51
|
Wood A, Garg P, Burgers PMJ. A ubiquitin-binding motif in the translesion DNA polymerase Rev1 mediates its essential functional interaction with ubiquitinated proliferating cell nuclear antigen in response to DNA damage. J Biol Chem 2007; 282:20256-63. [PMID: 17517887 DOI: 10.1074/jbc.m702366200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
During normal DNA replication, the proliferating cell nuclear antigen (PCNA) enhances the processivity of DNA polymerases at the replication fork. When DNA damage is encountered, PCNA is monoubiquitinated on Lys-164 by the Rad6-Rad18 complex as the initiating step of translesion synthesis. DNA damage bypass by the translesion synthesis polymerase Rev1 is enhanced by the presence of ubiquitinated PCNA. Here we have carried out a mutational analysis of Rev1, and we have identified the functional domain in the C terminus of Rev1 that mediates interactions with PCNA. We show that a unique motif within this domain binds the ubiquitin moiety of ubiquitinated PCNA. Point mutations within this ubiquitin-binding motif of Rev1 (L821A,P822A,I825A) abolish its functional interaction with ubiquitinated PCNA in vitro and strongly attenuate damage-induced mutagenesis in vivo. Taken together, these studies suggest a specific mechanism by which the interaction between Rev1 and ubiquitinated PCNA is stabilized during the DNA damage response.
Collapse
Affiliation(s)
- Adam Wood
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
52
|
Wyatt MD, Pittman DL. Methylating agents and DNA repair responses: Methylated bases and sources of strand breaks. Chem Res Toxicol 2007; 19:1580-94. [PMID: 17173371 PMCID: PMC2542901 DOI: 10.1021/tx060164e] [Citation(s) in RCA: 331] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chemical methylating agents methylmethane sulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) have been used for decades as classical DNA damaging agents. These agents have been utilized to uncover and explore pathways of DNA repair, DNA damage response, and mutagenesis. MMS and MNNG modify DNA by adding methyl groups to a number of nucleophilic sites on the DNA bases, although MNNG produces a greater percentage of O-methyl adducts. There has been substantial progress elucidating direct reversal proteins that remove methyl groups and base excision repair (BER), which removes and replaces methylated bases. Direct reversal proteins and BER, thus, counteract the toxic, mutagenic, and clastogenic effects of methylating agents. Despite recent progress, the complexity of DNA damage responses to methylating agents is still being discovered. In particular, there is growing understanding of pathways such as homologous recombination, lesion bypass, and mismatch repair that react when the response of direct reversal proteins and BER is insufficient. Furthermore, the importance of proper balance within the steps in BER has been uncovered with the knowledge that DNA structural intermediates during BER are deleterious. A number of issues complicate the elucidation of the downstream responses when direct reversal is insufficient or BER is imbalanced. These include inter-species differences, cell-type-specific differences within mammals and between cancer cell lines, and the type of methyl damage or BER intermediate encountered. MMS also carries a misleading reputation of being a radiomimetic, that is, capable of directly producing strand breaks. This review focuses on the DNA methyl damage caused by MMS and MNNG for each site of potential methylation to summarize what is known about the repair of such damage and the downstream responses and consequences if the damage is not repaired.
Collapse
Affiliation(s)
- Michael D Wyatt
- Department of Basic Pharmaceutical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | |
Collapse
|
53
|
Abstract
Cellular functions of the REV1 gene have been conserved in evolution and appear important for maintaining genetic integrity through translesion DNA synthesis. This study documents a novel biochemical activity of human REV1 protein, due to higher affinity for single-stranded DNA (ssDNA) than the primer terminus. Preferential binding to long ssDNA regions of the template strand means that REV1 is targeted specifically to the included primer termini, a property not shared by other DNA polymerases, including human DNA polymerases alpha, beta, and eta. Furthermore, a mutant REV1 lacking N- and C-terminal domains, but catalytically active, lost this function, indicating that control is not due to the catalytic core. The novel activity of REV1 protein might imply a role for ssDNA in the regulation of translesion DNA synthesis.
