51
|
An in silico approach to analyze HCV genotype-specific binding-site variation and its effect on drug-protein interaction. Sci Rep 2020; 10:20885. [PMID: 33257748 PMCID: PMC7705671 DOI: 10.1038/s41598-020-77720-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 09/18/2020] [Indexed: 01/06/2023] Open
Abstract
Genotype variation in viruses can affect the response of antiviral treatment. Several studies have established approaches to determine genotype-specific variations; however, analyses to determine the effect of these variations on drug–protein interactions remain unraveled. We present an in-silico approach to explore genotype-specific variations and their effect on drug–protein interaction. We have used HCV NS3 helicase and fluoroquinolones as a model for drug–protein interaction and have investigated the effect of amino acid variations in HCV NS3 of genotype 1a, 1b, 2b and 3a on NS3-fluoroquinolone interaction. We retrieved 687, 667, 101 and 248 nucleotide sequences of HCV NS3 genotypes 1a, 1b, 2b, and 3a, respectively, and translated these into amino acid sequences and used for genotype variation analysis, and also to construct 3D protein models for 2b and 3a genotypes. For 1a and 1b, crystal structures were used. Drug–protein interactions were determined using molecular docking analyses. Our results revealed that individual genotype-specific HCV NS3 showed substantial sequence heterogeneity that resulted in variations in docking interactions. We believe that our approach can be extrapolated to include other viruses to study the clinical significance of genotype-specific variations in drug–protein interactions.
Collapse
|
52
|
Emerging molecular functions and novel roles for the DEAD-box protein Dbp5/DDX19 in gene expression. Cell Mol Life Sci 2020; 78:2019-2030. [PMID: 33205304 DOI: 10.1007/s00018-020-03680-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
The DEAD-box protein (DBP) Dbp5, a member of the superfamily II (SFII) helicases, has multiple reported roles in gene expression. First identified as an essential regulator of mRNA export in Saccharomyces cerevisiae, the enzyme now has reported functions in non-coding RNA export, translation, transcription, and DNA metabolism. Localization of the protein to various cellular compartments (nucleoplasm, nuclear envelope, and cytoplasm) highlights the ability of Dbp5 to modulate different stages of the RNA lifecycle. While Dbp5 has been well studied for > 20 years, several critical questions remain regarding the mechanistic principles that govern Dbp5 localization, substrate selection, and functions in gene expression. This review aims to take a holistic view of the proposed functions of Dbp5 and evaluate models that accommodate current published data.
Collapse
|
53
|
Pan YQ, Xing L. The Current View on the Helicase Activity of RNA Helicase A and Its Role in Gene Expression. Curr Protein Pept Sci 2020; 22:29-40. [PMID: 33143622 DOI: 10.2174/1389203721666201103084122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022]
Abstract
RNA helicase A (RHA) is a DExH-box helicase that plays regulatory roles in a variety of cellular processes, including transcription, translation, RNA splicing, editing, transport, and processing, microRNA genesis and maintenance of genomic stability. It is involved in virus replication, oncogenesis, and innate immune response. RHA can unwind nucleic acid duplex by nucleoside triphosphate hydrolysis. The insight into the molecular mechanism of helicase activity is fundamental to understanding the role of RHA in the cell. Herein, we reviewed the current advances on the helicase activity of RHA and its relevance to gene expression, particularly, to the genesis of circular RNA.
Collapse
Affiliation(s)
- Yuan-Qing Pan
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| | - Li Xing
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| |
Collapse
|
54
|
Cytosolic Sensors for Pathogenic Viral and Bacterial Nucleic Acids in Fish. Int J Mol Sci 2020; 21:ijms21197289. [PMID: 33023222 PMCID: PMC7582293 DOI: 10.3390/ijms21197289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recognition of the non-self signature of invading pathogens is a crucial step for the initiation of the innate immune mechanisms of the host. The host response to viral and bacterial infection involves sets of pattern recognition receptors (PRRs), which bind evolutionarily conserved pathogen structures, known as pathogen-associated molecular patterns (PAMPs). Recent advances in the identification of different types of PRRs in teleost fish revealed a number of cytosolic sensors for recognition of viral and bacterial nucleic acids. These are DExD/H-box RNA helicases including a group of well-characterized retinoic acid inducible gene I (RIG-I)-like receptors (RLRs) and non-RLR DExD/H-box RNA helicases (e.g., DDX1, DDX3, DHX9, DDX21, DHX36 and DDX41) both involved in recognition of viral RNAs. Another group of PRRs includes cytosolic DNA sensors (CDSs), such as cGAS and LSm14A involved in recognition of viral and intracellular bacterial dsDNAs. Moreover, dsRNA-sensing protein kinase R (PKR), which has a role in antiviral immune responses in higher vertebrates, has been identified in fish. Additionally, fish possess a novel PKR-like protein kinase containing Z-DNA binding domain, known as PKZ. Here, we review the current knowledge concerning cytosolic sensors for recognition of viral and bacterial nucleic acids in teleosts.
Collapse
|
55
|
Zhao MM, Wang RS, Zhou YL, Yang ZG. Emerging relationship between RNA helicases and autophagy. J Zhejiang Univ Sci B 2020; 21:767-778. [PMID: 33043643 PMCID: PMC7606199 DOI: 10.1631/jzus.b2000245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/10/2020] [Indexed: 01/15/2023]
Abstract
RNA helicases, the largest family of proteins that participate in RNA metabolism, stabilize the intracellular environment through various processes, such as translation and pre-RNA splicing. These proteins are also involved in some diseases, such as cancers and viral diseases. Autophagy, a self-digestive and cytoprotective trafficking process in which superfluous organelles and cellular garbage are degraded to stabilize the internal environment or maintain basic cellular survival, is associated with human diseases. Interestingly, similar to autophagy, RNA helicases play important roles in maintaining cellular homeostasis and are related to many types of diseases. According to recent studies, RNA helicases are closely related to autophagy, participate in regulating autophagy, or serve as a bridge between autophagy and other cellular activities that widely regulate some pathophysiological processes or the development and progression of diseases. Here, we summarize the most recent studies to understand how RNA helicases function as regulatory proteins and determine their association with autophagy in various diseases.
Collapse
Affiliation(s)
- Miao-miao Zhao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Ru-sha Wang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Yan-lin Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Zheng-gang Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|
56
|
Jin Y, Shi J, Wang H, Lu J, Chen C, Yu Y, Wang Y, Yang Y, Ren D, Zeng Q, Ni X, Guo Y. MYC-associated protein X binding with the variant rs72780850 in RNA helicase DEAD box 1 for susceptibility to neuroblastoma. SCIENCE CHINA-LIFE SCIENCES 2020; 64:991-999. [PMID: 32915406 DOI: 10.1007/s11427-020-1784-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/03/2020] [Indexed: 11/30/2022]
Abstract
Neuroblastoma (NB) is one of the most common malignant tumors in children, with variable clinical behaviors and a 15% death rate of all malignancies in childhood. However, genetic susceptibility to sporadic NB in Han Chinese patients is largely unknown. To identify genetic risk factors for NB, we performed an association study on 357 NB patients and 738 control subjects among Han Chinese children. We focused on DEAD box 1 (DDX1), a putative RNA helicase, which is involved in NB carcinogenesis. The potential association of DDX1 polymorphisms with NB has not been discovered. Our results demonstrate that rs72780850 (NM_004939.2:c.-1555T>C) located in the DDX1 promoter region is significantly associated with higher expression of DDX1 transcript and increased NB risk (odds ratio=1.64, 95% confidence interval=1.03%-2.60%, P=0.004), especially in aggressive NB compared with ganglioneuroma and ganglioneuroblastoma in a dominant model (TC+CC vs. TT). Furthermore, the MYC-associated protein X (MAX) transcription factor showed stronger binding affinity to the DDX1 rs 72780850 CC allele compared with the TT allele, explaining the molecular mechanism of the increased NB risk caused by the rs72780850 polymorphism. Our results highlight the involvement of regulatory genetic variants of DDX1 in NB.
Collapse
Affiliation(s)
- Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jin Shi
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.,Department of Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Huanmin Wang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Chenghao Chen
- Department of Thoracic Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yaru Wang
- Department of Allergy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yeran Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Dong Ren
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Qi Zeng
- Department of Thoracic Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, 100083, China.,Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China. .,Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
57
|
Transcriptome Analyses of Candida albicans Biofilms, Exposed to Arachidonic Acid and Fluconazole, Indicates Potential Drug Targets. G3-GENES GENOMES GENETICS 2020; 10:3099-3108. [PMID: 32631950 PMCID: PMC7466979 DOI: 10.1534/g3.120.401340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Candida albicans is an opportunistic yeast pathogen within the human microbiota with significant medical importance because of its pathogenic potential. The yeast produces highly resistant biofilms, which are crucial for maintaining infections. Though antifungals are available, their effectiveness is dwindling due to resistance. Alternate options that comprise the combination of existing azoles and polyunsaturated fatty acids, such as arachidonic acid (AA), have been shown to increase azoles susceptibility of C. albicans biofilms; however, the mechanisms are still unknown. Therefore, transcriptome analysis was conducted on biofilms exposed to sub-inhibitory concentrations of AA alone, fluconazole alone, and AA combined with fluconazole to understand the possible mechanism involved with the phenomenon. Protein ANalysis THrough Evolutionary Relationships (PANTHER) analysis from the differentially expressed genes revealed that the combination of AA and fluconazole influences biological processes associated with essential processes including methionine synthesis and those involved in ATP generation, such as AMP biosynthesis, fumarate metabolism and fatty acid oxidation. These observations suggests that the interference of AA with these processes may be a possible mechanisms to induce increased antifungal susceptibility.
Collapse
|
58
|
Sone R, Taimatsu K, Ohga R, Nishimura T, Tanaka M, Kawahara A. Critical roles of the ddx5 gene in zebrafish sex differentiation and oocyte maturation. Sci Rep 2020; 10:14157. [PMID: 32873816 PMCID: PMC7463030 DOI: 10.1038/s41598-020-71143-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/07/2020] [Indexed: 02/04/2023] Open
Abstract
DEAD-box helicase 5 (Ddx5) functions as an ATP-dependent RNA helicase and as a transcriptional coactivator for several transcription factors; however, the developmental function of the ddx5 gene in vertebrates is not fully understood. We found that the zebrafish ddx5 gene was expressed in developing gonads. Using the genome editing technology transcription activator-like effector nuclease, we established a ddx5-disrupted zebrafish and examined the morphological phenotypes of the mutant. We found that the majority of ddx5-deficient mutants developed as fertile males with normal testes and a small number of ddx5-deficient mutants developed as infertile females with small ovaries. Apoptotic cell death at 31 days post fertilization was increased in thick immature gonads (presumptive developing ovaries) of the ddx5-deficient mutant compared to those of heterozygous wild-type fish, while the number of apoptotic cells in thin immature gonads (presumptive developing testes) was comparable between the mutant and wild-type animals. Histological analysis revealed that ovaries of adult ddx5-deficient females had fewer vitellogenic oocytes and a larger number of stage I and II oocytes. The amount of cyclic adenosine monophosphate in the ddx5-deficient ovaries was high compared to that of wild-type ovaries, presumably leading to the mitotic arrest of oocyte maturation. Therefore, the ddx5 gene is dispensable for testis development, but it is essential for female sex differentiation and oocyte maturation in zebrafish.
