51
|
Goindin D, Cannet A, Delannay C, Ramdini C, Gustave J, Atyame C, Vega-Rúa A. Screening of natural Wolbachia infection in Aedes aegypti, Aedes taeniorhynchus and Culex quinquefasciatus from Guadeloupe (French West Indies). Acta Trop 2018; 185:314-317. [PMID: 29908171 DOI: 10.1016/j.actatropica.2018.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/24/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Abstract
Guadeloupe islands are threatened by several mosquito-borne viruses such as Dengue, Chikungunya, Zika and West Nile virus. It appears essential to look for alternative mosquito control methods such as the incompatible insect technique (ITT) aiming at sterilizing wild females by inundative releases of incompatible males. Before considering the implementation of such a strategy, the characterization of genetic diversity of the endocellular bacterium Wolbachia regarding the local mosquito populations is a critical issue. Here, for the first time, we describe the prevalence and diversity of Wolbachia in natural populations of three mosquito species from Guadeloupe: Aedes aegypti, Aedes taeniorhynchus and Culex quinquefasciatus. The detection of Wolbachia in natural Ae. aegypti, Ae. taeniorhynchus and Cx. quinquefasciatus populations was conducted by studying Wolbachia 16S ribosomal RNA gene using a TaqMan quantitative real-time PCR and results were confirmed by conventional PCR and sequencing. In addition, molecular typing of wPip strains in Cx. quinquefasciatus was done by PCR-RFLP. We did not find Wolbachia infection in any of Ae. aegypti and Ae. taeniorhynchus studied populations. Natural Wolbachia infection was detected in Cx. quinquefasciatus with prevalence varying from 79.2% to 95.8%. In addition, no polymorphism was found between the Wolbachia strains infecting Cx. quinquefasciatus specimens, all carrying an infection from the same Wolbachia genetic wPip-I group. These results pave the way for the evaluation of the feasibility of IIT programs to fight against these medically-important mosquito species in Guadeloupe.
Collapse
|
52
|
Moretti R, Yen PS, Houé V, Lampazzi E, Desiderio A, Failloux AB, Calvitti M. Combining Wolbachia-induced sterility and virus protection to fight Aedes albopictus-borne viruses. PLoS Negl Trop Dis 2018; 12:e0006626. [PMID: 30020933 PMCID: PMC6066253 DOI: 10.1371/journal.pntd.0006626] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/30/2018] [Accepted: 06/21/2018] [Indexed: 11/19/2022] Open
Abstract
Among the strategies targeting vector control, the exploitation of the endosymbiont Wolbachia to produce sterile males and/or invasive females with reduced vector competence seems to be promising. A new Aedes albopictus transinfection (ARwP-M) was generated by introducing wMel Wolbachia in the ARwP line which had been established previously by replacing wAlbA and wAlbB Wolbachia with the wPip strain. Various infection and fitness parameters were studied by comparing ARwP-M, ARwP and wild-type (SANG population) Ae. albopictus sharing the same genetic background. Moreover, the vector competence of ARwP-M related to chikungunya, dengue and zika viruses was evaluated in comparison with ARwP. ARwP-M showed a 100% rate of maternal inheritance of wMel and wPip Wolbachia. Survival, female fecundity and egg fertility did not show to differ between the three Ae. albopictus lines. Crosses between ARwP-M males and SANG females were fully unfertile regardless of male age while egg hatch in reverse crosses increased from 0 to about 17% with SANG males aging from 3 to 17 days. When competing with SANG males for SANG females, ARwP-M males induced a level of sterility significantly higher than that expected for an equal mating competitiveness (mean Fried index of 1.71 instead of 1). The overall Wolbachia density in ARwP-M females was about 15 fold higher than in ARwP, mostly due to the wMel infection. This feature corresponded to a strongly reduced vector competence for chikungunya and dengue viruses (in both cases, 5 and 0% rates of transmission at 14 and 21 days post infection) with respect to ARwP females. Results regarding Zika virus did not highlight significant differences between ARwP-M and ARwP. However, none of the tested ARwP-M females was capable at transmitting ZIKV. These findings are expected to promote the exploitation of Wolbachia to suppress the wild-type Ae. albopictus populations.
Collapse
Affiliation(s)
- Riccardo Moretti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
- * E-mail:
| | - Pei-Shi Yen
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors Unit, Paris, France
| | - Vincent Houé
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors Unit, Paris, France
| | - Elena Lampazzi
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| | - Angiola Desiderio
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| | - Anna-Bella Failloux
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors Unit, Paris, France
| | - Maurizio Calvitti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| |
Collapse
|
53
|
Multi-locus phylogenetics of the Midichloria endosymbionts reveals variable specificity of association with ticks. Parasitology 2018; 145:1969-1978. [PMID: 29779502 DOI: 10.1017/s0031182018000793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Candidatus Midichloria mitochondrii is a maternally inherited bacterium of ticks with a unique intra-mitochondrial lifestyle. Here, we investigate on the evolutionary history of these associations and the degree of Midichloria-tick specificity. While previous surveys used the 16S rRNA gene as an exclusive molecular marker, we rather developed a multi-locus typing method based on four more variable housekeeping genes (groEL, rpoB, dnaK and ftsZ) and on one flagellum gene (fliC) present in Midichloria genomes. Using this method, multi-locus phylogenetic analyses revealed the structuring of a wide Midichloria genetic diversity into three distinct lineages associated with ticks. Overall, two distinct evolutionary strategies are obvious depending on lineage: two Midichloria lineages are generalists with infections acquired through horizontal transfers between distantly related tick species but one other Midichloria lineage rather show a high specificity degree to the Ixodes tick genus. This pattern suggests a capacity of certain Midichloria strains to maintain infections in only limited range of related tick species. These different infection strategies of Midichloria highlight an unexpected variability in their dependency to their tick hosts. We further conjecture that this pattern is also likely to indicate variability in their effects on ticks.
Collapse
|
54
|
Altinli M, Gunay F, Alten B, Weill M, Sicard M. Wolbachia diversity and cytoplasmic incompatibility patterns in Culex pipiens populations in Turkey. Parasit Vectors 2018; 11:198. [PMID: 29558974 PMCID: PMC5859491 DOI: 10.1186/s13071-018-2777-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/06/2018] [Indexed: 12/04/2022] Open
Abstract
Background Wolbachia are maternally transmitted bacteria that can manipulate their hosts’ reproduction causing cytoplasmic incompatibility (CI). CI is a sperm-egg incompatibility resulting in embryonic death. Due to this sterilising effect on mosquitoes, Wolbachia are considered for vector control strategies. Important vectors for arboviruses, filarial nematodes and avian malaria, mosquitoes of Culex pipiens complex are suitable for Wolbachia-based vector control. They are infected with Wolbachia wPip strains belonging to five genetically distinct groups (wPip-I to V) within the Wolbachia B supergroup. CI properties of wPip strongly correlate with this genetic diversity: mosquitoes infected with wPip strains from a different wPip group are more likely to be incompatible with each other. Turkey is a critical spot for vector-borne diseases due to its unique geographical position as a natural bridge between Asia, Europe and Africa. However, general wPip diversity, distribution and CI patterns in natural Cx. pipiens (s.l.) populations in the region are unknown. In this study, we first identified wPip diversity in Turkish Cx. pipiens (s.l.) populations, by assigning them to one of the five groups within wPip (wPip-Ito V). We further investigated CI properties between different wPip strains from this region. Results We showed a wPip fixation in Cx. pipiens (s.l.) populations in Turkey by analysing 753 samples from 59 sampling sites. Three wPip groups were detected in the region: wPip-I, wPip-II and wPip-IV. The most dominant group was wPip-II. While wPip-IV was restricted to only two locations, wPip-I and wPip-II had wider distributions. Individuals infected with wPip-II were found co-existing with individuals infected with wPip-I or wPip-IV in some sampling sites. Two mosquito isofemale lines harbouring either a wPip-I or a wPip-II strain were established from a population in northwestern Turkey. Reciprocal crosses between these lines showed that they were fully compatible with each other but bidirectionally incompatible with wPip-IV Istanbul infected line. Conclusion Our findings reveal a high diversity of wPip and CI properties in Cx. pipiens (s.l.) populations in Turkey. Knowledge on naturally occurring CI patterns caused by wPip diversity in Turkey might be useful for Cx. pipiens (s.l.) control in the region.
Collapse
Affiliation(s)
- Mine Altinli
- Institut des Sciences de l'Evolution de Montpellier (CNRS-Université de Montpellier-IRD-EPHE), Montpellier, France.
| | - Filiz Gunay
- Faculty of Sciences, Department of Biology, Division of Ecology, VERG Laboratories, Hacettepe University, Ankara, Turkey
| | - Bulent Alten
- Faculty of Sciences, Department of Biology, Division of Ecology, VERG Laboratories, Hacettepe University, Ankara, Turkey
| | - Mylene Weill
- Institut des Sciences de l'Evolution de Montpellier (CNRS-Université de Montpellier-IRD-EPHE), Montpellier, France
| | - Mathieu Sicard
- Institut des Sciences de l'Evolution de Montpellier (CNRS-Université de Montpellier-IRD-EPHE), Montpellier, France.
| |
Collapse
|
55
|
The Role of Culex pipiens L. (Diptera: Culicidae) in Virus Transmission in Europe. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020389. [PMID: 29473903 PMCID: PMC5858458 DOI: 10.3390/ijerph15020389] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/17/2022]
Abstract
Over the past three decades, a range of mosquito-borne viruses that threaten public and veterinary health have emerged or re-emerged in Europe. Mosquito surveillance activities have highlighted the Culex pipiens species complex as being critical for the maintenance of a number of these viruses. This species complex contains morphologically similar forms that exhibit variation in phenotypes that can influence the probability of virus transmission. Critical amongst these is the choice of host on which to feed, with different forms showing different feeding preferences. This influences the ability of the mosquito to vector viruses and facilitate transmission of viruses to humans and domestic animals. Biases towards blood-feeding on avian or mammalian hosts have been demonstrated for different Cx. pipiens ecoforms and emerging evidence of hybrid populations across Europe adds another level of complexity to virus transmission. A range of molecular methods based on DNA have been developed to enable discrimination between morphologically indistinguishable forms, although this remains an active area of research. This review provides a comprehensive overview of developments in the understanding of the ecology, behaviour and genetics of Cx. pipiens in Europe, and how this influences arbovirus transmission.
Collapse
|
56
|
Le Clec'h W, Dittmer J, Raimond M, Bouchon D, Sicard M. Phenotypic shift in Wolbachia virulence towards its native host across serial horizontal passages. Proc Biol Sci 2018; 284:rspb.2017.1076. [PMID: 28724736 DOI: 10.1098/rspb.2017.1076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/14/2017] [Indexed: 01/21/2023] Open
Abstract
Vertical transmission mode is predicted to decrease the virulence of symbionts. However, Wolbachia, a widespread vertically transmitted endosymbiont, exhibits both negative and beneficial effects on arthropod fitness. This 'Jekyll and Hyde' behaviour, as well as its ability to live transiently outside host cells and to establish new infections via horizontal transmission, may reflect the capacity of Wolbachia to exhibit various phenotypes depending on the prevailing environmental constraints. To study the ability of Wolbachia to readily cope with new constraints, we forced this endosymbiont to spread only via horizontal transmission. To achieve this, we performed serial horizontal transfers of haemolymph from Wolbachia-infected to naive individuals of the isopod Armadillidium vulgare. Across passages, we observed phenotypic changes in the symbiotic relationship: (i) The Wolbachia titre increased in both haemolymph and nerve cord but remained stable in ovaries; (ii) Wolbachia infection was benign at the beginning of the experiment, but highly virulent, killing most hosts after only a few passages. Such a phenotypic shift after recurrent horizontal passages demonstrates that Wolbachia can rapidly change its virulence when facing new environmental constraints. We thoroughly discuss the potential mechanism(s) underlying this phenotypic change, which are likely to be crucial for the ongoing radiation of Wolbachia in arthropods.