Collapse
Affiliation(s)
- Yuji Masuda
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | | |
Collapse
|
54
|
Kroeger KM, Kim J, Goodman MF, Greenberg MM. Replication of an oxidized abasic site in Escherichia coli by a dNTP-stabilized misalignment mechanism that reads upstream and downstream nucleotides. Biochemistry 2006; 45:5048-56. [PMID: 16605273 PMCID: PMC1447609 DOI: 10.1021/bi052276v] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abasic sites (AP) and oxidized abasic lesions are often referred to as noninstructive lesions because they cannot participate in Watson-Crick base pairing. The aptness of the term noninstructive for describing AP site replication has been called into question by recent investigations in E. coli using single-stranded shuttle vectors. These studies revealed that the replication of templates containing AP sites or the oxidized abasic lesions resulting from C1'- (L) and C4'-oxidation (C4-AP) are distinct from one another, suggesting that structural features other than Watson-Crick hydrogen bonds contribute to controlling replication. The first description of the replication of the abasic site resulting from formal C2'-oxidation (C2-AP) is presented here. Full-length and single-nucleotide deletion products are observed when templates containing C2-AP are replicated in E. coli. Single nucleotide deletion formation is largely dependent upon the concerted effort of pol II and pol IV, whereas pol V suppresses frameshift product formation. Pol V utilizes the A-rule when bypassing C2-AP. In contrast, pol II and pol IV utilize a dNTP-stabilized misalignment mechanism to read the upstream and downstream nucleotides when bypassing C2-AP. This is the first example in which the identity of the 3'-adjacent nucleotide is read during the replication of a DNA lesion. The results raise further questions as to whether abasic lesions are noninstructive lesions. We suggest that abasic site bypass is affected by the local biopolymer structure in addition to the structure of the lesion.
Collapse
Affiliation(s)
| | | | | | - Marc M. Greenberg
- * To whom correspondence should addressed. Tel: 410-516-8095. Fax: 410-516-7044. E-mail:
| |
Collapse
|
55
|
Holway AH, Kim SH, La Volpe A, Michael WM. Checkpoint silencing during the DNA damage response in Caenorhabditis elegans embryos. ACTA ACUST UNITED AC 2006; 172:999-1008. [PMID: 16549501 PMCID: PMC2063758 DOI: 10.1083/jcb.200512136] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In most cells, the DNA damage checkpoint delays cell division when replication is stalled by DNA damage. In early Caenorhabditis elegans embryos, however, the checkpoint responds to developmental signals that control the timing of cell division, and checkpoint activation by nondevelopmental inputs disrupts cell cycle timing and causes embryonic lethality. Given this sensitivity to inappropriate checkpoint activation, we were interested in how embryos respond to DNA damage. We demonstrate that the checkpoint response to DNA damage is actively silenced in embryos but not in the germ line. Silencing requires rad-2, gei-17, and the polh-1 translesion DNA polymerase, which suppress replication fork stalling and thereby eliminate the checkpoint-activating signal. These results explain how checkpoint activation is restricted to developmental signals during embryogenesis and insulated from DNA damage. They also show that checkpoint activation is not an obligatory response to DNA damage and that pathways exist to bypass the checkpoint when survival depends on uninterrupted progression through the cell cycle.
Collapse
Affiliation(s)
- Antonia H Holway
- The Biological Laboratories, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
56
|
Wittschieben JP, Reshmi SC, Gollin SM, Wood RD. Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells. Cancer Res 2006; 66:134-42. [PMID: 16397225 DOI: 10.1158/0008-5472.can-05-2982] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rev3L encodes the catalytic subunit of DNA polymerase zeta (pol zeta) in mammalian cells. In yeast, pol zeta helps cells bypass sites of DNA damage that can block replication enzymes. Targeted disruption of the mouse Rev3L gene causes lethality midway through embryonic gestation, and Rev3L-/- mouse embryonic fibroblasts (MEFs) remain in a quiescent state in culture. This suggests that pol zeta may be necessary for tolerance of endogenous DNA damage during normal cell growth. We report the generation of mitotically active Rev3L-/- MEFs on a p53-/- genetic background. Rev3L null MEFs exhibited striking chromosomal instability, with a large increase in translocation frequency. Many complex genetic aberrations were found only in Rev3L null cells. Rev3L null cells had increased chromosome numbers, most commonly near pentaploid, and double minute chromosomes were frequently found. This chromosomal instability associated with loss of a DNA polymerase activity in mammalian cells is similar to the instability associated with loss of homologous recombination capacity. Rev3L null MEFs were also moderately sensitive to mitomycin C, methyl methanesulfonate, and UV and gamma-radiation, indicating that mammalian pol zeta helps cells tolerate diverse types of DNA damage. The increased occurrence of chromosomal translocations in Rev3L-/- MEFs suggests that loss of Rev3L expression could contribute to genome instability during neoplastic transformation and progression.