Collapse
Affiliation(s)
- Ryota Sone
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Kiyohito Taimatsu
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Rie Ohga
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Toshiya Nishimura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.,Faculty of Fisheries Science, Hokkaido University, Sapporo, 041-8611, Japan
| | - Minoru Tanaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Atsuo Kawahara
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| |
Collapse
|
59
|
Mojzesz M, Klak K, Wojtal P, Adamek M, Podlasz P, Chmielewska-Krzesinska M, Matras M, Reichert M, Chadzinska M, Rakus K. Viral infection-induced changes in the expression profile of non-RLR DExD/H-box RNA helicases (DDX1, DDX3, DHX9, DDX21 and DHX36) in zebrafish and common carp. FISH & SHELLFISH IMMUNOLOGY 2020; 104:62-73. [PMID: 32526283 DOI: 10.1016/j.fsi.2020.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
In mammals, several non-RLR DExD/H-box RNA helicases are involve in sensing of viral nucleic acids and activation of antiviral immune response, however their role in the immune defense of fish is much less known. In this study, the expression profile of non-RLR DExD/H-box RNA helicase genes: ddx1, ddx3, dhx9, ddx21 and dhx36, was studied in zebrafish (Danio rerio) and common carp (Cyprinus carpio L.) during infection with two RNA viruses: spring viremia of carp virus (SVCV) and Chum salmon reovirus (CSV). Bioinformatic analysis of the amino acid sequences of the core helicase of DDX1, DDX3, DHX9, DDX21 and DHX36 in zebrafish and common carp revealed presence of all conserved motifs found amongst all other species, with the exception of common carp DHX9 which do not possess motif V. The transcripts of studied DExD/H-box RNA helicases were found in zebrafish ZF4 cell line as well as in all studied organs from zebrafish and common carp. The expression study demonstrated the up-regulation of the expression of selected non-RLR DExD/H-box RNA helicases during viral infections in ZF4 cell line (in vitro study) and in zebrafish and common carp organs (in vivo study). DDX1 was the only DExD/H-box RNA helicase which expression was repetitively up-regulated during in vivo infections with SVCV and CSV in zebrafish and SVCV in common carp. In ZF4 cells and kidney of common carp, viral infection-induced up-regulation of DExD/H-box RNA helicases preceded the up-regulation of type I IFN gene. Our results suggest that studied non-RLR DExD/H-box RNA helicases might be involved in antiviral immune response in fish.
Collapse
Affiliation(s)
- Miriam Mojzesz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Katarzyna Klak
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Paulina Wojtal
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Michała Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Malgorzata Chmielewska-Krzesinska
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Michała Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Marek Matras
- Department of Fish Diseases, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Michal Reichert
- Department of Fish Diseases, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
60
|
Kulkarni A, Lopez DH, Extavour CG. Shared Cell Biological Functions May Underlie Pleiotropy of Molecular Interactions in the Germ Lines and Nervous Systems of Animals. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
61
|
Chen Z, Li Z, Hu X, Xie F, Kuang S, Zhan B, Gao W, Chen X, Gao S, Li Y, Wang Y, Qian F, Ding C, Gan J, Ji C, Xu X, Zhou Z, Huang J, He HH, Li J. Structural Basis of Human Helicase DDX21 in RNA Binding, Unwinding, and Antiviral Signal Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000532. [PMID: 32714761 PMCID: PMC7375243 DOI: 10.1002/advs.202000532] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/19/2020] [Indexed: 05/20/2023]
Abstract
RNA helicase DDX21 plays vital roles in ribosomal RNA biogenesis, transcription, and the regulation of host innate immunity during virus infection. How DDX21 recognizes and unwinds RNA and how DDX21 interacts with virus remain poorly understood. Here, crystal structures of human DDX21 determined in three distinct states are reported, including the apo-state, the AMPPNP plus single-stranded RNA (ssRNA) bound pre-hydrolysis state, and the ADP-bound post-hydrolysis state, revealing an open to closed conformational change upon RNA binding and unwinding. The core of the RNA unwinding machinery of DDX21 includes one wedge helix, one sensor motif V and the DEVD box, which links the binding pockets of ATP and ssRNA. The mutant D339H/E340G dramatically increases RNA binding activity. Moreover, Hill coefficient analysis reveals that DDX21 unwinds double-stranded RNA (dsRNA) in a cooperative manner. Besides, the nonstructural (NS1) protein of influenza A inhibits the ATPase and unwinding activity of DDX21 via small RNAs, which cooperatively assemble with DDX21 and NS1. The structures illustrate the dynamic process of ATP hydrolysis and RNA unwinding for RNA helicases, and the RNA modulated interaction between NS1 and DDX21 generates a fresh perspective toward the virus-host interface. It would benefit in developing therapeutics to combat the influenza virus infection.
Collapse
Affiliation(s)
- Zijun Chen
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Zhengyang Li
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Xiaojian Hu
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Feiyan Xie
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Siyun Kuang
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Bowen Zhan
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Wenqing Gao
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| | - Xiangjun Chen
- Department of NeurologyHuashan HospitalFudan UniversityShanghai200040China
| | - Siqi Gao
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Yang Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Yongming Wang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Feng Qian
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Chen Ding
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Jianhua Gan
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Chaoneng Ji
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Xue‐Wei Xu
- Key Laboratory of Marine Ecosystem DynamicsMinistry of Natural Resources & Second Institute of OceanographyMinistry of Natural ResourcesHangzhou310012China
| | - Zheng Zhou
- China Novartis Institutes for Biomedical Research Co. LtdShanghai201203China
| | - Jinqing Huang
- Department of ChemistryThe Hong Kong University of Science and TechnologyHong KongChina
| | - Housheng Hansen He
- Department of Medical BiophysicsUniversity of Toronto, and Princess Margaret Cancer CenterUniversity Health NetworkTorontoM5G 1L7, OntarioCanada
| | - Jixi Li
- State Key Laboratory of Genetic EngineeringDepartment of NeurologySchool of Life Sciences and Huashan HospitalCollaborative Innovation Center of Genetics and DevelopmentEngineering Research Center of Gene Technology of MOEShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghai200438China
| |
Collapse
|
62
|
Molecular approaches underlying the oogenic cycle of the scleractinian coral, Acropora tenuis. Sci Rep 2020; 10:9914. [PMID: 32555307 PMCID: PMC7303178 DOI: 10.1038/s41598-020-66020-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/13/2020] [Indexed: 11/18/2022] Open
Abstract
This study aimed to elucidate the physiological processes of oogenesis in Acropora tenuis. Genes/proteins related to oogenesis were investigated: Vasa, a germ cell marker, vitellogenin (VG), a major yolk protein precursor, and its receptor (LDLR). Coral branches were collected monthly from coral reefs around Sesoko Island (Okinawa, Japan) for histological observation by in situ hybridisation (ISH) of the Vasa (AtVasa) and Low Density Lipoprotein Receptor (AtLDLR) genes and immunohistochemistry (IHC) of AtVasa and AtVG. AtVasa immunoreactivity was detected in germline cells and ooplasm, whereas AtVG immunoreactivity was detected in ooplasm and putative ovarian tissues. AtVasa was localised in germline cells located in the retractor muscles of the mesentery, whereas AtLDLR was localised in the putative ovarian and mesentery tissues. AtLDLR was detected in coral tissues during the vitellogenic phase, whereas AtVG immunoreactivity was found in primary oocytes. Germline cells expressing AtVasa are present throughout the year. In conclusion, Vasa has physiological and molecular roles throughout the oogenic cycle, as it determines gonadal germline cells and ensures normal oocyte development, whereas the roles of VG and LDLR are limited to the vitellogenic stages because they act in coordination with lipoprotein transport, vitellogenin synthesis, and yolk incorporation into oocytes.
Collapse
|
63
|
Shi P, Guo Y, Su Y, Zhu M, Fu Y, Chi H, Wu J, Huang J. SUMOylation of DDX39A Alters Binding and Export of Antiviral Transcripts to Control Innate Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 205:168-180. [DOI: 10.4049/jimmunol.2000053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/21/2020] [Indexed: 12/22/2022]
|
64
|
Chairta P, Nicolaou P, Sokratous K, Galant C, Houssiau F, Oulas A, Spyrou GM, Alarcon-Riquelme ME, Lauwerys BR, Christodoulou K. Comparative analysis of affected and unaffected areas of systemic sclerosis skin biopsies by high-throughput proteomic approaches. Arthritis Res Ther 2020; 22:107. [PMID: 32381114 PMCID: PMC7206756 DOI: 10.1186/s13075-020-02196-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022] Open
Abstract
Background Pathogenesis and aetiology of systemic sclerosis (SSc) are currently unclear, thus rendering disease prognosis, diagnosis and treatment challenging. The aim of this study was to use paired skin biopsy samples from affected and unaffected areas of the same patient, in order to compare the proteomes and identify biomarkers and pathways which are associated with SSc pathogenesis. Methods Biopsies were obtained from affected and unaffected skin areas of SSc patients. Samples were cryo-pulverised and proteins were extracted and analysed using mass spectrometry (MS) discovery analysis. Differentially expressed proteins were revealed after analysis with the Progenesis QIp software. Pathway analysis was performed using the Enrichr Web server. Using specific criteria, fifteen proteins were selected for further validation with targeted-MS analysis. Results Proteomic analysis led to the identification and quantification of approximately 2000 non-redundant proteins. Statistical analysis showed that 169 of these proteins were significantly differentially expressed in affected versus unaffected tissues. Pathway analyses showed that these proteins are involved in multiple pathways that are associated with autoimmune diseases (AIDs) and fibrosis. Fifteen of these proteins were further investigated using targeted-MS approaches, and five of them were confirmed to be significantly differentially expressed in SSc affected versus unaffected skin biopsies. Conclusion Using MS-based proteomics analysis of human skin biopsies from patients with SSc, we identified a number of proteins and pathways that might be involved in SSc progression and pathogenesis. Fifteen of these proteins were further validated, and results suggest that five of them may serve as potential biomarkers for SSc.