Collapse
Affiliation(s)
- Winka Le Clec'h
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, 78245 San Antonio, TX, USA.,CNRS UMR 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, 5 rue Albert Turpain, 86073 Poitiers, France
| | - Jessica Dittmer
- The Rowland Institute at Harvard, 100 Edwin H. Land Boulevard, Cambridge, MA 02142, USA.,CNRS UMR 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, 5 rue Albert Turpain, 86073 Poitiers, France
| | - Maryline Raimond
- CNRS UMR 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, 5 rue Albert Turpain, 86073 Poitiers, France
| | - Didier Bouchon
- CNRS UMR 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, 5 rue Albert Turpain, 86073 Poitiers, France
| | - Mathieu Sicard
- CNRS UMR 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, 5 rue Albert Turpain, 86073 Poitiers, France .,Institut des Sciences de l'Evolution de Montpellier (UMR CNRS-IRD-UM 5554), Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
57
|
Bonneau M, Atyame C, Beji M, Justy F, Cohen-Gonsaud M, Sicard M, Weill M. Culex pipiens crossing type diversity is governed by an amplified and polymorphic operon of Wolbachia. Nat Commun 2018; 9:319. [PMID: 29358578 PMCID: PMC5778026 DOI: 10.1038/s41467-017-02749-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022] Open
Abstract
Culex pipiens mosquitoes are infected with Wolbachia (wPip) that cause an important diversity of cytoplasmic incompatibilities (CIs). Functional transgenic studies have implicated the cidA-cidB operon from wPip and its homolog in wMel in CI between infected Drosophila males and uninfected females. However, the genetic basis of the CI diversity induced by different Wolbachia strains was unknown. We show here that the remarkable diversity of CI in the C. pipiens complex is due to the presence, in all tested wPip genomes, of several copies of the cidA-cidB operon, which undergoes diversification through recombination events. In 183 isofemale lines of C. pipiens collected worldwide, specific variations of the cidA-cidB gene repertoires are found to match crossing types. The diversification of cidA-cidB is consistent with the hypothesis of a toxin–antitoxin system in which the gene cidB co-diversifies with the gene cidA, particularly in putative domains of reciprocal interactions. Wolbachia causes cytoplasmic incompatibility (CI) between mosquitoes infected with different strains, but the genetic basis of observed CI diversity is unknown. Here, Bonneau et al. sequence Wolbachia from over 100 Culex pipiens lines and show that crossing types match variations of the toxin-antitoxin cidA-cidB genes.
Collapse
Affiliation(s)
- Manon Bonneau
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - Celestine Atyame
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.,Processus Infectieux en Milieu Insulaire Tropical (PIMIT), UMR CNRS-INSERM-IRD-Université de La Réunion, Sainte-Clotilde, Ile de La Réunion, 97490, France
| | - Marwa Beji
- Institut Pasteur Tunis, Laboratory of Epidemiology and Veterinary Microbiology, University of Tunis El Manar, 1068, Tunis, Tunisia
| | - Fabienne Justy
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - Martin Cohen-Gonsaud
- Centre de Biochimie Structurale (CBS), UMR CNRS-INSERM-Université de Montpellier, 29 rue de Navacelles, 34090, Montpellier, France
| | - Mathieu Sicard
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.
| | - Mylène Weill
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.
| |
Collapse
|
58
|
Nikolouli K, Colinet H, Renault D, Enriquez T, Mouton L, Gibert P, Sassu F, Cáceres C, Stauffer C, Pereira R, Bourtzis K. Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii. JOURNAL OF PEST SCIENCE 2017; 91:489-503. [PMID: 29568248 PMCID: PMC5847143 DOI: 10.1007/s10340-017-0944-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 05/27/2023]
Abstract
Drosophila suzukii, a vinegar fly originated from Southeast Asia, has recently invaded western countries, and it has been recognized as an important threat of a wide variety of several commercial soft fruits. This review summarizes the current information about the biology and dispersal of D. suzukii and discusses the current status and prospects of control methods for the management of this pest. We highlight current knowledge and ongoing research on innovative environmental-friendly control methods with emphasis on the sterile insect technique (SIT) and the incompatible insect technique (IIT). SIT has been successfully used for the containment, suppression or even eradication of populations of insect pests. IIT has been proposed as a stand-alone tool or in conjunction with SIT for insect pest control. The principles of SIT and IIT are reviewed, and the potential value of each approach in the management of D. suzukii is analyzed. We thoroughly address the challenges of SIT and IIT, and we propose the use of SIT as a component of an area-wide integrated pest management approach to suppress D. suzukii populations. As a contingency plan, we suggest a promising alternative avenue through the combination of these two techniques, SIT/IIT, which has been developed and is currently being tested in open-field trials against Aedes mosquito populations. All the potential limiting factors that may render these methods ineffective, as well as the requirements that need to be fulfilled before their application, are discussed.
Collapse
Affiliation(s)
- Katerina Nikolouli
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstrasse 5, PO Box 100, 1400 Vienna, Austria
| | - Hervé Colinet
- UMR ECOBIO CNRS 6553, Université de Rennes, 1, 263 AVE du Général Leclerc, 35042 Rennes Cedex, France
| | - David Renault
- UMR ECOBIO CNRS 6553, Université de Rennes, 1, 263 AVE du Général Leclerc, 35042 Rennes Cedex, France
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris, Cedex 05, France
| | - Thomas Enriquez
- UMR ECOBIO CNRS 6553, Université de Rennes, 1, 263 AVE du Général Leclerc, 35042 Rennes Cedex, France
| | - Laurence Mouton
- Laboratoire de Biométrie et Biologie Evolutive, Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, 69100 Villeurbanne, France
| | - Patricia Gibert
- Laboratoire de Biométrie et Biologie Evolutive, Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, 69100 Villeurbanne, France
| | - Fabiana Sassu
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstrasse 5, PO Box 100, 1400 Vienna, Austria
| | - Carlos Cáceres
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstrasse 5, PO Box 100, 1400 Vienna, Austria
| | - Christian Stauffer
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rui Pereira
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstrasse 5, PO Box 100, 1400 Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstrasse 5, PO Box 100, 1400 Vienna, Austria
| |
Collapse
|
59
|
Tmimi FZ, Bkhache M, Mounaji K, Failloux AB, Sarih M. First report of the endobacteria Wolbachia in natural populations of Culex pipiens in Morocco. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2017; 42:349-351. [PMID: 29125253 DOI: 10.1111/jvec.12275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- F Z Tmimi
- Institut Pasteur du Maroc, Service de Parasitologie et des Maladies Vectorielles, Place Louis Pasteur, Casablanca 20360, Morocco
- Faculté des Sciences Aïn Chock, Laboratoire de Physiopathologie, Biologie Moléculaire et Biotechnologie, Université Hassan II de Casablanca, Morocco
| | - M Bkhache
- Institut Pasteur du Maroc, Service de Parasitologie et des Maladies Vectorielles, Place Louis Pasteur, Casablanca 20360, Morocco
| | - K Mounaji
- Faculté des Sciences Aïn Chock, Laboratoire de Physiopathologie, Biologie Moléculaire et Biotechnologie, Université Hassan II de Casablanca, Morocco
| | - A B Failloux
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, 25-28 rue du Docteur Roux, Paris 75724, France
| | - M Sarih
- Institut Pasteur du Maroc, Service de Parasitologie et des Maladies Vectorielles, Place Louis Pasteur, Casablanca 20360, Morocco
| |
Collapse
|
60
|
Bleidorn C, Gerth M. A critical re-evaluation of multilocus sequence typing (MLST) efforts in Wolbachia. FEMS Microbiol Ecol 2017; 94:4654844. [DOI: 10.1093/femsec/fix163] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
|
61
|
Lourenço-de-Oliveira R, Marques JT, Sreenu VB, Atyame Nten C, Aguiar ERGR, Varjak M, Kohl A, Failloux AB. Culex quinquefasciatus mosquitoes do not support replication of Zika virus. J Gen Virol 2017; 99:258-264. [PMID: 29076805 DOI: 10.1099/jgv.0.000949] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The rapid spread of Zika virus (ZIKV) in the Americas raised many questions about the role of Culex quinquefasciatus mosquitoes in transmission, in addition to the key role played by the vector Aedes aegypti. Here we analysed the competence of Cx. quinquefasciatus (with or without Wolbachia endosymbionts) for a ZIKV isolate. We also examined the induction of RNA interference pathways after viral challenge and the production of small virus-derived RNAs. We did not observe any infection nor such small virus-derived RNAs, regardless of the presence or absence of Wolbachia. Thus, Cx. quinquefasciatus does not support ZIKV replication and Wolbachia is not involved in producing this phenotype. In short, these mosquitoes are very unlikely to play a role in transmission of ZIKV.
Collapse
Affiliation(s)
- Ricardo Lourenço-de-Oliveira
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
- Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - João T Marques
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha-Belo Horizonte-MG, CEP 31270-901, Brazil
| | - Vattipally B Sreenu
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Célestine Atyame Nten
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
- Present address: University of Reunion Island, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM U1187, IRD 249, Sainte-Clotilde, Reunion Island, France
| | - Eric Roberto Guimarães Rocha Aguiar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha-Belo Horizonte-MG, CEP 31270-901, Brazil
| | - Margus Varjak
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
62
|
Abstract
Vertically transmitted parasites (VTPs) such as Wolbachia are expected not only to minimize the damage they inflict on their hosts, but also to protect their hosts against the damaging effects of coinfecting parasites. By modifying the fitness costs of the infection, VTPs can therefore play an important role in the evolution and epidemiology of infectious diseases.Using a natural system, we explore the effects of a Wolbachia-Plasmodium co-infection on mosquito fecundity. While Plasmodium is known to frequently express its virulence by partially castrating its mosquito vectors, the effects of Wolbachia infections on mosquito fecundity are, in contrast, highly variable. Here, we show that Plasmodium drastically decreases the fecundity of mosquitoes by ca. 20%, and we provide the first evidence that this decrease is independent of the parasite's burden. Wolbachia, on the other hand, increases fecundity by roughly 10%, but does not alter the tolerance (fecundity-burden relationship) of mosquitoes to Plasmodium infection.Although Wolbachia-infected mosquitoes fare overall better than uninfected ones, Wolbachia does not confer a sufficiently high reproductive boost to mosquitoes to compensate for the reproductive losses inflicted by Plasmodium. We discuss the potential mechanisms and implications underlying the conflicting effects of these two parasites on mosquito reproduction.
Collapse
|
63
|
Minard G, Tran Van V, Tran FH, Melaun C, Klimpel S, Koch LK, Ly Huynh Kim K, Huynh Thi Thuy T, Tran Ngoc H, Potier P, Mavingui P, Valiente Moro C. Identification of sympatric cryptic species of Aedes albopictus subgroup in Vietnam: new perspectives in phylosymbiosis of insect vector. Parasit Vectors 2017; 10:276. [PMID: 28577575 PMCID: PMC5457575 DOI: 10.1186/s13071-017-2202-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/17/2017] [Indexed: 11/16/2022] Open
Abstract
Background The Aedes (Stegomyia) albopictus subgroup includes 11 cryptic species of which Ae. albopictus is the most widely distributed. Its global expansion associated with a documented vector competence for several emerging arboviruses raise obvious concerns in the recently colonized regions. While several studies have provided important insights regarding medical importance of Ae. albopicus, the investigations of the other sibling species are scarce. In Asia, indigenous populations within the Ae. albopictus subgroup can be found in sympatry. In the present study, we aimed to describe and compare molecular, morphological and bacterial symbionts composition among sympatric individuals from the Ae. albopictus subgroup inhabiting a Vietnamese protected area. Results Based on morphological structure of the cibarial armarture, we identified a cryptic species in the forest park at Bù Gia Mập in the south-eastern region of Vietnam. Analysis of nuclear (ITS1-5.8S-ITS2) and mitochondrial (cox1, nad5) markers confirmed the divergence between the cryptic species and Ae. albopictus. Analysis of midgut bacterial microbiota revealed a strong similarity among the two species with a notable difference; contrary to Ae. albopictus, the cryptic species did not harbour any Wolbachia infection. Conclusions These results could reflect either a recent invasion of Wolbachia in Ae. albopictus or alternatively a loss of this symbiont in the cryptic species. We argue that neglected species of the Ae. albopictus subgroup are of main importance in order to estimate variation of host-symbionts interactions across evolution. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2202-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guillaume Minard
- Université de Lyon, Lyon, France. .,Université Lyon 1, Villeurbanne, France. .,CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France. .,INRA, UMR1418, Villeurbanne, France. .,Metapopulation Research Center, Department of Biosciences, University of Helsinki, Helsinki, Finland.