Collapse
Affiliation(s)
- John P Wittschieben
- Department of Pharmacology, University of Pittsburgh Medical School and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
57
|
Zhao B, Wang J, Geacintov NE, Wang Z. Poleta, Polzeta and Rev1 together are required for G to T transversion mutations induced by the (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts in yeast cells. Nucleic Acids Res 2006; 34:417-25. [PMID: 16415180 PMCID: PMC1331986 DOI: 10.1093/nar/gkj446] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Benzo[a]pyrene is an important environmental mutagen and carcinogen. Its metabolism in cells yields the mutagenic, key ultimate carcinogen 7R,8S,9S,10R-anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide, (+)-anti-BPDE, which reacts via its 10-position with N2-dG in DNA to form the adduct (+)-trans-anti-BPDE-N2-dG. To gain molecular insights into BPDE-induced mutagenesis, we examined in vivo translesion synthesis and mutagenesis in yeast cells of a site-specific 10S (+)-trans-anti-BPDE-N2-dG adduct and the stereoisomeric 10R (−)-trans-anti-BPDE-N2-dG adduct. In wild-type cells, bypass products consisted of 76% C, 14% A and 7% G insertions opposite (+)-trans-anti-BPDE-N2-dG; and 89% C, 4% A and 4% G insertions opposite (−)-trans-anti-BPDE-N2-dG. Translesion synthesis was reduced by ∼26–37% in rad30 mutant cells lacking Polη, but more deficient in rev1 and almost totally deficient in rev3 (lacking Polζ) mutants. C insertion opposite the lesion was reduced by ∼24–33% in rad30 mutant cells, further reduced in rev1 mutant, and mostly disappeared in the rev3 mutant strain. The insertion of A was largely abolished in cells lacking either Polη, Polζ or Rev1. The insertion of G was not detected in either rev1 or rev3 mutant cells. The rad30 rev3 double mutant exhibited a similar phenotype as the single rev3 mutant with respect to translesion synthesis and mutagenesis. These results show that while the Polζ pathway is generally required for translesion synthesis and mutagenesis of the (+)- and (−)-trans-anti-BPDE-N2-dG DNA adducts, Polη, Polζ and Rev1 together are required for G→T transversion mutations, a major type of mutagenesis induced by these lesions. Based on biochemical and genetic results, we present mechanistic models of translesion synthesis of these two DNA adducts, involving both the one-polymerase one-step and two-polymerase two-step models.
Collapse
Affiliation(s)
| | | | | | - Zhigang Wang
- To whom correspondence should be addressed. Tel: +1 859 323 5784; Fax: +1 859 323 1059;
| |
Collapse
|
58
|
Abdulovic A, Kim N, Jinks-Robertson S. Mutagenesis and the three R's in yeast. DNA Repair (Amst) 2006; 5:409-21. [PMID: 16412705 DOI: 10.1016/j.dnarep.2005.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 11/17/2005] [Accepted: 11/17/2005] [Indexed: 11/19/2022]
Abstract
Mutagenesis is a prerequisite for evolution and also is an important contributor to human diseases. Most mutations in actively dividing cells originate during DNA replication as errors introduced when copying an undamaged DNA template or during the bypass of DNA lesions. In addition, mutations can be introduced during the repair of DNA double-strand breaks by either homologous recombination or non-homologous end-joining pathways. Finally, although generally considered to be a very high-fidelity process, the excision repair of DNA damage may be an important contributor to mutagenesis in non-dividing cells. In this review, we will discuss the well-known contributions of DNA replication to mutagenesis in Saccharomyces cerevisiae, as well as the less-appreciated contributions of recombination and repair to mutagenesis in this organism.
