhuman behaviour in metacognition tasks is driven solely by food delivery/consumption, the monkey was also observed allowing pellets to accumulate and consuming them during and after trials of all response/outcome categories (i.e., whether correct, incorrect, or escaped). This study thus bolsters previous findings that rhesus monkey behaviour in metacognition tasks is in some respects disassociated from mere food delivery/consumption, or even the avoidance of punishment. These and other observations fit well with the evolutionary status and natural proclivities of rhesus monkeys, but weaken arguments that responses in such tests are solely associated with associative mechanisms, and instead suggest more derived and controlled cognitive processing. The latter interpretation appears particularly parsimonious given the neurological adaptations of primates, as well as their highly flexible social and ecological behaviour.
Collapse
Affiliation(s)
- Ken Sayers
- Language Research Center, Georgia State University, 3401 Panthersville Rd., Decatur GA 30034, USA
| | - Theodore A Evans
- Language Research Center, Georgia State University, 3401 Panthersville Rd., Decatur GA 30034, USA
| | - Emilie Menzel
- Language Research Center, Georgia State University, 3401 Panthersville Rd., Decatur GA 30034, USA
| | - J David Smith
- Department of Psychology and Center for Cognitive Science, University at Buffalo, the State University of New York, 346 Park Hall, SUNY Buffalo, Buffalo, NY 14260, USA
| | - Michael J Beran
- Language Research Center, Georgia State University, 3401 Panthersville Rd., Decatur GA 30034, USA
| |
Collapse
|
76
|
Cornejo OE, Fisher D, Escalante AA. Genome-wide patterns of genetic polymorphism and signatures of selection in Plasmodium vivax. Genome Biol Evol 2014; 7:106-19. [PMID: 25523904 PMCID: PMC4316620 DOI: 10.1093/gbe/evu267] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmodium vivax is the most prevalent human malaria parasite outside of Africa. Yet, studies aimed to identify genes with signatures consistent with natural selection are rare. Here, we present a comparative analysis of the pattern of genetic variation of five sequenced isolates of P. vivax and its divergence with two closely related species, Plasmodium cynomolgi and Plasmodium knowlesi, using a set of orthologous genes. In contrast to Plasmodium falciparum, the parasite that causes the most lethal form of human malaria, we did not find significant constraints on the evolution of synonymous sites genome wide in P. vivax. The comparative analysis of polymorphism and divergence across loci allowed us to identify 87 genes with patterns consistent with positive selection, including genes involved in the “exportome” of P. vivax, which are potentially involved in evasion of the host immune system. Nevertheless, we have found a pattern of polymorphism genome wide that is consistent with a significant amount of constraint on the replacement changes and prevalent negative selection. Our analyses also show that silent polymorphism tends to be larger toward the ends of the chromosomes, where many genes involved in antigenicity are located, suggesting that natural selection acts not only by shaping the patterns of variation within the genes but it also affects genome organization.
Collapse
Affiliation(s)
- Omar E Cornejo
- School of Biological Sciences, Washington State University
| | - David Fisher
- Center for Evolutionary Medicine and Informatics, the Biodesign Institute, Arizona State University
| | - Ananias A Escalante
- Center for Evolutionary Medicine and Informatics, the Biodesign Institute, Arizona State University School of Life Sciences, Arizona State University Present address: Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA.
| |
Collapse
|
77
|
Green RE, Braun EL, Armstrong J, Earl D, Nguyen N, Hickey G, Vandewege MW, St John JA, Capella-Gutiérrez S, Castoe TA, Kern C, Fujita MK, Opazo JC, Jurka J, Kojima KK, Caballero J, Hubley RM, Smit AF, Platt RN, Lavoie CA, Ramakodi MP, Finger JW, Suh A, Isberg SR, Miles L, Chong AY, Jaratlerdsiri W, Gongora J, Moran C, Iriarte A, McCormack J, Burgess SC, Edwards SV, Lyons E, Williams C, Breen M, Howard JT, Gresham CR, Peterson DG, Schmitz J, Pollock DD, Haussler D, Triplett EW, Zhang G, Irie N, Jarvis ED, Brochu CA, Schmidt CJ, McCarthy FM, Faircloth BC, Hoffmann FG, Glenn TC, Gabaldón T, Paten B, Ray DA. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 2014; 346:1254449. [PMID: 25504731 PMCID: PMC4386873 DOI: 10.1126/science.1254449] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs.