| | - Van Tran Van
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France
| | - Florence Hélène Tran
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France
| | - Christian Melaun
- Institute for Ecology, Evolution and Diversity, Goethe-University, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe-University, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Lisa Katharina Koch
- Institute for Ecology, Evolution and Diversity, Goethe-University, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Khanh Ly Huynh Kim
- Department of Medical Entomology and Zoonotics, Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Trang Huynh Thi Thuy
- Department of Medical Entomology and Zoonotics, Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huu Tran Ngoc
- Department of Medical Entomology and Zoonotics, Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Patrick Potier
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France
| | - Patrick Mavingui
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France.,Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Claire Valiente Moro
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France
| |
Collapse
|
64
|
Novakova E, Woodhams DC, Rodríguez-Ruano SM, Brucker RM, Leff JW, Maharaj A, Amir A, Knight R, Scott J. Mosquito Microbiome Dynamics, a Background for Prevalence and Seasonality of West Nile Virus. Front Microbiol 2017; 8:526. [PMID: 28421042 PMCID: PMC5378795 DOI: 10.3389/fmicb.2017.00526] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/13/2017] [Indexed: 11/13/2022] Open
Abstract
Symbiotic microbial communities augment host phenotype, including defense against pathogen carriage and infection. We sampled the microbial communities in 11 adult mosquito host species from six regions in southern Ontario, Canada over 3 years. Of the factors examined, we found that mosquito species was the largest driver of the microbiota, with remarkable phylosymbiosis between host and microbiota. Seasonal shifts of the microbiome were consistently repeated over the 3-year period, while region had little impact. Both host species and seasonal shifts in microbiota were associated with patterns of West Nile virus (WNV) in these mosquitoes. The highest prevalence of WNV, with a seasonal spike each year in August, was in the Culex pipiens/restuans complex, and high WNV prevalence followed a decrease in relative abundance of Wolbachia in this species. Indeed, mean temperature, but not precipitation, was significantly correlated with Wolbachia abundance. This suggests that at higher temperatures Wolbachia abundance is reduced leading to greater susceptibility to WNV in the subsequent generation of C. pipiens/restuans hosts. Different mosquito genera harbored significantly different bacterial communities, and presence or abundance of Wolbachia was primarily associated with these differences. We identified several operational taxonomic units (OTUs) of Wolbachia that drive overall microbial community differentiation among mosquito taxa, locations and timepoints. Distinct Wolbachia OTUs were consistently found to dominate microbiomes of Cx. pipiens/restuans, and of Coquilletidia perturbans. Seasonal fluctuations of several other microbial taxa included Bacillus cereus, Enterococcus, Methylobacterium, Asaia, Pantoea, Acinetobacter johnsonii, Pseudomonas, and Mycoplasma. This suggests that microbiota may explain some of the variation in vector competence previously attributed to local environmental processes, especially because Wolbachia is known to affect carriage of viral pathogens.
Collapse
Affiliation(s)
- Eva Novakova
- Faculty of Science, University of South BohemiaCeske Budejovice, Czechia.,Biology Centre of ASCR, Institute of ParasitologyCeske Budejovice, Czechia
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts BostonBoston, MA, USA
| | | | | | - Jonathan W Leff
- Cooperative Institute for Research in Environmental Sciences, University of ColoradoBoulder, CO, USA.,Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| | | | - Amnon Amir
- Department of Computer Science and Engineering, Center for Microbiome Innovation, University of California San DiegoLa Jolla, CA, USA
| | - Rob Knight
- Department of Computer Science and Engineering, Center for Microbiome Innovation, University of California San DiegoLa Jolla, CA, USA.,Department of Pediatrics, University of California San DiegoLa Jolla, CA, USA
| | - James Scott
- Sporometrics IncToronto, ON, Canada.,Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of TorontoToronto, ON, Canada
| |
Collapse
|
65
|
Muturi EJ, Ramirez JL, Rooney AP, Kim CH. Comparative analysis of gut microbiota of mosquito communities in central Illinois. PLoS Negl Trop Dis 2017; 11:e0005377. [PMID: 28245239 PMCID: PMC5345876 DOI: 10.1371/journal.pntd.0005377] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 03/10/2017] [Accepted: 02/01/2017] [Indexed: 11/19/2022] Open
Abstract
Background The composition and structure of microbial communities that inhabit the mosquito midguts are poorly understood despite their well-documented potential to impede pathogen transmission. Methodology/Principal findings We used MiSeq sequencing of the 16S rRNA gene to characterize the bacterial communities of field-collected populations of 12 mosquito species. After quality filtering and rarefaction, the remaining sequences were assigned to 181 operational taxonomic units (OTUs). Approximately 58% of these OTUs occurred in at least two mosquito species but only three OTUs: Gluconobacter (OTU 1), Propionibacterium (OTU 9), and Staphylococcus (OTU 31) occurred in all 12 mosquito species. Individuals of different mosquito species shared similar gut microbiota and it was common for individuals of the same species from the same study site and collection date to harbor different gut microbiota. On average, the microbiota of Aedes albopictus was the least diverse and significantly less even compared to Anopheles crucians, An. quadrimaculatus, Ae. triseriatus, Ae. vexans, Ae. japonicus, Culex restuans, and Culiseta inornata. The microbial community of Cx. pipiens and Ae. albopictus differed significantly from all other mosquitoes species and was primarily driven by the dominance of Wolbachia. Conclusion and significance These findings expand the range of mosquito species whose gut microbiota has been characterized and sets the foundation for further studies to determine the influence of these microbiota on vector susceptibility to pathogens. The microbial communities that reside in mosquito midguts can impact transmission of mosquito-borne pathogens. We used high throughput next generation sequencing to characterize the midgut microbial communities of 12 mosquito species collected in urban residential areas in Champaign County, Illinois. A total of 181 OTUs from 11 phyla and 66 families were identified. Although several bacterial taxa were shared between two or more mosquito species, there was remarkable individual differences in gut microbiota and it was common for individuals of different mosquito species to harbor similar gut microbiota. The microbiota of Ae. albopictus was the least diverse and significantly less evenly distributed compared to 7 of 11 mosquito species. The microbial community of Cx. pipiens and Ae. albopictus differed significantly from other mosquito species and was primarily dominated by Wolbachia. These findings improve current knowledge on the composition and structure of mosquito gut microbiota and provide the framework for understanding their contribution to individual variation in vector competence and potential application in disease control.
Collapse
Affiliation(s)
- Ephantus J. Muturi
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL United States of America
- * E-mail: ,
| | - Jose L. Ramirez
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL United States of America
| | - Alejandro P. Rooney
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL United States of America
| | - Chang-Hyun Kim
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign IL. United States of America
| |
Collapse
|
66
|
Comparative genomics provides a timeframe for Wolbachia evolution and exposes a recent biotin synthesis operon transfer. Nat Microbiol 2016; 2:16241. [PMID: 28005061 DOI: 10.1038/nmicrobiol.2016.241] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/29/2016] [Indexed: 11/08/2022]
Abstract
The genus Wolbachia (Alphaproteobacteria) comprises the most abundant inherited intracellular bacteria1. Despite their relevance as manipulators of human pathogen transmission2 and arthropod reproduction3, many aspects of their evolutionary history are not well understood4. In arthropods, Wolbachia infections are typically transient on evolutionary timescales5,6 and co-divergence between hosts and Wolbachia is supposedly rare. Consequently, much of our knowledge of Wolbachia genome evolution derives from very recently diverged strains, and a timescale for Wolbachia is lacking. Here, we investigated the genomes of four Wolbachia strains that have persisted within and co-diverged with their host lineage for ∼2 million years. Although the genomes showed very little evolutionary change on a nucleotide level, we found evidence for a recent lateral transfer of a complete biotin synthesis operon that has the potential to transform Wolbachia-host relationships7. Furthermore, this evolutionary snapshot enabled us to calibrate the divergence times of the supergroup A and B Wolbachia lineages using genome-wide data sets and relaxed molecular clock models. We estimated the origin of Wolbachia supergroups A and B to be ∼200 million years ago (Ma), which is considerably older than previously appreciated. This age coincides with the diversification of many insect lineages8 that represent most of Wolbachia's host spectrum.
Collapse
|
67
|
Dumas E, Atyame CM, Malcolm CA, Le Goff G, Unal S, Makoundou P, Pasteur N, Weill M, Duron O. Molecular data reveal a cryptic species within the Culex pipiens mosquito complex. INSECT MOLECULAR BIOLOGY 2016; 25:800-809. [PMID: 27591564 DOI: 10.1111/imb.12264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Culex pipiens mosquito complex is a group of evolutionarily closely related species including C. pipiens and Culex quinquefasciatus, both infected by the cytoplasmically inherited Wolbachia symbiont. A Wolbachia-uninfected population of C. pipiens was however described in South Africa and was recently proposed to represent a cryptic species. In this study, we reconsidered the existence of this species by undertaking an extensive screening for the presence of Wolbachia-uninfected C. pipiens specimens and by characterizing their genetic relatedness with known members of the complex. We first report on the presence of Wolbachia-uninfected specimens in several breeding sites. We next confirm that these uninfected specimens unambiguously belong to the C. pipiens complex. Remarkably, all uninfected specimens harbour mitochondrial haplotypes that are either novel or identical to those previously found in South Africa. In all cases, these mitochondrial haplotypes are closely related, but different, to those found in other C. pipiens complex members known to be infected by Wolbachia. Altogether, these results corroborate the presence of a widespread cryptic species within the C. pipiens species complex. The potential role of this cryptic C. pipiens species in the transmission of pathogens remains however to be determined. The designation 'Culex juppi nov. sp.' is proposed for this mosquito species.
Collapse
Affiliation(s)
- E Dumas
- Institut des Sciences de l'Evolution, Univ. Montpellier, CNRS, Montpellier, France
| | - C M Atyame
- Institut des Sciences de l'Evolution, Univ. Montpellier, CNRS, Montpellier, France
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors, Paris, France
| | - C A Malcolm
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK
| | - G Le Goff
- UMR MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), IRD 224, CNRS 5290, Univ. Montpellier, Montpellier, France
| | - S Unal
- Institut des Sciences de l'Evolution, Univ. Montpellier, CNRS, Montpellier, France
| | - P Makoundou
- Institut des Sciences de l'Evolution, Univ. Montpellier, CNRS, Montpellier, France
| | - N Pasteur
- Institut des Sciences de l'Evolution, Univ. Montpellier, CNRS, Montpellier, France
| | - M Weill
- Institut des Sciences de l'Evolution, Univ. Montpellier, CNRS, Montpellier, France
| | - O Duron
- Institut des Sciences de l'Evolution, Univ. Montpellier, CNRS, Montpellier, France
- UMR MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), IRD 224, CNRS 5290, Univ. Montpellier, Montpellier, France
| |
Collapse
|
68
|
Coon KL, Brown MR, Strand MR. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol Ecol 2016; 25:5806-5826. [PMID: 27718295 PMCID: PMC5118126 DOI: 10.1111/mec.13877] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 12/31/2022]
Abstract
Mosquitoes are insects of interest because several species vector disease-causing pathogens to humans and other vertebrates. We previously reported that mosquitoes from long-term laboratory cultures require living bacteria in their gut to develop, but development does not depend on particular species of bacteria. Here, we focused on three distinct but interrelated areas of study to better understand the role of bacteria in mosquito development by studying field and laboratory populations of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from the southeastern United States. Sequence analysis of bacterial 16S rRNA gene amplicons showed that bacterial community composition differed substantially in larvae from different collection sites, whereas larvae from the same site shared similarities. Although previously unknown to be infected by Wolbachia, results also indicated that Ae. aegypti from one field site hosted a dual infection. Regardless of collection site or factors like Wolbachia infection, however, each mosquito species required living bacteria in their digestive tract to develop. Results also identified several concerns in using antibiotics to eliminate the bacterial community in larvae in order to study its developmental consequences. Altogether, our results indicate that several mosquito species require living bacteria for development. We also hypothesize these species do not rely on particular bacteria because larvae do not reliably encounter the same bacteria in the aquatic habitats they develop in.