Collapse
Affiliation(s)
- Amy Abdulovic
- Biochemistry, Cell and Developmental Biology Program of the Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
59
|
Poltoratsky V, Horton JK, Prasad R, Wilson SH. REV1 mediated mutagenesis in base excision repair deficient mouse fibroblast. DNA Repair (Amst) 2006; 4:1182-8. [PMID: 15950550 DOI: 10.1016/j.dnarep.2005.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 05/03/2005] [Accepted: 05/03/2005] [Indexed: 12/22/2022]
Abstract
The DNA polymerase beta (Pol beta) null background renders mouse embryonic fibroblast (MEF) cells base excision repair deficient and hyper-mutagenic upon treatment with the monofunctional alkylating agent, methyl methanesulfonate (MMS). This effect involves an increase in all types of base substitutions, with a modest predominance of G to A transitions. In the present study, we examined the hypothesis that the MMS-induced mutagenesis in the Pol beta null MEF system is due to a lesion bypass mechanism. We studied the effect of RNAi mediated down-regulation of the lesion bypass factor REV1. The steady-state level of REV1 protein was reduced by more than 95% using stable expression of a siRNA construct in a Pol beta null cell line. We found that REV1 expression is required for the MMS-induced mutagenesis phenotype of Pol beta null MEF cells. In contrast, cell survival after MMS treatment is not reduced in the absence of REV1.
Collapse
Affiliation(s)
- Vladimir Poltoratsky
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
60
|
Garg P, Burgers PM. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases eta and REV1. Proc Natl Acad Sci U S A 2005; 102:18361-6. [PMID: 16344468 PMCID: PMC1317920 DOI: 10.1073/pnas.0505949102] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In response to DNA damage, the Rad6/Rad18 ubiquitin-conjugating complex monoubiquitinates the replication clamp proliferating cell nuclear antigen (PCNA) at Lys-164. Although ubiquitination of PCNA is recognized as an essential step in initiating postreplication repair, the mechanistic relevance of this modification has remained elusive. Here, we describe a robust in vitro system that ubiquitinates yeast PCNA specifically on Lys-164. Significantly, only those PCNA clamps that are appropriately loaded around effector DNA by its loader, replication factor C, are ubiquitinated. This observation suggests that, in vitro, only PCNA present at stalled replication forks is ubiquitinated. Ubiquitinated PCNA displays the same replicative functions as unmodified PCNA. These functions include loading onto DNA by replication factor C, as well as Okazaki fragment synthesis and maturation by the PCNA-coordinated actions of DNA polymerase delta, the flap endonuclease FEN1, and DNA ligase I. However, whereas the activity of DNA polymerase zeta remains unaffected by ubiquitination of PCNA, ubiquitinated PCNA specifically activates two key enzymes in translesion synthesis: DNA polymerase eta, the yeast Xeroderma pigmentosum ortholog, and Rev1, a deoxycytidyl transferase that functions in organizing the mutagenic DNA replication machinery. We propose that ubiquitination of PCNA increases its functionality as a sliding clamp to promote mutagenic DNA replication.
Collapse
Affiliation(s)
- Parie Garg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110, USA
| | | |
Collapse
|
61
|
Auerbach P, Bennett RAO, Bailey EA, Krokan HE, Demple B. Mutagenic specificity of endogenously generated abasic sites in Saccharomyces cerevisiae chromosomal DNA. Proc Natl Acad Sci U S A 2005; 102:17711-6. [PMID: 16314579 PMCID: PMC1308887 DOI: 10.1073/pnas.0504643102] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Indexed: 01/06/2023] Open
Abstract
Abasic [apurinic/apyrimidinic (AP)] sites are common, noncoding DNA lesions. Despite extensive investigation, the mutational pattern they provoke in eukaryotic cells remains unresolved. We constructed Saccharomyces cerevisiae strains in which chromosomal AP sites were generated during normal cell growth by altered human uracil-DNA glycosylases that remove undamaged cytosines or thymines. The mutation target was the URA3 gene inserted near the ARS309 origin to allow defined replication polarity. Expression of the altered glycosylases caused a 7- to 18-fold mutator effect in AP endonuclease-deficient (deltaapn1) yeast, which depended highly on the known translesion synthesis enzymes Rev1 and DNA polymerase zeta. For the C-glycosylase, GC>CG transversions were the predominant mutations, followed by GC>AT transitions. AT>CG transversions predominated for the T-glycosylase. These results support a major role for Rev1-dependent dCMP insertion across from AP sites and a lesser role for dAMP insertion. Unexpectedly, there was also a significant proportion of dTMP insertions that suggest another mutational pathway at AP sites. Although replication polarity did not strongly influence mutagenesis at AP sites, for certain mutation types, there was a surprisingly strong difference between the transcribed and non-transcribed strands of URA3. The basis for this strand discrimination requires further exploration.