Collapse
Affiliation(s)
- Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
| | - Edward L Braun
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Joel Armstrong
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Dent Earl
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Ngan Nguyen
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Glenn Hickey
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Michael W Vandewege
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - John A St John
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Salvador Capella-Gutiérrez
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain. Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Todd A Castoe
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Department of Biology, University of Texas, Arlington, TX 76019, USA
| | - Colin Kern
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19717, USA
| | - Matthew K Fujita
- Department of Biology, University of Texas, Arlington, TX 76019, USA
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jerzy Jurka
- Genetic Information Research Institute, Mountain View, CA 94043, USA
| | - Kenji K Kojima
- Genetic Information Research Institute, Mountain View, CA 94043, USA
| | | | | | - Arian F Smit
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Roy N Platt
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christine A Lavoie
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Meganathan P Ramakodi
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - John W Finger
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Alexander Suh
- Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany. Department of Evolutionary Biology (EBC), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Sally R Isberg
- Porosus Pty. Ltd., Palmerston, NT 0831, Australia. Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia. Centre for Crocodile Research, Noonamah, NT 0837, Australia
| | - Lee Miles
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Amanda Y Chong
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Jaime Gongora
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Christopher Moran
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrés Iriarte
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - John McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA 90041, USA
| | - Shane C Burgess
- College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Christina Williams
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Jason T Howard
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cathy R Gresham
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jürgen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany
| | - David D Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David Haussler
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA. Howard Hughes Medical Institute, Bethesda, MD 20814, USA
| | - Eric W Triplett
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China. Center for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Naoki Irie
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Erich D Jarvis
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher A Brochu
- Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA
| | - Fiona M McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Brant C Faircloth
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90019, USA. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain. Universitat Pompeu Fabra, 08003 Barcelona, Spain. Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Benedict Paten
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - David A Ray
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
78
|
Abstract
Recombination allows different parts of the genome to have different genealogical histories. When a species splits in two, allelic lineages sort into the two descendant species, and this lineage sorting varies along the genome. If speciation events are close in time, the lineage sorting process may be incomplete at the second speciation event and lead to gene genealogies that do not match the species phylogeny. We review different recent approaches to model lineage sorting along the genome and show how it is possible to learn about population sizes, natural selection, and recombination rates in ancestral species from application of these models to genome alignments of great ape species.
Collapse
Affiliation(s)
- Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark; , ,
| | | | | |
Collapse
|
79
|
Bozek K, Wei Y, Yan Z, Liu X, Xiong J, Sugimoto M, Tomita M, Pääbo S, Pieszek R, Sherwood CC, Hof PR, Ely JJ, Steinhauser D, Willmitzer L, Bangsbo J, Hansson O, Call J, Giavalisco P, Khaitovich P. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness. PLoS Biol 2014; 12:e1001871. [PMID: 24866127 PMCID: PMC4035273 DOI: 10.1371/journal.pbio.1001871] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/17/2014] [Indexed: 01/26/2023] Open
Abstract
Accelerated evolution of the human brain and muscle metabolomes reflects our unique cognitive and physical capacities. Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys. Physiological processes that maintain our tissues' functionality involve the generation of multiple products and intermediates known as metabolites—small molecules with a weight of less than 1,500 Daltons. Changes in concentrations of these metabolites are thought to be closely related to changes in phenotype. Here, we assessed concentrations of more than 10,000 metabolites in three brain regions and two non-neural tissues (skeletal muscle and kidney) of humans, chimpanzees, macaque monkeys, and mice using mass spectrometry-based approaches. We found that the evolution of the metabolome largely reflects genetic divergence between species and is not greatly affected by environmental factors. In the human lineage, however, we observed an exceptional acceleration of metabolome evolution in the prefrontal cortical region of the brain and in skeletal muscle. Based on additional behavioral tests, we further show that metabolic changes in human muscle seem to be paralleled by a drastic reduction in muscle strength. The observed rapid metabolic changes in brain and muscle, together with the unique human cognitive skills and low muscle performance, might reflect parallel mechanisms in human evolution.
Collapse
Affiliation(s)
- Katarzyna Bozek
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai, China
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Yuning Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Zheng Yan
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai, China
| | - Xiling Liu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai, China
| | - Jieyi Xiong
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Raik Pieszek
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington DC, United States of America
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - John J. Ely
- Alamogordo Primate Facility, Holloman AFB, Alamogordo, New Mexico, United States of America
| | - Dirk Steinhauser
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Lothar Willmitzer
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Jens Bangsbo
- Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Ola Hansson
- Department of Clinical Sciences, Lund University, Malmö University Hospital, Malmö, Sweden
| | - Josep Call
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- * E-mail: (JC); (PG); (PK)
| | - Patrick Giavalisco
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany
- * E-mail: (JC); (PG); (PK)
| | - Philipp Khaitovich
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai, China
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- * E-mail: (JC); (PG); (PK)
| |
Collapse
|
80
|
The evolution of language from social cognition. Curr Opin Neurobiol 2014; 28:5-9. [PMID: 24813180 DOI: 10.1016/j.conb.2014.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/20/2014] [Accepted: 04/02/2014] [Indexed: 01/06/2023]
Abstract
Despite their differences, human language and the vocal communication of nonhuman primates share many features. Both constitute a form of joint action, rely on similar neural mechanisms, and involve discrete, combinatorial cognition. These shared features suggest that during evolution the ancestors of modern primates faced similar social problems and responded by evolving similar systems of perception, communication and cognition. When language later evolved from this common foundation, many of its distinctive features were already in place.
Collapse
|
81
|
An evolutionary analysis of antigen processing and presentation across different timescales reveals pervasive selection. PLoS Genet 2014; 10:e1004189. [PMID: 24675550 PMCID: PMC3967941 DOI: 10.1371/journal.pgen.1004189] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/06/2014] [Indexed: 12/28/2022] Open
Abstract
The antigenic repertoire presented by MHC molecules is generated by the antigen processing and presentation (APP) pathway. We analyzed the evolutionary history of 45 genes involved in APP at the inter- and intra-species level. Results showed that 11 genes evolved adaptively in mammals. Several positively selected sites involve positions of fundamental importance to the protein function (e.g. the TAP1 peptide-binding domains, the sugar binding interface of langerin, and the CD1D trafficking signal region). In CYBB, all selected sites cluster in two loops protruding into the endosomal lumen; analysis of missense mutations responsible for chronic granulomatous disease (CGD) showed the action of different selective forces on the very same gene region, as most CGD substitutions involve aminoacid positions that are conserved in all mammals. As for ERAP2, different computational methods indicated that positive selection has driven the recurrent appearance of protein-destabilizing variants during mammalian evolution. Application of a population-genetics phylogenetics approach showed that purifying selection represented a major force acting on some APP components (e.g. immunoproteasome subunits and chaperones) and allowed identification of positive selection events in the human lineage. We also investigated the evolutionary history of APP genes in human populations by developing a new approach that uses several different tests to identify the selection target, and that integrates low-coverage whole-genome sequencing data with Sanger sequencing. This analysis revealed that 9 APP genes underwent local adaptation in human populations. Most positive selection targets are located within noncoding regions with regulatory function in myeloid cells or act as expression quantitative trait loci. Conversely, balancing selection targeted nonsynonymous variants in TAP1 and CD207 (langerin). Finally, we suggest that selected variants in PSMB10 and CD207 contribute to human phenotypes. Thus, we used evolutionary information to generate experimentally-testable hypotheses and to provide a list of sites to prioritize in follow-up analyses. Antigen-presenting cells digest intracellular and extracellular proteins and display the resulting antigenic repertoire on cell surface molecules for recognition by T cells. This process initiates cell-mediated immune responses and is essential to detect infections. The antigenic repertoire is generated by the antigen processing and presentation pathway. Because several pathogens evade immune recognition by hampering this process, genes involved in antigen processing and presentation may represent common natural selection targets. Thus, we analyzed the evolutionary history of these genes during mammalian evolution and in the more recent history of human populations. Evolutionary analyses in mammals indicated that positive selection targeted a very high proportion of genes (24%), and revealed that many selected sites affect positions of fundamental importance to the protein function. In humans, we found different signatures of natural selection acting both on regions that are expected to regulate gene expression levels or timing and on coding variants; two human selected polymorphisms may modulate the susceptibility to Crohn's disease and to HIV-1 infection. Therefore, we provide a comprehensive evolutionary analysis of antigen processing and we show that evolutionary studies can provide useful information concerning the location and nature of functional variants, ultimately helping to clarify phenotypic differences between and within species.
Collapse
|
82
|
Cox MP, Dong T, Shen G, Dalvi Y, Scott DB, Ganley ARD. An interspecific fungal hybrid reveals cross-kingdom rules for allopolyploid gene expression patterns. PLoS Genet 2014; 10:e1004180. [PMID: 24603805 PMCID: PMC3945203 DOI: 10.1371/journal.pgen.1004180] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022] Open
Abstract
Polyploidy, a state in which the chromosome complement has undergone an increase, is a major force in evolution. Understanding the consequences of polyploidy has received much attention, and allopolyploids, which result from the union of two different parental genomes, are of particular interest because they must overcome a suite of biological responses to this merger, known as “genome shock.” A key question is what happens to gene expression of the two gene copies following allopolyploidization, but until recently the tools to answer this question on a genome-wide basis were lacking. Here we utilize high throughput transcriptome sequencing to produce the first genome-wide picture of gene expression response to allopolyploidy in fungi. A novel pipeline for assigning sequence reads to the gene copies was used to quantify their expression in a fungal allopolyploid. We find that the transcriptional response to allopolyploidy is predominantly conservative: both copies of most genes are retained; over half the genes inherit parental gene expression patterns; and parental differential expression is often lost in the allopolyploid. Strikingly, the patterns of gene expression change are highly concordant with the genome-wide expression results of a cotton allopolyploid. The very different nature of these two allopolyploids implies a conserved, eukaryote-wide transcriptional response to genome merger. We provide evidence that the transcriptional responses we observe are mostly driven by intrinsic differences between the regulatory systems in the parent species, and from this propose a mechanistic model in which the cross-kingdom conservation in transcriptional response reflects conservation of the mutational processes underlying eukaryotic gene regulatory evolution. This work provides a platform to develop a universal understanding of gene expression response to allopolyploidy and suggests that allopolyploids are an exceptional system to investigate gene regulatory changes that have evolved in the parental species prior to allopolyploidization. Organisms are complex biological systems that must continue to function even as their genomes evolve. While evolution is usually gradual, the formation of new species by the hybridization of different parents—allopolyploidization—occurs nearly instantaneously. A key question is what happens to expression of the two parental gene copies following genome merger. To determine this, we focused on a fungal allopolyploid from a group that dominates many of the world's pastoral economies. To investigate the fate of gene expression in this system, we developed a novel pipeline to assign high throughput RNA sequence reads to the two parental gene copies, thus allowing quantification of expression. We found transcriptional responses to be predominantly conservative: most gene copies either inherit parental expression patterns, or if differentially expressed in the parents, that difference is lost in the hybrid. Moreover, we identified an extraordinary level of concordance in the fate of genome-wide allopolyploid gene expression with that seen in cotton. The very different nature of these two allopolyploids suggests that there is a set of universal rules for the transcriptional response to genome merger. We propose a mechanistic model whereby this conserved response reflects similarities in mutational processes that underlie gene regulatory evolution.
Collapse
Affiliation(s)
- Murray P. Cox
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- * E-mail: (MPC); (ARDG)
| | - Ting Dong
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - GengGeng Shen
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Yogesh Dalvi
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - D. Barry Scott
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Austen R. D. Ganley
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
- * E-mail: (MPC); (ARDG)
| |
Collapse
|
83
|
Lachance J, Tishkoff SA. Population Genomics of Human Adaptation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013; 44:123-143. [PMID: 25383060 DOI: 10.1146/annurev-ecolsys-110512-135833] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent advances in genotyping technologies have facilitated genome-wide scans for natural selection. Identification of targets of natural selection will shed light on processes of human adaptation and evolution and could be important for identifying variation that influences both normal human phenotypic variation as well as disease susceptibility. Here we focus on studies of natural selection in modern humans who originated ~200,000 years go in Africa and migrated across the globe ~50,000 - 100,000 years ago. Movement into new environments, as well as changes in culture and technology including plant and animal domestication, resulted in local adaptation to diverse environments. We summarize statistical approaches for detecting targets of natural selection and for distinguishing the effects of demographic history from natural selection. On a genome-wide scale, immune-related genes appear to be major targets of positive selection. Genes associated with reproduction and fertility also appear to be fast evolving. Additional examples of recent human adaptation include genes associated with lactase persistence, eccrine glands, and response to hypoxia. Lastly, we emphasize the need to supplement scans of selection with functional studies to demonstrate the physiologic impact of candidate loci.
Collapse
Affiliation(s)
- Joseph Lachance
- Departments of Biology and Genetics, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Sarah A Tishkoff
- Departments of Biology and Genetics, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
84
|
McLain AT, Carman GW, Fullerton ML, Beckstrom TO, Gensler W, Meyer TJ, Faulk C, Batzer MA. Analysis of western lowland gorilla (Gorilla gorilla gorilla) specific Alu repeats. Mob DNA 2013; 4:26. [PMID: 24262036 PMCID: PMC4177385 DOI: 10.1186/1759-8753-4-26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023] Open
Abstract
Background Research into great ape genomes has revealed widely divergent activity levels over time for Alu elements. However, the diversity of this mobile element family in the genome of the western lowland gorilla has previously been uncharacterized. Alu elements are primate-specific short interspersed elements that have been used as phylogenetic and population genetic markers for more than two decades. Alu elements are present at high copy number in the genomes of all primates surveyed thus far. The AluY subfamily and its derivatives have been recognized as the evolutionarily youngest Alu subfamily in the Old World primate lineage. Results Here we use a combination of computational and wet-bench laboratory methods to assess and catalog AluY subfamily activity level and composition in the western lowland gorilla genome (gorGor3.1). A total of 1,075 independent AluY insertions were identified and computationally divided into 10 subfamilies, with the largest number of gorilla-specific elements assigned to the canonical AluY subfamily. Conclusions The retrotransposition activity level appears to be significantly lower than that seen in the human and chimpanzee lineages, while higher than that seen in orangutan genomes, indicative of differential Alu amplification in the western lowland gorilla lineage as compared to other Homininae.
Collapse
Affiliation(s)
- Adam T McLain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Ravignani A, Sonnweber RS, Stobbe N, Fitch WT. Action at a distance: dependency sensitivity in a New World primate. Biol Lett 2013; 9:20130852. [PMID: 24227047 PMCID: PMC3871375 DOI: 10.1098/rsbl.2013.0852] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sensitivity to dependencies (correspondences between distant items) in sensory stimuli plays a crucial role in human music and language. Here, we show that squirrel monkeys (Saimiri sciureus) can detect abstract, non-adjacent dependencies in auditory stimuli. Monkeys discriminated between tone sequences containing a dependency and those lacking it, and generalized to previously unheard pitch classes and novel dependency distances. This constitutes the first pattern learning study where artificial stimuli were designed with the species' communication system in mind. These results suggest that the ability to recognize dependencies represents a capability that had already evolved in humans’ last common ancestor with squirrel monkeys, and perhaps before.
Collapse
Affiliation(s)
- Andrea Ravignani
- Department of Cognitive Biology, University of Vienna, , Althanstrasse, 14, Vienna 1090, Austria
| | | | | | | |
Collapse
|
86
|
Moeller AH, Peeters M, Ndjango JB, Li Y, Hahn BH, Ochman H. Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Res 2013; 23:1715-20. [PMID: 23804402 PMCID: PMC3787267 DOI: 10.1101/gr.154773.113] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/19/2013] [Indexed: 12/18/2022]
Abstract
The gut microbial communities within great apes have been shown to reflect the phylogenetic history of their hosts, indicating codiversification between great apes and their gut microbiota over evolutionary timescales. But because the great apes examined to date represent geographically isolated populations whose diets derive from different sources, it is unclear whether this pattern of codiversification has resulted from a long history of coadaptation between microbes and hosts (heritable factors) or from the ecological and geographic separation among host species (environmental factors). To evaluate the relative influences of heritable and environmental factors on the evolution of the great ape gut microbiota, we assayed the gut communities of sympatric and allopatric populations of chimpanzees, bonobos, and gorillas residing throughout equatorial Africa. Comparisons of these populations revealed that the gut communities of different host species can always be distinguished from one another but that the gut communities of sympatric chimpanzees and gorillas have converged in terms of community composition, sharing on average 53% more bacterial phylotypes than the gut communities of allopatric hosts. Host environment, independent of host genetics and evolutionary history, shaped the distribution of bacterial phylotypes across the Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria, the four most common phyla of gut bacteria. Moreover, the specific patterns of phylotype sharing among hosts suggest that chimpanzees living in sympatry with gorillas have acquired bacteria from gorillas. These results indicate that geographic isolation between host species has promoted the evolutionary differentiation of great ape gut bacterial communities.
Collapse
Affiliation(s)
- Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Martine Peeters
- Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, 34394 Montpellier Cedex 5, France
| | - Jean-Basco Ndjango
- Faculties of Sciences, University of Kisangani, Kisangani, BP 2012, Democratic Republic of the Congo
| | - Yingying Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Howard Ochman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
87
|
Jacques PÉ, Jeyakani J, Bourque G. The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet 2013; 9:e1003504. [PMID: 23675311 PMCID: PMC3649963 DOI: 10.1371/journal.pgen.1003504] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/25/2013] [Indexed: 11/18/2022] Open
Abstract
Although emerging evidence suggests that transposable elements (TEs) have contributed novel regulatory elements to the human genome, their global impact on transcriptional networks remains largely uncharacterized. Here we show that TEs have contributed to the human genome nearly half of its active elements. Using DNase I hypersensitivity data sets from ENCODE in normal, embryonic, and cancer cells, we found that 44% of open chromatin regions were in TEs and that this proportion reached 63% for primate-specific regions. We also showed that distinct subfamilies of endogenous retroviruses (ERVs) contributed significantly more accessible regions than expected by chance, with up to 80% of their instances in open chromatin. Based on these results, we further characterized 2,150 TE subfamily-transcription factor pairs that were bound in vivo or enriched for specific binding motifs, and observed that TEs contributing to open chromatin had higher levels of sequence conservation. We also showed that thousands of ERV-derived sequences were activated in a cell type-specific manner, especially in embryonic and cancer cells, and we demonstrated that this activity was associated with cell type-specific expression of neighboring genes. Taken together, these results demonstrate that TEs, and in particular ERVs, have contributed hundreds of thousands of novel regulatory elements to the primate lineage and reshaped the human transcriptional landscape.
Collapse
Affiliation(s)
- Pierre-Étienne Jacques
- Computational and Systems Biology, Genome Institute of Singapore, Singapore, Singapore
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Justin Jeyakani
- Computational and Systems Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- McGill University and Génome Québec Innovation Center, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
88
|
Cagliani R, Guerini FR, Rubio-Acero R, Baglio F, Forni D, Agliardi C, Griffanti L, Fumagalli M, Pozzoli U, Riva S, Calabrese E, Sikora M, Casals F, Comi GP, Bresolin N, Cáceres M, Clerici M, Sironi M. Long-standing balancing selection in the THBS4 gene: influence on sex-specific brain expression and gray matter volumes in Alzheimer disease. Hum Mutat 2013; 34:743-53. [PMID: 23420636 DOI: 10.1002/humu.22301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/01/2013] [Indexed: 01/08/2023]
Abstract
The THBS4 gene encodes a glycoprotein involved in inflammatory responses and synaptogenesis. THBS4 is expressed at higher levels in the brain of humans compared with nonhuman primates, and the protein accumulates in β-amyloid plaques. We analyzed THBS4 genetic variability in humans and show that two haplotypes (hap1 and hap2) are maintained by balancing selection and modulate THBS4 expression in lymphocytes. Indeed, the balancing selection region covers a predicted transcriptional enhancer. In humans, but not in macaques and chimpanzees, THBS4 brain expression increases with age, and variants in the balancing selection region interact with sex in influencing THBS4 expression (pinteraction = 0.038), with hap1 homozygous females showing lowest expression. In Alzheimer disease (AD) patients, significant interactions between sex and THBS4 genotype were detected for peripheral gray matter (pinteraction = 0.014) and total gray matter (pinteraction = 0.012) volumes. Similarly to the gene expression results, the interaction is mainly mediated by hap1 homozygous AD females, who show reduced volumes. Thus, the balancing selection target in THBS4 is likely represented by one or more variants that regulate tissue-specific and sex-specific gene expression. The selection signature associated with THBS4 might not be related to AD pathogenesis, but rather to inflammatory responses.
