51
|
Innocenti N, Golumbeanu M, Fouquier d'Hérouël A, Lacoux C, Bonnin RA, Kennedy SP, Wessner F, Serror P, Bouloc P, Repoila F, Aurell E. Whole-genome mapping of 5' RNA ends in bacteria by tagged sequencing: a comprehensive view in Enterococcus faecalis. RNA (NEW YORK, N.Y.) 2015; 21:1018-30. [PMID: 25737579 PMCID: PMC4408782 DOI: 10.1261/rna.048470.114] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/22/2014] [Indexed: 05/21/2023]
Abstract
Enterococcus faecalis is the third cause of nosocomial infections. To obtain the first snapshot of transcriptional organizations in this bacterium, we used a modified RNA-seq approach enabling to discriminate primary from processed 5' RNA ends. We also validated our approach by confirming known features in Escherichia coli. We mapped 559 transcription start sites (TSSs) and 352 processing sites (PSSs) in E. faecalis. A blind motif search retrieved canonical features of SigA- and SigN-dependent promoters preceding transcription start sites mapped. We discovered 85 novel putative regulatory RNAs, small- and antisense RNAs, and 72 transcriptional antisense organizations. Presented data constitute a significant insight into bacterial RNA landscapes and a step toward the inference of regulatory processes at transcriptional and post-transcriptional levels in a comprehensive manner.
Collapse
Affiliation(s)
- Nicolas Innocenti
- Department of Computational Biology, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden INRA, UMR1319 Micalis, Domaine de Vilvert, F-78352, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Domaine de Vilvert, F-78350, Jouy-en-Josas, France
| | - Monica Golumbeanu
- Department of Biosystems Science and Engineering, ETH Zürich, CH-4058, Basel, Switzerland SIB Swiss Institute of Bioinformatics, University of Basel, CH-4056, Basel, Switzerland
| | - