51
|
Lan XY, Shu JH, Chen H, Pan CY, Lei CZ, Wang X, Liu SQ, Zhang YB. A PstI polymorphism at 3'UTR of goat POU1F1 gene and its effect on cashmere production. Mol Biol Rep 2008; 36:1371-4. [PMID: 18654839 DOI: 10.1007/s11033-008-9322-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 07/14/2008] [Indexed: 11/30/2022]
Abstract
POU1F1 is a positive regulator for prolactin (PRL) whose metabolites may directly or indirectly affect some aspects of the hair growth cycle, therefore, POU1F1 gene is an important candidate gene for cashmere traits selection through marker-assisted selection (MAS). Hence, in this study, the PCR-RFLP method was applied to detect a T>C transition determining a PstI polymorphism at the 3'UTR of POU1F1 locus and evaluate its associations with cashmere traits in 847 Inner Mongolia White Cashmere goats. In the analyzed population, the allelic frequencies for the T and C alleles are 0.959 and 0.041, respectively and the genotypic frequencies are in Hardy-Weinberg equilibrium (P > 0.05). Moreover, significant statistical relationships between the PstI polymorphism of POU1F1 gene and goat cashmere yields were found (*P < 0.05). When compared with TC genotype, TT genotype was associated with superior cashmere yields in 2, 4, and 5 years old individuals, as well as with average cashmere yield. Hence, TT genotype is suggested to be a molecular marker for senior cashmere yield.
Collapse
Affiliation(s)
- X Y Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, No. 22, Xinong Road, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | | | |
Collapse
|
52
|
MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90. Mol Cell Biol 2008; 28:4562-75. [PMID: 18490444 DOI: 10.1128/mcb.00165-08] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The mitogen-activated protein (MAP) kinase phosphatase 1 (MKP-1) plays a major role in dephosphorylating and thereby inactivating the MAP kinases extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. Here, we examine the posttranscriptional events underlying the robust MKP-1 induction by oxidants in HeLa cells. H(2)O(2) treatment potently stabilized the MKP-1 mRNA and increased the association of MKP-1 mRNA with the translation machinery. Four RNA-binding proteins (RNA-BPs) that influence mRNA turnover and/or translation (HuR, NF90, TIAR, and TIA-1) were found to bind to biotinylated transcripts spanning the MKP-1 AU-rich 3' untranslated region. By using ribonucleoprotein immunoprecipitation analysis, we showed that H(2)O(2) treatment increased the association of MKP-1 mRNA with HuR and NF90 and decreased its association with the translational repressors TIAR and TIA-1. HuR or NF90 silencing significantly diminished the H(2)O(2)-stimulated MKP-1 mRNA stability; HuR silencing also markedly decreased MKP-1 translation. In turn, lowering MKP-1 expression in HuR-silenced cultures resulted in substantially elevated phosphorylation of JNK and p38 after H(2)O(2) treatment. Collectively, MKP-1 upregulation by oxidative stress is potently influenced by increased mRNA stability and translation, mediated at least in part by the RNA-BPs HuR and NF90.
Collapse
|
53
|
Mauxion F, Faux C, Séraphin B. The BTG2 protein is a general activator of mRNA deadenylation. EMBO J 2008; 27:1039-48. [PMID: 18337750 DOI: 10.1038/emboj.2008.43] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 02/18/2008] [Indexed: 12/11/2022] Open
Abstract
BTG2 is a prototype member of the BTG/Tob family of antiproliferative proteins, originally identified as a primary response gene induced by growth factors and tumour promoters. Its expression has been linked to diverse cellular processes such as cell-cycle progression, differentiation or apoptosis. BTG2 has also been shown to interact with the Pop2/Caf1 deadenylase. Here, we demonstrate that BTG2 is a general activator of mRNA decay, thereby contributing to gene expression control. Detailed characterizations of BTG2 show that it enhances deadenylation of all transcripts tested. Our results demonstrate that Caf1 nuclease activity is required for efficient deadenylation in mammalian cells and that the deadenylase activities of both Caf1 and its Ccr4 partner are required for Btg2-induced poly(A) degradation. General activation of deadenylation may represent a new mode of global regulation of gene expression, which could be important to allow rapid resetting of protein production during development or after specific stresses. This may constitute a common function for BTG/Tob family members.
Collapse
Affiliation(s)
- Fabienne Mauxion
- CNRS, Equipe Labellisée La Ligue, Centre de Génétique Moléculaire, UPR 2167, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
54
|
Casolaro V, Fang X, Tancowny B, Fan J, Wu F, Srikantan S, Asaki SY, De Fanis U, Huang SK, Gorospe M, Atasoy UX, Stellato C. Posttranscriptional regulation of IL-13 in T cells: role of the RNA-binding protein HuR. J Allergy Clin Immunol 2008; 121:853-9.e4. [PMID: 18279945 DOI: 10.1016/j.jaci.2007.12.1166] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 12/06/2007] [Accepted: 12/19/2007] [Indexed: 12/24/2022]
Abstract
BACKGROUND IL-13, a critical cytokine in allergy, is regulated by as-yet-elusive mechanisms. OBJECTIVE We investigated IL-13 posttranscriptional regulation by HuR, a protein associating with adenylate-uridylate-rich elements in the 3' untranslated regions (UTRs) of mRNA, promoting mRNA stability and translation. METHODS IL-13 mRNA decay was monitored in human T(H)2-skewed cells by using the transcriptional inhibitor actinomycin D. The IL-13 3'UTR was subcloned into an inducible beta-globin reporter transiently expressed in H2 cells in the absence or presence of overexpressed HuR. Association of HuR with IL-13 mRNA was detected by means of immunoprecipitation of ribonucleoprotein complexes and a biotin pull-down assay. The effects of HuR transient overexpression and silencing on IL-13 expression were investigated. RESULTS IL-13 mRNA half-life increased significantly in restimulated T(H)2-skewed cells compared with baseline values. Decay of beta-globin mRNA was significantly faster in H2 cells transfected with the IL-13 3'UTR-containing plasmid than in those carrying a control vector. HuR overexpression increased the beta-globin IL-13 3'UTR reporter half-life. Significant enrichment of IL-13 mRNA was produced by means of immunoprecipitation of Jurkat cell ribonucleoprotein complexes with anti-HuR. HuR binding to the IL-13 3'UTR was confirmed by means of pull-down assay of biotin-labeled RNA probes spanning the IL-13 3'UTR. Two-dimensional Western blot analysis showed stimulus-induced posttranslational modification of HuR. In Jurkat cells mitogen-induced IL-13 mRNA was significantly affected by HuR overexpression and silencing. CONCLUSIONS Mitogen-induced IL-13 expression involves changes in transcript turnover and a change in phosphorylation of HuR and its association with the mRNA 3'UTR.
Collapse
|
55
|
Abstract
The recognition of the importance of mRNA turnover in regulating eukaryotic gene expression has mandated the development of reliable, rigorous, and "user-friendly" methods to accurately measure changes in mRNA stability in mammalian cells. Frequently, mRNA stability is studied indirectly by analyzing the steady-state level of mRNA in the cytoplasm; in this case, changes in mRNA abundance are assumed to reflect only mRNA degradation, an assumption that is not always correct. Although direct measurements of mRNA decay rate can be performed with kinetic labeling techniques and transcriptional inhibitors, these techniques often introduce significant changes in cell physiology. Furthermore, many critical mechanistic issues as to deadenylation kinetics, decay intermediates, and precursor-product relationships cannot be readily addressed by these methods. In light of these concerns, we have previously reported transcriptional pulsing methods based on the c-fos serum-inducible promoter and the tetracycline-regulated (Tet-off) promoter systems to better explain mechanisms of mRNA turnover in mammalian cells. In this chapter, we describe and discuss in detail different protocols that use these two transcriptional pulsing methods. The information described here also provides guidelines to help develop optimal protocols for studying mammalian mRNA turnover in different cell types under a wide range of physiologic conditions.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas, USA
| | | | | |
Collapse
|
56
|
Abstract
The abundance of a cytoplasmic mRNA in eukaryotes often determines the level of the encoded protein product. The rates at which an mRNA is synthesized, exported, and degraded collectively contribute to its abundance in all cell types. Numerous mRNAs, particularly those encoding structural proteins, are very stable, with half-lives in the order of many hours. In contrast, mRNAs encoding regulatory proteins, including oncoproteins, cytokines, and signaling proteins, are relatively unstable with half-lives of an hour or less. As a result, modest changes in their decay rates affect their levels over a relatively short time period. This is particularly important to ensure rapid responses to extracellular signaling events. Messenger RNAs often harbor sequence elements that dictate their degradation rates. Adenylate uridylate (A+U)-rich elements (AREs), first identified in 1986, are perhaps the best characterized sequences that promote rapid mRNA degradation. These elements, localized within 3'-untranslated regions, sometimes contain AUUUA pentamers within an overall U-rich sequence, but this does not always define a bona fide ARE. Thus, experimental validation is essential before bestowing upon a suspected A+U-rich sequence the title of "ARE." This chapter describes a reporter gene system that permits quantitative assessment of the effects of candidate A+U-rich sequences on mRNA half-life. This system employs tetracycline-controlled transcriptional silencing of the reporter gene, isolation of total-cell RNA at selected time points, quantitative reverse transcriptase polymerase chain reaction analysis of reporter mRNA levels, and nonlinear regression analysis of mRNA level as a function of time to quantitatively define parameters describing mRNA decay kinetics. Finally, this chapter describes more specialized assays to characterize ARE-mediated mRNA decay pathways, including deadenylation, and discusses decapping.
Collapse
|
57
|
Matsuda D, Sato H, Maquat LE. Chapter 9. Studying nonsense-mediated mRNA decay in mammalian cells. Methods Enzymol 2008; 449:177-201. [PMID: 19215759 DOI: 10.1016/s0076-6879(08)02409-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nonsense-mediated decay (NMD) in eukaryotic cells largely functions as a quality control mechanism by degrading faulty mRNAs that terminate translation prematurely. In recent years it has become evident that NMD also eliminates a subset of naturally occurring mRNA during proper gene expression. The mechanism of NMD in mammalian cells can be distinguished from the mechanism in, for example, Saccharomyces cerevisiae or Caenorhabditis elegans, by its apparent restriction to newly synthesized mRNA during a pioneer round of translation. This dependence can be explained by the need for at least one exon-exon junction complex (EJC) that is deposited on newly synthesized mRNA during the process of pre-mRNA splicing. Additionally, mammalian-cell NMD is promoted by the cap-binding protein heterodimer CBP80/20 that also typifies newly synthesized mRNA. When translation terminates sufficiently upstream of an EJC, the NMD factor Up-frameshift (Upf)1 is thought to join the stable EJC constituent NMD factors Upf2 and Upf3 or Upf3X (also called Upf3a or Upf3b, respectively), and undergo phosphorylation. Phosphorylation appears to trigger translational repression and mRNA decay. Although there are established rules for what generally defines an NMD target in mammalian cells, as with any rule there are exceptions and, thus, the need to experimentally verify individual mRNAs as bona fide targets of NMD. This chapter provides guidelines and protocols for how to define NMD targets using cultured mammalian cells.
Collapse
Affiliation(s)
- Daiki Matsuda
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | | | | |
Collapse
|
58
|
Wu L, Belasco JG. Examining the influence of microRNAs on translation efficiency and on mRNA deadenylation and decay. Methods Enzymol 2008; 449:373-93. [PMID: 19215768 DOI: 10.1016/s0076-6879(08)02418-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
MicroRNAs (miRNAs) utilize multiple posttranscriptional mechanisms to downregulate gene expression in metazoan organisms. These include translation repression and accelerated mRNA decay, the latter being triggered either by deadenylation or, less frequently, by endonucleolytic cleavage, as governed by the degree of complementarity of the targeted message. This chapter describes methods for examining the effect of miRNAs on the translation and turnover of complementary mRNAs in cultured mammalian cells. Among these are procedures for quantifying their influence on the cytoplasmic concentration and translation efficiency of luciferase reporter mRNAs, for monitoring their impact on the deadenylation and decay of beta-globin reporter mRNAs, and for detecting miRNA-directed internal mRNA cleavage.
Collapse
Affiliation(s)
- Ligang Wu
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, USA
| | | |
Collapse
|
59
|
Leautaud V, Demple B. Regulation of heme oxygenase-1 mRNA deadenylation and turnover in NIH3T3 cells by nitrosative or alkylation stress. BMC Mol Biol 2007; 8:116. [PMID: 18096048 PMCID: PMC2246143 DOI: 10.1186/1471-2199-8-116] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 12/20/2007] [Indexed: 11/22/2022] Open
Abstract
Background Heme oxygenase-1 (HO-1) catalizes heme degradation, and is considered one of the most sensitive indicators of cellular stress. Previous work in human fibroblasts has shown that HO-1 expression is induced by NO, and that transcriptional induction is only partially responsible; instead, the HO-1 mRNA half-life is substantially increased in response to NO. The mechanism of this stabilization remains unknown. Results In NIH3T3 murine fibroblasts, NO exposure increased the half-life of the HO-1 transcript from ~1.6 h to 11 h, while treatments with CdCl2, NaAsO2 or H2O2 increased the half-life only up to 5 h. Although poly(A) tail shortening can be rate-limiting in mRNA degradation, the HO-1 mRNA deadenylation rate in NO-treated cells was ~65% of that in untreated controls. In untreated cells, HO-1 poly(A) removal proceeded until 30–50 nt remained, followed by rapid mRNA decay. In NO-treated cells, HO-1 deadenylation stopped with the mRNA retaining poly(A) tails 30–50 nt long. We hypothesize that NO treatment stops poly(A) tail shortening at the critical 30- to 50-nt length. This is not a general mechanism for the post-transcriptional regulation of HO-1 mRNA. Methyl methane sulfonate also stabilized HO-1 mRNA, but that was associated with an 8-fold decrease in the deadenylation rate compared to that of untreated cells. Another HO-1 inducer, CdCl2, caused a strong increase in the mRNA level without affecting the HO-1 mRNA half-life. Conclusion The regulation of HO-1 mRNA levels in response to cellular stress can be induced by transcriptional and different post-transcriptional events that act independently, and vary depending on the stress inducer. While NO appears to stabilize HO-1 mRNA by preventing the final steps of deadenylation, methyl methane sulfonate achieves stabilization through the regulation of earlier stages of deadenylation.
Collapse
Affiliation(s)
- Veronica Leautaud
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
60
|
Huang HW, Bi W, Jenkins GN, Alcorn JL. Glucocorticoid regulation of human pulmonary surfactant protein-B mRNA stability involves the 3'-untranslated region. Am J Respir Cell Mol Biol 2007; 38:473-82. [PMID: 18006875 DOI: 10.1165/rcmb.2007-0303oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Expression of pulmonary surfactant, a complex mixture of lipids and proteins that acts to reduce alveolar surface tension, is developmentally regulated and restricted to lung alveolar type II cells. The hydrophobic protein surfactant protein-B (SP-B) is essential in surfactant function, and insufficient levels of SP-B result in severe respiratory dysfunction. Glucocorticoids accelerate fetal lung maturity and surfactant synthesis both experimentally and clinically. Glucocorticoids act transcriptionally and post-transcriptionally to increase steady-state levels of human SP-B mRNA; however, the mechanism(s) by which glucocorticoids act post-transcriptionally is unknown. We hypothesized that glucocorticoids act post-transcriptionally to increase SP-B mRNA stability via sequence-specific mRNA-protein interactions. We found that glucocorticoids increase SP-B mRNA stability in isolated human type II cells and in nonpulmonary cells, but do not alter mouse SP-B mRNA stability in a mouse type II cell line. Deletion analysis of an artificially-expressed SP-B mRNA indicates that the SP-B mRNA 3'-untranslated region (UTR) is necessary for stabilization, and the region involved can be restricted to a 126-nucleotide-long region near the SP-B coding sequence. RNA electrophoretic mobility shift assays indicate that cytosolic proteins bind to this region in the absence or presence of glucocorticoids. The formation of mRNA:protein complexes is not seen in other regions of the SP-B mRNA 3'-UTR. These results indicate that a specific 126-nucleotide region of human SP-B 3'-UTR is necessary for increased SP-B mRNA stability by glucocorticoids by a mechanism that is not lung cell specific and may involve mRNA-protein interactions.
Collapse
Affiliation(s)
- Helen W Huang
- Department of Pediatrics, University of Texas-Houston Medical School, 6431 Fannin, suite 3.222, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
61
|
The 3' untranslated region of sindbis virus represses deadenylation of viral transcripts in mosquito and Mammalian cells. J Virol 2007; 82:880-92. [PMID: 17977976 DOI: 10.1128/jvi.01205-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The positive-sense transcripts of Sindbis virus (SINV) resemble cellular mRNAs in that they possess a 5' cap and a 3' poly(A) tail. It is likely, therefore, that SINV RNAs must successfully overcome the cytoplasmic mRNA decay machinery of the cell in order to establish an efficient, productive infection. In this study, we have taken advantage of a temperature-sensitive polymerase to shut off viral transcription, and we demonstrate that SINV RNAs are subject to decay during a viral infection in both C6/36 (Aedes albopictus) and baby hamster kidney cells. Interestingly, in contrast to most cellular mRNAs, the decay of SINV RNAs was not initiated by poly(A) tail shortening in either cell line except when most of the 3' untranslated region (UTR) was deleted from the virus. This block in deadenylation of viral transcripts was recapitulated in vitro using C6/36 mosquito cell cytoplasmic extracts. Two distinct regions of the 319-base SINV 3' UTR, the repeat sequence elements and a U-rich domain, were shown to be responsible for mediating the repression of deadenylation of viral mRNAs. Through competition studies performed in parallel with UV cross-linking and functional assays, mosquito cell factors-including a 38-kDa protein-were implicated in the repression of deadenylation mediated by the SINV 3' UTR. This same 38-kDa protein was also implicated in mediating the repression of deadenylation by the 3' UTR of another alphavirus, Venezuelan equine encephalitis virus. In summary, these data provide clear evidence that SINV transcripts do indeed interface with the cellular mRNA decay machinery during an infection and that the virus has evolved a way to avoid the major deadenylation-dependent pathway of mRNA decay.
Collapse
|
62
|
Chen CYA, Yamashita Y, Chang TC, Yamashita A, Zhu W, Zhong Z, Shyu AB. Versatile applications of transcriptional pulsing to study mRNA turnover in mammalian cells. RNA (NEW YORK, N.Y.) 2007; 13:1775-86. [PMID: 17728382 PMCID: PMC1986818 DOI: 10.1261/rna.663507] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Development of transcriptional pulsing approaches using the c-fos and Tet-off promoter systems greatly facilitated studies of mRNA turnover in mammalian cells. However, optimal protocols for these approaches vary for different cell types and/or physiological conditions, limiting their widespread application. In this study, we have further optimized transcriptional pulsing systems for different cell lines and developed new protocols to facilitate investigation of various aspects of mRNA turnover. We apply the Tet-off transcriptional pulsing strategy to investigate ARE-mediated mRNA decay in human erythroleukemic K562 cells arrested at various phases of the cell cycle by pharmacological inhibitors. This application facilitates studies of the role of mRNA stability in control of cell-cycle dependent gene expression. To advance the investigation of factors involved in mRNA turnover and its regulation, we have also incorporated recently developed transfection and siRNA reagents into the transcriptional pulsing approach. Using these protocols, siRNA and DNA plasmids can be effectively cotransfected into mouse NIH3T3 cells to obtain high knockdown efficiency. Moreover, we have established a tTA-harboring stable line using human bronchial epithelial BEAS-2B cells and applied the transcriptional pulsing approach to monitor mRNA deadenylation and decay kinetics in this cell system. This broadens the application of the transcriptional pulsing system to investigate the regulation of mRNA turnover related to allergic inflammation. Critical factors that need to be considered when employing these approaches are characterized and discussed.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Ezzeddine N, Chang TC, Zhu W, Yamashita A, Chen CYA, Zhong Z, Yamashita Y, Zheng D, Shyu AB. Human TOB, an antiproliferative transcription factor, is a poly(A)-binding protein-dependent positive regulator of cytoplasmic mRNA deadenylation. Mol Cell Biol 2007; 27:7791-801. [PMID: 17785442 PMCID: PMC2169145 DOI: 10.1128/mcb.01254-07] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In mammalian cells, mRNA decay begins with deadenylation, which involves two consecutive phases mediated by the PAN2-PAN3 and the CCR4-CAF1 complexes, respectively. The regulation of the critical deadenylation step and its relationship with RNA-processing bodies (P-bodies), which are thought to be a site where poly(A)-shortened mRNAs get degraded, are poorly understood. Using the Tet-Off transcriptional pulsing approach to investigate mRNA decay in mouse NIH 3T3 fibroblasts, we found that TOB, an antiproliferative transcription factor, enhances mRNA deadenylation in vivo. Results from glutathione S-transferase pull-down and coimmunoprecipitation experiments indicate that TOB can simultaneously interact with the poly(A) nuclease complex CCR4-CAF1 and the cytoplasmic poly(A)-binding protein, PABPC1. Combining these findings with those from mutagenesis studies, we further identified the protein motifs on TOB and PABPC1 that are necessary for their interaction and found that interaction with PABPC1 is necessary for TOB's deadenylation-enhancing effect. Moreover, our immunofluorescence microscopy results revealed that TOB colocalizes with P-bodies, suggesting a role of TOB in linking deadenylation to the P-bodies. Our findings reveal a new mechanism by which the fate of mammalian mRNA is modulated at the deadenylation step by a protein that recruits poly(A) nuclease(s) to the 3' poly(A) tail-PABP complex.
Collapse
Affiliation(s)
- Nader Ezzeddine
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Ehlting C, Lai WS, Schaper F, Brenndörfer ED, Matthes RJ, Heinrich PC, Ludwig S, Blackshear PJ, Gaestel M, Häussinger D, Bode JG. Regulation of suppressor of cytokine signaling 3 (SOCS3) mRNA stability by TNF-alpha involves activation of the MKK6/p38MAPK/MK2 cascade. THE JOURNAL OF IMMUNOLOGY 2007; 178:2813-26. [PMID: 17312125 DOI: 10.4049/jimmunol.178.5.2813] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The potential of some proinflammatory mediators to inhibit gp130-dependent STAT3 activation by enhancing suppressor of cytokine signaling (SOCS) 3 expression represents an important molecular mechanism admitting the modulation of the cellular response toward gp130-mediated signals. Thus, it is necessary to understand the mechanisms involved in the regulation of SOCS3 expression by proinflammatory mediators. In this study, we investigate SOCS3 expression initiated by the proinflammatory cytokine TNF-alpha. In contrast to IL-6, TNF-alpha increases SOCS3 expression by stabilizing SOCS3 mRNA. Activation of the MAPK kinase 6 (MKK6)/p38(MAPK)-cascade is required for TNF-alpha-mediated stabilization of SOCS3 mRNA and results in enhanced SOCS3 protein expression. In fibroblasts or macrophages deficient for MAPK-activated protein kinase 2 (MK2), a downstream target of the MKK6/p38(MAPK) cascade, basal SOCS3-expression is strongly reduced and TNF-alpha-induced SOCS3-mRNA stabilization is impaired, indicating that MK2 is crucial for the control of SOCS3 expression by p38(MAPK)-dependent signals. As a target for SOCS3 mRNA stability-regulating signals, a region containing three copies of a pentameric AUUUA motif in close proximity to a U-rich region located between positions 2422 and 2541 of the 3' untranslated region of SOCS3 is identified. One factor that could target this region is the zinc finger protein tristetraprolin (TTP), which is shown to be capable of destabilizing SOCS3 mRNA via this region. However, data from TTP-deficient cells suggest that TTP does not play an irreplaceable role in the regulation of SOCS3 mRNA stability by TNF-alpha. In summary, these data indicate that TNF-alpha regulates SOCS3 expression on the level of mRNA stability via activation of the MKK6/p38(MAPK) cascade and that the activation of MK2, a downstream target of p38(MAPK), is important for the regulation of SOCS3 expression.
Collapse
Affiliation(s)
- Christian Ehlting
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, Moorenstrasse 5, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Matsui H, Asou H, Inaba T. Cytokines direct the regulation of Bim mRNA stability by heat-shock cognate protein 70. Mol Cell 2007; 25:99-112. [PMID: 17218274 DOI: 10.1016/j.molcel.2006.12.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 11/05/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Previous gene-targeting studies indicated that Bim, a BH3-only death activator, regulates total blood cell number. Cytokines contribute to this process by negatively regulating steady-state levels of Bim mRNA. Here we present a molecular mechanism for cytokine-mediated posttranscriptional regulation of Bim mRNA by heat-shock cognate protein 70 (Hsc70), which binds to AU-rich elements (AREs) in the 3'-untranslated region of specific mRNAs and enhances their stability. The RNA binding potential of Hsc70 is regulated by cochaperones including Bag-4 (also SODD), CHIP, Hip, and Hsp40. Cytokines regulate the expression or function of these cochaperones by activating Ras pathways. Thus, exposure of cells to cytokines ultimately leads to destabilization of Bim mRNA and promotion of cell survival. This unanticipated role of a chaperone/cochaperone complex in mRNA stability appears to be critical for hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Hirotaka Matsui
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | | | | |
Collapse
|
66
|
Benjamin D, Schmidlin M, Min L, Gross B, Moroni C. BRF1 protein turnover and mRNA decay activity are regulated by protein kinase B at the same phosphorylation sites. Mol Cell Biol 2006; 26:9497-507. [PMID: 17030608 PMCID: PMC1698544 DOI: 10.1128/mcb.01099-06] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BRF1 posttranscriptionally regulates mRNA levels by targeting ARE-bearing transcripts to the decay machinery. We previously showed that protein kinase B (PKB) phosphorylates BRF1 at Ser92, resulting in binding to 14-3-3 and impairment of mRNA decay activity. Here we identify an additional regulatory site at Ser203 that cooperates in vivo with Ser92. In vitro kinase labeling and wortmannin sensitivity indicate that Ser203 phosphorylation is also performed by PKB. Mutation of both serines to alanine uncouples BRF1 from PKB regulation, leading to constitutive mRNA decay even in the presence of stabilizing signals. BRF1 protein is labile because of proteasomal degradation (half-life, <3 h) but becomes stabilized upon phosphorylation and is less stable in PKBalpha(-/-) cells. Surprisingly, phosphorylation-dependent protein stability is also regulated by Ser92 and Ser203, with parallel phosphorylation required at these sites. Phosphorylation-dependent binding to 14-3-3 is abolished only when both sites are mutated. Cell compartment fractionation experiments support a model in which binding to 14-3-3 sequesters BRF1 through relocalization and prevents it from executing its mRNA decay activity, as well as from proteasomal degradation, thereby maintaining high BRF1 protein levels that are required to reinstate decay upon dissipation of the stabilizing signal.
Collapse
Affiliation(s)
- Don Benjamin
- Institute for Medical Microbiology, Petersplatz 10, 4003 Basel, Switzerland
| | | | | | | | | |
Collapse
|
67
|
Gowrishankar G, Winzen R, Bollig F, Ghebremedhin B, Redich N, Ritter B, Resch K, Kracht M, Holtmann H. Inhibition of mRNA deadenylation and degradation by ultraviolet light. Biol Chem 2006; 386:1287-93. [PMID: 16336123 DOI: 10.1515/bc.2005.146] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Post-transcriptional mechanisms contribute to the changes in gene expression induced by cell stress. The effect of UV-B light on mRNA degradation in HeLa cells was investigated using a transcriptional chase system to determine the decay kinetics of tet-off vector-derived mRNAs containing or lacking a destabilizing AU-rich element. Degradation of both mRNAs was strongly inhibited in cells exposed to UV-B light. Removal of the poly(A)-tail, considered a crucial step in mRNA degradation, was strikingly impaired. UV light also inhibited deadenylation and degradation of endogenous mRNA of the chemoattractant cytokine interleukin (IL)-8. Both effects occurred rapidly and independently of newly induced genes. Importantly, stabilization of IL-8 mRNA was accompanied by a strong increase in the duration of IL-8 protein formation. Furthermore, general inhibition of protein synthesis, a hallmark of the response to cell stress, required far higher doses of UV-B than inhibition of mRNA deadenylation and degradation. The difference in sensitivity of cells to these effects of UV-B light establishes a dose range in which mRNA stabilization can lead to dramatically enhanced expression of proteins derived from normally unstable mRNAs, such as those of inflammatory cytokines, growth factors and proto-oncogenes, and thereby have a major impact on the response to UV light.
Collapse
Affiliation(s)
- Gayatri Gowrishankar
- Institute of Biochemistry, Medical School Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Prechtel AT, Chemnitz J, Schirmer S, Ehlers C, Langbein-Detsch I, Stülke J, Dabauvalle MC, Kehlenbach RH, Hauber J. Expression of CD83 is regulated by HuR via a novel cis-active coding region RNA element. J Biol Chem 2006; 281:10912-25. [PMID: 16484227 DOI: 10.1074/jbc.m510306200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dendritic cells are the most potent of the antigen-presenting cells and are characterized by surface expression of CD83. Here, we show that the coding region of CD83 mRNA contains a novel cis-acting structured RNA element that binds to HuR, a member of the ELAV family of AU-rich element RNA-binding proteins. Transient transfection of mammalian cells demonstrated that this CD83 mRNA-derived element acts as a post-transcriptional regulatory element in cells overexpressing HuR. Notably, binding of HuR to the CD83 post-transcriptional regulatory element did not affect mRNA stability. Using RNA interference, we show that HuR mediated efficient expression of CD83. In particular, HuR was required for cytoplasmic accumulation of CD83 transcripts. Likewise, inhibition of the CRM1 nuclear export pathway by leptomycin B or overexpression of a defective form of the nucleoporin Nup214/CAN diminished cytoplasmic CD83 mRNA levels. In summary, the data presented demonstrate that the HuR-CRM1 axis affects the nucleocytoplasmic translocation of CD83 mRNA under regular physiological conditions.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Antigens, CD/biosynthesis
- Antigens, Surface/physiology
- Base Sequence
- Binding Sites
- COS Cells
- Cell Line
- Cell Nucleus/metabolism
- Chlorocebus aethiops
- Cloning, Molecular
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- ELAV Proteins
- ELAV-Like Protein 1
- Fatty Acids, Unsaturated/pharmacology
- Gene Expression Regulation
- Gene Silencing
- Genes, Reporter
- Genetic Vectors
- Glutathione Transferase/metabolism
- HeLa Cells
- Humans
- Immunoblotting
- Immunoglobulins/biosynthesis
- Immunoprecipitation
- Jurkat Cells
- Karyopherins/physiology
- Kinetics
- Luciferases/metabolism
- Membrane Glycoproteins/biosynthesis
- Molecular Sequence Data
- Nuclear Pore Complex Proteins/chemistry
- Polymerase Chain Reaction
- Protein Binding
- Protein Biosynthesis
- Protein Transport
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA Interference
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- RNA-Binding Proteins/physiology
- Receptors, Cytoplasmic and Nuclear/physiology
- Recombinant Fusion Proteins/metabolism
- Surface Plasmon Resonance
- Time Factors
- Transcription, Genetic
- Transfection
- Exportin 1 Protein
- CD83 Antigen
Collapse
Affiliation(s)
- Alexander T Prechtel
- Heinrich Pette Institute for Experimental Virology and Immunology, D-20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Reimunde F, Castañares C, Redondo-Horcajo M, Lamas S, Rodríguez-Pascual F. Endothelin-1 expression is strongly repressed by AU-rich elements in the 3'-untranslated region of the gene. Biochem J 2006; 387:763-72. [PMID: 15595926 PMCID: PMC1135007 DOI: 10.1042/bj20041687] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The regulation of the synthesis of the endothelial-derived vasoconstrictor ET-1 (endothelin-1) is a complex process that occurs mainly at the mRNA level. Transcription of the gene accounts for an important part of the regulation of expression, as already described for different modulators such as the cytokine TGF-beta (transforming growth factor-beta). However, very little is known about mechanisms governing ET-1 expression at the post-transcriptional level. The aim of the present study was to investigate the regulation of the ET-1 expression at this level. Since the 3'-UTR (3'-untranslated region) of mRNAs commonly contains genetic determinants for the post-transcriptional control of gene expression, we focused on the potential role of the 3'-UTR of ET-1 mRNA. Experiments performed with luciferase reporter constructs containing the 3'-UTR showed that this region exerts a potent destabilizing effect. Deletional analyses allowed us to locate this activity within a region at positions 924-1127. Some (but not all) of the AREs (AU-rich elements) present in this region were found to be essential for this mRNA-destabilizing activity. We also present evidence that cytosolic proteins from endothelial cells interact specifically with these RNA elements, and that a close correlation exists between the ability of the AREs to destabilize ET-1 mRNA and the binding of proteins to these elements. Our results are compatible with the existence of a strong repressional control of ET-1 expression mediated by destabilization of the mRNA exerted through the interaction of specific cytosolic proteins with AREs present in the 3'-UTR of the gene.
Collapse
Affiliation(s)
- Francisco M. Reimunde
- Departamento de Estructura y Función de Proteínas, Centro de Investigaciones Biológicas, C.S.I.C., Instituto “Reina Sofía” de Investigaciones Nefrológicas and Centro Nacional de Investigaciones Cardiovasculares (CNIC), Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Cristina Castañares
- Departamento de Estructura y Función de Proteínas, Centro de Investigaciones Biológicas, C.S.I.C., Instituto “Reina Sofía” de Investigaciones Nefrológicas and Centro Nacional de Investigaciones Cardiovasculares (CNIC), Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Mariano Redondo-Horcajo
- Departamento de Estructura y Función de Proteínas, Centro de Investigaciones Biológicas, C.S.I.C., Instituto “Reina Sofía” de Investigaciones Nefrológicas and Centro Nacional de Investigaciones Cardiovasculares (CNIC), Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Santiago Lamas
- Departamento de Estructura y Función de Proteínas, Centro de Investigaciones Biológicas, C.S.I.C., Instituto “Reina Sofía” de Investigaciones Nefrológicas and Centro Nacional de Investigaciones Cardiovasculares (CNIC), Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Departamento de Estructura y Función de Proteínas, Centro de Investigaciones Biológicas, C.S.I.C., Instituto “Reina Sofía” de Investigaciones Nefrológicas and Centro Nacional de Investigaciones Cardiovasculares (CNIC), Ramiro de Maeztu 9, E-28040, Madrid, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
70
|
Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 2006; 33:7138-50. [PMID: 16391004 PMCID: PMC1325018 DOI: 10.1093/nar/gki1012] [Citation(s) in RCA: 761] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The control of mRNA stability is an important process that allows cells to not only limit, but also rapidly adjust, the expression of regulatory factors whose over expression may be detrimental to the host organism. Sequence elements rich in A and U nucleotides or AU-rich elements (AREs) have been known for many years to target mRNAs for rapid degradation. In this survey, after briefly summarizing the data on the sequence characteristics of AREs, we present an analysis of the known ARE-binding proteins (ARE-BP) with respect to their mRNA targets and the consequences of their binding to the mRNA. In this analysis, both the changes in mRNA stability and the lesser studied effects on translation are considered. This analysis highlights the multitude of mRNAs bound by one ARE-BP and conversely the large number of ARE-BP that associate with any particular ARE-containing mRNA. This situation is discussed with respect to functional redundancies or antagonisms. The potential relationship between mRNA stability and translation is also discussed. Finally, we present several hypotheses that could unify the published data and suggest avenues for future research.
Collapse
Affiliation(s)
| | | | - H. Beverley Osborne
- To whom correspondence should be addressed. Tel: +33 223 23 4523; Fax: +33 223 23 4478;
| |
Collapse
|
71
|
Takahashi H, Maeda M, Sawa H, Hasegawa H, Moriyama M, Sata T, Hall WW, Kurata T. Dicer and positive charge of proteins decrease the stability of RNA containing the AU-rich element of GM-CSF. Biochem Biophys Res Commun 2005; 340:807-14. [PMID: 16380083 DOI: 10.1016/j.bbrc.2005.12.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 12/09/2005] [Indexed: 11/27/2022]
Abstract
AU-rich elements (AREs) in the 3'-untranslated region of mRNAs promote rapid decay of the mRNAs for certain cytokines, including that encoding granulocyte-macrophage colony-stimulating factor (GM-CSF). We show that an RNA molecule based on the ARE of GM-CSF mRNA is cleaved between U and A residues in the presence of bovine serum albumin of which cleavage effect is attenuated by acetylation. Furthermore, the expression of RNA molecule containing the ARE of GM-CSF mRNA in human cell lines was increased by inhibition of histone deacetylase activity and attenuation of Dicer expression. These findings suggest that degradation of mRNAs containing an ARE might be regulated by positive charge of polypeptides and Dicer.
Collapse
Affiliation(s)
- Hidehiro Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, Chen CYA, Shyu AB. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 2005; 12:1054-63. [PMID: 16284618 DOI: 10.1038/nsmb1016] [Citation(s) in RCA: 345] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 10/11/2005] [Indexed: 11/08/2022]
Abstract
In mammalian cells, the enzymatic pathways involved in cytoplasmic mRNA decay are incompletely defined. In this study, we have used two approaches to disrupt activities of deadenylating and/or decapping enzymes to monitor effects on mRNA decay kinetics and trap decay intermediates. Our results show that deadenylation is the key first step that triggers decay of both wild-type stable and nonsense codon-containing unstable beta-globin mRNAs in mouse NIH3T3 fibroblasts. PAN2 and CCR4 are the major poly(A) nucleases active in cytoplasmic deadenylation that have biphasic kinetics, with PAN2 initiating deadenylation followed by CCR4-mediated poly(A) shortening. DCP2-mediated decapping takes place after deadenylation and may serve as a backup mechanism for triggering mRNA decay when initial deadenylation by PAN2 is compromised. Our findings reveal a functional link between deadenylation and decapping and help to define in vivo pathways for mammalian cytoplasmic mRNA decay.
Collapse
Affiliation(s)
- Akio Yamashita
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Dhakras PS, Hajarnis S, Taylor L, Curthoys NP. cAMP-dependent stabilization of phosphoenolpyruvate carboxykinase mRNA in LLC-PK1-F+ kidney cells. Am J Physiol Renal Physiol 2005; 290:F313-8. [PMID: 16144962 DOI: 10.1152/ajprenal.00249.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes a rate-limiting step in hepatic and renal gluconeogenesis. In the kidney, PEPCK expression is enhanced during metabolic acidosis and in response to ANG II and parathyroid hormone. The effect of the latter hormone is mediated, in part, by cAMP. Treatment of subconfluent cultures of LLC-PK1-F+ cells, a gluconeogenic line of porcine proximal tubule-like cells, with cAMP produces a pronounced increase in the level of PEPCK mRNA. The luciferase activity of pLuc/3'-PCK-1, a reporter construct that contains the 3'-UTR of the PEPCK mRNA, was increased three- to fourfold by coexpression of the catalytic subunit of protein kinase A (PKA). This result indicates that cAMP-dependent stabilization may contribute to the increased expression of PEPCK mRNA in LLC-PK1-F+ cells. Various pLuc/3' constructs containing different segments of the 3'-UTR of PEPCK mRNA were used to map the cAMP response to two segments that were previously shown to bind AUF1 and to function as instability elements. A tetracycline-responsive promoter system was used to quantify the effect of forskolin on the half-lives of chimeric beta-globin-PEPCK (TbetaG-PCK) mRNAs. The half-life of the labile betaG-PCK-1 mRNA was increased eightfold by addition of forskolin. In contrast, the half-lives of the constructs containing the individual instability elements were increased only twofold. Therefore, the multiple instability elements present within the 3'-UTR may function synergistically to mediate both the rapid degradation and the cAMP-induced stabilization of PEPCK mRNA. The latter process may result from a PKA-dependent phosphorylation of AUF1.
Collapse
Affiliation(s)
- Purabi S Dhakras
- Department of Biochemistry and Molecular Biology, Colorado State University, Campus Delivery 1870, Fort Collins, CO 80523-1870, USA
| | | | | | | |
Collapse
|
74
|
Duttagupta R, Tian B, Wilusz CJ, Khounh DT, Soteropoulos P, Ouyang M, Dougherty JP, Peltz SW. Global analysis of Pub1p targets reveals a coordinate control of gene expression through modulation of binding and stability. Mol Cell Biol 2005; 25:5499-513. [PMID: 15964806 PMCID: PMC1156976 DOI: 10.1128/mcb.25.13.5499-5513.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Regulation of mRNA turnover is an important cellular strategy for posttranscriptional control of gene expression, mediated by the interplay of cis-acting sequences and associated trans-acting factors. Pub1p, an ELAV-like yeast RNA-binding protein with homology to T-cell internal antigen 1 (TIA-1)/TIA-1-related protein (TIAR), is an important modulator of the decay of two known classes of mRNA. Our goal in this study was to determine the range of mRNAs whose stability is dependent on Pub1p, as well as to identify specific transcripts that directly bind to this protein. We have examined global mRNA turnover in isogenic PUB1 and pub1delta strains through gene expression analysis and demonstrate that 573 genes exhibit a significant reduction in half-life in a pub1delta strain. We also examine the binding specificity of Pub1p using affinity purification followed by microarray analysis to comprehensively distinguish between direct and indirect targets and find that Pub1p significantly binds to 368 cellular transcripts. Among the Pub1p-associated mRNAs, 53 transcripts encoding proteins involved in ribosomal biogenesis and cellular metabolism are selectively destabilized in the pub1delta strain. In contrast, genes involved in transporter activity demonstrate association with Pub1p but display no measurable changes in transcript stability. Characterization of two candidate genes, SEC53 and RPS16B, demonstrate that both Pub1p-dependent regulation of stability and Pub1p binding require 3' untranslated regions, which harbor distinct sequence motifs. These results suggest that Pub1p binds to discrete subsets of cellular transcripts and posttranscriptionally regulates their expression at multiple levels.
Collapse
Affiliation(s)
- Radharani Duttagupta
- Department of Molecular Genetics, Microbiology, and Immunology, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Ln., Piscataway, New Jersey 08854-5627, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Hilgers V, Pourquié O, Dubrulle J. In vivo analysis of mRNA stability using the Tet-Off system in the chicken embryo. Dev Biol 2005; 284:292-300. [PMID: 15993405 DOI: 10.1016/j.ydbio.2005.05.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/30/2005] [Accepted: 05/17/2005] [Indexed: 11/20/2022]
Abstract
The rate of mRNA degradation plays an important role in the control of gene expression. The mRNA stability is mainly dependent on cis-regulatory elements contained in the 3' or 5' untranslated region (UTR) of the mature mRNAs, and its regulation is an efficient way to adapt the level of a given transcript in the cell. Although this process has been well studied in cell culture, little is known about mRNA stability during embryonic development. Here, we describe an assay that combines the tetracyclin-dependent inducible system Tet-Off with in ovo electroporation to monitor mRNA stability in the chick neural tube. We show, by using the GFP intensity as an indirect reporter system, that the 3'UTR of Lunatic Fringe strongly destabilizes transcripts, while transcripts bearing the 3'UTR of Fgf8 are much more stable. This simple assay provides a powerful tool to study mRNA dynamics in vivo.
Collapse
Affiliation(s)
- Valérie Hilgers
- Stowers Institute for Medical Research, 1000E 50th, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
76
|
Alcorn JL, Stark JM, Chiappetta CL, Jenkins G, Colasurdo GN. Effects of RSV infection on pulmonary surfactant protein SP-A in cultured human type II cells: contrasting consequences on SP-A mRNA and protein. Am J Physiol Lung Cell Mol Physiol 2005; 289:L1113-22. [PMID: 16055477 DOI: 10.1152/ajplung.00436.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most important cause of serious lower respiratory illness in infants and children. Surfactant proteins A (SP-A) and D (SP-D) play critical roles in lung defense against RSV infections. Alterations in surfactant protein homeostasis in the lung may result from changes in production, metabolism, or uptake of the protein within the lung. We hypothesized that RSV infection of the type II cell, the primary source of surfactant protein, may alter surfactant protein gene expression. Human type II cells grown in primary culture possess lamellar bodies (a type II cell-specific organelle) and the ability to express surfactant protein mRNA. These cells were infected with RSV (by morphology and antibody binding). Surfactant protein mRNA levels determined by quantitative RT-PCR indicated a marked increase in SP-A mRNA levels (3-fold) 24 h after RSV exposure, whereas SP-D mRNA levels were unaffected. In contrast to mRNA levels, total SP-A protein levels (determined by Western blot analysis) were decreased 40% after RSV infection. The percentage of secreted SP-A was 43% of the total SP-A in the RSV-infected cells, whereas the percentage of secreted SP-A was 61% of the total SP-A in the uninfected cells. These changes in SP-A transcript levels and protein secretion in cultured human cells were recapitulated in RSV-infected mouse lung. Our findings suggest that type II cells are potentially important targets of RSV lower respiratory infection and that alterations in surfactant protein gene expression and SP-A protein homeostasis in the lung may arise via direct effects of RSV.
Collapse
Affiliation(s)
- Joseph L Alcorn
- Dept. of Pediatrics, The University of Texas-Houston Medical School, 6431 Fannin, Suite 3.222, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
77
|
Hajarnis S, Schroeder JM, Curthoys NP. 3'-Untranslated region of phosphoenolpyruvate carboxykinase mRNA contains multiple instability elements that bind AUF1. J Biol Chem 2005; 280:28272-80. [PMID: 15951444 DOI: 10.1074/jbc.m501204200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is regulated solely by alterations in gene expression that involve changes in rates of PEPCK mRNA transcription and degradation. A tetracycline-responsive promoter system was used to quantify the half-life of various chimeric beta-globin-PEPCK (betaG-PCK) mRNAs in LLC-PK -F(+) cells. The control betaG mRNA was extremely stable (t(1/2) = 5 days). However, betaG-PCK-1 mRNA, which contains the entire 3'-UTR of the PEPCK mRNA, was degraded with a half-life of 1.2 h. RNase H treatment indicated that rapid deadenylation occurred concomitant with degradation of the betaG-PCK-1 mRNA. Previous studies indicate that PCK-7, a 50-nucleotide segment at the 3'-end of the 3'-UTR, binds an unidentified protein that may contribute to the rapid decay of the PEPCK mRNA. However, the chimeric betaG-PCK-7 mRNA has a half-life of 17 h. Inclusion of the adjacent PCK-6 segment, a 23-bp AU-rich region, produced the betaG-PCK-6/7 mRNA, which has a half-life of 3.6 h. The betaG-PCK-3 mRNA that contains the 3'-half of 3'-UTR was degraded with the same half-life. Surprisingly, the betaG-PCK-2 mRNA, containing the 5'-end of the 3'-UTR, was also degraded rapidly (t((1/2)) = 5.4 h). RNA gel shift analyses established that AUF1 (hnRNP D) binds to the PCK-7, PCK-6, and PCK-2 segments with high affinity and specificity. Mutational analysis indicated that AUF1 binds to a UUAUUUUAU sequence within PCK-6 and the stem-loop structure and adjacent CU-region of PCK-7. Thus, AUF1 binds to multiple destabilizing elements within the 3'-UTR that participate in the rapid turnover of the PEPCK mRNA.
Collapse
Affiliation(s)
- Sachin Hajarnis
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | |
Collapse
|
78
|
Meyer S, Temme C, Wahle E. Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 2005; 39:197-216. [PMID: 15596551 DOI: 10.1080/10409230490513991] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The control of mRNA degradation is an important component of the regulation of gene expression since the steady-state concentration of mRNA is determined both by the rates of synthesis and of decay. Two general pathways of mRNA decay have been described in eukaryotes. Both pathways share the exonucleolytic removal of the poly(A) tail (deadenylation) as the first step. In one pathway, deadenylation is followed by the hydrolysis of the cap and processive degradation of the mRNA body by a 5' exonuclease. In the second pathway, the mRNA body is degraded by a complex of 3' exonucleases before the remaining cap structure is hydrolyzed. This review discusses the proteins involved in the catalysis and control of both decay pathways.
Collapse
Affiliation(s)
- Sylke Meyer
- Institut für Biochemie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
79
|
Voon DC, Subrata LS, Baltic S, Leu MP, Whiteway JM, Wong A, Knight SA, Christiansen FT, Daly JM. Use of mRNA- and protein-destabilizing elements to develop a highly responsive reporter system. Nucleic Acids Res 2005; 33:e27. [PMID: 15716309 PMCID: PMC549429 DOI: 10.1093/nar/gni030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Reporter assays are widely used in applications that require measurement of changes in gene expression over time (e.g. drug screening). With standard reporter vectors, the measurable effect of a treatment or compound (altered reporter activity) is substantially diluted and delayed, compared with its true effect (altered transcriptional activity). This problem is caused by the relatively long half-lives of both the reporter protein and its mRNA. As a result, the activities of compounds, ligands or treatments that have a relatively minor effect, or a substantial but transient effect, often remain undetected. To circumvent this problem, we introduced modular protein- and mRNA-destabilizing elements into a range of commonly used reporters. Our data show that both elements are required for maximal responses to both increases and decreases in transcriptional activity. The double-destabilized reporter vectors showed markedly improved performance in drug screening, kinetic assays and dose–response titrations.
Collapse
Affiliation(s)
- Dominic C. Voon
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Lily S. Subrata
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Svetlana Baltic
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Marco P. Leu
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Joanna M. Whiteway
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
- School of Surgery and Pathology, The University of Western AustraliaCrawley WA 6009, Australia
| | - Agnes Wong
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
- School of Surgery and Pathology, The University of Western AustraliaCrawley WA 6009, Australia
| | - Samuel A. Knight
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Frank T. Christiansen
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
- School of Surgery and Pathology, The University of Western AustraliaCrawley WA 6009, Australia
| | - John M. Daly
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
- To whom correspondence should be addressed. Tel/Fax: +61 8 92051149;
| |
Collapse
|
80
|
Wang W, Martindale JL, Yang X, Chrest FJ, Gorospe M. Increased stability of the p16 mRNA with replicative senescence. EMBO Rep 2005; 6:158-64. [PMID: 15678155 PMCID: PMC1299256 DOI: 10.1038/sj.embor.7400346] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 11/25/2004] [Accepted: 01/03/2005] [Indexed: 11/09/2022] Open
Abstract
Expression of p16(INK4a) is elevated during ageing and replicative senescence. Here, we report the presence of an instability determinant within the 3'-untranslated region (UTR) of the p16 messenger RNA in WI-38 human diploid fibroblasts. The p16 3'UTR was found to be a specific target of AUF1, an RNA-binding protein implicated in promoting mRNA decay. Both AUF1 levels and AUF1-p16 mRNA associations were strikingly more abundant in early-passage than late-passage fibroblast cultures. Moreover, short interfering RNA-based reductions in AUF1 levels increased the stability of p16 3'UTR-containing transcripts, elevated the expression of p16 and accentuated the senescence phenotype. Together, our findings show that p16 mRNA turnover decreases during replicative senescence and that the instability-conferring region is located within the 3'UTR of p16, as well as identifying AUF1 as a critical mediator of these regulatory events.
Collapse
Affiliation(s)
- Wengong Wang
- Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, Maryland 21224, USA
| | - Jennifer L Martindale
- Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, Maryland 21224, USA
| | - Xiaoling Yang
- Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, Maryland 21224, USA
| | - Francis J Chrest
- Research Resources Branch, National Institute on Aging-IRP, NIH, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, Maryland 21224, USA
| |
Collapse
|
81
|
García-Vallejo JJ, van Dijk W, van Die I, Gringhuis SI. Tumor necrosis factor-alpha up-regulates the expression of beta1,4-galactosyltransferase I in primary human endothelial cells by mRNA stabilization. J Biol Chem 2005; 280:12676-82. [PMID: 15668241 DOI: 10.1074/jbc.m410093200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During the course of an inflammatory response, the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFalpha) triggers endothelial cells to increase the expression levels of adhesion molecules that are pivotal for the rolling, adhesion, and transmigration of leukocytes over the endothelial cell wall. Here we show that TNFalpha, in addition, has a regulatory function in the biosynthesis of proper carbohydrate molecules on endothelial cells that constitute ligands for adhesion molecules on leukocytes. Our data show that TNFalpha induced an increase in the expression of beta1,4-galactosyltransferase-1 (beta4GalT-1) in primary human umbilical vein endothelial cells in a time- and concentration-dependent manner. The beta4GalT-1 mRNA up-regulation correlated with an increase in the Golgi expression and catalytic activity of the enzyme. Furthermore, an enhanced incorporation of galactose was observed in newly synthesized glycoproteins. Analysis of the molecular mechanism behind the up-regulation of beta4GalT-1 showed that the increase in mRNA levels is due to an enhanced stability of the transcripts. These data strongly demonstrate that TNFalpha modulates the glycosylation of endothelial cells by a mechanism that directly enhances the stability of beta4GalT-1 mRNA transcripts.
Collapse
Affiliation(s)
- Juan Jesús García-Vallejo
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Centre, 1007 MB Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
82
|
Schmidlin M, Lu M, Leuenberger SA, Stoecklin G, Mallaun M, Gross B, Gherzi R, Hess D, Hemmings BA, Moroni C. The ARE-dependent mRNA-destabilizing activity of BRF1 is regulated by protein kinase B. EMBO J 2004; 23:4760-9. [PMID: 15538381 PMCID: PMC535089 DOI: 10.1038/sj.emboj.7600477] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 10/15/2004] [Indexed: 12/12/2022] Open
Abstract
Butyrate response factor (BRF1) belongs to the Tis11 family of CCCH zinc-finger proteins, which bind to mRNAs containing an AU-rich element (ARE) in their 3' untranslated region and promote their deadenylation and rapid degradation. Independent signal transduction pathways have been reported to stabilize ARE-containing transcripts by a process thought to involve phosphorylation of ARE-binding proteins. Here we report that protein kinase B (PKB/Akt) stabilizes ARE transcripts by phosphorylating BRF1 at serine 92 (S92). Recombinant BRF1 promoted in vitro decay of ARE-containing mRNA (ARE-mRNA), yet phosphorylation by PKB impaired this activity. S92 phosphorylation of BRF1 did not impair ARE binding, but induced complex formation with the scaffold protein 14-3-3. In vivo and in vitro data support a model where PKB causes ARE-mRNA stabilization by inactivating BRF1 through binding to 14-3-3.
Collapse
Affiliation(s)
- Martin Schmidlin
- Institute for Medical Microbiology, University of Basel, Basel, Switzerland
| | - Min Lu
- Institute for Medical Microbiology, University of Basel, Basel, Switzerland
| | | | - Georg Stoecklin
- Division of Rheumatology and Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michel Mallaun
- Institute for Medical Microbiology, University of Basel, Basel, Switzerland
| | - Brigitte Gross
- Institute for Medical Microbiology, University of Basel, Basel, Switzerland
| | - Roberto Gherzi
- Gene Transfer Laboratory, Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Daniel Hess
- Friedrich Miescher Institute, Basel, Switzerland
| | | | - Christoph Moroni
- Institute for Medical Microbiology, University of Basel, Basel, Switzerland
- Institute für Medizinische Mikrobiologie, Universität Basel, Petersplatz 10, Basel 4003, Switzerland. Tel.: +41 61 267 3264; Fax: +41 61 267 3283; E-mail:
| |
Collapse
|
83
|
Mavropoulos A, Sully G, Cope AP, Clark AR. Stabilization of IFN-gamma mRNA by MAPK p38 in IL-12- and IL-18-stimulated human NK cells. Blood 2004; 105:282-8. [PMID: 15345584 DOI: 10.1182/blood-2004-07-2782] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The rapid induction of interferon-gamma (IFN-gamma) by innate cytokines such as interleukin 12 (IL-12) and IL-18 is critical for immunity against infectious pathogens. We investigated the molecular mechanisms underlying this response. IL-12 and IL-18 rapidly and synergistically induced the secretion of IFN-gamma by freshly purified human peripheral blood lymphocytes. At early time points, IFN-gamma was expressed almost exclusively by natural killer cells and in both CD56bright and CD56dim subpopulations. Mitogen-activated protein kinase p38 was activated strongly by IL-18 and weakly by IL-12 in natural killer cells but was not activated by either cytokine in T cells. The expression of IFN-gamma mRNA and protein was dose-dependently blocked by SB203580, a specific inhibitor of mitogen-activated protein kinase p38, which also caused a dramatic destabilization of IFN-gamma mRNA. The 3' untranslated region (UTR) of IFN-gamma mRNA conferred p38 responsiveness to a heterologous reporter mRNA. Therefore, the synergistic induction of IFN-gamma by IL-12 and IL-18 in natural killer cells is mediated at least in part by p38-dependent and 3' UTR-mediated stabilization of IFN-gamma mRNA.
Collapse
Affiliation(s)
- Athanasios Mavropoulos
- Kennedy Institute of Rheumatology Division, Imperial College London, London, United Kingdom
| | | | | | | |
Collapse
|
84
|
Huang JL, Gao PS, Mathias RA, Yao TC, Chen LC, Kuo ML, Hsu SC, Plunkett B, Togias A, Barnes KC, Stellato C, Beaty TH, Huang SK. Sequence variants of the gene encoding chemoattractant receptor expressed on Th2 cells (CRTH2) are associated with asthma and differentially influence mRNA stability. Hum Mol Genet 2004; 13:2691-7. [PMID: 15345705 DOI: 10.1093/hmg/ddh279] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The gene, CRTH2, encoding a receptor for prostaglandin D(2) (PGD(2)), is located within the peak linkage region for asthma on chromosome (Chr.) 11q reported in African American families. Family-based analysis of asthma and two common SNPs [G1544C and G1651A (rs545659)] in the 3'-untranslated region of CRTH2 showed significant evidence of linkage in the presence of disequilibrium for the 1651G allele (P = 0.003) of SNP rs545659. Haplotype analysis yielded additional evidence of linkage disequilibrium for the 1544G-1651G haplotype (P < 0.001). Population-based case-control analyses were conducted in two independent populations, and demonstrated significant association of the 1544G-1651G haplotype with asthma in an African American population (P = 0.004), and in a population of Chinese children (P < 0.001). Moreover, in the Chinese children the frequency of the 1651G allele in near-fatal asthmatics was significantly higher than mild-to-moderate asthmatics (P = 0.001) and normal controls (P < 0.001). The 1651G allele of SNP re545659 was also associated with a higher degree of bronchial hyperresponsiveness (P < 0.027). Transcriptional pulsing experiments showed that the 1544G-1651G haplotype confers a significantly higher level of reporter mRNA stability, when compared with a non-transmitted haplotype (1544C-1651A), suggesting that the CRTH2 gene on Chr. 11q is a strong candidate gene for asthma.
Collapse
Affiliation(s)
- Jing-Long Huang
- The Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chang Gung Children's Hospital, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Winzen R, Gowrishankar G, Bollig F, Redich N, Resch K, Holtmann H. Distinct domains of AU-rich elements exert different functions in mRNA destabilization and stabilization by p38 mitogen-activated protein kinase or HuR. Mol Cell Biol 2004; 24:4835-47. [PMID: 15143177 PMCID: PMC416423 DOI: 10.1128/mcb.24.11.4835-4847.2004] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AU-rich elements (AREs) control the expression of numerous genes by accelerating the decay of their mRNAs. Rapid decay and deadenylation of beta-globin mRNA containing AU-rich 3' untranslated regions of the chemoattractant cytokine interleukin-8 (IL-8) are strongly attenuated by activating the p38 mitogen-activated protein (MAP) kinase/MAP kinase-activated protein kinase 2 (MK2) pathway. Further evidence for a crucial role of the poly(A) tail is provided by the loss of destabilization and kinase-induced stabilization in ARE RNAs expressed as nonadenylated forms by introducing a histone stem-loop sequence. The minimal regulatory element in the IL-8 mRNA is located in a 60-nucleotide evolutionarily conserved sequence with a structurally and functionally bipartite character: a core domain with four AUUUA motifs and limited destabilizing function on its own and an auxiliary domain that markedly enhances destabilization exerted by the core domain and thus is essential for the rapid removal of RNA targets. A similar bipartite structure and function are observed for the granulocyte-macrophage colony-stimulating factor (GM-CSF) ARE. Stabilization in response to p38/MK2 activation is seen with the core domain alone and also after mutation of the AUUUA motifs in the complete IL-8 ARE. Stabilization by ARE binding protein HuR requires different sequence elements. Binding but no stabilization is observed with the IL-8 ARE. Responsiveness to HuR is gained by exchanging the auxiliary domain of the IL-8 ARE with that of GM-CSF or with a domain of the c-fos ARE, which results in even stronger responsiveness. These results show that distinct ARE domains differ in function with regard to destabilization, stabilization by p38/MK2 activation, and stabilization by HuR.
Collapse
Affiliation(s)
- Reinhard Winzen
- Institute of Biochemistry, Medical School Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
86
|
Tchen CR, Brook M, Saklatvala J, Clark AR. The stability of tristetraprolin mRNA is regulated by mitogen-activated protein kinase p38 and by tristetraprolin itself. J Biol Chem 2004; 279:32393-400. [PMID: 15187092 DOI: 10.1074/jbc.m402059200] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tristetraprolin (TTP) is an mRNA-destabilizing protein that negatively regulates the expression of proinflammatory mediators such as tumor necrosis factor alpha, granulocyte/macrophage colony-stimulating factor, and cyclooxygenase 2. Here we investigate the regulation of TTP expression in the mouse macrophage cell line RAW264.7. We show that TTP mRNA is expressed in a biphasic manner following stimulation of cells with lipopolysaccharide and that the second phase of expression, like the first, is dependent on mitogen-activated protein kinase (MAPK) p38. MAPK p38 acts through a downstream kinase to stabilize TTP mRNA, and this stabilization is mediated by an adenosine/uridine-rich region at the 3'-end of the TTP 3'-untranslated region. Hence TTP is post-transcriptionally regulated in a similar manner to several proinflammatory genes. We also demonstrate that TTP is able to bind to its own 3'-untranslated region and negatively regulate its own expression, forming a feedback loop to limit expression levels.
Collapse
Affiliation(s)
- Carmen R Tchen
- Kennedy Institute of Rheumatology Division, Imperial College London, 1 Aspenlea Road, Hammersmith, London W6 8LH, United Kingdom
| | | | | | | |
Collapse
|
87
|
Donnini M, Lapucci A, Papucci L, Witort E, Jacquier A, Brewer G, Nicolin A, Capaccioli S, Schiavone N. Identification of TINO. J Biol Chem 2004; 279:20154-66. [PMID: 14769789 DOI: 10.1074/jbc.m314071200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Modulation of mRNA stability by regulatory cis-acting AU-rich elements (AREs) and ARE-binding proteins is an important posttranscriptional mechanism of gene expression control. We previously demonstrated that the 3'-untranslated region of BCL-2 mRNA contains an ARE that accounts for rapid BCL-2 down-regulation in response to apoptotic stimuli. We also demonstrated that the BCL-2 ARE core interacts with a number of ARE-binding proteins, one of which is AU-rich factor 1/heterogeneous nuclear ribonucleoprotein D, known for its interaction with mRNA elements of others genes. In an attempt to search for other BCL-2 mRNA-binding proteins, we used the yeast RNA three-hybrid system assay and identified a novel human protein that interacts with BCL-2 ARE. We refer to it as TINO. The predicted protein sequence of TINO reveals two amino-terminal heterogeneous nuclear ribonucleoprotein K homology motifs for nucleic acid binding and a carboxyl-terminal RING domain, endowed with a putative E3 ubiquitin-protein ligase activity. In addition the novel protein is evolutionarily conserved; the two following orthologous proteins have been identified with protein-protein BLAST: posterior end mark-3 (PEM-3) of Ciona savignyi and muscle excess protein-3 (MEX-3) of Caenorhabditis elegans. Upon binding, TINO destabilizes a chimeric reporter construct containing the BCL-2 ARE sequence, revealing a negative regulatory action on BCL-2 gene expression at the posttranscriptional level.
Collapse
MESH Headings
- 3' Untranslated Regions
- 5' Untranslated Regions
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Apoptosis
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Caenorhabditis elegans
- Cell Line
- Conserved Sequence
- DNA, Complementary/metabolism
- Databases as Topic
- Down-Regulation
- Evolution, Molecular
- Gene Expression Regulation
- Genes, bcl-2
- HeLa Cells
- Heterogeneous-Nuclear Ribonucleoprotein D/metabolism
- Heterogeneous-Nuclear Ribonucleoprotein K/metabolism
- Humans
- Microscopy, Fluorescence
- Models, Genetic
- Molecular Sequence Data
- Plasmids/metabolism
- Protein Binding
- Protein Biosynthesis
- Protein Structure, Tertiary
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- RNA-Binding Proteins/chemistry
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleases/metabolism
- Sequence Homology, Amino Acid
- Time Factors
- Transfection
- Two-Hybrid System Techniques
- Urochordata
Collapse
Affiliation(s)
- Martino Donnini
- Department of Experimental Pathology and Oncology, School of Medicine, University of Florence, 50134 Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Chen CYA, Xu N, Zhu W, Shyu AB. Functional dissection of hnRNP D suggests that nuclear import is required before hnRNP D can modulate mRNA turnover in the cytoplasm. RNA (NEW YORK, N.Y.) 2004; 10:669-680. [PMID: 15037776 PMCID: PMC1370557 DOI: 10.1261/rna.5269304] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 12/30/2003] [Indexed: 05/24/2023]
Abstract
Many shuttling proteins not only function in the nucleus but also control mRNA fates in the cytoplasm. We test whether a link exists between their nuclear association with mRNPs and their cytoplasmic functions using the p37 isoform of hnRNP D, which inhibits the rapid cytoplasmic mRNA decay in NIH3T3 cells. We showed that p37 shuttles between nucleus and cytoplasm, and narrowed down the nuclear import signal to a 50-amino-acid C-terminal domain. A p37 mutant missing this domain, still capable of associating with target mRNAs in vitro, was confined to the cytoplasm, where it was unable to block cytoplasmic mRNA turnover. Introducing heterologous shuttling domains to this mutant, thereby restoring its ability to enter the nucleus, concomitantly restored its cytoplasmic function. Association of p37 with its target mRNAs can only be detected when it can enter the nucleus. Our results suggest that nuclear import of hnRNP D is a prerequisite for it to exert its cytoplasmic function. This study provides a useful model system to elucidate the mechanisms by which "nuclear history" affects cytoplasmic mRNA fates.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
89
|
Stoecklin G, Stubbs T, Kedersha N, Wax S, Rigby WFC, Blackwell TK, Anderson P. MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J 2004; 23:1313-24. [PMID: 15014438 PMCID: PMC381421 DOI: 10.1038/sj.emboj.7600163] [Citation(s) in RCA: 410] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 02/16/2004] [Indexed: 11/08/2022] Open
Abstract
Stress granules (SGs) are dynamic cytoplasmic foci at which stalled translation initiation complexes accumulate in cells subjected to environmental stress. SG-associated proteins such as TIA-1, TIAR and HuR bind to AU-rich element (ARE)-containing mRNAs and control their translation and stability. Here we show that tristetraprolin (TTP), an ARE-binding protein that destabilizes ARE-mRNAs, is recruited to SGs that are assembled in response to FCCP-induced energy deprivation, but not arsenite-induced oxidative stress. Exclusion of TTP from arsenite-induced SGs is a consequence of MAPKAP kinase-2 (MK2)-induced phosphorylation at serines 52 and 178, which promotes the assembly of TTP:14-3-3 complexes. 14-3-3 binding excludes TTP from SGs and inhibits TTP-dependent degradation of ARE-containing transcripts. In activated RAW 264.7 macrophages, endogenous TTP:14-3-3 complexes bind to ARE-RNA. Our data reveal the mechanism by which the p38-MAPK/MK2 kinase cascade inhibits TTP-mediated degradation of ARE-containing transcripts and thereby contributes to lipopolysaccharide-induced TNFalpha expression.
Collapse
Affiliation(s)
- Georg Stoecklin
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tiffany Stubbs
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nancy Kedersha
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen Wax
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - William FC Rigby
- Department of Medicine, Dartmouth Medical School, Lebanon, NH, USA
| | - T Keith Blackwell
- CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA, USA
| | - Paul Anderson
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
90
|
Couttet P, Grange T. Premature termination codons enhance mRNA decapping in human cells. Nucleic Acids Res 2004; 32:488-94. [PMID: 14742663 PMCID: PMC373342 DOI: 10.1093/nar/gkh218] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance process that promotes selective degradation of imperfect messages containing premature translation termination codons (PTCs). In yeast, PTCs trigger both deadenylylation-independent mRNA decapping, thereby allowing their rapid degradation by a 5' to 3' exonuclease, and to a smaller extent accelerated deadenylylation. It is not clear to what extent this decay pathway is conserved in higher eukaryotes. We used a transcriptional pulse strategy relying on a tetracycline-regulated promoter to study the decay of a PTC- containing beta-globin mRNA in human cells. We show that a PTC destabilizes the mRNA and decreases its half-life from >16 h to 3 h. The deadenylylation rate is increased, but not sufficiently to account for the decreased half-life on its own. Using a circularization RT-PCR (cRT-PCR) strategy, we could detect decapped degradation intermediates and measure simultaneously their poly(A) tail length. This allowed us to show that a PTC enhances the rate of mRNA decapping and that decapped products have been deadenylylated to a certain extent. Thus the major feature of the NMD pathway, enhanced decapping, is conserved from yeast to man even though the kinetic details might differ between various mRNAs and/or species.
Collapse
Affiliation(s)
- P Couttet
- Institut Jacques Monod du CNRS, Universités Paris 6-7, Tour 43, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | |
Collapse
|
91
|
Navarro A, Frevel M, Gamero AM, Williams BRG, Feldman G, Larner AC. Thrombomodulin RNA Is Destabilized Through Its 3′-Untranslated Element in Cells Exposed to IFN-γ. J Interferon Cytokine Res 2003; 23:723-8. [PMID: 14769148 DOI: 10.1089/107999003772084833] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferon-gamma (IFN-gamma) is a potent activator of mononuclear phagocytes, allowing them to play a prominent role in acute and chronic inflammatory responses. IFN-gamma binding to its cell surface receptor initiates changes in the steady-state levels of cellular RNAs, permitting the proteins encoded by these RNAs to exert its biologic actions. Hundreds of cellular RNAs have been identified whose rates of transcription are altered by incubation of cells with IFNs. The rates of transcription of many of the genes encoding these RNAs are enhanced by IFN-gamma-mediated activation of the Stat1 transcription factor that is tyrosine phosphorylated and translocates to the nucleus, where it binds enhancers present in IFN-stimulated genes (ISGs). IFN-gamma can also modify the concentrations of some RNAs by posttranscriptional mechanisms. However, very little is understood about the molecular mechanisms regulating this phenomenon. We have identified the RNA encoding thrombomodulin (TM), a physiologic receptor for thrombin, that is downregulated in primary human monocytes incubated with IFN-gamma. Using actinomycin D as a transcriptional inhibitor, we show that the mRNA half-life is rapidly shortened by IFN-gamma. The TM transcript contains a large 3'-untranslated region (UTR), with several AU-rich elements (AREs), elements that have been implicated in the regulation of mRNA decay. Using a tetracycline-regulatory promoter system, we analyzed RNA levels in the absence of transcription of TM. Results from these experiments indicate that incubation of cells with IFN-gamma accelerates the decay of TM RNA through its 3'-UTR. This is the first report describing a clear posttranscriptional downregulation of an mRNA by IFN-gamma that identifies the 3'-UTR as a target of IFN-gamma-stimulated destabilization.
Collapse
Affiliation(s)
- Angels Navarro
- Department of Immunology/NB30, The Cleveland Clinic Foundation, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
92
|
Dean JLE, Sarsfield SJ, Tsounakou E, Saklatvala J. p38 Mitogen-activated protein kinase stabilizes mRNAs that contain cyclooxygenase-2 and tumor necrosis factor AU-rich elements by inhibiting deadenylation. J Biol Chem 2003; 278:39470-6. [PMID: 12882963 DOI: 10.1074/jbc.m306345200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AU-rich elements (AREs) in 3'-untranslated regions of mRNAs confer instability. They target mRNAs for rapid deadenylation and degradation and may enhance decapping. The p38 MAPK pathway stabilizes many otherwise unstable ARE-containing mRNAs encoding proteins involved in inflammation; however, the mRNA decay step(s) regulated by the signaling pathway are unknown. To investigate whether it regulates deadenylation or the decay of the mRNA body, we used a tetracycline-regulated beta-globin mRNA reporter system to transcribe pulses of mRNA of uniform length. We measured on Northern gels the migration of reporter mRNAs isolated from cells transfected only with reporter plasmid or co-transfected with an active mutant of MAPK kinase-6, and treated either with or without the p38 MAPK inhibitor SB 203580. Differences in migration were shown by RNase H mapping with oligo(dT) to be due to poly(A) shortening. Insertion of an ARE into the beta-globin reporter mRNA promoted rapid deadenylation and decay of hypo-adenylated reporter mRNA. p38 MAPK activation inhibited the deadenylation of reporter mRNAs containing either the cyclooxygenase-2 or tumor necrosis factor AREs. The regulation of deadenylation by p38 MAPK was found to be specific because deadenylation of the beta-globin reporter mRNA either lacking an ARE or containing the c-Myc 3'-untranslated region (which is not p38 MAPK-responsive) was unaffected by p38 MAPK. It was concluded that the p38 MAPK pathway predominantly regulates deadenylation, rather than decay of the mRNA body, and this provides an explanation for why p38 MAPK regulates mRNA stability in some situations and translation in others.
Collapse
Affiliation(s)
- Jonathan L E Dean
- Kennedy Institute of Rheumatology Division, Imperial College London, 1 Aspenlea Road, Hammersmith, London W6 8LH, United Kingdom.
| | | | | | | |
Collapse
|
93
|
Sarkar B, Xi Q, He C, Schneider RJ. Selective degradation of AU-rich mRNAs promoted by the p37 AUF1 protein isoform. Mol Cell Biol 2003; 23:6685-93. [PMID: 12944492 PMCID: PMC193711 DOI: 10.1128/mcb.23.18.6685-6693.2003] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An AU-rich element (ARE) consisting of repeated canonical AUUUA motifs confers rapid degradation to many cytokine mRNAs when present in the 3' untranslated region. Destabilization of mRNAs with AREs (ARE-mRNAs) is consistent with the interaction of ARE-binding proteins such as tristetraprolin and the four AUF1 isoforms. However, the association of the AUF1-mRNA interaction with decreased ARE-mRNA stability is correlative and has not been directly tested. We therefore determined whether overexpression of AUF1 isoforms promotes ARE-mRNA destabilization and whether AUF1 isoforms are limiting components for ARE-mRNA decay. We show that the p37 AUF1 isoform and, to a lesser extent, the p40 isoform possess ARE-mRNA-destabilizing activity when overexpressed. Surprisingly, overexpressed p37 AUF1 also destabilized reporter mRNAs containing a noncanonical but AU-rich 3' untranslated region. Since overexpressed p37 AUF1 could interact in vivo with the AU-rich reporter mRNA, AUF1 may be involved in rapid turnover of mRNAs that lack canonical AREs. Moreover, overexpression of p37 AUF1 restored the ability of cells to rapidly degrade ARE-mRNAs when that ability was saturated and inhibited by overexpression of ARE-mRNAs. Finally, activation of ARE-mRNA decay often involves a translation-dependent step, which was eliminated by overexpression of p37 AUF1. These data indicate that the p37 AUF1 isoform and, to some extent, the p40 isoform are limiting factors that facilitate rapid decay of AU-rich mRNAs.
Collapse
Affiliation(s)
- Bedabrata Sarkar
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
94
|
Abstract
The mechanisms involved in anti-inflammatory action of transforming growth factor beta (TGFbeta) have been examined by evaluating its effect on chemokine gene expression in mouse macrophages. Lipopolysaccharide (LPS)-stimulated expression of the CXC chemokines KC and MIP-2 was selectively reduced by TGFbeta in a time- and protein synthesis-dependent process. While TGFbeta had a modest effect on transcription of the KC and MIP-2 mRNAs as measured by nuclear run-on, it had no effect on LPS-stimulated luciferase expression driven by the KC promoter nor on the activation of nuclear factor kappaB (NFkappaB) DNA-binding activity and transactivation function. Interestingly, KC mRNA levels were markedly reduced by TGFbeta treatment in cells transfected with KC genomic or cDNA constructs driven from either the KC or cytomegalovirus (CMV) promoters, demonstrating the importance of sequences within the mature mRNA and suggesting that suppression may involve a posttranscriptional mechanism. In support of this possibility, LPS stimulation prolonged the half-life of KC mRNA and this stabilization response was blocked in cells treated with TGFbeta. Examination of KC mRNA expressed under control of a tetracycline-responsive promoter demonstrated that TGFbeta prevented stabilization of KC mRNA, in response to LPS but did not alter KC mRNA half-life directly. KC mRNA stabilization by LPS was dependent on activation of p38 mitogen-activated protein kinase (MAPK) activity, and TGFbeta treatment inhibited p38 MAPK activation. These findings support the hypothesis that TGFbeta-mediated suppression of chemokine gene expression involves antagonism of LPS-stimulated KC mRNA stabilization via inhibition of p38 MAPK.