Collapse
Affiliation(s)
- Paul Auerbach
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
62
|
Xie Z, Zhang Y, Guliaev AB, Shen H, Hang B, Singer B, Wang Z. The p-benzoquinone DNA adducts derived from benzene are highly mutagenic. DNA Repair (Amst) 2005; 4:1399-409. [PMID: 16181813 DOI: 10.1016/j.dnarep.2005.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benzene is a human leukemia carcinogen, resulting from its cellular metabolism. A major benzene metabolite is p-benzoquinone (pBQ), which can damage DNA by forming the exocyclic base adducts pBQ-dC, pBQ-dA, and pBQ-dG in vitro. To gain insights into the role of pBQ in benzene genotoxicity, we examined in vitro translesion synthesis and in vivo mutagenesis of these pBQ adducts. Purified REV1 and Polkappa were essentially incapable of translesion synthesis in response to the pBQ adducts. Opposite pBQ-dA and pBQ-dC, purified human Poliota was capable of error-prone nucleotide insertion, but was unable to perform extension synthesis. Error-prone translesion synthesis was observed with Poleta. However, DNA synthesis largely stopped opposite the lesion. Consistent with in vitro results, replication of site-specifically damaged plasmids was strongly inhibited by pBQ adducts in yeast cells, which depended on both Polzeta and Poleta. In wild-type cells, the majority of translesion products were deletions at the site of damage, accounting for 91%, 90%, and 76% for pBQ-dA, pBQ-dG, and pBQ-dC, respectively. These results show that the pBQ-dC, pBQ-dA, and pBQ-dG adducts are strong blocking lesions, and are highly mutagenic by predominantly inducing deletion mutations. These results are consistent with the lesion structures predicted by molecular dynamics simulation. Our results led to the following model. Translesion synthesis normally occurs by directly copying the lesion site through base insertion and extension synthesis. When the lesion becomes incompatible in accommodating a base opposite the lesion in DNA, translesion synthesis occurs by a less efficient lesion loop-out mechanism, resulting in avoiding copying the damaged base and leading to deletion.
Collapse
Affiliation(s)
- Zhongwen Xie
- Graduate Center for Toxicology, University of Kentucky, Lexington, 40536, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Otsuka C, Kunitomi N, Iwai S, Loakes D, Negishi K. Roles of the polymerase and BRCT domains of Rev1 protein in translesion DNA synthesis in yeast in vivo. Mutat Res 2005; 578:79-87. [PMID: 15896814 DOI: 10.1016/j.mrfmmm.2005.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 03/11/2005] [Accepted: 03/29/2005] [Indexed: 10/25/2022]
Abstract
Rev1p in yeast is essential for the translesion of abasic sites and 6-4 photoproducts. It plays a role as a translesion polymerase, but also supports translesion catalyzed by other polymerases. The protein has two domains, BRCT and Y-family polymerase. A point mutation in the BRCT domain is known to abolish the second function. In the present research, we have studied the effects of deletion of the BRCT domain and a point mutation at the two amino acids in the putative polymerase active center. We have introduced an abasic site, its tetrahydrofuran analog, and a 6-4 thymine-thymine photoproduct using the oligonucleotide transformation assay. Translesion efficiencies were estimated from the transforming activities of the oligonucleotides with a lesion, and the mutation spectra were analyzed by DNA sequencing of the transformants. Results showed that the lack of the BRCT domain reduced translesion efficiencies, but that substantial translesion synthesis took place. The mutation spectra of the lesions were not greatly affected. Therefore, the BRCT domain may be important, but dispensable for translesion synthesis. In contrast, the polymerase mutation, rev1AA, has only small effects on the translesion efficiencies, but the mutation spectra were greatly affected; the incorporation of dCMP opposite the lesions was specifically lost. This clearly shows that the polymerase domain is responsible for the dCMP incorporation. The effect of Poleta was also analyzed. From all the results DNA polymerases other than these two translesion polymerases, too, seem to initiate the translesion synthesis.