Collapse
Affiliation(s)
- Kerri L Coon
- Department of Entomology, University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Mark R Brown
- Department of Entomology, University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| |
Collapse
|
69
|
DE Pinho Mixão V, Mendes AM, Maurício IL, Calado MM, Novo MT, Belo S, Almeida APG. Molecular detection of Wolbachia pipientis in natural populations of mosquito vectors of Dirofilaria immitis from continental Portugal: first detection in Culex theileri. MEDICAL AND VETERINARY ENTOMOLOGY 2016; 30:301-309. [PMID: 27279553 DOI: 10.1111/mve.12179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/07/2016] [Accepted: 03/15/2016] [Indexed: 06/06/2023]
Abstract
Wolbachia pipientis (Rickettsiales: Rickettsiaceae) protects mosquitoes from infections with arboviruses and parasites. However, the effect of its co-infection on vector competence for Dirofilaria immitis (Spirurida: Onchocercidae) in the wild has not been investigated. This study aimed to screen vectors of D. immitis for wPip, to characterize these, and to investigate a possible association between the occurrence of W. pipientis and that of the nematode. The presence of W. pipientis was assessed in the five mosquito potential vectors of D. immitis in Portugal. Polymerase chain reaction (PCR) products were sequenced, and wPip haplotypes were determined by PCR-restricted fragment length polymorphism (RFLP). Results showed that wPip was detected in 61.5% of Culex pipiens (Diptera: Culicidae) pools and 6.3% of Culex theileri pools. wPip 16s rRNA sequences found in Cx. theileri exactly match those from Cx. pipiens, confirming a mosquito origin, rather than a nematode origin, as some specimens were infected with D. immitis. Only wPip haplotype I was found. No association was found between the presence of wPip and D. immitis in mosquitoes and hence a role for this endosymbiont in influencing vectorial competence is yet to be identified. This study contributes to understanding of wPip distribution in mosquito populations and, to the best of the authors' knowledge, is the first report of natural infections by wPip in Cx. theileri.
Collapse
Affiliation(s)
- V DE Pinho Mixão
- Global Health and Tropical Medicine, GHTM, UEI Medical Parasitology, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - A M Mendes
- Global Health and Tropical Medicine, GHTM, UEI Medical Parasitology, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - I L Maurício
- Global Health and Tropical Medicine, GHTM, UEI Medical Parasitology, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - M M Calado
- Global Health and Tropical Medicine, GHTM, UEI Medical Parasitology, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - M T Novo
- Global Health and Tropical Medicine, GHTM, UEI Medical Parasitology, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - S Belo
- Global Health and Tropical Medicine, GHTM, UEI Medical Parasitology, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - A P G Almeida
- Global Health and Tropical Medicine, GHTM, UEI Medical Parasitology, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
- Department of Medical Virology, Faculty of Health Sciences, Zoonosis Research Unit, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
70
|
Zhang X, Kang Z, Mao M, Li X, Cameron SL, de Jong H, Wang M, Yang D. Comparative Mt Genomics of the Tipuloidea (Diptera: Nematocera: Tipulomorpha) and Its Implications for the Phylogeny of the Tipulomorpha. PLoS One 2016; 11:e0158167. [PMID: 27341029 PMCID: PMC4920351 DOI: 10.1371/journal.pone.0158167] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/10/2016] [Indexed: 11/18/2022] Open
Abstract
A traditionally controversial taxon, the Tipulomorpha has been frequently discussed with respect to both its familial composition and relationships with other Nematocera. The interpretation of internal relationships within the Tipuloidea, which include the Tipulidae sensu stricto, Cylindrotomidae, Pediciidae and Limoniidae, is also problematic. We sequenced the first complete mitochondrial (mt) genome of Symplecta hybrida (Meigen, 1804), which belongs to the subfamily Chioneinae of family Limoniidae, and another five nearly complete mt genomes from the Tipuloidea. We did a comparative analysis of these mt genomics and used them, along with some other representatives of the Nematocera to construct phylogenetic trees. Trees inferred by Bayesian methods strongly support a sister-group relationship between Trichoceridae and Tipuloidea. Tipulomorpha are not supported as the earliest branch of the Diptera. Furthermore, phylogenetic trees indicate that the family Limoniidae is a paraphyletic group.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Zehui Kang
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Meng Mao
- Centre for Medical Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xuankun Li
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Stephen L. Cameron
- Earth, Environmental & Biological Sciences School, Science & Engineering Faculty, Queensland University of Technology, Brisbane, Australia
| | - Herman de Jong
- Naturalis Biodiversity Center Darwinweg 2, 2333 CR, Leiden, The Netherlands
| | - Mengqing Wang
- Department of Entomology, China Agricultural University, Beijing, 100193, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ding Yang
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
71
|
Mondo SJ, Salvioli A, Bonfante P, Morton JB, Pawlowska TE. Nondegenerative Evolution in Ancient Heritable Bacterial Endosymbionts of Fungi. Mol Biol Evol 2016; 33:2216-31. [DOI: 10.1093/molbev/msw086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
72
|
Sun JX, Guo Y, Zhang X, Zhu WC, Chen YT, Hong XY. Effects of host interaction withWolbachiaon cytoplasmic incompatibility in the two-spotted spider miteTetranychus urticae. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jian-Xin Sun
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Yan Guo
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Xu Zhang
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Wen-Chao Zhu
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Ya-Ting Chen
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Xiao-Yue Hong
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| |
Collapse
|
73
|
Schuler H, Köppler K, Daxböck-Horvath S, Rasool B, Krumböck S, Schwarz D, Hoffmeister TS, Schlick-Steiner BC, Steiner FM, Telschow A, Stauffer C, Arthofer W, Riegler M. The hitchhiker's guide to Europe: the infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi. Mol Ecol 2016; 25:1595-609. [PMID: 26846713 PMCID: PMC4950298 DOI: 10.1111/mec.13571] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 01/25/2016] [Indexed: 01/30/2023]
Abstract
Wolbachia is a maternally inherited and ubiquitous endosymbiont of insects. It can hijack host reproduction by manipulations such as cytoplasmic incompatibility (CI) to enhance vertical transmission. Horizontal transmission of Wolbachia can also result in the colonization of new mitochondrial lineages. In this study, we present a 15‐year‐long survey of Wolbachia in the cherry fruit fly Rhagoletis cerasi across Europe and the spatiotemporal distribution of two prevalent strains, wCer1 and wCer2, and associated mitochondrial haplotypes in Germany. Across most of Europe, populations consisted of either 100% singly (wCer1) infected individuals with haplotype HT1, or 100% doubly (wCer1&2) infected individuals with haplotype HT2, differentiated only by a single nucleotide polymorphism. In central Germany, singly infected populations were surrounded by transitional populations, consisting of both singly and doubly infected individuals, sandwiched between populations fixed for wCer1&2. Populations with fixed infection status showed perfect association of infection and mitochondria, suggesting a recent CI‐driven selective sweep of wCer2 linked with HT2. Spatial analysis revealed a range expansion for wCer2 and a large transition zone in which wCer2 splashes appeared to coalesce into doubly infected populations. Unexpectedly, the transition zone contained a large proportion (22%) of wCer1&2 individuals with HT1, suggesting frequent intraspecific horizontal transmission. However, this horizontal transmission did not break the strict association between infection types and haplotypes in populations outside the transition zone, suggesting that this horizontally acquired Wolbachia infection may be transient. Our study provides new insights into the rarely studied Wolbachia invasion dynamics in field populations.
Collapse
Affiliation(s)
- Hannes Schuler
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Hasenauerstr. 38, 1190, Vienna, Austria.,Faculty of Science and Technology, Free University of Bozen-Bolzano, Universitätsplatz 1, 39100, Bozen-Bolzano, Italy.,Department of Biological Sciences, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kirsten Köppler
- Center for Agricultural Technology Augustenberg, Nesslerstr. 23-31, 76227, Karlsruhe, Germany
| | - Sabine Daxböck-Horvath
- Department of Crop Sciences, Boku, University of Natural Resources and Life Sciences, Peter-Jordan-Str. 82, 1190, Vienna, Austria
| | - Bilal Rasool
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Hasenauerstr. 38, 1190, Vienna, Austria.,Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.,School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Susanne Krumböck
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Hasenauerstr. 38, 1190, Vienna, Austria
| | - Dietmar Schwarz
- Department of Biology, Western Washington University, 510 High Street, MS 9160, Bellingham, WA, 98225, USA
| | - Thomas S Hoffmeister
- Institute of Ecology, Faculty Biology/Chemistry, University of Bremen, Leobener Str. NW2, B4040, 28359, Bremen, Germany
| | | | - Florian M Steiner
- Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Arndt Telschow
- Institute for Evolution and Biodiversity, Westfalian Wilhelms-University Münster, Hüfferstr. 1, 48149, Münster, Germany
| | - Christian Stauffer
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Hasenauerstr. 38, 1190, Vienna, Austria
| | - Wolfgang Arthofer
- Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
74
|
Shaikevich EV, Vinogradova EB, Bouattour A, Gouveia de Almeida AP. Genetic diversity of Culex pipiens mosquitoes in distinct populations from Europe: contribution of Cx. quinquefasciatus in Mediterranean populations. Parasit Vectors 2016; 9:47. [PMID: 26818097 PMCID: PMC4730663 DOI: 10.1186/s13071-016-1333-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/20/2016] [Indexed: 12/28/2022] Open
Abstract
Background Mosquitoes of the Culex pipiens complex are cosmopolitan, and important vectors of neglected tropical diseases, such as arbovirosis and lymphatic filariasis. Among the complex taxa, Cx. pipiens (with two forms pipiens and molestus) and Cx. quinquefasciatus are the most ubiquitous mosquitoes in temperate and tropical regions respectively. Mosquitoes of this taxa lack of morphological differences between females, but have frank behavioral and physiological differences and have different trophic preferences that influence their vectorial status. Hybridization may change the vectorial capacity of these mosquitoes, increasing vector efficiency and medical importance of resulting hybrids. Methods Culex pipiens s.l. from 35 distinct populations were investigated by the study of mtDNA, symbiotic bacterium Wolbachia pipientis, nuclear DNA and flanking region of microsatellite CQ11 polymorphism using PCR with diagnostic primers, RFLP analysis and sequencing. Results Six different mitochondrial haplotypes were revealed by sequencing of the cytochrome oxidase subunit I (COI) gene and three different Wolbachia (wPip) groups were identified. A strong association was observed between COI haplotypes/groups, wPip groups and taxa; haplogroup A and infection with wPipII appear to be typical for Cx. pipiens form pipiens, haplotype D and infection with wPipIV for form molestus, while haplogroup E, characteristic of Cx. quinquefasciatus, were correlated with wPipI and found in Cx. pipiens sl. from coastal regions of Southern Europe and Mediterranean region. Analysis of microsatellite locus and nuclear DNA revealed hybrids between Cx. pipiens form pipiens and form molestus, as well as between Cx. pipiens and Cx. quinquefasciatus, in Mediterranean populations, as opposed to Northern Europe. Phylogenetic analysis of COI sequences yielded a tree topology that supported the RFLP analysis with significant bootstrap values for haplotype D and haplogroup E. Conclusions Molecular identification provides the first evidence of the presence of hybrids between Cx. quinquefasciatus and Cx. pipiens as well as cytoplasmic introgression of Cx. quinquefasciatus into Cx. pipiens as a result of hybridization events in coastal regions of Southern Europe and Mediterranean region. Together with observed hybrids between pipiens and molestus forms, these findings point to the presence of hybrids in these areas, with consequent higher potential for disease transmission. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1333-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena V Shaikevich
- N.I. Vavilov Institute of General Genetics, ul. Gubkina 3, 119991, Moscow, Russia.
| | - Elena B Vinogradova
- Zoological Institute, Russian Academy of Sciences, University Embankment 1, 199034, St. Petersburg, Russia.
| | - Ali Bouattour
- Laboratoire d'Epidémiologie et de Microbiologie Vétérinaire, Service d'Entomologie Médicale, Institut Pasteur de Tunis- Tunis El Manar University, Tunis, Tunisia.