Collapse
|
89
|
Evolutionary Analysis of the Contact System Indicates that Kininogen Evolved Adaptively in Mammals and in Human Populations. Mol Biol Evol 2013; 30:1397-408. [DOI: 10.1093/molbev/mst054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
90
|
Research proceedings on primate comparative genomics. Zool Res 2013; 33:108-18. [DOI: 10.3724/sp.j.1141.2012.01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
91
|
Sayers K, Raghanti MA, Lovejoy CO. Human Evolution and the Chimpanzee Referential Doctrine. ANNUAL REVIEW OF ANTHROPOLOGY 2012. [DOI: 10.1146/annurev-anthro-092611-145815] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chimpanzees are our closest living genomic relatives, but they lack the bipedal locomotion, markedly enlarged brains, and advanced communication skills of humans. This has led many to view them as “primitive” and to presume that their behavior and anatomy are also primitive. If true, they could serve as models of our last common ancestor (LCA), i.e., a territorially aggressive knuckle walker, reliant on vertical climbing and below-branch suspension to access the high canopy as a ripe-fruit frugivore. Ardipithecus now provides abundant information that the LCA differed substantially from chimpanzees (as well as bonobos and gorillas), both anatomically and behaviorally, and exhibited many characters that are more similar to those of modern humans than to any living ape. This major extension of the hominoid fossil record contravenes strict referential modeling based on the extant chimpanzee and greatly improves our ability to reconstruct the LCA more accurately, but only when viewed within the broader context of evolutionary ecology.
Collapse
Affiliation(s)
- Ken Sayers
- Language Research Center, Georgia State University, Decatur, Georgia 30034
| | - Mary Ann Raghanti
- Department of Anthropology and Division of Biomedical Sciences, Kent State University, Kent, Ohio 44242;,
| | - C. Owen Lovejoy
- Department of Anthropology and Division of Biomedical Sciences, Kent State University, Kent, Ohio 44242;,
| |
Collapse
|
92
|
Population genetic inference from personal genome data: impact of ancestry and admixture on human genomic variation. Am J Hum Genet 2012; 91:660-71. [PMID: 23040495 DOI: 10.1016/j.ajhg.2012.08.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/03/2012] [Accepted: 08/21/2012] [Indexed: 01/01/2023] Open
Abstract
Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage. Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years) African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native American ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across individuals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in admixed populations even once ancestry proportions have been factored in. We further infer that multiple periods of gene flow shaped the diversity of admixed populations in the Americas-70% of the European ancestry in today's African Americans dates back to European gene flow happening only 7-8 generations ago.
Collapse
|
93
|
Katsura Y, Iwase M, Satta Y. Evolution of genomic structures on Mammalian sex chromosomes. Curr Genomics 2012; 13:115-23. [PMID: 23024603 PMCID: PMC3308322 DOI: 10.2174/138920212799860625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/13/2011] [Accepted: 10/19/2011] [Indexed: 11/22/2022] Open
Abstract
Throughout mammalian evolution, recombination between the two sex chromosomes was suppressed in a stepwise manner. It is thought that the suppression of recombination led to an accumulation of deleterious mutations and frequent genomic rearrangements on the Y chromosome. In this article, we review three evolutionary aspects related to genomic rearrangements and structures, such as inverted repeats (IRs) and palindromes (PDs), on the mammalian sex chromosomes. First, we describe the stepwise manner in which recombination between the X and Y chromosomes was suppressed in placental mammals and discuss a genomic rearrangement that might have led to the formation of present pseudoautosomal boundaries (PAB). Second, we describe ectopic gene conversion between the X and Y chromosomes, and propose possible molecular causes. Third, we focus on the evolutionary mode and timing of PD formation on the X and Y chromosomes. The sequence of the chimpanzee Y chromosome was recently published by two groups. Both groups suggest that rapid evolution of genomic structure occurred on the Y chromosome. Our re-analysis of the sequences confirmed the species-specific mode of human and chimpanzee Y chromosomal evolution. Finally, we present a general outlook regarding the rapid evolution of mammalian sex chromosomes.
Collapse
Affiliation(s)
- Yukako Katsura
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| | | | | |
Collapse
|
94
|
Finch CE, Austad SN. Primate aging in the mammalian scheme: the puzzle of extreme variation in brain aging. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1075-91. [PMID: 22218781 PMCID: PMC3448989 DOI: 10.1007/s11357-011-9355-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 12/01/2011] [Indexed: 05/31/2023]
Abstract
At later ages, humans have high risk of developing Alzheimer disease (AD) which may afflict up to 50% by 90 years. While prosimians and monkeys show more substantial changes, the great apes brains examined show mild neurodegenerative changes. Compared with rodents, primates develop and reproduce slowly and are long lived. The New World primates contain some of the shortest as well as some of the longest-lived monkey species, while the prosimians develop the most rapidly and are the shortest lived. Great apes have the largest brains, slowest development, and longest lives among the primates. All primates share some level of slowly progressive, age-related neurodegenerative changes. However, no species besides humans has yet shown regular drastic neuron loss or cognitive decline approaching clinical grade AD. Several primates accumulate extensive deposits of diffuse amyloid-beta protein (Aβ) but only a prosimian-the gray mouse lemur-regularly develops a tauopathy approaching the neurofibrillary tangles of AD. Compared with monkeys, nonhuman great apes display even milder brain-aging changes, a deeply puzzling observation. The genetic basis for these major species differences in brain aging remains obscure but does not involve the Aβ coding sequence which is identical in nonhuman primates and humans. While chimpanzees merit more study, we note the value of smaller, shorter-lived species such as marmosets and small lemurs for aging studies. A continuing concern for all aging studies employing primates is that relative to laboratory rodents, primate husbandry is in a relatively primitive state, and better husbandry to control infections and obesity is needed for brain aging research.