Collapse
Affiliation(s)
- Chie Otsuka
- Department of Genomics and Proteomics, Okayama University Advanced Science Research Center, Tsushima, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
64
|
Kow YW, Bao G, Minesinger B, Jinks-Robertson S, Siede W, Jiang YL, Greenberg MM. Mutagenic effects of abasic and oxidized abasic lesions in Saccharomyces cerevisiae. Nucleic Acids Res 2005; 33:6196-202. [PMID: 16257982 PMCID: PMC1275587 DOI: 10.1093/nar/gki926] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2-Deoxyribonolactone (L) and 2-deoxyribose (AP) are abasic sites that are produced by ionizing radiation, reactive oxygen species and a variety of DNA damaging agents. The biological processing of the AP site has been examined in the yeast Saccharomyces cerevisiae. However, nothing is known about how L is processed in this organism. We determined the bypass and mutagenic specificity of DNA containing an abasic site (AP and L) or the AP analog tetrahydrofuran (F) using an oligonucleotide transformation assay. The tetrahydrofuran analog and L were bypassed at 10-fold higher frequencies than the AP lesions. Bypass frequencies of lesions were greatly reduced in the absence of Rev1 or Polζ (rev3 mutant), but were only marginally reduced in the absence of Polη (rad30 mutant). Deoxycytidine was the preferred nucleotide inserted opposite an AP site whereas dA and dC were inserted at equal frequencies opposite F and L sites. In the rev1 and rev3 strains, dA was the predominant nucleotide inserted opposite these lesions. Overall, we conclude that both Rev1 and Polζ are required for the efficient bypass of abasic sites in yeast.
Collapse
Affiliation(s)
- Yoke W Kow
- Department of Radiation Oncology, Emory University School of Medicine, 1365-B Clifton Road NE, Suite B5119, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
65
|
Ishchenko AA, Yang X, Ramotar D, Saparbaev M. The 3'->5' exonuclease of Apn1 provides an alternative pathway to repair 7,8-dihydro-8-oxodeoxyguanosine in Saccharomyces cerevisiae. Mol Cell Biol 2005; 25:6380-90. [PMID: 16024777 PMCID: PMC1190366 DOI: 10.1128/mcb.25.15.6380-6390.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 8-oxo-7,8-dihydrodeoxyguanosine (8oxoG), a major mutagenic DNA lesion, results either from direct oxidation of guanines or misincorporation of 8oxodGTP by DNA polymerases. At present, little is known about the mechanisms preventing the mutagenic action of 8oxodGTP in Saccharomyces cerevisiae. Herein, we report for the first time the identification of an alternative repair pathway for 8oxoG residues initiated by S. cerevisiae AP endonuclease Apn1, which is endowed with a robust progressive 3'-->5' exonuclease activity towards duplex DNA. We show that yeast cell extracts, as well as purified Apn1, excise misincorporated 8oxoG, providing a damage-cleansing function to DNA synthesis. Consistent with these results, deletion of both OGG1 encoding 8oxoG-DNA glycosylase and APN1 causes nearly 46-fold synergistic increase in the spontaneous mutation rate, and this enhanced mutagenesis is primarily due to G . C to T . A transversions. Expression of the bacterial 8oxodGTP triphosphotase MutT in the apn1Delta ogg1Delta mutant reduces the mutagenesis. Taken together, our results indicate that Apn1 is involved in an S. cerevisiae 8-oxoguanine-DNA glycosylase (Ogg1)-independent repair pathway for 8oxoG residues. Interestingly, the human major AP endonuclease, Ape1, also exhibits similar exonuclease activity towards 8oxoG residues, raising the possibility that this enzyme could participate in the prevention of mutations that would otherwise result from the incorporation of 8oxodGTP.
Collapse
|
66
|
Besaratinia A, Pfeifer GP. DNA adduction and mutagenic properties of acrylamide. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 580:31-40. [PMID: 15668105 DOI: 10.1016/j.mrgentox.2004.10.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 10/02/2004] [Accepted: 10/26/2004] [Indexed: 11/18/2022]
Abstract
This review article summarizes our current knowledge on DNA damaging and mutagenic properties of acrylamide. Direct and indirect modes of interaction of acrylamide with DNA are discussed, and the resulting alkylating DNA adducts are highlighted. Emphasis is placed on glycidamide-DNA adducts generated via epoxidation of acrylamide presumably by cytochrome P4502E1. Dosimetry and mapping of acrylamide-induced DNA adducts in vitro and/or in vivo are described. Mutagenic potency and specificity of acrylamide in relation to its respective DNA adducts are discussed. Prospective views are provided on the potential applications of acrylamide-induced DNA adduct dosimetry/mapping and mutation frequency/spectrometry for biomonitoring purposes.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Biology, Beckman Research Institute of the City of Hope, National Medical Center, 1450 East Duarte Road, Duarte, CA 91010, USA.
| | | |
Collapse
|
67
|
Current awareness on yeast. Yeast 2005; 22:241-8. [PMID: 15762016 DOI: 10.1002/yea.1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|