| | - António Paulo Gouveia de Almeida
- Global Health and Tropical Medicine, GHTM, Medical Parasitology Unit, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal. .,Extraordinary professor at ZRU, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
75
|
Klopfstein S, Kropf C, Baur H. Wolbachiaendosymbionts distort DNA barcoding in the parasitoid wasp genusDiplazon(Hymenoptera: Ichneumonidae). Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12380] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Seraina Klopfstein
- Department of Invertebrates; Naturhistorisches Museum der Burgergemeinde Bern; Bernastrasse 15 CH-3005 Bern Switzerland
- Division of Community Ecology; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 7 3012 Bern Switzerland
| | - Christian Kropf
- Department of Invertebrates; Naturhistorisches Museum der Burgergemeinde Bern; Bernastrasse 15 CH-3005 Bern Switzerland
- Division of Community Ecology; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 7 3012 Bern Switzerland
| | - Hannes Baur
- Department of Invertebrates; Naturhistorisches Museum der Burgergemeinde Bern; Bernastrasse 15 CH-3005 Bern Switzerland
- Division of Community Ecology; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 7 3012 Bern Switzerland
| |
Collapse
|
76
|
Atyame CM, Labbé P, Lebon C, Weill M, Moretti R, Marini F, Gouagna LC, Calvitti M, Tortosa P. Comparison of Irradiation and Wolbachia Based Approaches for Sterile-Male Strategies Targeting Aedes albopictus. PLoS One 2016; 11:e0146834. [PMID: 26765951 PMCID: PMC4713058 DOI: 10.1371/journal.pone.0146834] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/21/2015] [Indexed: 12/26/2022] Open
Abstract
The global expansion of Aedes albopictus together with the absence of vaccines for most of the arboviruses transmitted by this mosquito has stimulated the development of sterile-male strategies aiming at controlling disease transmission through the suppression of natural vector populations. In this context, two environmentally friendly control strategies, namely the Sterile Insect Technique (SIT) and the Wolbachia-based Incompatible Insect Technique (IIT) are currently being developed in several laboratories worldwide. So far however, there is a lack of comparative assessment of these strategies under the same controlled conditions. Here, we compared the mating capacities, i.e. insemination capacity, sterilization capacity and mating competitiveness of irradiated (35 Gy) and incompatible Ae. albopictus males at different ages and ratios under laboratory controlled conditions. Our data show that there was no significant difference in insemination capacity of irradiated and incompatible males, both male types showing lower capacities than untreated males at 1 day but recovering full capacity within 5 days following emergence. Regarding mating competitiveness trials, a global observed trend is that incompatible males tend to induce a lower hatching rate than irradiated males in cage controlled confrontations. More specifically, incompatible males were found more competitive than irradiated males in 5:1 ratio regardless of age, while irradiated males were only found more competitive than incompatible males in the 1:1 ratio at 10 days old. Overall, under the tested conditions, IIT seemed to be slightly more effective than SIT. However, considering that a single strategy will likely not be adapted to all environments, our data stimulates the need for comparative assessments of distinct strategies in up-scaled conditions in order to identify the most suitable and safe sterilizing technology to be implemented in a specific environmental setting and to identify the parameters requiring fine tuning in order to reach optimal release conditions.
Collapse
Affiliation(s)
- Célestine M. Atyame
- CRVOI, Ste Clotilde, Plateforme de Recherche CYROI, Réunion Island, France
- Unité Mixte de Recherche «Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT)», INSERM 1187, CNRS 9192, IRD 249, Université de La Réunion. Plateforme de Recherche CYROI. Ste Clotilde, Réunion Island, France
- * E-mail:
| | - Pierrick Labbé
- CNRS, IRD, ISEM - UMR 5554, Université de Montpellier, Montpellier, France
| | - Cyrille Lebon
- CRVOI, Ste Clotilde, Plateforme de Recherche CYROI, Réunion Island, France
- Unité Mixte de Recherche MIVEGEC (IRD 224, CNRS 5290, UM1-UM2), Montpellier, France
| | - Mylène Weill
- CNRS, IRD, ISEM - UMR 5554, Université de Montpellier, Montpellier, France
| | - Riccardo Moretti
- ENEA, CR Casaccia, Biotecnologies and Agro-industry Division, Roma, Italy
| | - Francesca Marini
- ENEA, CR Casaccia, Biotecnologies and Agro-industry Division, Roma, Italy
| | - Louis Clément Gouagna
- CRVOI, Ste Clotilde, Plateforme de Recherche CYROI, Réunion Island, France
- Unité Mixte de Recherche MIVEGEC (IRD 224, CNRS 5290, UM1-UM2), Montpellier, France
| | - Maurizio Calvitti
- ENEA, CR Casaccia, Biotecnologies and Agro-industry Division, Roma, Italy
| | - Pablo Tortosa
- CRVOI, Ste Clotilde, Plateforme de Recherche CYROI, Réunion Island, France
- Unité Mixte de Recherche «Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT)», INSERM 1187, CNRS 9192, IRD 249, Université de La Réunion. Plateforme de Recherche CYROI. Ste Clotilde, Réunion Island, France
| |
Collapse
|
77
|
Hoffmann AA, Ross PA, Rašić G. Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl 2015; 8:751-68. [PMID: 26366194 PMCID: PMC4561566 DOI: 10.1111/eva.12286] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/02/2015] [Indexed: 12/15/2022] Open
Abstract
Wolbachia are endosymbionts found in many insects with the potential to suppress vectorborne diseases, particularly through interfering with pathogen transmission. Wolbachia strains are highly variable in their effects on hosts, raising the issue of which attributes should be selected to ensure that the best strains are developed for disease control. This depends on their ability to suppress viral transmission, invade host populations, persist without loss of viral suppression and not interfere with other control strategies. The potential to achieve these objectives is likely to involve evolutionary constraints; viral suppression may be limited by the ability of infections to spread due to deleterious host fitness effects. However, there are exceptions to these patterns in both natural infections and in novel associations generated following interspecific transfer, suggesting that pathogen blockage, deleterious fitness effects and changes to reproductive biology might be at least partly decoupled to achieve ideal infection attributes. The stability of introduced Wolbachia and its effects on viral transmission remain unclear, but rapid evolutionary changes seem unlikely. Although deliberate transfers of Wolbachia across species remain particularly challenging, the availability of strains with desirable attributes should be expanded, taking advantage of the diversity available across thousands of strains in natural populations.
Collapse
Affiliation(s)
- Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne Parkville, Vic., Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne Parkville, Vic., Australia
| | - Gordana Rašić
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne Parkville, Vic., Australia
| |
Collapse
|
78
|
Atyame CM, Cattel J, Lebon C, Flores O, Dehecq JS, Weill M, Gouagna LC, Tortosa P. Wolbachia-based population control strategy targeting Culex quinquefasciatus mosquitoes proves efficient under semi-field conditions. PLoS One 2015; 10:e0119288. [PMID: 25768841 PMCID: PMC4359102 DOI: 10.1371/journal.pone.0119288] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/12/2015] [Indexed: 11/18/2022] Open
Abstract
In mosquitoes, the maternally inherited bacterial Wolbachia induce a form of embryonic lethality called cytoplasmic incompatibility (CI). This property can be used to reduce the density of mosquito field populations through inundative releases of incompatible males in order to sterilize females (Incompatible Insect Technique, or IIT, strategy). We have previously constructed the LR[wPip(Is)] line representing a good candidate for controlling field populations of the Culex quinquefasciatus mosquito in the islands of the south-western Indian Ocean. The main purpose of the present study was to fill the gap between laboratory experiments and field implementation, i.e. assessing mating competitiveness of these incompatible males under semi-field conditions. In a first set of experiments, we analyzed crossing relationships between LR[wPip(Is)] males and La Réunion field females collected as larvae in 19 distinct localities throughout the island. This investigation revealed total embryonic mortality, confirming the strong sterilizing capacity of LR[wPip(Is)] males. Subsequently, mating competitiveness of LR[wPip(Is)] males was assessed under semi-field conditions in the presence of field males and females from La Réunion. Confrontations were carried out in April and December using different ratios of LR[wPip(Is)] to field males. The results indicated that the LR[wPip(Is)] males successfully compete with field males in mating with field females, displaying even higher competitiveness than field males in April. Our results support the implementation of small-scale field tests in order to assess the feasibility of IIT against Cx. quinquefasciatus in the islands of southwestern Indian Ocean where this mosquito species is a proven competent vector for human pathogens.
Collapse
Affiliation(s)
- Célestine M. Atyame
- CRVOI, Ste Clotilde, Réunion Island, France
- University La Réunion, Réunion Island, France
- * E-mail:
| | - Julien Cattel
- CRVOI, Ste Clotilde, Réunion Island, France
- University La Réunion, Réunion Island, France
| | - Cyrille Lebon
- CRVOI, Ste Clotilde, Réunion Island, France
- MIVEGEC—UMR 5290-224, CNRS-IRD-UM1-UM2, Montpellier, France
| | - Olivier Flores
- University La Réunion, Réunion Island, France
- UMR PVBMT, CIRAD, St Pierre, Réunion Island, France
| | | | | | - Louis Clément Gouagna
- CRVOI, Ste Clotilde, Réunion Island, France
- MIVEGEC—UMR 5290-224, CNRS-IRD-UM1-UM2, Montpellier, France
| | - Pablo Tortosa
- CRVOI, Ste Clotilde, Réunion Island, France
- University La Réunion, Réunion Island, France
| |
Collapse
|
79
|
Atyame CM, Labbé P, Rousset F, Beji M, Makoundou P, Duron O, Dumas E, Pasteur N, Bouattour A, Fort P, Weill M. Stable coexistence of incompatible Wolbachia along a narrow contact zone in mosquito field populations. Mol Ecol 2015; 24:508-21. [PMID: 25482270 DOI: 10.1111/mec.13035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 11/29/2022]
Abstract
In arthropods, the intracellular bacteria Wolbachia often induce cytoplasmic incompatibility (CI) between sperm and egg, which causes conditional embryonic death and promotes the spatial spread of Wolbachia infections into host populations. The ability of Wolbachia to spread in natural populations through CI has attracted attention for using these bacteria in vector-borne disease control. The dynamics of incompatible Wolbachia infections have been deeply investigated theoretically, whereas in natural populations, there are only few examples described, especially among incompatible infected hosts. Here, we have surveyed the distribution of two molecular Wolbachia strains (wPip11 and wPip31) infecting the mosquito Culex pipiens in Tunisia. We delineated a clear spatial structure of both infections, with a sharp contact zone separating their distribution areas. Crossing experiments with isofemale lines from different localities showed three crossing types: wPip11-infected males always sterilize wPip31-infected females; however, while most wPip31-infected males were compatible with wPip11-infected females, a few completely sterilize them. The wPip11 strain was thus expected to spread, but temporal dynamics over 7 years of monitoring shows the stability of the contact zone. We examined which factors may contribute to the observed stability, both theoretically and empirically. Population cage experiments, field samples and modelling did not support significant impacts of local adaptation or assortative mating on the stability of wPip infection structure. By contrast, low dispersal probability and metapopulation dynamics in the host Cx. pipiens probably play major roles. This study highlights the need of understanding CI dynamics in natural populations to design effective and sustainable Wolbachia-based control strategies.