Collapse
Affiliation(s)
- Yalei Dai
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
95
|
Sengupta S, Jang BC, Wu MT, Paik JH, Furneaux H, Hla T. The RNA-binding protein HuR regulates the expression of cyclooxygenase-2. J Biol Chem 2003; 278:25227-33. [PMID: 12704185 DOI: 10.1074/jbc.m301813200] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The cyclooxygenase-2 (COX-2) gene encodes the inducible prostaglandin synthase enzyme implicated in inflammation, cell growth, and tumorigenesis. Regulation of the COX-2 gene expression at the post-transcriptional level is poorly understood. For example, protein factors that regulate the post-transcriptional mRNA metabolism of COX-2 have not been fully characterized. In this study, we demonstrate that the RNA-binding protein HuR binds to COX-2 mRNA and regulates its expression. We show that there are three binding sites for HuR in the 3'-untranslated region of human COX-2. These sites are located at the following positions in the COX-2 3'-untranslated region: 39-84 nucleotides (nt), 1155-1187 nt, and 1244-1256 nt (hereinafter referred to as Sites I, II and III, respectively). Although all three sites are present in the 4.6-kb COX-2 mRNA, only site I is present in the shorter 2.8-kb isoform. HuR in MDA-MB-231 cell extracts associated with COX-2 mRNA at the identified sites. Further, HuR location in the cytoplasm was induced by serum withdrawal, a stimulus known to induce COX-2 mRNA. Down-regulation of HuR by two independent methods, namely RNA interference as well as antisense RNA expression, significantly attenuated serum withdrawal-induced increase in COX-2 mRNA (both the 4.6- and 2.8-kb isoforms) and protein levels. These data suggest that HuR binding to COX-2 is critical for its post-transcriptional mRNA stabilization.
Collapse
Affiliation(s)
- Sibani Sengupta
- Center for Vascular Biology, Department of Physiology, University of Connecticut Health Center, 263 Farmington Avenue, 06030-3501, USA
| | | | | | | | | | | |
Collapse
|
96
|
Chen CYA, Shyu AB. Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway. Mol Cell Biol 2003; 23:4805-13. [PMID: 12832468 PMCID: PMC162215 DOI: 10.1128/mcb.23.14.4805-4813.2003] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an RNA surveillance pathway that detects and destroys aberrant mRNAs containing nonsense or premature termination codons (PTCs) in a translation-dependent manner in eukaryotes. In yeast, the NMD pathway bypasses the deadenylation step and directly targets PTC-containing messages for decapping, followed by 5'-to-3' exonuclease digestion of the RNA body. In mammals, most PTC-containing mRNAs are subject to active nucleus-associated NMD. Here, using two distinct transcription-pulsing approaches to monitor mRNA deadenylation and decay kinetics, we demonstrate the existence of an active cytoplasmic NMD pathway in mammalian cells. In this pathway, a nonsense codon triggers accelerated deadenylation that precedes decay of the PTC-containing mRNA body. Transcript is stabilized when accelerated deadenylation is impeded by blocking translation initiation; by ectopically expressing two RNA-binding proteins, UNR and NSAP1; or by ectopically expressing a UPF1 dominant-negative mutant. These results are consistent with the notion that the nonsense codon can function in the cytoplasm by promoting rapid removal of the poly(A) tail as a necessary first step in the decay process.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Houston Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
97
|
Biswas R, Datta S, Gupta JD, Novotny M, Tebo J, Hamilton TA. Regulation of chemokine mRNA stability by lipopolysaccharide and IL-10. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6202-8. [PMID: 12794151 DOI: 10.4049/jimmunol.170.12.6202] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IL-10 has been reported to inhibit the expression of LPS-induced proinflammatory cytokines and chemokines by altering the rate of specific mRNA decay although the molecular target(s) for its action remain unknown. In the present study, using primary peritoneal exudate macrophages and a cell culture model in which a tetracycline-responsive promoter controls transcription of CXC ligand 1 (KC) mRNA, we demonstrate that LPS promotes a time-dependent increase in KC mRNA stability. Although IL-10 had no direct effect on mRNA decay, this treatment antagonized the stabilizing action of LPS. The mechanisms involved were further explored using a cell-free mRNA degradation system. A 5'-capped, polyadenylated in vitro transcript derived from the 3'-untranslated region of KC mRNA exhibited time-dependent decay in the presence of protein extracts prepared from untreated RAW264.7 macrophages. Extracts prepared from LPS-treated RAW264.7 cells had reduced decay activity and this change was antagonized if the cells were costimulated with IL-10. A substrate in which the AU-rich element motifs were mutated exhibited minimal decay that did not vary using extracts prepared from cells treated with LPS or LPS and IL-10. A nonadenylated RNA substrate was also degraded and that activity was diminished by LPS. In concert, these findings demonstrate that KC mRNA stability is regulated by LPS-induced alterations in activities that govern both deadenylation and degradation of the mRNA body. The effects of IL-10 on KC mRNA stability reflect antagonism of the response to LPS.
Collapse
Affiliation(s)
- Roopa Biswas
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
98
|
Stoecklin G, Lu M, Rattenbacher B, Moroni C. A constitutive decay element promotes tumor necrosis factor alpha mRNA degradation via an AU-rich element-independent pathway. Mol Cell Biol 2003; 23:3506-15. [PMID: 12724409 PMCID: PMC164766 DOI: 10.1128/mcb.23.10.3506-3515.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-alpha) expression is regulated by transcriptional as well as posttranscriptional mechanisms, the latter including the control of mRNA decay through an AU-rich element (ARE) in the 3' untranslated region (UTR). Using two mutant cell lines deficient for ARE-mediated mRNA decay, we provide evidence for a second element, the constitutive decay element (CDE), which is also located in the 3' UTR of TNF-alpha. In stably transfected RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS), the CDE continues to target a reporter transcript for rapid decay, whereas ARE-mediated decay is blocked. Similarly, the activation of p38 kinase and phosphatidylinositol 3-kinase in NIH 3T3 cells inhibits ARE-mediated but not CDE-mediated mRNA decay. The CDE was mapped to an 80-nucleotide (nt) segment downstream of the ARE, and point mutation analysis identified within the CDE a conserved sequence of 15 nt that is required for decay activity. We propose that the CDE represses TNF-alpha expression by maintaining the mRNA short-lived, thereby preventing excessive induction of TNF-alpha after LPS stimulation. Thus, CDE-mediated mRNA decay is likely to be an important mechanism limiting LPS-induced pathologic processes.
Collapse
Affiliation(s)
- Georg Stoecklin
- Institute of Medical Microbiology, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland
| | | | | | | |
Collapse
|
99
|
Kong J, Ji X, Liebhaber SA. The KH-domain protein alpha CP has a direct role in mRNA stabilization independent of its cognate binding site. Mol Cell Biol 2003; 23:1125-34. [PMID: 12556474 PMCID: PMC141145 DOI: 10.1128/mcb.23.4.1125-1134.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2002] [Revised: 10/01/2002] [Accepted: 11/13/2002] [Indexed: 11/20/2022] Open
Abstract
Previous studies suggest that high-level stability of a subset of mammalian mRNAs is linked to a C-rich motif in the 3' untranslated region (3'UTR). High-level expression of human alpha-globin mRNA (h alpha-globin mRNA) in erythroid cells has been specifically attributed to formation of an RNA-protein complex comprised of a 3'UTR C-rich motif and an associated 39-kDa poly(C) binding protein, alpha CP. Documentation of this RNA-protein alpha-complex has been limited to in vitro binding studies, and its impact has been monitored by alterations in steady-state mRNA. Here we demonstrate that alpha CP is stably bound to h alpha-globin mRNA in vivo, that alpha-complex assembly on the h alpha-globin mRNA is restricted to the 3'UTR C-rich motif, and that alpha-complex assembly extends the physical half-life of h alpha-globin mRNA selectively in erythroid cells. Significantly, these studies also reveal that an artificially tethered alpha CP has the same mRNA-stabilizing activity as the native alpha-complex. These data demonstrate a unique contribution of the alpha-complex to h alpha-globin mRNA stability and support a model in which the sole function of the C-rich motif is to selectively tether alpha CP to a subset of mRNAs. Once bound, alpha CP appears to be fully sufficient to trigger downstream events in the stabilization pathway.
Collapse
Affiliation(s)
- Jian Kong
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
100
|
Han Q, Leng J, Bian D, Mahanivong C, Carpenter KA, Pan ZK, Han J, Huang S. Rac1-MKK3-p38-MAPKAPK2 pathway promotes urokinase plasminogen activator mRNA stability in invasive breast cancer cells. J Biol Chem 2002; 277:48379-85. [PMID: 12377770 DOI: 10.1074/jbc.m209542200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported previously that down-regulating or functionally blocking alphav integrins inhibits endogenous p38 mitogen-activated protein kinase (MAPK) activity and urokinase plasminogen activator (uPA) expression in invasive MDA-MB-231 breast cancer cells whereas engaging alphav integrins with vitronectin activates p38 MAPK and up-regulates uPA expression (Chen, J., Baskerville, C., Han, Q., Pan, Z., and Huang, S. (2001) J. Biol. Chem. 276, 47901-47905). Currently, it is not clear what upstream and downstream signaling molecules of p38 MAPK mediate alphav integrin-mediated uPA up-regulation. In the present study, we found that alphav integrin ligation activated small GTPase Rac1 preferentially, and dominant negative Rac1 inhibited alphav integrin-mediated p38 MAPK activation. Using constitutively active MAPK kinases, we found that both constitutively active MKK3 and MKK6 mutants were able to activate p38 MAPK and up-regulate uPA expression, but only dominant negative MKK3 blocked alphav integrin-mediated p38 MAPK activation and uPA up-regulation. These results suggest that MKK3, rather than MKK6, mediates alphav integrin-induced p38 MAPK activation. Among the potential downstream effectors of p38 MAPK, we found that only MAPK-activated protein kinase 2 affects alphav integrin-mediated uPA up-regulation significantly. Finally, using beta-globin reporter gene constructs containing uPA mRNA 3'-untranslated region (UTR) and adenosine/uridine-rich elements-deleted 3'-UTR, we demonstrated that p38 MAPK/MAPK-activated protein kinase 2 signaling pathway regulated uPA mRNA stability through a mechanism involving the adenosine/uridine-rich elements sequence in 3'-UTR of uPA mRNA.
Collapse
Affiliation(s)
- Qiwei Han
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|