Collapse
Affiliation(s)
- Paraskevi Chairta
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Neurogenetics Department, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Paschalis Nicolaou
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Neurogenetics Department, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Kleitos Sokratous
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Bioinformatics ERA Chair, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Present Address: OMass Therapeutics, The Schrödinger Building, Heatley Road, The Oxford Science Park, Oxford, OX4 4GE, UK
| | - Christine Galant
- Department of Pathology, Université catholique de Louvain, Bruxelles, Belgium
| | - Frédéric Houssiau
- Rheumatology Department, Cliniques Universitaires Saint-Luc, Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Université catholique de Louvain, Bruxelles, Belgium
| | - Anastasis Oulas
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Bioinformatics ERA Chair, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - George M Spyrou
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Bioinformatics ERA Chair, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Marta E Alarcon-Riquelme
- Area of Medical Genomics, Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENyO), Parque Tenológico de la Salud Fundación (PTS) Granada, Spain; Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Bernard R Lauwerys
- Department of Pathology, Université catholique de Louvain, Bruxelles, Belgium
| | - Kyproula Christodoulou
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus. .,Neurogenetics Department, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus.
| |
Collapse
|
65
|
Gao C, Guo X, Xue A, Ruan Y, Wang H, Gao X. High intratumoral expression of eIF4A1 promotes epithelial-to-mesenchymal transition and predicts unfavorable prognosis in gastric cancer. Acta Biochim Biophys Sin (Shanghai) 2020; 52:310-319. [PMID: 32147684 DOI: 10.1093/abbs/gmz168] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/19/2019] [Accepted: 10/18/2019] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer is an important health problem, being the fifth most common cancer and the third leading cause of cancer-related death worldwide. Aberrant protein translation contributes to the oncogenesis and development of cancers, and upregulation of translation initiation factor eIF4A1 has been observed in several kinds of malignancies. However, the role of eIF4A1 in gastric cancer progression remains unclear. In this study, we found that the expression of eIF4A1, a component of translation initiation complex, was increased in gastric cancer. High expression of eIF4A1 was positively associated with poor tumor differentiation, late T stage, lymph node metastasis, advanced TNM stage, and poor prognosis in patients with gastric cancer. Overexpression of eIF4A1 promoted the migration and invasion of gastric cancer cells in vitro and enhanced tumor metastasis in nude mice model. Mechanism studies revealed that eIF4A1 induced epithelial-to-mesenchymal transition (EMT) of gastric cancer cells through driving the translation of SNAI1 mRNA. Together, these findings indicate that eIF4A1 promotes EMT and metastasis of gastric cancer and suggest that eIF4A1 is a potential target for the adjuvant therapy for gastric cancer patients.
Collapse
Affiliation(s)
- Chanchan Gao
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Xinyin Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Anwei Xue
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hongshan Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaodong Gao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
66
|
Kamjula V, Kanneganti A, Metla R, Nidamanuri K, Idupulapati S, Runthala A. Decoding the vital segments in human ATP-dependent RNA helicase. Bioinformation 2020; 16:160-170. [PMID: 32405168 PMCID: PMC7196165 DOI: 10.6026/97320630016160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 12/28/2022] Open
Abstract
An analysis of the ATP-dependent RNA helicase using known functionally close analogs helps disclose the structural and functional information of the enzyme. The enzyme plays several interlinked biological functions and there is an urgent need to interpret its key active-site residues to infer function and establish role. The human protein q96c10.1 is annotated using tools such as interpro, go and cdd. The physicochemical properties are estimated using the tool protparam. We describe the enzyme protein model developed using modeller to identify active site residues. We used consurf to estimate the structural conservation and is evolutionary relationship is inferred using known close sequence homologs. The active site is predicted using castp and its topological flexibility is estimated through cabs-flex. The protein is annotated as a hydrolase using available data and ddx58 is found as its top-ranked interacting protein partner. We show that about 124 residues are found to be highly conserved among 259 homologs, clustered in 7 clades with the active-site showing low sequence conservation. It is further shown that only 9 loci among the 42 active-site residues are conserved with limited structural fluctuation from the wild type structure. Thus, we document various useful information linked to function, sequence similarity and phylogeny of the enzyme for annotation as potential helicase as designated by uniprot. Data shows limited degree of conserved sequence segments with topological flexibility unlike in other subfamily members of the protein.
Collapse
Affiliation(s)
- Vandana Kamjula
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Ananya Kanneganti
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Rohan Metla
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Kusuma Nidamanuri
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Sudarshan Idupulapati
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Ashish Runthala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| |
Collapse
|
67
|
Wang J, Zhang X, Deng S, Ma E, Zhang J, Xing S. Molecular characterization and RNA interference analysis of the DEAD-box gene family in Locusta migratoria. Gene 2020; 728:144297. [DOI: 10.1016/j.gene.2019.144297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022]
|
68
|
Li X, Nie C, Liu Y, Chen Y, Lv X, Wang L, Zhang J, Yang W, Li K, Zheng C, Jia Y, Ning Z, Qu L. The Genetic Architecture of Early Body Temperature and Its Correlation With Salmonella Pullorum Resistance in Three Chicken Breeds. Front Genet 2020; 10:1287. [PMID: 32038701 PMCID: PMC6987447 DOI: 10.3389/fgene.2019.01287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/22/2019] [Indexed: 01/16/2023] Open
Abstract
New-born chicks are vulnerable to bacterial infections and not good at regulating body temperature. There is a close relationship between thermal regulation and immunity, however, the underlying mechanism is not well understood. Salmonella Pullorum (SP) is a major concern in developing countries and causes significant economic losses in poultry industry. Early body temperature (EBT) has previously shown to be correlated with host immunity and resistance to pullorum disease. In this study, we challenged three independent chick populations (Beijing You, Dwarf and Rhode Island Red) with SP at 4 days of age, and rectal temperature was measured before and after the SP attack from 2 to 7 days of age. Host defense to SP was evaluated by survival and spleen SP carrier status. The results showed that chicks with higher EBT before SP infection tend to have higher resistance to later SP attack in two populations (Dwarf and Beijing You). The association between EBT before SP attack and SP resistance was non-significant in Rohde Island Red population (P = 0.06), but the trend was consistent with the other two populations. We also found low to moderate heritability in all three populations for EBT before and after the SP attack ranging from 0.14 to 0.20. Genome-wide association studies identified several genomic regions and biological pathways determining EBT before SP attack, which provides candidate functional genes of this trait. Our results reveal the genetic determination of EBT, and the relationship between EBT and SP resistance, providing an alternative strategy for improving SP resistant activities in chicken.
Collapse
Affiliation(s)
- Xinghua Li
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changsheng Nie
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuchen Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Chen
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Xueze Lv
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Jianwei Zhang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Kaiyang Li
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Chuanwei Zheng
- Breeding Department, Beinongda Technology Co., LTD, Beijing, China
| | - Yaxiong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonghua Ning
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lujiang Qu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
69
|
Lu CA, Huang CK, Huang WS, Huang TS, Liu HY, Chen YF. DEAD-Box RNA Helicase 42 Plays a Critical Role in Pre-mRNA Splicing under Cold Stress. PLANT PHYSIOLOGY 2020; 182:255-271. [PMID: 31753844 PMCID: PMC6945872 DOI: 10.1104/pp.19.00832] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/13/2019] [Indexed: 05/24/2023]
Abstract
Low temperature is an important environmental stress that adversely affects rice (Oryza sativa) growth and productivity. Splicing of pre-mRNA is a crucial posttranscriptional regulatory step in gene expression in plants and is sensitive to temperature. DEAD-box RNA helicases belong to an RNA helicase family involved in the rearrangement of ribonucleoprotein complexes and the modification of RNA structure and are therefore involved in all aspects of RNA metabolism. In this study, we demonstrate that the rate of pre-mRNA splicing is reduced in rice at low temperatures and that the DEAD-box RNA Helicase42 (OsRH42) is necessary to support effective splicing of pre-mRNA during mRNA maturation at low temperatures. OsRH42 expression is tightly coupled to temperature fluctuation, and OsRH42 is localized in the splicing speckles and interacts directly with U2 small nuclear RNA. Retarded pre-mRNA splicing and plant growth defects were exhibited by OsRH42-knockdown transgenic lines at low temperatures, thus indicating that OsRH42 performs an essential role in ensuring accurate pre-mRNA splicing and normal plant growth under low ambient temperature. Unexpectedly, our results show that OsRH42 overexpression significantly disrupts the pre-mRNA splicing pathway, causing retarded plant growth and reducing plant cold tolerance. Combined, these results indicate that accurate control of OsRH42 homeostasis is essential for rice plants to respond to changes in ambient temperature. In addition, our study presents the molecular mechanism of DEAD-box RNA helicase function in pre-mRNA splicing, which is required for adaptation to cold stress in rice.
Collapse
Affiliation(s)
- Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Chun-Kai Huang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Wen-Shan Huang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Tian-Sheng Huang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Hsin-Yi Liu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Yu-Fu Chen
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| |
Collapse
|
70
|
Wheway G, Lord J, Baralle D. Splicing in the pathogenesis, diagnosis and treatment of ciliopathies. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194433. [PMID: 31698098 DOI: 10.1016/j.bbagrm.2019.194433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Primary cilia are essential signalling organelles found on the apical surface of epithelial cells, where they coordinate chemosensation, mechanosensation and light sensation. Motile cilia play a central role in establishing fluid flow in the respiratory tract, reproductive tract, brain ventricles and ear. Genetic defects affecting the structure or function of cilia can lead to a broad range of developmental and degenerative diseases known as ciliopathies. Splicing contributes to the pathogenesis, diagnosis and treatment of ciliopathies. Tissue-specific alternative splicing contributes to the tissue-specific manifestation of ciliopathy phenotypes, for example the retinal-specific effects of some genetic defects, due to specific transcript expression in the highly specialised ciliated cells of the retina, the photoreceptor cells. Ciliopathies can arise both as a result of genetic variants in spliceosomal proteins, or as a result of variants affecting splicing of specific cilia genes. Here we discuss the opportunities and challenges in diagnosing ciliopathies using RNA sequence analysis and the potential for treating ciliopathies in a relatively mutation-neutral way by targeting splicing. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Faculty of Medicine, University of Southampton, Human Development and Health, United Kingdom of Great Britain and Northern Ireland; University Hospital Southampton NHS Foundation Trust, United Kingdom of Great Britain and Northern Ireland
| | - Jenny Lord
- Faculty of Medicine, University of Southampton, Human Development and Health, United Kingdom of Great Britain and Northern Ireland; University Hospital Southampton NHS Foundation Trust, United Kingdom of Great Britain and Northern Ireland
| | - Diana Baralle
- Faculty of Medicine, University of Southampton, Human Development and Health, United Kingdom of Great Britain and Northern Ireland; University Hospital Southampton NHS Foundation Trust, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
71
|
Maldonado dos Santos JV, Ferreira EGC, Passianotto ALDL, Brumer BB, Santos ABD, Soares RM, Torkamaneh D, Arias CAA, Belzile F, Abdelnoor RV, Marcelino-Guimarães FC. Association mapping of a locus that confers southern stem canker resistance in soybean and SNP marker development. BMC Genomics 2019; 20:798. [PMID: 31672122 PMCID: PMC6824049 DOI: 10.1186/s12864-019-6139-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/25/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Southern stem canker (SSC), caused by Diaporthe aspalathi (E. Jansen, Castl. & Crous), is an important soybean disease that has been responsible for severe losses in the past. The main strategy for controlling this fungus involves the introgression of resistance genes. Thus far, five main loci have been associated with resistance to SSC. However, there is a lack of information about useful allelic variation at these loci. In this work, a genome-wide association study (GWAS) was performed to identify allelic variation associated with resistance against Diaporthe aspalathi and to provide molecular markers that will be useful in breeding programs. RESULTS We characterized the response to SSC infection in a panel of 295 accessions from different regions of the world, including important Brazilian elite cultivars. Using a GBS approach, the panel was genotyped, and we identified marker loci associated with Diaporthe aspalathi resistance through GWAS. We identified 19 SNPs associated with southern stem canker resistance, all on chromosome 14. The peak SNP showed an extremely high degree of association (p-value = 6.35E-27) and explained a large amount of the observed phenotypic variance (R2 = 70%). This strongly suggests that a single major gene is responsible for resistance to D. aspalathi in most of the lines constituting this panel. In resequenced soybean materials, we identified other SNPs in the region identified through GWAS in the same LD block that clearly differentiate resistant and susceptible accessions. The peak SNP was selected and used to develop a cost-effective molecular marker assay, which was validated in a subset of the initial panel. In an accuracy test, this SNP assay demonstrated 98% selection efficiency. CONCLUSIONS Our results suggest relevance of this locus to SSC resistance in soybean cultivars and accessions from different countries, and the SNP marker assay developed in this study can be directly applied in MAS studies in breeding programs to select materials that are resistant against this pathogen and support its introgression.
Collapse
Affiliation(s)
- João Vitor Maldonado dos Santos
- Brazilian Agricultural Research Corporation, National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, PR Brazil
- Londrina State University (UEL), Celso Garcia Cid Road, km 380, Londrina, PR Brazil
| | | | - André Luiz de Lima Passianotto
- Londrina State University (UEL), Celso Garcia Cid Road, km 380, Londrina, PR Brazil
- Present address: Department of Plant Agriculture, University of Guelph, Guelph, Ontario N1G 2V7 Canada
| | - Bruna Bley Brumer
- Londrina State University (UEL), Celso Garcia Cid Road, km 380, Londrina, PR Brazil
| | - Adriana Brombini Dos Santos
- Brazilian Agricultural Research Corporation, National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, PR Brazil
| | - Rafael Moreira Soares
- Brazilian Agricultural Research Corporation, National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, PR Brazil
| | - Davoud Torkamaneh
- Department of Plant Sciences and Institute of Integrative Biology and Systems (IBIS), Université Laval, Quebec City, G1V 0A6 Canada
| | - Carlos Alberto Arrabal Arias
- Brazilian Agricultural Research Corporation, National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, PR Brazil
| | - François Belzile
- Department of Plant Sciences and Institute of Integrative Biology and Systems (IBIS), Université Laval, Quebec City, G1V 0A6 Canada
| | - Ricardo Vilela Abdelnoor
- Brazilian Agricultural Research Corporation, National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, PR Brazil
- Londrina State University (UEL), Celso Garcia Cid Road, km 380, Londrina, PR Brazil
| | - Francismar Corrêa Marcelino-Guimarães
- Brazilian Agricultural Research Corporation, National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, PR Brazil
- Londrina State University (UEL), Celso Garcia Cid Road, km 380, Londrina, PR Brazil
| |
Collapse
|
72
|
de Bisschop G, Ameur M, Ulryck N, Benattia F, Ponchon L, Sargueil B, Chamond N. HIV-1 gRNA, a biological substrate, uncovers the potency of DDX3X biochemical activity. Biochimie 2019; 164:83-94. [PMID: 30910425 DOI: 10.1016/j.biochi.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/12/2019] [Indexed: 11/30/2022]
Abstract
DEAD-box helicases play central roles in the metabolism of many RNAs and ribonucleoproteins by assisting their synthesis, folding, function and even their degradation or disassembly. They have been implicated in various phenomena, and it is often difficult to rationalize their molecular roles from in vivo studies. Once purified in vitro, most of them only exhibit a marginal activity and poor specificity. The current model is that they gain specificity and activity through interaction of their intrinsically disordered domains with specific RNA or proteins. DDX3 is a DEAD-box cellular helicase that has been involved in several steps of the HIV viral cycle, including transcription, RNA export to the cytoplasm and translation. In this study, we investigated DDX3 biochemical properties in the context of a biological substrate. DDX3 was overexpressed, purified and its enzymatic activities as well as its RNA binding properties were characterized using both model substrates and a biological substrate, HIV-1 gRNA. Biochemical characterization of DDX3 in the context of a biological substrate identifies HIV-1 gRNA as a rare example of specific substrate and unravels the extent of DDX3 ATPase activity. Analysis of DDX3 binding capacity indicates an unexpected dissociation between its binding capacity and its biochemical activity. We further demonstrate that interaction of DDX3 with HIV-1 gRNA relies both on specific RNA determinants and on the disordered N- and C-terminal regions of the protein. These findings shed a new light regarding the potentiality of DDX3 biochemical activity supporting its multiple cellular functions.
Collapse
Affiliation(s)
| | - Mélissa Ameur
- CiTCOM, Université Paris Descartes, CNRS UMR 8038, Paris, France
| | - Nathalie Ulryck
- CiTCOM, Université Paris Descartes, CNRS UMR 8038, Paris, France
| | - Fatima Benattia
- CiTCOM, Université Paris Descartes, CNRS UMR 8038, Paris, France
| | - Luc Ponchon
- CiTCOM, Université Paris Descartes, CNRS UMR 8038, Paris, France
| | - Bruno Sargueil
- CiTCOM, Université Paris Descartes, CNRS UMR 8038, Paris, France.
| | - Nathalie Chamond
- CiTCOM, Université Paris Descartes, CNRS UMR 8038, Paris, France.
| |
Collapse
|
73
|
Prall W, Sharma B, Gregory BD. Transcription Is Just the Beginning of Gene Expression Regulation: The Functional Significance of RNA-Binding Proteins to Post-transcriptional Processes in Plants. PLANT & CELL PHYSIOLOGY 2019; 60:1939-1952. [PMID: 31155676 DOI: 10.1093/pcp/pcz067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Plants have developed sophisticated mechanisms to compensate and respond to ever-changing environmental conditions. Research focus in this area has recently shifted towards understanding the post-transcriptional mechanisms that contribute to RNA transcript maturation, abundance and function as key regulatory steps in allowing plants to properly react and adapt to these never-ending shifts in their environments. At the center of these regulatory mechanisms are RNA-binding proteins (RBPs), the functional mediators of all post-transcriptional processes. In plants, RBPs are becoming increasingly appreciated as the critical modulators of core cellular processes during development and in response to environmental stimuli. With the majority of research on RBPs and their functions historically in prokaryotic and mammalian systems, it has more recently been unveiled that plants have expanded families of conserved and novel RBPs compared with their eukaryotic counterparts. To better understand the scope of RBPs in plants, we present past and current literature detailing specific roles of RBPs during stress response, development and other fundamental transition periods. In this review, we highlight examples of complex regulation coordinated by RBPs with a focus on the diverse mechanisms of plant RBPs and the unique processes they regulate. Additionally, we discuss the importance for additional research into understanding global interactions of RBPs on a systems and network-scale, with genome mining and annotation providing valuable insight for potential uses in improving crop plants in order to maintain high-level production in this era of global climate change.
Collapse
Affiliation(s)
- Wil Prall
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Bishwas Sharma
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
74
|
Chauhan M, Sourabh S, Yasmin R, Pahuja I, Tuteja R. Biochemical characterization of Plasmodium falciparum parasite specific helicase 1 (PfPSH1). FEBS Open Bio 2019; 9:1909-1927. [PMID: 31469232 PMCID: PMC6823286 DOI: 10.1002/2211-5463.12728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/20/2019] [Accepted: 07/28/2019] [Indexed: 12/03/2022] Open
Abstract
Malaria, a disease caused by infection with parasites of the genus Plasmodium, causes millions of deaths worldwide annually. Of the five Plasmodium species that can infect humans, Plasmodium falciparum causes the most serious parasitic infection. The emergence of drug resistance and the ineffectiveness of old therapeutic regimes against malaria mean there is an urgent need to better understand the basic biology of the malaria parasite. Previously, we have reported the presence of parasite‐specific helicases identified through genome‐wide analysis of the P. falciparum (3D7) strain. Helicases are involved in various biological pathways in addition to nucleic acid metabolism, making them an important target of study. Here, we report the detailed biochemical characterization of P. falciparum parasite‐specific helicase 1 (PfPSH1) and the effect of phosphorylation on its biochemical activities. The C‐terminal of PfPSH1 (PfPSH1C) containing all conserved domains was used for biochemical characterization. PfPSH1C exhibits DNA‐ or ribonucleic acid (RNA)‐stimulated ATPase activity, and it can unwind DNA and RNA duplex substrates. It shows bipolar directionality because it can translocate in both (3′–5′ and 5′–3′) directions. PfPSH1 is mainly localized to the cytoplasm during early stages (including ring and trophozoite stages of intraerythrocytic development), but at late stages, it is partially located in the cytoplasm. The biochemical activities of PfPSH1 are upregulated after phosphorylation with PKC. The detailed biochemical characterization of PfPSH1 will help us understand its functional role in the parasite and pave the way for future studies.
Collapse
Affiliation(s)
| | | | | | - Isha Pahuja
- Parasite Biology Group, ICGEB, New Delhi, India
| | - Renu Tuteja
- Parasite Biology Group, ICGEB, New Delhi, India
| |
Collapse
|
75
|
Lari A, Arul Nambi Rajan A, Sandhu R, Reiter T, Montpetit R, Young BP, Loewen CJ, Montpetit B. A nuclear role for the DEAD-box protein Dbp5 in tRNA export. eLife 2019; 8:48410. [PMID: 31453808 PMCID: PMC6711706 DOI: 10.7554/elife.48410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023] Open
Abstract
Dbp5 is an essential DEAD-box protein that mediates nuclear mRNP export. Dbp5 also shuttles between nuclear and cytoplasmic compartments with reported roles in transcription, ribosomal subunit export, and translation; however, the mechanism(s) by which nucleocytoplasmic transport occurs and how Dbp5 specifically contributes to each of these processes remains unclear. Towards understanding the functions and transport of Dbp5 in Saccharomyces cerevisiae, alanine scanning mutagenesis was used to generate point mutants at all possible residues within a GFP-Dbp5 reporter. Characterization of the 456 viable mutants led to the identification of an N-terminal Xpo1-dependent nuclear export signal in Dbp5, in addition to other separation-of-function alleles, which together provide evidence that Dbp5 nuclear shuttling is not essential for mRNP export. Rather, disruptions in Dbp5 nucleocytoplasmic transport result in tRNA export defects, including changes in tRNA shuttling dynamics during recovery from nutrient stress.
Collapse
Affiliation(s)
- Azra Lari
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Arvind Arul Nambi Rajan
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, United States
| | - Rima Sandhu
- Department of Viticulture and Enology, University of California, Davis, Davis, United States
| | - Taylor Reiter
- Food Science Graduate Group, University of California Davis, Davis, United States
| | - Rachel Montpetit
- Department of Viticulture and Enology, University of California, Davis, Davis, United States
| | - Barry P Young
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Chris Jr Loewen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Ben Montpetit
- Department of Cell Biology, University of Alberta, Edmonton, Canada.,Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, United States.,Department of Viticulture and Enology, University of California, Davis, Davis, United States.,Food Science Graduate Group, University of California Davis, Davis, United States
| |
Collapse
|
76
|
Qiu Y, Qu B, Zhen Z, Yuan X, Zhang L, Zhang M. Leucine Promotes Milk Synthesis in Bovine Mammary Epithelial Cells via the PI3K-DDX59 Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8884-8895. [PMID: 31345029 DOI: 10.1021/acs.jafc.9b03574] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Leucine is an essential amino acid in the milk production of bovine mammary glands, but the regulatory roles and molecular mechanisms of leucine are still not known well. This study investigated the roles of leucine on milk synthesis and explored the corresponding mechanism in bovine mammary epithelial cells (BMECs). Leucine (0, 0.25, 0.5, 0.75, 1.0, and 1.25 mM) was added to BMECs that were cultured in FBS-free OPTI-MEM medium. Leucine significantly promoted milk protein and milk fat synthesis and also increased phosphorylation of mTOR signaling protein and the protein expression levels of SREBP-1c, with the most significant effects at 0.75 mM concentration. Leucine increased the expression and nuclear localization of DDX59, and loss and gain of gene function experiments further reveal that DDX59 mediates the stimulation of leucine on the mRNA expression variation of mTOR and SREBP-1c genes. PI3K inhibition experiment further detected that leucine upregulated expression of DDX59 and its downstream signaling via PI3K activation. ChIP-qPCR analysis further proved the binding of DDX59 to the promoter regions of mTOR and SREBP-1c. In summary, these data prove that DDX59 positively regulates the mTOR and SREBP-1c signaling pathways leading to synthesis of milk, and leucine regulates these two signaling pathways through the PI3K-DDX59 signaling.
Collapse
Affiliation(s)
- Youwen Qiu
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Bo Qu
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Zhen Zhen
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Xiaohan Yuan
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Li Zhang
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Minghui Zhang
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , P. R. China
| |
Collapse
|
77
|
Li D, Fu S, Wu Z, Yang W, Ru Y, Shu H, Liu X, Zheng H. DDX56 inhibits type I interferon by disrupting assembly of IRF3-IPO5 to inhibit IRF3 nucleus import. J Cell Sci 2019; 133:133/5/jcs230409. [PMID: 31340999 PMCID: PMC6899003 DOI: 10.1242/jcs.230409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022] Open
Abstract
Transcription factor IRF3-mediated type I interferon induction plays a role in antiviral innate immunity. However, mechanisms for the control and regulation of IRF3 nuclear import remain largely unknown. We have identified DEAD box polypeptide 56 (DDX56) as a negative regulator of virus-triggered IFN-β induction. Overexpression of DDX56 suppressed nuclear translocation of IRF3 via disrupting the IRF3–IOP5 interaction, whereas knockdown or knockout of DDX56 had the opposite effect. In addition, the interaction between DDX56 and IRF3 increased during viral infection. We further found that the D166 site of DDX56 was essential for inhibiting IRF3 import into the nucleus. Our findings suggest that DDX56 regulates antiviral innate immunity by inhibiting the nuclear translocation of IRF3, revealing a novel mechanism of the DDX56-mediated innate antiviral response. This article has an associated First Person interview with the first author of the paper. Summary: DDX56 is a negative regulator of virus-triggered IFN-β induction that acts by disruputing the IRF3–IOP5 interaction to inhibit the import of IRF3 into the nucleus.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Shaozu Fu
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Zhengqian Wu
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Hongbing Shu
- Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| |
Collapse
|
78
|
Quesada AE, Routbort MJ, DiNardo CD, Bueso‐Ramos CE, Kanagal‐Shamanna R, Khoury JD, Thakral B, Zuo Z, Yin CC, Loghavi S, Ok CY, Wang SA, Tang Z, Bannon SA, Benton CB, Garcia‐Manero G, Kantarjian H, Luthra R, Medeiros LJ, Patel KP. DDX41 mutations in myeloid neoplasms are associated with male gender, TP53 mutations and high-risk disease. Am J Hematol 2019; 94:757-766. [PMID: 30963592 DOI: 10.1002/ajh.25486] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 02/01/2023]
Abstract
Myeloid neoplasms with germline DDX41 mutations have been incorporated into the 2017 WHO classification. Limited studies describing the clinicopathologic features and mutation profile are available. We searched for myeloid neoplasms with a DDX41 gene mutation tested by an 81-gene next-generation sequencing panel over a 7-month period. We identified 34 patients with myeloid neoplasms with DDX41 abnormalities; 26 (76%) men and 8 women (24%) [median age, 70 years], 20 acute myeloid leukemia (AML), 10 myelodysplastic syndrome (MDS), 1 chronic myelomonocytic leukemia (CMML) and 3 myeloproliferative neoplasms (MPN). Fifty-nine DDX41 variants were detected: 27 (46%) appeared somatic and 32 (54%) were presumably germline mutations. The majority of presumed germline mutations were upstream of the Helicase 2 domain (93%) and involved loss of the start codon (30%). The majority of somatic mutations were within the Helicase 2 domain (78%), with the missense mutation p.R525H being most common (67%). There was a significant difference in the location of germline or somatic mutations (P < .0001). Concomitant mutations were detected involving 19 genes, but only TP53 (n = 11, 32%), ASXL1 (n = 8, 24%), and JAK2 (n = 4, 12%) were recurrent. Twenty (59%) patients showed diploid cytogenetics. Twenty-three (68%) patients presented with AML or MDS-EB-2, suggesting an association with high-grade myeloid neoplasm. Patients with myeloid neoplasms carrying DDX41 mutations show male predominance (3:1), higher age at presentation, association with TP53 mutations, and association with high-grade myeloid neoplasms in our cohort at a referral cancer center setting. These findings support the recognition of myeloid neoplasms with DDX41 mutation as unique, need for germline confirmation, and further assessment of family members.
Collapse
Affiliation(s)
- Andrés E. Quesada
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Mark J. Routbort
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Courtney D. DiNardo
- Department of LeukemiaThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Carlos E. Bueso‐Ramos
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Rashmi Kanagal‐Shamanna
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Joseph D. Khoury
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Beenu Thakral
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Zhuang Zuo
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - C. Cameron Yin
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Sanam Loghavi
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Chi Y. Ok
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Sa A. Wang
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Zhenya Tang
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Sarah A. Bannon
- Department of Clinical Cancer GeneticsThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Christopher B. Benton
- Department of LeukemiaThe University of Texas MD Anderson Cancer Center Houston Texas
| | | | - Hagop Kantarjian
- Department of LeukemiaThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Rajyalakshmi Luthra
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - L. Jeffrey Medeiros
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Keyur P. Patel
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| |
Collapse
|
79
|
Pandey A, Medhamurthy R, Rao S, Asaithambi K. Hormonal regulation and function of an RNA helicase, Ddx5 in corpus luteum of adult Wistar rats. Reprod Biol 2019; 19:179-188. [PMID: 31151754 DOI: 10.1016/j.repbio.2019.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 11/26/2022]
Abstract
Corpus luteum (CL) is an endocrine tissue involved in regulation of reproductive cycle and early pregnancy establishment. In the present study DEAD-box helicase-5 (Ddx5), a member of the DEAD box family of RNA helicases was investigated for its expression, regulation and function in CL of Wistar rats. Ddx5 was expressed in adult rat CL. Primary cell culture from supra-ovulated ovaries were established for in vitro studies. Addition of luteinizing hormone (LH; 100 ng/ml), a luteotrophic factor in primary cell culture, decreased Ddx5 RNA expression (foldchange:0.6 ± 0.075) while prostaglandin alpha (PGF2α; 1μM), a luteolytic factor caused an increase (foldchange:2.4 ± 0.4) compared to control group. Under in vivo conditions, the administration of PGF2α or gonadotropin-releasing hormone antagonist; cetrorelix (CET) caused luteolysis as well as an increase in the protein level of Ddx5 (foldchange:1.9 ± 0.27 and 1.4 ± 0.09 viz.; p < 0.05) in CL of adult rats. LH was administered post CET treatment which suppressed Ddx5 protein expression (foldchange:0.8 ± 0.16; p < 0.05) compared to CET treated group. Further, it was observed that the expression of Ddx5 was upregulated (foldchange:1.5 ± 0.23; p < 0.05) in CL during late pregnancy compared to mid pregnancy concomitant to luteolysis in adult rats. Overall, the results suggest for the first time that Ddx5 is expressed in rat CL and regulated by luteolytic and luteotrophic factors in an inverse fashion. Further, the data significantly correlates ddx5 expression to CL regression suggesting involvement of ddx5 in luteolysis. These results suggest a significant role of Ddx5 in female reproduction biology and warrant in depth examination of the function of Ddx5 in CL.
Collapse
Affiliation(s)
- Aparamita Pandey
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| | - Rudraiah Medhamurthy
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Swati Rao
- School of Life Sciences, Manipal University, Manipal, India
| | - Killivalavan Asaithambi
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
80
|
Jaikishan I, Rajendrakumar P, Hariprasanna K, Balakrishna D, Bhat BV, Tonapi VA. Identification of differentially expressed transcripts at critical developmental stages in sorghum [ Sorghum bicolor (L.) Moench] in relation to grain yield heterosis. 3 Biotech 2019; 9:239. [PMID: 31168432 DOI: 10.1007/s13205-019-1777-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
Evaluation of a set of 10 F1 hybrids along with their female (27A and 7A) and male parents (C 43, RS 673, RS 627, CB 26, and CB 29) for grain yield and its component traits revealed that grain yield/plant followed by panicle weight, primary branches/panicle, and 100-seed weight exhibited high levels of heterosis. Eight hybrids exhibited 50% or more mid-parent heterosis for grain yield/plant, of which, one hybrid (27A × RS673) recorded heterobeltiosis above 50% (73.61%). Differential display analysis generated about 2995 reproducible transcripts, which were categorized as UPF1-expressed in any one of the parents and F1 (10.53-14.76%), BPnF1-expressed in both parents but not in F1 (4.56-11.44%), UPnF1-expressed in either of the parents and not in F1 (17.95-27.40%), F1nBP-expressed only in F1 but not in either of the parents (14.39-20.54%), and UET-expressed in both parents and F1 (34.52-42.43%). A comparison between high and low heterotic hybrids revealed that the proportions of UPF1 and F1nBP transcript patterns were much higher in the former (21.31% and 45.24%) as compared to the latter (16.67% and 32.14%) at the booting and flowering stage, respectively, indicating the role of over-dominance and dominance in the manifestation of grain yield heterosis. Significant positive correlations were observed for differential transcript patterns with mid-parent and better-parent heterosis for the components of grain yield such as primary branches (0.63 and 0.61 at p < 0.01) and 100-seed weight (0.64 and 0.52 at p < 0.01). Cloning and sequence analysis of 16 transcripts that were differentially expressed in hybrids and their parental lines revealed that they code for genes involved in basic cellular processes, cellulose biosynthesis, and assimilate partitioning between various organs and allocation between various pathways, pyrimidine, and polyamine biosynthesis, enhancing ATP production and regulation of plant growth and development.