Collapse
Affiliation(s)
- Célestine M Atyame
- CNRS, ISEM-UMR 5554, Montpellier, France; University La Réunion/CRVOI, Ste Clotilde, Réunion Island, France; University Montpellier 2, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Shaikevich EV, Zakharov IA. Coevolution of symbiotic bacteria Wolbachia and host mtDNA in Russian populations of the Culex pipiens mosquito complex. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414110131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
81
|
Zélé F, Vézilier J, L'Ambert G, Nicot A, Gandon S, Rivero A, Duron O. Dynamics of prevalence and diversity of avian malaria infections in wild Culex pipiens mosquitoes: the effects of Wolbachia, filarial nematodes and insecticide resistance. Parasit Vectors 2014; 7:437. [PMID: 25228147 PMCID: PMC4261254 DOI: 10.1186/1756-3305-7-437] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/31/2014] [Indexed: 11/25/2022] Open
Abstract
Background Identifying the parasites transmitted by a particular vector and the factors that render this vector susceptible to the parasite are key steps to understanding disease transmission. Although avian malaria has become a model system for the investigation of the ecological and evolutionary dynamics of Plasmodium parasites, little is still known about the field prevalence, diversity and distribution of avian Plasmodium species within the vectors, or about the extrinsic factors affecting Plasmodium population dynamics in the wild. Methods We examined changes in avian malaria prevalence and Plasmodium lineage composition in female Culex pipiens caught throughout one field season in 2006, across four sampling sites in southern France. Using site occupancy models, we correct the naive estimates of Plasmodium prevalence to account for PCR-based imperfect detection. To establish the importance of different factors that may bear on the prevalence and diversity of avian Plasmodium in field mosquitoes, we focus on Wolbachia and filarial parasite co-infections, as well as on the insecticide resistance status of the mosquito. Results Plasmodium prevalence in Cx. pipiens increased from February (0%) to October (15.8%) and did not vary significantly among the four sampling sites. The application of site occupancy models leads to a 4% increase in this initial (naive) estimate of prevalence. The parasite community was composed of 15 different haemosporidian lineages, 13 of which belonged to the Plasmodium genus, and 2 to the Haemoproteus genus. Neither the presence of different Wolbachia types and of filarial parasites co-infecting the mosquitoes, nor their insecticide resistance status were found to affect the Plasmodium prevalence and diversity. Conclusion We found that haemosporidian parasites are common and diverse in wild-caught Cx. pipiens mosquitoes in Southern France. The prevalence of the infection in mosquitoes is unaffected by Wolbachia and filarial co-infections as well as the insecticide resistant status of the vector. These factors may thus have a negligible impact on the transmission of avian malaria. In contrast, the steady increase in prevalence from February to October indicates that the dynamics of avian malaria is driven by seasonality and supports that infected birds are the reservoir of a diverse community of lineages in southern France. Electronic supplementary material The online version of this article (doi:10.1186/1756-3305-7-437) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Flore Zélé
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, (UMR CNRS-UM1-UM2 5290, IRD 224), Centre de Recherche IRD, 911 Avenue Agropolis, 34394 Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
82
|
Duron O. Arsenophonus insect symbionts are commonly infected with APSE, a bacteriophage involved in protective symbiosis. FEMS Microbiol Ecol 2014; 90:184-94. [PMID: 25041857 DOI: 10.1111/1574-6941.12381] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 11/29/2022] Open
Abstract
Insects commonly have intimate associations with maternally inherited bacterial symbionts. While many inherited symbionts are not essential for host survival, they often act as conditional mutualists, conferring protection against certain environmental stresses. The defensive symbiont Hamiltonella defensa which protects aphids against attacks by parasitoid wasps is one of these conditional mutualists. The protection afforded by Hamiltonella depends on the presence of a lysogenic bacteriophage, called APSE, encoding homologs of toxins that are suspected to target wasp cells. In this study, an important diversity of APSE variants is reported from another heritable symbiont, Arsenophonus, which is exceptionally widespread in insects. APSE was found in association with two-thirds of the Arsenophonus strains examined and from a variety of insect groups such as aphids, white flies, parasitoid wasps, triatomine bugs, louse flies, and bat flies. No APSE was, however, found from Arsenophonus relatives such as the recently described Aschnera chinzeii and ALO-3 endosymbionts. Phylogenetic investigations revealed that APSE has a long evolutionary history in heritable symbionts, being secondarily acquired by Hamiltonella through lateral transfer from Arsenophonus. Overall, this highlights the role of lateral transfer as a major evolutionary process shaping the emergence of defensive symbiosis in heritable bacteria.
Collapse
Affiliation(s)
- Olivier Duron
- Institut des Sciences de l'Evolution, CNRS-UM2 (UMR5554), Montpellier Cedex 05, France
| |
Collapse
|
83
|
Choi JY, Aquadro CF. The coevolutionary period of Wolbachia pipientis infecting Drosophila ananassae and its impact on the evolution of the host germline stem cell regulating genes. Mol Biol Evol 2014; 31:2457-71. [PMID: 24974378 DOI: 10.1093/molbev/msu204] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The endosymbiotic bacteria Wolbachia pipientis is known to infect a wide range of arthropod species yet less is known about the coevolutionary history it has with its hosts. Evidence of highly identical W. pipientis strains in evolutionary divergent hosts suggests horizontal transfer between hosts. For example, Drosophila ananassae is infected with a W. pipientis strain that is nearly identical in sequence to a strain that infects both D. simulans and D. suzukii, suggesting recent horizontal transfer among these three species. However, it is unknown whether the W. pipientis strain had recently invaded all three species or a more complex infectious dynamic underlies the horizontal transfers. Here, we have examined the coevolutionary history of D. ananassae and its resident W. pipientis to infer its period of infection. Phylogenetic analysis of D. ananassae mitochondrial DNA and W. pipientis DNA sequence diversity revealed the current W. pipientis infection is not recent. In addition, we examined the population genetics and molecular evolution of several germline stem cell (GSC) regulating genes of D. ananassae. These studies reveal significant evidence of recent and long-term positive selection at stonewall in D. ananassae, whereas pumillio showed patterns of variation consistent with only recent positive selection. Previous studies had found evidence for adaptive evolution of two key germline differentiation genes, bag of marbles (bam) and benign gonial cell neoplasm (bgcn), in D. melanogaster and D. simulans and proposed that the adaptive evolution at these two genes was driven by arms race between the host GSC and W. pipientis. However, we did not find any statistical departures from a neutral model of evolution for bam and bgcn in D. ananassae despite our new evidence that this species has been infected with W. pipientis for a period longer than the most recent infection in D. melanogaster. In the end, analyzing the GSC regulating genes individually showed two of the seven genes to have evidence of selection. However, combining the data set and fitting a specific population genetic model significant proportion of the nonsynonymous sites across the GSC regulating genes were driven to fixation by positive selection. Clearly the GSC system is under rapid evolution and potentially multiple drivers are causing the rapid evolution.
Collapse
Affiliation(s)
- Jae Young Choi
- Department of Molecular Biology and Genetics, Cornell University
| | | |
Collapse
|
84
|
Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M, Moreira LA, Bossin HC, Moretti R, Baton LA, Hughes GL, Mavingui P, Gilles JRL. Harnessing mosquito-Wolbachia symbiosis for vector and disease control. Acta Trop 2014; 132 Suppl:S150-63. [PMID: 24252486 DOI: 10.1016/j.actatropica.2013.11.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 11/01/2013] [Accepted: 11/09/2013] [Indexed: 12/11/2022]
Abstract
Mosquito species, members of the genera Aedes, Anopheles and Culex, are the major vectors of human pathogens including protozoa (Plasmodium sp.), filariae and of a variety of viruses (causing dengue, chikungunya, yellow fever, West Nile). There is lack of efficient methods and tools to treat many of the diseases caused by these major human pathogens, since no efficient vaccines or drugs are available; even in malaria where insecticide use and drug therapies have reduced incidence, 219 million cases still occurred in 2010. Therefore efforts are currently focused on the control of vector populations. Insecticides alone are insufficient to control mosquito populations since reduced susceptibility and even resistance is being observed more and more frequently. There is also increased concern about the toxic effects of insecticides on non-target (even beneficial) insect populations, on humans and the environment. During recent years, the role of symbionts in the biology, ecology and evolution of insect species has been well-documented and has led to suggestions that they could potentially be used as tools to control pests and therefore diseases. Wolbachia is perhaps the most renowned insect symbiont, mainly due to its ability to manipulate insect reproduction and to interfere with major human pathogens thus providing new avenues for pest control. We herein present recent achievements in the field of mosquito-Wolbachia symbiosis with an emphasis on Aedes albopictus. We also discuss how Wolbachia symbiosis can be harnessed for vector control as well as the potential to combine the sterile insect technique and Wolbachia-based approaches for the enhancement of population suppression programs.
Collapse
Affiliation(s)
- Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Wagrammerstrasse 5, Vienna 1220, Austria.
| | - Stephen L Dobson
- Department of Entomology, University of Kentucky, Lexington, KY, USA.
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| | - Jason L Rasgon
- The Department of Entomology, Center for Infectious Disease Dynamics and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Maurizio Calvitti
- UTAGRI-ECO, CR ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Rome, Italy.
| | - Luciano A Moreira
- Laboratório de Malária, Centro de Pesquisas René Rachou, FIOCRUZ Minas, Avenida Augusto de Lima, 1715, Barro Preto, CEP 30190-002 Belo Horizonte, MG, Brazil.
| | - Hervé C Bossin
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, Tahiti, BP 30-98713 Papeete, French Polynesia.
| | - Riccardo Moretti
- UTAGRI-ECO, CR ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Rome, Italy.
| | - Luke Anthony Baton
- Laboratório de Malária, Centro de Pesquisas René Rachou, FIOCRUZ Minas, Avenida Augusto de Lima, 1715, Barro Preto, CEP 30190-002 Belo Horizonte, MG, Brazil.
| | - Grant L Hughes
- The Department of Entomology, Center for Infectious Disease Dynamics and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Patrick Mavingui
- Université de Lyon, UMR 5557 CNRS, USC INRA 1364, VetAgro Sup, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France.
| | - Jeremie R L Gilles
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Wagrammerstrasse 5, Vienna 1220, Austria.
| |
Collapse
|
85
|
Atyame CM, Labbé P, Dumas E, Milesi P, Charlat S, Fort P, Weill M. Wolbachia divergence and the evolution of cytoplasmic incompatibility in Culex pipiens. PLoS One 2014; 9:e87336. [PMID: 24498078 PMCID: PMC3909092 DOI: 10.1371/journal.pone.0087336] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/20/2013] [Indexed: 02/03/2023] Open
Abstract
Many insect species harbor Wolbachia bacteria that induce cytoplasmic incompatibility (CI), i.e. embryonic lethality in crosses between infected males and uninfected females, or between males and females carrying incompatible Wolbachia strains. The molecular mechanism of CI remains unknown, but the available data are best interpreted under a modification-rescue model, where a mod function disables the reproductive success of infected males' sperm, unless the eggs are infected and express a compatible resc function. Here we examine the evolution of CI in the mosquito Culex pipiens, harbouring a large number of closely related Wolbachia strains structured in five distinct phylogenetic groups. Specifically, we used a worldwide sample of mosquito lines to assess the hypothesis that genetic divergence should correlate with the divergence of CI properties on a low evolutionary scale. We observed a significant association of Wolbachia genetic divergence with CI patterns. Most Wolbachia strains from the same group were compatible whereas those from different groups were often incompatible. Consistently, we found a strong association between Wolbachia groups and their mod-resc properties. Finally, lines from the same geographical area were rarely incompatible, confirming the conjecture that the spatial distribution of Wolbachia compatibility types should be constrained by selection. This study indicates a clear correlation between Wolbachia genotypes and CI properties, paving the way toward the identification of the molecular basis of CI through comparative genomics.
Collapse
Affiliation(s)
- Célestine M. Atyame
- CNRS, University Montpellier 2, ISEM - UMR 5554, Montpellier, France
- * E-mail:
| | - Pierrick Labbé
- CNRS, University Montpellier 2, ISEM - UMR 5554, Montpellier, France
| | - Emilie Dumas
- CNRS, University Montpellier 2, ISEM - UMR 5554, Montpellier, France
| | - Pascal Milesi
- CNRS, University Montpellier 2, ISEM - UMR 5554, Montpellier, France
| | - Sylvain Charlat
- CNRS, University Lyon 1, LBBE - UMR 5558, Villeurbanne, France
| | - Philippe Fort
- CNRS, University Montpellier 2, CRBM - UMR 5237, Montpellier, France
| | - Mylène Weill
- CNRS, University Montpellier 2, ISEM - UMR 5554, Montpellier, France
| |
Collapse
|
86
|
Gerth M, Röthe J, Bleidorn C. Tracing horizontalWolbachiamovements among bees (Anthophila): a combined approach using multilocus sequence typing data and host phylogeny. Mol Ecol 2013; 22:6149-62. [DOI: 10.1111/mec.12549] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Gerth
- Molecular Evolution and Systematics of Animals; Institute for Biology; University of Leipzig; Talstrasse 33 D-04103 Leipzig Germany
| | - Juliane Röthe
- Molecular Evolution and Systematics of Animals; Institute for Biology; University of Leipzig; Talstrasse 33 D-04103 Leipzig Germany
| | - Christoph Bleidorn
- Molecular Evolution and Systematics of Animals; Institute for Biology; University of Leipzig; Talstrasse 33 D-04103 Leipzig Germany
| |
Collapse
|
87
|
Dumas E, Atyame CM, Milesi P, Fonseca DM, Shaikevich EV, Unal S, Makoundou P, Weill M, Duron O. Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species. BMC Evol Biol 2013; 13:181. [PMID: 24006922 PMCID: PMC3846486 DOI: 10.1186/1471-2148-13-181] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/28/2013] [Indexed: 12/31/2022] Open
Abstract
Background The maternally inherited bacterium Wolbachia often acts as a subtle parasite that manipulates insect reproduction, resulting potentially in reproductive isolation between host populations. Whilst distinct Wolbachia strains are documented in a group of evolutionarily closely related mosquitoes known as the Culex pipiens complex, their impact on mosquito population genetics remains unclear. To this aim, we developed a PCR-RFLP test that discriminates the five known Wolbachia groups found in this host complex. We further examined the Wolbachia genetic diversity, the variability in the coinherited host mitochondria and their partitioning among members of the Cx. pipiens complex, in order to assess the impact of Wolbachia on host population structure. Results There was a strong association between Wolbachia and mitochondrial haplotypes indicating a stable co-transmission in mosquito populations. Despite evidence that members of the Cx. pipiens complex are genetically distinct on the basis of nuclear DNA, the association of Wolbachia and mtDNA with members of the Cx. pipiens complex were limited. The Wolbachia wPip-I group, by far the most common, was associated with divergent Cx. pipiens members, including Cx. quinquefasciatus, Cx. pipiens pipiens form pipiens and Cx. pipiens pipiens form molestus. Four other wPip groups were also found in mosquito populations and all were shared between diverse Cx. pipiens members. Conclusion This data overall supports the hypothesis that wPip infections, and their allied mitochondria, are associated with regular transfers between Cx. pipiens members rather than specific host associations. Overall, this is suggestive of a recent and likely ongoing cytoplasmic introgression through hybridization events across the Cx. pipiens complex.