Collapse
Affiliation(s)
- Caleb E Finch
- Ethel Percy Andrus Gerontology Center, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-0191,
| | | |
Collapse
|
95
|
Extremely slow rate of evolution in the HOX cluster revealed by comparison between Tanzanian and Indonesian coelacanths. Gene 2012; 505:324-32. [DOI: 10.1016/j.gene.2012.05.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 11/20/2022]
|
96
|
Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc Natl Acad Sci U S A 2012; 109:15716-21. [PMID: 22891323 DOI: 10.1073/pnas.1211740109] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fossils and molecular data are two independent sources of information that should in principle provide consistent inferences of when evolutionary lineages diverged. Here we use an alternative approach to genetic inference of species split times in recent human and ape evolution that is independent of the fossil record. We first use genetic parentage information on a large number of wild chimpanzees and mountain gorillas to directly infer their average generation times. We then compare these generation time estimates with those of humans and apply recent estimates of the human mutation rate per generation to derive estimates of split times of great apes and humans that are independent of fossil calibration. We date the human-chimpanzee split to at least 7-8 million years and the population split between Neanderthals and modern humans to 400,000-800,000 y ago. This suggests that molecular divergence dates may not be in conflict with the attribution of 6- to 7-million-y-old fossils to the human lineage and 400,000-y-old fossils to the Neanderthal lineage.
Collapse
|
97
|
Hornett EA, Wheat CW. Quantitative RNA-Seq analysis in non-model species: assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species. BMC Genomics 2012; 13:361. [PMID: 22853326 PMCID: PMC3469347 DOI: 10.1186/1471-2164-13-361] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/23/2012] [Indexed: 11/16/2022] Open
Abstract
Background How well does RNA-Seq data perform for quantitative whole gene expression analysis in the absence of a genome? This is one unanswered question facing the rapidly growing number of researchers studying non-model species. Using Homo sapiens data and resources, we compared the direct mapping of sequencing reads to predicted genes from the genome with mapping to de novo transcriptomes assembled from RNA-Seq data. Gene coverage and expression analysis was further investigated in the non-model context by using increasingly divergent genomic reference species to group assembled contigs by unique genes. Results Eight transcriptome sets, composed of varying amounts of Illumina and 454 data, were assembled and assessed. Hybrid 454/Illumina assemblies had the highest transcriptome and individual gene coverage. Quantitative whole gene expression levels were highly similar between using a de novo hybrid assembly and the predicted genes as a scaffold, although mapping to the de novo transcriptome assembly provided data on fewer genes. Using non-target species as reference scaffolds does result in some loss of sequence and expression data, and bias and error increase with evolutionary distance. However, within a 100 million year window these effect sizes are relatively small. Conclusions Predicted gene sets from sequenced genomes of related species can provide a powerful method for grouping RNA-Seq reads and annotating contigs. Gene expression results can be produced that are similar to results obtained using gene models derived from a high quality genome, though biased towards conserved genes. Our results demonstrate the power and limitations of conducting RNA-Seq in non-model species.
Collapse
Affiliation(s)
- Emily A Hornett
- Department of Biological Sciences, University of Helsinki, PL 65, Viikinkaari 1, 00014, Helsinki, Finland
| | | |
Collapse
|
98
|
Abstract
The HLA region shows diversity concerning the number and content of DRB genes present per haplotype. Similar observations are made for the equivalent regions in other primate species. To elucidate the evolutionary history of the various HLA-DRB genes, a large panel of intron sequences obtained from humans, chimpanzees, rhesus macaques, and common marmosets has been subjected to phylogenetic analyses. Special attention was paid to the presence and absence of particular transposable elements and/or to their segments. The sharing of different parts of the same long interspersed nuclear element-2 (LINE2, L2) and various Alu insertions by the species studied demonstrates that one precursor gene must have been duplicated several times before the Old World monkey (OWM) and hominid (HOM) divergence. At least four ancestral DRB gene families appear to have been present before the radiation of OWM and HOM, and one of these even predates the speciation of Old and New World primates. Two of these families represent the pseudogenes DRB6/DRB2 and DRB7, which have been locked in the genomes of various primate species over long evolutionary time spans. Furthermore, all phylogenies of different intron segments show consistently that, apart from the pseudogenes, only DRB5 genes are shared by OWM and HOM, and they demonstrate the common history of certain DRB genes/lineages of humans and chimpanzees. In contrast, the evolutionary history of some other DRB loci is difficult to decipher, thus illustrating the complex history of the evolution of DRB genes due to a combination of mutations and recombination-like events. The selected approach allowed us to shed light on the ancestral DRB gene pool in primates and on the evolutionary relationship of the various HLA-DRB genes.