Collapse
|
81
|
Raju M, Hassan SA, Kavarthapu R, Anbazhagan R, Dufau ML. Characterization of the Phosphorylation Site of GRTH/DDX25 and Protein Kinase A Binding Interface Provides Structural Basis for the Design of a Non-Hormonal Male Contraceptive. Sci Rep 2019; 9:6705. [PMID: 31040297 PMCID: PMC6491591 DOI: 10.1038/s41598-019-42857-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/10/2019] [Indexed: 02/08/2023] Open
Abstract
Gonadotropin Regulated Testicular Helicase (GRTH/DDX25), expressed in the male gonad, is essential for the completion of spermatogenesis. Our early studies revealed a missense mutation (R242H) of GRTH in 5.8% of Japanese patient population with azoospermia. Transfection of the mutant GRTH construct in COS-1 cells leads to loss of the 61 kDa cytoplasmic phospho-species. Mice with knock-in of the human GRTH mutation are sterile and lack sperm with normal androgen and mating behavior. These findings provide an avenue for the development of a non-hormonal male contraceptive. Using site directed mutagenesis and a site-specific phospho-antibody, we have identified T239, structurally adjacent to the patient’s mutant site as the GRTH phospho-site. Molecular modelling provided structural basis for the role of R242 and other critical solvent-exposed residues at the GRTH/PKA interface (E165/K240/D237), on the control of GRTH phosphorylation at T239. Single or double mutations of these residues caused marked reduction or abolition of the phospho-form. These effects can be ascribed to critical disruptions of intramolecular H-bonds at the GRTH/PKA interface, which leads to modest but consequential structural changes that can affect PKA catalytic efficiency. Inhibition of phosphorylation may be achieved by small, drug-like molecules that bind to GRTH and reconfigure the GRTH/PKA interface.
Collapse
Affiliation(s)
- Murugananthkumar Raju
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, OIR/CIT, National Institutes of Health, Bethesda, MD, 20892-4510, USA
| | - Sergio A Hassan
- Center for Molecular Modeling, OIR/CIT, National Institutes of Health, Bethesda, MD, 20892-4510, USA
| | - Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, OIR/CIT, National Institutes of Health, Bethesda, MD, 20892-4510, USA
| | - Rajakumar Anbazhagan
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, OIR/CIT, National Institutes of Health, Bethesda, MD, 20892-4510, USA
| | - Maria L Dufau
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, OIR/CIT, National Institutes of Health, Bethesda, MD, 20892-4510, USA.
| |
Collapse
|
82
|
From the magic bullet to the magic target: exploiting the diverse roles of DDX3X in viral infections and tumorigenesis. Future Med Chem 2019; 11:1357-1381. [PMID: 30816053 DOI: 10.4155/fmc-2018-0451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DDX3X is an ATPase/RNA helicase of the DEAD-box family and one of the most multifaceted helicases known up to date, acting in RNA metabolism, cell cycle control, apoptosis, stress response and innate immunity. Depending on the virus or the viral cycle stage, DDX3X can act either in a proviral fashion or as an antiviral factor. Similarly, in different cancer types, it can act either as an oncogene or a tumor-suppressor gene. Accumulating evidence indicated that DDX3X can be considered a promising target for anticancer and antiviral chemotherapy, but also that its exploitation requires a deeper understanding of the molecular mechanisms underlying its dual role in cancer and viral infections. In this Review, we will summarize the known roles of DDX3X in different tumor types and viral infections, and the different inhibitors available, illustrating the possible advantages and potential caveats of their use as anticancer and antiviral drugs.
Collapse
|
83
|
Nucleic Acid Induced Interferon and Inflammasome Responses in Regulating Host Defense to Gastrointestinal Viruses. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 345:137-171. [PMID: 30904192 PMCID: PMC7104954 DOI: 10.1016/bs.ircmb.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gut bacterial and fungal communities residing in the gastrointestinal tract have undisputed far-reaching effects in regulating host health. In the meantime, however, metagenomic sequencing efforts are revealing enteric viruses as the most abundant dimension of the intestinal gut ecosystem, and the first gut virome-wide association studies showed that inflammatory bowel disease as well as type 1 diabetes could be linked to the presence or absence of particular viral inhabitants in the intestine. In line with the genetic component of these human diseases, mouse model studies demonstrated how beneficial functions of a resident virus can switch to detrimental inflammatory effects in a genetically predisposed host. Such viral-induced intestinal immune disturbances are also recapitulated by several gastrointestinal infectious viruses such as rotavirus and human norovirus. This wide range of viral effects on intestinal immunity emphasizes the need for understanding the innate immune responses to gastrointestinal viruses. Numerous nucleic acid sensors such as DexD/H helicases and AIM2 serve as cytosolic viral guardians to induce antiviral interferon and/or pro-inflammatory inflammasome responses. In both cases, pioneering examples are emerging in which RNA helicases cooperate with particular Nod-like receptors to trigger these cellular responses to enteric viruses. Here we summarize the reported beneficial versus detrimental effects of enteric viruses in the intestinal immune system, and we zoom in on the mechanisms through which sensing of nucleic acids from these enteric viruses trigger interferon and inflammasome responses.
Collapse
|
84
|
Dufau ML, Kavarthapu R. Gonadotropin Regulation Testicular RNA Helicase, Two Decades of Studies on Its Structure Function and Regulation From Its Discovery Opens a Window for Development of a Non-hormonal Oral Male Contraceptive. Front Endocrinol (Lausanne) 2019; 10:576. [PMID: 31555207 PMCID: PMC6727037 DOI: 10.3389/fendo.2019.00576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/07/2019] [Indexed: 12/22/2022] Open
Abstract
Gonadotropin Regulated Testicular Helicase (GRTH/DDX25) is member of the DEAD-box family of RNA helicases present in Leydig and germ cells. GRTH is the only family member regulated by hormones, luteinizing hormone, through androgen action. Male mice with knock-out of the GRTH gene are sterile, lack sperm with arrest at round spermatids. GRTH participates on the nuclear export and transport of specific mRNAs, the structural integrity of Chromatoid Bodies of round spermatids, where mRNAs are processed and stored, and in their transit to polyribosomes, where it may regulate translation of relevant genes. GRTH has a central role in the control of germ cell apoptosis and acts as negative regulator of miRNAs which regulate expression of genes involved in the progress of spermatogenesis. In Leydig cells, GRTH gene transcription is regulated by LH via autocrine actions of androgen/androgen receptor and has regulatory effects in steroidogenesis. In germ cells, androgen actions are indirect via receptors in Sertoli cells. Transgenic mice carrying GRTH 5' flanking region-GFP permitted to discern regions in the gene which directs its expression upstream, in germ cells, and downstream in Leydig cells, and the androgen-regulated transcription at interstitial (autocrine), and germ cell (paracrine) compartments. Further evidence for paracrine actions of androgen/androgen receptor is their transcriptional induction of Germ Cell Nuclear Factor as requisite up-regulator of GRTH gene transcription in round spermatids, linking androgen action to two relevant germ cell genes essential for the progress of spermatogenesis. A missense mutation of R to H at amino acid 242 of GRTH found in 5.8% of a patient population with azoospermia causes loss of the cytoplasmic phospho-GRTH species with preservation of the non-phospho form in transfected cells. Mice with knock-in of the human mutation, lack sperm due to arrest at round spermatids. This model permits to discern the function of phospho-GRTH. The GRTH phospho-site resides at a Threonine structurally adjacent to the mutant site found in patients. Molecular modeling of this site elucidated the amino acids that form the GRTH/PKA interphase and provide the basis for drug design for use as male contraceptive.
Collapse
|
85
|
Hashemi V, Masjedi A, Hazhir-Karzar B, Tanomand A, Shotorbani SS, Hojjat-Farsangi M, Ghalamfarsa G, Azizi G, Anvari E, Baradaran B, Jadidi-Niaragh F. The role of DEAD-box RNA helicase p68 (DDX5) in the development and treatment of breast cancer. J Cell Physiol 2018; 234:5478-5487. [PMID: 30417346 DOI: 10.1002/jcp.26912] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
RNA helicase p68 or DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (DDX5) is a unique member of the highly conserved protein family, which is involved in a broad spectrum of biological processes, including transcription, translation, precursor messenger RNA processing or alternative splicing, and microRNA (miRNA) processing. It has been shown that p68 is necessary for cell growth and participates in the early development and maturation of some organs. Interestingly, p68 is a transcriptional coactivator of numerous oncogenic transcription factors, including nuclear factor-κβ (NF-κβ), estrogen receptor α (ERα), β-catenin, androgen receptor, Notch transcriptional activation complex, p53 and signal transducer, and activator of transcription 3 (STAT3). Recent studies on the role of p68 (DDX5) in multiple dysregulated cellular processes in various cancers and its abnormal expression indicate the importance of this factor in tumor development. Discussion of the precise role of p68 in cancer is complex and depends on the cellular microenvironment and interacting factors. In terms of the deregulated expression of p68 in breast cancer and the high prevalence of this cancer among women, it can be informative to review the precise function of this factor in the breast cancer. Therefore, an attempt will be made in this review to clarify the tumorigenic function of p68 in association with its targeting potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Vida Hashemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Basic Sciences, Faculty of Medicine, Maragheh University of Medical Science, Maragheh, Iran
| | - Ali Masjedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bita Hazhir-Karzar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Tanomand
- Department of Basic Sciences, Faculty of Medicine, Maragheh University of Medical Science, Maragheh, Iran
| | | | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Enayat Anvari
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
86
|
Chen X, Wang C, Zhang X, Tian T, Zang J. Crystal structures of the N-terminal domain of the Staphylococcus aureus DEAD-box RNA helicase CshA and its complex with AMP. Acta Crystallogr F Struct Biol Commun 2018; 74:704-709. [PMID: 30387775 PMCID: PMC6213976 DOI: 10.1107/s2053230x1801292x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/12/2018] [Indexed: 11/10/2022] Open
Abstract
CshA is a DEAD-box RNA helicase that belongs to the DExD/H-box family of proteins, which generally have an RNA-dependent ATPase activity. In Staphylococcus aureus, CshA was identified as a component of the RNA degradosome and plays important roles in RNA turnover. In this study, the crystal structures of the N-terminal RecA-like domain 1 of S. aureus CshA (SaCshAR1) and of its complex with AMP (SaCshAR1-AMP) are reported at resolutions of 1.5 and 1.8 Å, respectively. SaCshAR1 adopts a conserved α/β RecA-like structure with seven parallel strands surrounded by nine α-helices. The Q motif and motif I are responsible for the binding of the adenine group and phosphate group of AMP, respectively. Structure comparison of SaCshAR1-AMP and SaCshAR1 reveals that motif I undergoes a conformational change upon AMP binding. Isothermal titration calorimetry assays further conformed the essential roles of Phe22 in the Q motif and Lys52 in motif I for binding ATP, indicating a conserved substrate-binding mechanism in SaCshA compared with other DEAD-box RNA helicases.
Collapse
Affiliation(s)
- Xiaobao Chen
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, Collaborative Innovation Center of Chemistry for Life Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230027, People’s Republic of China
| | - Chengliang Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, Collaborative Innovation Center of Chemistry for Life Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230027, People’s Republic of China
| | - Xuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, Collaborative Innovation Center of Chemistry for Life Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230027, People’s Republic of China
| | - Tian Tian
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, Collaborative Innovation Center of Chemistry for Life Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230027, People’s Republic of China
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, Collaborative Innovation Center of Chemistry for Life Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230027, People’s Republic of China
| |
Collapse
|
87
|
In silico analysis of putative dormancy genes in Plasmodium vivax. Acta Trop 2018; 186:24-34. [PMID: 29959903 DOI: 10.1016/j.actatropica.2018.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/21/2018] [Accepted: 06/26/2018] [Indexed: 11/23/2022]
Abstract
Plasmodium vivax is the most widely spread species causing human malaria. The control of malaria caused by P. vivax has been largely hampered by its ability to develop a dormant liver stage that can generate a new blood infection at different periods of time. Unfortunately, the mechanisms of dormancy in P. vivax have not been thoroughly elucidated to date. In this study, the putative dormancy genes were analyzed to select genes with less genetic variability to maintain the function of relapsing. Expression data concerning these genes were searched to support the selection. Protein interactions among selected gene products were identified based on known and predicted protein-protein interaction using String database. Potentially interacting proteins (n = 15) were used to propose a mechanism involved in dormancy based on the differential vesicular transport due to the iron available in the hepatocyte.
Collapse
|
88
|
Matz KM, Guzman RM, Goodman AG. The Role of Nucleic Acid Sensing in Controlling Microbial and Autoimmune Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 345:35-136. [PMID: 30904196 PMCID: PMC6445394 DOI: 10.1016/bs.ircmb.2018.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innate immunity, the first line of defense against invading pathogens, is an ancient form of host defense found in all animals, from sponges to humans. During infection, innate immune receptors recognize conserved molecular patterns, such as microbial surface molecules, metabolites produces during infection, or nucleic acids of the microbe's genome. When initiated, the innate immune response activates a host defense program that leads to the synthesis proteins capable of pathogen killing. In mammals, the induction of cytokines during the innate immune response leads to the recruitment of professional immune cells to the site of infection, leading to an adaptive immune response. While a fully functional innate immune response is crucial for a proper host response and curbing microbial infection, if the innate immune response is dysfunctional and is activated in the absence of infection, autoinflammation and autoimmune disorders can develop. Therefore, it follows that the innate immune response must be tightly controlled to avoid an autoimmune response from host-derived molecules, yet still unencumbered to respond to infection. In this review, we will focus on the innate immune response activated from cytosolic nucleic acids, derived from the microbe or host itself. We will depict how viruses and bacteria activate these nucleic acid sensing pathways and their mechanisms to inhibit the pathways. We will also describe the autoinflammatory and autoimmune disorders that develop when these pathways are hyperactive. Finally, we will discuss gaps in knowledge with regard to innate immune response failure and identify where further research is needed.
Collapse
Affiliation(s)
- Keesha M Matz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - R Marena Guzman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States; Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States.
| |
Collapse
|
89
|
Coppin L, Leclerc J, Vincent A, Porchet N, Pigny P. Messenger RNA Life-Cycle in Cancer Cells: Emerging Role of Conventional and Non-Conventional RNA-Binding Proteins? Int J Mol Sci 2018; 19:ijms19030650. [PMID: 29495341 PMCID: PMC5877511 DOI: 10.3390/ijms19030650] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 02/06/2023] Open
Abstract
Functional specialization of cells and tissues in metazoans require specific gene expression patterns. Biological processes, thus, need precise temporal and spatial coordination of gene activity. Regulation of the fate of messenger RNA plays a crucial role in this context. In the present review, the current knowledge related to the role of RNA-binding proteins in the whole mRNA life-cycle is summarized. This field opens up a new angle for understanding the importance of the post-transcriptional control of gene expression in cancer cells. The emerging role of non-classic RNA-binding proteins is highlighted. The goal of this review is to encourage readers to view, through the mRNA life-cycle, novel aspects of the molecular basis of cancer and the potential to develop RNA-based therapies.
Collapse
Affiliation(s)
- Lucie Coppin
- University of Lille, UMR-S 1172-JPARC-Jean-Pierre Aubert Research Center, F-59000 Lille, France.
- Inserm, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis", F-59000 Lille, Frances.
- CHU Lille, Service de Biochimie "Hormonologie, Métabolisme-Nutrition, Oncologie", F-59000 Lille, France.
| | - Julie Leclerc
- University of Lille, UMR-S 1172-JPARC-Jean-Pierre Aubert Research Center, F-59000 Lille, France.
- Inserm, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis", F-59000 Lille, Frances.
- CHU Lille, Service de Biochimie "Hormonologie, Métabolisme-Nutrition, Oncologie", F-59000 Lille, France.
| | - Audrey Vincent
- University of Lille, UMR-S 1172-JPARC-Jean-Pierre Aubert Research Center, F-59000 Lille, France.
- Inserm, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis", F-59000 Lille, Frances.
- CHU Lille, Service de Biochimie "Hormonologie, Métabolisme-Nutrition, Oncologie", F-59000 Lille, France.
| | - Nicole Porchet
- University of Lille, UMR-S 1172-JPARC-Jean-Pierre Aubert Research Center, F-59000 Lille, France.
- Inserm, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis", F-59000 Lille, Frances.
- CHU Lille, Service de Biochimie "Hormonologie, Métabolisme-Nutrition, Oncologie", F-59000 Lille, France.
| | - Pascal Pigny
- University of Lille, UMR-S 1172-JPARC-Jean-Pierre Aubert Research Center, F-59000 Lille, France.
- Inserm, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis", F-59000 Lille, Frances.
- CHU Lille, Service de Biochimie "Hormonologie, Métabolisme-Nutrition, Oncologie", F-59000 Lille, France.
| |
Collapse
|
90
|
Lee T, Pelletier J. The biology of DHX9 and its potential as a therapeutic target. Oncotarget 2018; 7:42716-42739. [PMID: 27034008 PMCID: PMC5173168 DOI: 10.18632/oncotarget.8446] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/16/2016] [Indexed: 12/25/2022] Open
Abstract
DHX9 is member of the DExD/H-box family of helicases with a “DEIH” sequence at its eponymous DExH-box motif. Initially purified from human and bovine cells and identified as a homologue of the Drosophila Maleless (MLE) protein, it is an NTP-dependent helicase consisting of a conserved helicase core domain, two double-stranded RNA-binding domains at the N-terminus, and a nuclear transport domain and a single-stranded DNA-binding RGG-box at the C-terminus. With an ability to unwind DNA and RNA duplexes, as well as more complex nucleic acid structures, DHX9 appears to play a central role in many cellular processes. Its functions include regulation of DNA replication, transcription, translation, microRNA biogenesis, RNA processing and transport, and maintenance of genomic stability. Because of its central role in gene regulation and RNA metabolism, there are growing implications for DHX9 in human diseases and their treatment. This review will provide an overview of the structure, biochemistry, and biology of DHX9, its role in cancer and other human diseases, and the possibility of targeting DHX9 in chemotherapy.
Collapse
Affiliation(s)
- Teresa Lee
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
91
|
Xu L, Wang L, Peng J, Li F, Wu L, Zhang B, Lv M, Zhang J, Gong Q, Zhang R, Zuo X, Zhang Z, Wu J, Tang Y, Shi Y. Insights into the Structure of Dimeric RNA Helicase CsdA and Indispensable Role of Its C-Terminal Regions. Structure 2017; 25:1795-1808.e5. [PMID: 29107486 DOI: 10.1016/j.str.2017.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/21/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023]
Abstract
CsdA has been proposed to be essential for the biogenesis of ribosome and gene regulation after cold shock. However, the structure of CsdA and the function of its long C-terminal regions are still unclear. Here, we solved all of the domain structures of CsdA and found two previously uncharacterized auxiliary domains: a dimerization domain (DD) and an RNA-binding domain (RBD). Small-angle X-ray scattering experiments helped to track the conformational flexibilities of the helicase core domains and C-terminal regions. Biochemical assays revealed that DD is indispensable for stabilizing the CsdA dimeric structure. We also demonstrate for the first time that CsdA functions as a stable dimer at low temperature. The C-terminal regions are critical for RNA binding and efficient enzymatic activities. CsdA_RBD could specifically bind to the regions with a preference for single-stranded G-rich RNA, which may help to bring the helicase core to unwind the adjacent duplex.
Collapse
Affiliation(s)
- Ling Xu
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Lijun Wang
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Junhui Peng
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Fudong Li
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Lijie Wu
- National Center for Protein Science Shanghai, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Beibei Zhang
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Mengqi Lv
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Qingguo Gong
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Rongguang Zhang
- National Center for Protein Science Shanghai, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaobing Zuo
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Zhiyong Zhang
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jihui Wu
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yajun Tang
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| | - Yunyu Shi
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| |
Collapse
|
92
|
Li C, Park S, Zhang X, Eisenberg LM, Zhao H, Darzynkiewicz Z, Xu D. Nuclear Gene 33/Mig6 regulates the DNA damage response through an ATM serine/threonine kinase-dependent mechanism. J Biol Chem 2017; 292:16746-16759. [PMID: 28842482 PMCID: PMC5633135 DOI: 10.1074/jbc.m117.803338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
Gene 33 (Mig6, ERRFI1) is an adaptor protein with multiple cellular functions. We recently linked Gene 33 to the DNA damage response (DDR) induced by hexavalent chromium (Cr(VI)), but the molecular mechanism remains unknown. Here we show that ectopic expression of Gene 33 triggers DDR in an ATM serine/threonine kinase (ATM)-dependent fashion and through pathways dependent or not dependent on ABL proto-oncogene 1 non-receptor tyrosine kinase (c-Abl). We observed the clear presence of Gene 33 in the nucleus and chromatin fractions of the cell. We also found that the nuclear localization of Gene 33 is regulated by its 14-3-3-binding domain and that the chromatin localization of Gene 33 is partially dependent on its ErbB-binding domain. Our data further indicated that Gene 33 may regulate the targeting of c-Abl to chromatin. Moreover, we observed a clear association of Gene 33 with histone H2AX and that ectopic expression of Gene 33 promotes the interaction between ATM and histone H2AX without triggering DNA damage. In summary, our results reveal nuclear functions of Gene 33 that regulate DDR. The nuclear localization of Gene 33 also provides a spatial explanation of the previously reported regulation of apoptosis by Gene 33 via the c-Abl/p73 pathway. On the basis of these findings and our previous studies, we propose that Gene 33 is a proximal regulator of DDR that promotes DNA repair.
Collapse
Affiliation(s)
- Cen Li
- From the Department of Pathology
| | | | | | | | - Hong Zhao
- From the Department of Pathology
- the Brander Cancer Research Institute, School of Medicine, New York Medical College, Valhalla, New York 10595
| | - Zbigniew Darzynkiewicz
- From the Department of Pathology
- the Brander Cancer Research Institute, School of Medicine, New York Medical College, Valhalla, New York 10595
| | | |
Collapse
|
93
|
Confirmation that mutations in DDX59 cause an autosomal recessive form of oral-facial-digital syndrome: Further delineation of the DDX59 phenotype in two new families. Eur J Med Genet 2017; 60:527-532. [DOI: 10.1016/j.ejmg.2017.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/12/2017] [Accepted: 07/11/2017] [Indexed: 01/17/2023]
|
94
|
Jayaswal PK, Dogra V, Shanker A, Sharma TR, Singh NK. A tree of life based on ninety-eight expressed genes conserved across diverse eukaryotic species. PLoS One 2017; 12:e0184276. [PMID: 28922368 PMCID: PMC5603157 DOI: 10.1371/journal.pone.0184276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/21/2017] [Indexed: 01/07/2023] Open
Abstract
Rapid advances in DNA sequencing technologies have resulted in the accumulation of large data sets in the public domain, facilitating comparative studies to provide novel insights into the evolution of life. Phylogenetic studies across the eukaryotic taxa have been reported but on the basis of a limited number of genes. Here we present a genome-wide analysis across different plant, fungal, protist, and animal species, with reference to the 36,002 expressed genes of the rice genome. Our analysis revealed 9831 genes unique to rice and 98 genes conserved across all 49 eukaryotic species analysed. The 98 genes conserved across diverse eukaryotes mostly exhibited binding and catalytic activities and shared common sequence motifs; and hence appeared to have a common origin. The 98 conserved genes belonged to 22 functional gene families including 26S protease, actin, ADP–ribosylation factor, ATP synthase, casein kinase, DEAD-box protein, DnaK, elongation factor 2, glyceraldehyde 3-phosphate, phosphatase 2A, ras-related protein, Ser/Thr protein phosphatase family protein, tubulin, ubiquitin and others. The consensus Bayesian eukaryotic tree of life developed in this study demonstrated widely separated clades of plants, fungi, and animals. Musa acuminata provided an evolutionary link between monocotyledons and dicotyledons, and Salpingoeca rosetta provided an evolutionary link between fungi and animals, which indicating that protozoan species are close relatives of fungi and animals. The divergence times for 1176 species pairs were estimated accurately by integrating fossil information with synonymous substitution rates in the comprehensive set of 98 genes. The present study provides valuable insight into the evolution of eukaryotes.
Collapse
Affiliation(s)
- Pawan Kumar Jayaswal
- National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, India
- Banasthali University, Banasthali, Rajasthan, India
| | - Vivek Dogra
- National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, India
| | - Asheesh Shanker
- Bioinformatics Programme, Centre for Biological Sciences, Central University of South Bihar, Patna, Bihar, India
| | - Tilak Raj Sharma
- National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, India
| | - Nagendra Kumar Singh
- National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, India
- * E-mail:
| |
Collapse
|
95
|
Bonnot T, Bancel E, Alvarez D, Davanture M, Boudet J, Pailloux M, Zivy M, Ravel C, Martre P. Grain subproteome responses to nitrogen and sulfur supply in diploid wheat Triticum monococcum ssp. monococcum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017. [PMID: 28628250 DOI: 10.1111/tpj.13615] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Wheat grain storage proteins (GSPs) make up most of the protein content of grain and determine flour end-use value. The synthesis and accumulation of GSPs depend highly on nitrogen (N) and sulfur (S) availability and it is important to understand the underlying control mechanisms. Here we studied how the einkorn (Triticum monococcum ssp. monococcum) grain proteome responds to different amounts of N and S supply during grain development. GSP composition at grain maturity was clearly impacted by nutrition treatments, due to early changes in the rate of GSP accumulation during grain filling. Large-scale analysis of the nuclear and albumin-globulin subproteomes during this key developmental phase revealed that the abundance of 203 proteins was significantly modified by the nutrition treatments. Our results showed that the grain proteome was highly affected by perturbation in the N:S balance. S supply strongly increased the rate of accumulation of S-rich α/β-gliadin and γ-gliadin, and the abundance of several other proteins involved in glutathione metabolism. Post-anthesis N supply resulted in the activation of amino acid metabolism at the expense of carbohydrate metabolism and the activation of transport processes including nucleocytoplasmic transit. Protein accumulation networks were analyzed. Several central actors in the response were identified whose variation in abundance was related to variation in the amounts of many other proteins and are thus potentially important for GSP accumulation. This detailed analysis of grain subproteomes provides information on how wheat GSP composition can possibly be controlled in low-level fertilization condition.
Collapse
Affiliation(s)
- Titouan Bonnot
- UMR GDEC, INRA, Université Clermont Auvergne, 5 chemin de Beaulieu, Clermont-Ferrand, 63039, France
| | - Emmanuelle Bancel
- UMR GDEC, INRA, Université Clermont Auvergne, 5 chemin de Beaulieu, Clermont-Ferrand, 63039, France
| | - David Alvarez
- UMR GDEC, INRA, Université Clermont Auvergne, 5 chemin de Beaulieu, Clermont-Ferrand, 63039, France
| | - Marlène Davanture
- UMR GQE, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Julie Boudet
- UMR GDEC, INRA, Université Clermont Auvergne, 5 chemin de Beaulieu, Clermont-Ferrand, 63039, France
| | - Marie Pailloux
- LIMOS, CNRS, Université Blaise Pascal, Aubière, 63173, France
| | - Michel Zivy
- UMR GQE, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Catherine Ravel
- UMR GDEC, INRA, Université Clermont Auvergne, 5 chemin de Beaulieu, Clermont-Ferrand, 63039, France
| | - Pierre Martre
- UMR GDEC, INRA, Université Clermont Auvergne, 5 chemin de Beaulieu, Clermont-Ferrand, 63039, France
| |
Collapse
|
96
|
|
97
|
Chilton SS, Falbel TG, Hromada S, Burton BM. A Conserved Metal Binding Motif in the Bacillus subtilis Competence Protein ComFA Enhances Transformation. J Bacteriol 2017; 199:e00272-17. [PMID: 28559293 PMCID: PMC5512226 DOI: 10.1128/jb.00272-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/18/2017] [Indexed: 02/05/2023] Open
Abstract
Genetic competence is a process in which cells are able to take up DNA from their environment, resulting in horizontal gene transfer, a major mechanism for generating diversity in bacteria. Many bacteria carry homologs of the central DNA uptake machinery that has been well characterized in Bacillus subtilis It has been postulated that the B. subtilis competence helicase ComFA belongs to the DEAD box family of helicases/translocases. Here, we made a series of mutants to analyze conserved amino acid motifs in several regions of B. subtilis ComFA. First, we confirmed that ComFA activity requires amino acid residues conserved among the DEAD box helicases, and second, we show that a zinc finger-like motif consisting of four cysteines is required for efficient transformation. Each cysteine in the motif is important, and mutation of at least two of the cysteines dramatically reduces transformation efficiency. Further, combining multiple cysteine mutations with the helicase mutations shows an additive phenotype. Our results suggest that the helicase and metal binding functions are two distinct activities important for ComFA function during transformation.IMPORTANCE ComFA is a highly conserved protein that has a role in DNA uptake during natural competence, a mechanism for horizontal gene transfer observed in many bacteria. Investigation of the details of the DNA uptake mechanism is important for understanding the ways in which bacteria gain new traits from their environment, such as drug resistance. To dissect the role of ComFA in the DNA uptake machinery, we introduced point mutations into several motifs in the protein sequence. We demonstrate that several amino acid motifs conserved among ComFA proteins are important for efficient transformation. This report is the first to demonstrate the functional requirement of an amino-terminal cysteine motif in ComFA.
Collapse
Affiliation(s)
- Scott S Chilton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Tanya G Falbel
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - Susan Hromada
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - Briana M Burton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
98
|
Schudrowitz N, Takagi S, Wessel GM, Yajima M. Germline factor DDX4 functions in blood-derived cancer cell phenotypes. Cancer Sci 2017; 108:1612-1619. [PMID: 28612512 PMCID: PMC5543511 DOI: 10.1111/cas.13299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
DDX4 (the human ortholog of Drosophila Vasa) is an RNA helicase and is present in the germ lines of all metazoans tested. It was historically thought to be expressed specifically in germline, but with additional organisms studied, it is now clear that in some animals DDX4/Vasa functions outside of the germline, in a variety of somatic cells in the embryo and in the adult. In this report, we document that DDX4 is widely expressed in soma-derived cancer cell lines, including myeloma (IM-9) and leukemia (THP-1) cells. In these cells, the DDX4 protein localized to the mitotic spindle, consistent with findings in other somatic cell functions, and its knockout in IM-9 cells compromised cell proliferation and migration activities, and downregulated several cell cycle/oncogene factors such as CyclinB and the transcription factor E2F1. These results suggest that DDX4 positively regulates cell cycle progression of diverse somatic-derived blood cancer cells, implying its broad contributions to the cancer cell phenotype and serves as a potential new target for chemotherapy.
Collapse
Affiliation(s)
- Natalie Schudrowitz
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Satoshi Takagi
- Department of Medical Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
99
|
Myeloid neoplasms with germline DDX41 mutation. Int J Hematol 2017; 106:163-174. [DOI: 10.1007/s12185-017-2260-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022]
|
100
|
Santosh Rama Bhadra Rao T, Vijaya Naresh J, Sudhakar Reddy P, Reddy MK, Mallikarjuna G. Expression of Pennisetum glaucum Eukaryotic Translational Initiation Factor 4A ( PgeIF4A) Confers Improved Drought, Salinity, and Oxidative Stress Tolerance in Groundnut. FRONTIERS IN PLANT SCIENCE 2017; 8:453. [PMID: 28439277 PMCID: PMC5383670 DOI: 10.3389/fpls.2017.00453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/15/2017] [Indexed: 05/28/2023]
Abstract
Eukaryotic translational initiation factor 4A belong to family of helicases, involved in multifunctional activities during stress and non-stress conditions. The eIF4A gene was isolated and cloned from semi-arid cereal crop of Pennisetum glaucum. In present study, the PgeIF4A gene was expressed under the regulation of stress inducible Arabidopsis rd29A promoter in groundnut (cv JL-24) with bar as a selectable marker. The de-embryonated cotyledons were infected with Agrobacterium tumefaciens (LBA4404) carrying rd29A:PgeIF4A construct and generated high frequency of multiple shoots in phosphinothricin medium. Twenty- four T0 plants showed integration of both nos-bar and rd29A-PgeIF4A gene cassettes in genome with expected amplification products of 429 and 654 bps, respectively. Transgene copy number integration was observed in five T0 transgenic plants through Southern blot analysis. Predicted Mendelian ratio of segregation (3:1) was noted in transgenic plants at T1 generation. The T2 homozygous lines (L1-5, L8-2, and L16-2) expressing PgeIF4A gene were exhibited superior growth performance with respect to phenotypic parameters like shoot length, tap root length, and lateral root formation under simulated drought and salinity stresses compared to the wild type. In addition, the chlorophyll retention was found to be higher in these plants compared to the control plants. The quantitative real time-PCR results confirmed higher expression of PgeIF4A gene in L1-5, L8-3, and L16-2 plants imposed with drought/salt stress. Further, the salt stress tolerance was associated with increase in oxidative stress markers, such as superoxide dismutase accumulation, reactive oxygen species scavenging, and membrane stability in transgenic plants. Taken together our results confirmed that the PgeIF4A gene expressing transgenic groundnut plants exhibited better adaptation to stress conditions.
Collapse
Affiliation(s)
| | | | - Palakolanu Sudhakar Reddy
- Cell, Molecular Biology and Genetic Engineering Group, International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Malireddy K. Reddy
- Crop improvement group, International Center for Genetic Engineering and BiotechnologyNew Delhi, India
| | | |
Collapse
|