Collapse
Affiliation(s)
- Emilie Dumas
- Institut des Sciences de l'Evolution, UMR5554 CNRS, Université Montpellier 2, 34095 Montpellier cedex 05, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Lateral transfers of insertion sequences between Wolbachia, Cardinium and Rickettsia bacterial endosymbionts. Heredity (Edinb) 2013; 111:330-7. [PMID: 23759724 DOI: 10.1038/hdy.2013.56] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 11/09/2022] Open
Abstract
Various bacteria live exclusively within arthropod cells and collectively act as an important driver of arthropod evolutionary ecology. Whereas rampant intra-generic DNA transfers were recently shown to have a pivotal role in the evolution of the most common of these endosymbionts, Wolbachia, the present study show that inter-generic DNA transfers also commonly take place, constituting a potent source of rapid genomic change. Bioinformatic, molecular and phylogenetic data provide evidence that a selfish genetic element, the insertion sequence ISRpe1, is widespread in the Wolbachia, Cardinium and Rickettsia endosymbionts and experiences recent (and likely ongoing) transfers over long evolutionary distances. Although many ISRpe1 copies were clearly expanding and leading to rapid endosymbiont diversification, degraded copies are also frequently found, constituting an unusual genomic fossil record suggestive of ancient ISRpe1 expansions. Overall, the present data highlight how ecological connections within the arthropod intracellular environment facilitate lateral DNA transfers between distantly related bacterial lineages.
Collapse
|
89
|
Gerth M, Bleidorn C. A multilocus sequence typing (MLST) approach to diminish the problems that are associated with DNA barcoding: A reply to Stahlhutet al. (2012). SYST BIODIVERS 2013. [DOI: 10.1080/14772000.2013.764507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
90
|
Symula RE, Alam U, Brelsfoard C, Wu Y, Echodu R, Okedi LM, Aksoy S, Caccone A. Wolbachia association with the tsetse fly, Glossina fuscipes fuscipes, reveals high levels of genetic diversity and complex evolutionary dynamics. BMC Evol Biol 2013; 13:31. [PMID: 23384159 PMCID: PMC3574847 DOI: 10.1186/1471-2148-13-31] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 01/28/2013] [Indexed: 12/01/2022] Open
Abstract
Background Wolbachia pipientis, a diverse group of α-proteobacteria, can alter arthropod host reproduction and confer a reproductive advantage to Wolbachia-infected females (cytoplasmic incompatibility (CI)). This advantage can alter host population genetics because Wolbachia-infected females produce more offspring with their own mitochondrial DNA (mtDNA) haplotypes than uninfected females. Thus, these host haplotypes become common or fixed (selective sweep). Although simulations suggest that for a CI-mediated sweep to occur, there must be a transient phase with repeated initial infections of multiple individual hosts by different Wolbachia strains, this has not been observed empirically. Wolbachia has been found in the tsetse fly, Glossina fuscipes fuscipes, but it is not limited to a single host haplotype, suggesting that CI did not impact its population structure. However, host population genetic differentiation could have been generated if multiple Wolbachia strains interacted in some populations. Here, we investigated Wolbachia genetic variation in G. f. fuscipes populations of known host genetic composition in Uganda. We tested for the presence of multiple Wolbachia strains using Multi-Locus Sequence Typing (MLST) and for an association between geographic region and host mtDNA haplotype using Wolbachia DNA sequence from a variable locus, groEL (heat shock protein 60). Results MLST demonstrated that some G. f. fuscipes carry Wolbachia strains from two lineages. GroEL revealed high levels of sequence diversity within and between individuals (Haplotype diversity = 0.945). We found Wolbachia associated with 26 host mtDNA haplotypes, an unprecedented result. We observed a geographical association of one Wolbachia lineage with southern host mtDNA haplotypes, but it was non-significant (p = 0.16). Though most Wolbachia-infected host haplotypes were those found in the contact region between host mtDNA groups, this association was non-significant (p = 0.17). Conclusions High Wolbachia sequence diversity and the association of Wolbachia with multiple host haplotypes suggest that different Wolbachia strains infected G. f. fuscipes multiple times independently. We suggest that these observations reflect a transient phase in Wolbachia evolution that is influenced by the long gestation and low reproductive output of tsetse. Although G. f. fuscipes is superinfected with Wolbachia, our data does not support that bidirectional CI has influenced host genetic diversity in Uganda.
Collapse
Affiliation(s)
- Rebecca E Symula
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem St, New Haven, CT, USA.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Russell JA, Weldon S, Smith AH, Kim KL, Hu Y, Łukasik P, Doll S, Anastopoulos I, Novin M, Oliver KM. Uncovering symbiont-driven genetic diversity across North American pea aphids. Mol Ecol 2013; 22:2045-59. [DOI: 10.1111/mec.12211] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/04/2012] [Accepted: 12/11/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Jacob A. Russell
- Department of Biology; Drexel University; 3245 Chestnut St Philadelphia PA 19104 USA
| | - Stephanie Weldon
- Department of Entomology; University of Georgia; 413 Biological Sciences Building Athens GA 30602 USA
| | - Andrew H. Smith
- Department of Biology; Drexel University; 3245 Chestnut St Philadelphia PA 19104 USA
| | - Kyungsun L. Kim
- Department of Entomology; University of Georgia; 413 Biological Sciences Building Athens GA 30602 USA
| | - Yi Hu
- Department of Biology; Drexel University; 3245 Chestnut St Philadelphia PA 19104 USA
| | - Piotr Łukasik
- Department of Biology; Drexel University; 3245 Chestnut St Philadelphia PA 19104 USA
| | - Steven Doll
- Department of Biology; Drexel University; 3245 Chestnut St Philadelphia PA 19104 USA
| | - Ioannis Anastopoulos
- Department of Biology; Drexel University; 3245 Chestnut St Philadelphia PA 19104 USA
| | - Matthew Novin
- Department of Biology; Drexel University; 3245 Chestnut St Philadelphia PA 19104 USA
| | - Kerry M. Oliver
- Department of Entomology; University of Georgia; 413 Biological Sciences Building Athens GA 30602 USA
| |
Collapse
|
92
|
Duron O, Bernard J, Atyame CM, Dumas E, Weill M. Rapid evolution of Wolbachia incompatibility types. Proc Biol Sci 2012; 279:4473-80. [PMID: 22951738 DOI: 10.1098/rspb.2012.1368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In most insects, the endosymbiont Wolbachia induces cytoplasmic incompatibility (CI), an embryonic mortality observed when infected males mate either with uninfected females or with females infected by an incompatible Wolbachia strain. Although the molecular mechanism of CI remains elusive, it is classically viewed as a modification-rescue model, in which a Wolbachia mod function disables the reproductive success of the sperm of infected males, unless eggs are infected and express a compatible resc function. The extent to which the modification-rescue model can predict highly complex CI pattern remains a challenging issue. Here, we show the rapid evolution of the mod-resc system in the Culex pipiens mosquito. We have surveyed four incompatible laboratory isofemale lines over 50 generations and observed in two of them that CI has evolved from complete to partial incompatibility (i.e. the production of a mixture of compatible and incompatible clutches). Emergence of the new CI types depends only on Wolbachia determinants and can be simply explained by the gain of new resc functions. Evolution of CI types in Cx. pipiens thus appears as a gradual process, in which one or several resc functions can coexist in the same individual host in addition to the ones involved in the self-compatibility. Our data identified CI as a very dynamic process. We suggest that ancestral and mutant Wolbachia expressing distinct resc functions can co-infect individual hosts, opening the possibility for the mod functions to evolve subsequently. This gives a first clue towards the understanding of how Wolbachia reached highly complex CI pattern in host populations.
Collapse
Affiliation(s)
- Olivier Duron
- Institut des Sciences de l'Evolution, UMR5554 CNRS-Université Montpellier 2, Montpellier Cedex 05, France.
| | | | | | | | | |
Collapse
|
93
|
Zug R, Koehncke A, Hammerstein P. Epidemiology in evolutionary time: the case of Wolbachia horizontal transmission between arthropod host species. J Evol Biol 2012; 25:2149-60. [PMID: 22947080 DOI: 10.1111/j.1420-9101.2012.02601.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/04/2012] [Accepted: 07/24/2012] [Indexed: 11/29/2022]
Abstract
Wolbachia are bacterial endosymbionts that manipulate the reproduction of their arthropod hosts. Although theory suggests that infections are frequently lost within host species due to the evolution of resistance, Wolbachia infect a huge number of species worldwide. This apparent paradox suggests that horizontal transmission between host species has been a key factor in shaping the global Wolbachia pandemic. Because Wolbachia infections are thus acquired and lost like any other infection, we use a standard epidemiological model to analyse Wolbachia horizontal transmission dynamics over evolutionary time. Conceptually modifying the model, we apply it not to transmission between individuals but between species. Because, on evolutionary timescales, infections spread frequently between closely related species and occasionally over large phylogenetic distances, we represent the set of host species as a small-world network that satisfies both requirements. Our model reproduces the effect of basic epidemiological parameters, which demonstrates the validity of our approach. We find that the ratio between transmission rate and recovery rate is crucial for determining the proportion of infected species (incidence) and that, in a given host network, the incidence may still be increasing over evolutionary time. Our results also point to the importance of occasional transmission over long phylogenetic distances for the observed high incidence levels of Wolbachia. In conclusion, we are able to explain why Wolbachia are so abundant among arthropods, although selection for resistance within hosts often leads to infection loss. Furthermore, our unorthodox approach of using epidemiology in evolutionary time can be applied to all symbionts that use horizontal transmission to infect new hosts.
Collapse
Affiliation(s)
- Roman Zug
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | | |
Collapse
|
94
|
Gomes B, Alves J, Sousa CA, Santa-Ana M, Vieira I, Silva TL, Almeida APG, Donnelly MJ, Pinto J. Hybridization and population structure of the Culex pipiens complex in the islands of Macaronesia. Ecol Evol 2012; 2:1889-902. [PMID: 22957190 PMCID: PMC3433992 DOI: 10.1002/ece3.307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 11/11/2022] Open
Abstract
The Culex pipiens complex includes two widespread mosquito vector species, Cx. pipiens and Cx. quinquefasciatus. The distribution of these species varies in latitude, with the former being present in temperate regions and the latter in tropical and subtropical regions. However, their distribution range overlaps in certain areas and interspecific hybridization has been documented. Genetic introgression between these species may have epidemiological repercussions for West Nile virus (WNV) transmission. Bayesian clustering analysis based on multilocus genotypes of 12 microsatellites was used to determine levels of hybridization between these two species in Macaronesian islands, the only contact zone described in West Africa. The distribution of the two species reflects both the islands' biogeography and historical aspects of human colonization. Madeira Island displayed a homogenous population of Cx. pipiens, whereas Cape Verde showed a more intriguing scenario with extensive hybridization. In the islands of Brava and Santiago, only Cx. quinquefasciatus was found, while in Fogo and Maio high hybrid rates (∼40%) between the two species were detected. Within the admixed populations, second-generation hybrids (∼50%) were identified suggesting a lack of isolation mechanisms. The observed levels of hybridization may locally potentiate the transmission to humans of zoonotic arboviruses such as WNV.