Collapse
Affiliation(s)
- Gaby G M Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | | |
Collapse
|
99
|
Abstract
Recent studies indicate that Neanderthal and Denisova hominins may have been separate species, while debate continues on the status of Homo floresiensis. The decade-long debate between "splitters," who recognize over 20 hominin species, and "lumpers," who maintain that all these fossils belong to just a few lineages, illustrates that we do not know how many extinct hominin species to expect. Here, we present probability distributions for the number of speciation events and the number of contemporary species along a branch of a phylogeny. With estimates of hominin speciation and extincton rates, we then show that the expected total number of extinct hominin species is 8, but may be as high as 27. We also show that it is highly unlikely that three very recent species disappeared due to natural, background extinction. This may indicate that human-like remains are too easily considered distinct species. Otherwise, the evidence suggesting that Neanderthal and the Denisova hominin represent distinct species implies a recent wave of extinctions, ostensibly driven by the only survivor, H. sapiens.
Collapse
Affiliation(s)
- Folmer Bokma
- Department of Ecology and Environmental Science and IceLab, Umeå University, Sweden.
| | | | | |
Collapse
|
100
|
Cagliani R, Riva S, Marino C, Fumagalli M, D’Angelo MG, Riva V, Comi GP, Pozzoli U, Forni D, Cáceres M, Bresolin N, Clerici M, Sironi M. Variants in SNAP25 are targets of natural selection and influence verbal performances in women. Cell Mol Life Sci 2012; 69:1705-15. [PMID: 22193912 PMCID: PMC11114840 DOI: 10.1007/s00018-011-0896-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
Abstract
Descriptions of genes that are adaptively evolving in humans and that carry polymorphisms with an effect on cognitive performances have been virtually absent. SNAP25 encodes a presynaptic protein with a role in regulation of neurotransmitter release. We analysed the intra-specific diversity along SNAP25 and identified a region in intron 1 that shows signatures of balancing selection in humans. The estimated TMRCA (time to the most recent common ancestor) of the SNAP25 haplotype phylogeny amounted to 2.08 million years. The balancing selection signature is not secondary to demographic events or to biased gene conversion, and encompasses rs363039. This SNP has previously been associated to cognitive performances with contrasting results in different populations. We analysed this variant in two Italian cohorts in different age ranges and observed a significant genotype effect for rs363039 on verbal performances in females alone. Post hoc analysis revealed that the effect is driven by differences between heterozygotes and both homozygous genotypes. Thus, heterozygote females for rs363039 display higher verbal performances compared to both homozygotes. This finding was replicated in a cohort of Italian subjects suffering from neuromuscular diseases that do not affect cognition. Heterozygote advantage is one of the possible reasons underlying the maintenance of genetic diversity in natural populations. The observation that heterozygotes for rs363039 display higher verbal abilities compared to homozygotes perfectly fits the underlying balancing selection model. Although caution should be used in inferring selective pressures from observed signatures, SNAP25 might represent the first description of an adaptively evolving gene with a role in cognition.
Collapse
Affiliation(s)
- Rachele Cagliani
- Bioinformatic Lab, Scientific Institute IRCCS E. Medea, Via don L. Monza 20, 23842 Bosisio Parini, LC Italy
| | - Stefania Riva
- Bioinformatic Lab, Scientific Institute IRCCS E. Medea, Via don L. Monza 20, 23842 Bosisio Parini, LC Italy
| | - Cecilia Marino
- Bioinformatic Lab, Scientific Institute IRCCS E. Medea, Via don L. Monza 20, 23842 Bosisio Parini, LC Italy
| | - Matteo Fumagalli
- Bioinformatic Lab, Scientific Institute IRCCS E. Medea, Via don L. Monza 20, 23842 Bosisio Parini, LC Italy
| | - Maria Grazia D’Angelo
- Bioinformatic Lab, Scientific Institute IRCCS E. Medea, Via don L. Monza 20, 23842 Bosisio Parini, LC Italy
| | - Valentina Riva
- The Academic Centre for the Study of Behavioural Plasticity, Vita-Salute San Raffaele University, Milan, Italy
| | - Giacomo P. Comi
- Department of Neurological Sciences, Dino Ferrari Centre, University of Milan, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Uberto Pozzoli
- Bioinformatic Lab, Scientific Institute IRCCS E. Medea, Via don L. Monza 20, 23842 Bosisio Parini, LC Italy
| | - Diego Forni
- Bioinformatic Lab, Scientific Institute IRCCS E. Medea, Via don L. Monza 20, 23842 Bosisio Parini, LC Italy
| | - Mario Cáceres
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Nereo Bresolin
- Bioinformatic Lab, Scientific Institute IRCCS E. Medea, Via don L. Monza 20, 23842 Bosisio Parini, LC Italy
- Department of Neurological Sciences, Dino Ferrari Centre, University of Milan, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mario Clerici
- Chair of Immunology, Department of Biomedical Sciences and Technologies LITA Segrate, University of Milan, 20090 Milano, Italy
- Fondazione Don C. Gnocchi, IRCCS, 20148 Milano, Italy
| | - Manuela Sironi
- Bioinformatic Lab, Scientific Institute IRCCS E. Medea, Via don L. Monza 20, 23842 Bosisio Parini, LC Italy
| |
Collapse
|