Collapse
Affiliation(s)
- Bruno Gomes
- Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaRua da Junqueira 100, 1349-008, Lisbon, Portugal
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaRua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Joana Alves
- Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaRua da Junqueira 100, 1349-008, Lisbon, Portugal
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaRua da Junqueira 100, 1349-008, Lisbon, Portugal
- Direcção-Geral da Saúde Ministério da SaúdePalácio do Governo, CP 47, Praia, Cabo Verde
| | - Carla A Sousa
- Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaRua da Junqueira 100, 1349-008, Lisbon, Portugal
- Unidade de Parasitologia e Microbiologia Médicas, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaRua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Marta Santa-Ana
- Centro de Estudos da Macaronésia, Universidade da MadeiraCampus da Penteada, 9000-390, Funchal, Portugal
| | - Inês Vieira
- Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaRua da Junqueira 100, 1349-008, Lisbon, Portugal
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaRua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Teresa L Silva
- Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaRua da Junqueira 100, 1349-008, Lisbon, Portugal
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaRua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - António PG Almeida
- Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaRua da Junqueira 100, 1349-008, Lisbon, Portugal
- Unidade de Parasitologia e Microbiologia Médicas, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaRua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Martin J Donnelly
- Vector Group, Liverpool School of Tropical MedicinePembroke Place, Liverpool, L3 5QA, UK
| | - João Pinto
- Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaRua da Junqueira 100, 1349-008, Lisbon, Portugal
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaRua da Junqueira 100, 1349-008, Lisbon, Portugal
| |
Collapse
|
95
|
MORNINGSTAR REBECCAJ, HAMER GABRIELL, GOLDBERG TONYL, HUANG SHAOMING, ANDREADIS THEODOREG, WALKER EDWARDD. Diversity of Wolbachia pipientis strain wPip in a genetically admixtured, above-ground Culex pipiens (Diptera: Culicidae) population: association with form molestus ancestry and host selection patterns. JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:474-81. [PMID: 22679853 PMCID: PMC4053172 DOI: 10.1603/me11283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Analysis of molecular genetic diversity in nine marker regions of five genes within the bacteriophage WO genomic region revealed high diversity of the Wolbachia pipentis strain wPip in a population of Culex pipiens L. sampled in metropolitan Chicago, IL. From 166 blood fed females, 50 distinct genetic profiles of wPip were identified. Rarefaction analysis suggested a maximum of 110 profiles out of a possible 512 predicted by combinations of the nine markers. A rank-abundance curve showed that few strains were common and most were rare. Multiple regression showed that markers associated with gene Gp2d, encoding a partial putative capsid protein, were significantly associated with ancestry of individuals either to form molestus or form pipiens, as determined by prior microsatellite allele frequency analysis. None of the other eight markers was associated with ancestry to either form, nor to ancestry to Cx. quinquefasciatus Say. Logistic regression of host choice (mammal vs. avian) as determined by bloodmeal analysis revealed that significantly fewer individuals that had fed on mammals had the Gp9a genetic marker (58.5%) compared with avian-fed individuals (88.1%). These data suggest that certain wPip molecular genetic types are associated with genetic admixturing in the Cx. pipiens complex of metropolitan Chicago, IL, and that the association extends to phenotypic variation related to host preference.
Collapse
Affiliation(s)
- REBECCA J. MORNINGSTAR
- Comparative Medicine and Integrative Biology Program, G100 Veterinary Medical Center, Michigan State University, East Lansing, MI 48824
- Department of Microbiology and Molecular Genetics, 2215 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, Michigan 48824
| | - GABRIEL L. HAMER
- Department of Microbiology and Molecular Genetics, 2215 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, Michigan 48824
- Department of Pathobiological Sciences, 2015 Linden Drive, University of Wisconsin, Madison, WI 53706
| | - TONY L. GOLDBERG
- Department of Pathobiological Sciences, 2015 Linden Drive, University of Wisconsin, Madison, WI 53706
| | - SHAOMING HUANG
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511
| | - THEODORE G. ANDREADIS
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511
| | - EDWARD D. WALKER
- Department of Microbiology and Molecular Genetics, 2215 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
96
|
Zélé F, Nicot A, Duron O, Rivero A. Infection with Wolbachia protects mosquitoes against Plasmodium-induced mortality in a natural system. J Evol Biol 2012; 25:1243-52. [PMID: 22533729 DOI: 10.1111/j.1420-9101.2012.02519.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In recent years, there has been a shift in the one host-one parasite paradigm with the realization that, in the field, most hosts are coinfected with multiple parasites. Coinfections are particularly relevant when the host is a vector of diseases, because multiple infections can have drastic consequences for parasite transmission at both the ecological and evolutionary timescales. Wolbachia pipientis is the most common parasitic microorganism in insects, and as such, it is of special interest for understanding the role of coinfections in the outcome of parasite infections. Here, we investigate whether Wolbachia can modulate the effect of Plasmodium on what is, arguably, the most important component of the vectorial capacity of mosquitoes: their longevity. For this purpose, and in contrast to recent studies that have focused on mosquito-Plasmodium and/or mosquito-Wolbachia combinations not found in nature, we work on a Wolbachia-mosquito-Plasmodium triad with a common evolutionary history. Our results show that Wolbachia protects mosquitoes from Plasmodium-induced mortality. The results are consistent across two different strains of Wolbachia and repeatable across two different experimental blocks. To our knowledge, this is the first time that such an effect has been shown for Plasmodium-infected mosquitoes and, in particular, in a natural Wolbachia-host combination. We discuss different mechanistic and evolutionary explanations for these results as well as their consequences for Plasmodium transmission.
Collapse
Affiliation(s)
- F Zélé
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, CNRS (UMR 5290), Centre de Recherche IRD, Montpellier, France.
| | | | | | | |
Collapse
|
97
|
Pichon S, Bouchon D, Liu C, Chen L, Garrett RA, Grève P. The expression of one ankyrin pk2 allele of the WO prophage is correlated with the Wolbachia feminizing effect in isopods. BMC Microbiol 2012; 12:55. [PMID: 22497736 PMCID: PMC3431249 DOI: 10.1186/1471-2180-12-55] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 04/12/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The maternally inherited α-Proteobacteria Wolbachia pipientis is an obligate endosymbiont of nematodes and arthropods, in which they induce a variety of reproductive alterations, including Cytoplasmic Incompatibility (CI) and feminization. The genome of the feminizing wVulC Wolbachia strain harboured by the isopod Armadillidium vulgare has been sequenced and is now at the final assembly step. It contains an unusually high number of ankyrin motif-containing genes, two of which are homologous to the phage-related pk1 and pk2 genes thought to contribute to the CI phenotype in Culex pipiens. These genes encode putative bacterial effectors mediating Wolbachia-host protein-protein interactions via their ankyrin motifs. RESULTS To test whether these Wolbachia homologs are potentially involved in altering terrestrial isopod reproduction, we determined the distribution and expression of both pk1 and pk2 genes in the 3 Wolbachia strains that induce CI and in 5 inducing feminization of their isopod hosts. Aside from the genes being highly conserved, we found a substantial copy number variation among strains, and that is linked to prophage diversity. Transcriptional analyses revealed expression of one pk2 allele (pk2b2) only in the feminizing Wolbachia strains of isopods. CONCLUSIONS These results reveal the need to investigate the functions of Wolbachia ankyrin gene products, in particular those of Pk2, and their host targets with respect to host sex manipulation.
Collapse
Affiliation(s)
- Samuel Pichon
- Ecologie, Evolution, Symbiose, UMR CNRS 6556, Université de Poitiers, Poitiers, France
| | | | | | | | | | | |
Collapse
|
98
|
Atyame CM, Pasteur N, Dumas E, Tortosa P, Tantely ML, Pocquet N, Licciardi S, Bheecarry A, Zumbo B, Weill M, Duron O. Cytoplasmic incompatibility as a means of controlling Culex pipiens quinquefasciatus mosquito in the islands of the south-western Indian Ocean. PLoS Negl Trop Dis 2011; 5:e1440. [PMID: 22206033 PMCID: PMC3243720 DOI: 10.1371/journal.pntd.0001440] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/07/2011] [Indexed: 12/13/2022] Open
Abstract
The use of the bacterium Wolbachia is an attractive alternative method to control vector populations. In mosquitoes, as in members of the Culex pipiens complex, Wolbachia induces a form of embryonic lethality called cytoplasmic incompatibility, a sperm-egg incompatibility occurring when infected males mate either with uninfected females or with females infected with incompatible Wolbachia strain(s). Here we explore the feasibility of the Incompatible Insect Technique (IIT), a species-specific control approach in which field females are sterilized by inundative releases of incompatible males. We show that the Wolbachia wPip(Is) strain, naturally infecting Cx. p. pipiens mosquitoes from Turkey, is a good candidate to control Cx. p. quinquefasciatus populations on four islands of the south-western Indian Ocean (La Réunion, Mauritius, Grande Glorieuse and Mayotte). The wPip(Is) strain was introduced into the nuclear background of Cx. p. quinquefasciatus mosquitoes from La Réunion, leading to the LR[wPip(Is)] line. Total embryonic lethality was observed in crosses between LR[wPip(Is)] males and all tested field females from the four islands. Interestingly, most crosses involving LR[wPip(Is)] females and field males were also incompatible, which is expected to reduce the impact of any accidental release of LR[wPip(Is)] females. Cage experiments demonstrate that LR[wPip(Is)] males are equally competitive with La Réunion males resulting in demographic crash when LR[wPip(Is)] males were introduced into La Réunion laboratory cages. These results, together with the geographic isolation of the four south-western Indian Ocean islands and their limited land area, support the feasibility of an IIT program using LR[wPip(Is)] males and stimulate the implementation of field tests for a Cx. p. quinquefasciatus control strategy on these islands. Mosquitoes of the Culex pipiens complex are important vectors of human pathogens including filarial parasites and many currently expanding arboviruses. The absence of effective vaccines and the evolution of insecticide resistance stress the urgent need for the development of novel control strategies. One strategy that is receiving increasing attention is based upon the use of the intracellular bacteria Wolbachia, which induce a form of sterility known as cytoplasmic incompatibility in mosquitoes. Here, we show that a Wolbachia strain, named wPip(Is) and naturally infecting Cx. p. pipiens from Turkey, can be used in the Incompatible Insect Technique (IIT) to sterilize Cx. p. quinquefasciatus females from several islands of the southwestern Indian Ocean (SWIO). The wPip(Is) strain was introduced into SWIO Cx. p. quinquefasciatus nuclear background leading to the LR[wPip(Is)] line. Males from this latter line were found to sterilize all wild females tested, and no difference in mating competition was observed between LR[wPip(Is)] and wild males. These results encourage the development of an IIT program based on the wPip(Is) strain to control mosquito populations in the SWIO.
Collapse
Affiliation(s)
- Célestine M. Atyame
- Institut des Sciences de l'Evolution, CNRS UMR 5554, Université Montpellier 2, Montpellier, France
| | - Nicole Pasteur
- Institut des Sciences de l'Evolution, CNRS UMR 5554, Université Montpellier 2, Montpellier, France
| | - Emilie Dumas
- Institut des Sciences de l'Evolution, CNRS UMR 5554, Université Montpellier 2, Montpellier, France
| | - Pablo Tortosa
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), Ste Clotilde, France
- Fédération de Recherche Environnement, Biodiversité et Santé, Université de La Réunion, Ste Clotilde, France
| | - Michaël Luciano Tantely
- Department of Entomology, Faculty of Science, University of Antananarivo, Antananarivo, Madagascar
| | - Nicolas Pocquet
- Agence Régionale de Santé (ARS) Océan Indien, Délégation de l'Ile de Mayotte, Mamoudzou, France
| | - Séverine Licciardi
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), Ste Clotilde, France
- Groupement d'Intérêt Public Cyclotron Réunion Océan Indien (GIP CYROI), CIRAD UMR 15, Ste Clotilde, France
| | - Ambicadutt Bheecarry
- Vector Biology and Control Division, Ministry of Health and Quality of Life, Port Louis, Mauritius
| | - Betty Zumbo
- Agence Régionale de Santé (ARS) Océan Indien, Délégation de l'Ile de Mayotte, Mamoudzou, France
| | - Mylène Weill
- Institut des Sciences de l'Evolution, CNRS UMR 5554, Université Montpellier 2, Montpellier, France
| | - Olivier Duron
- Institut des Sciences de l'Evolution, CNRS UMR 5554, Université Montpellier 2, Montpellier, France
- * E-mail:
| |
Collapse
|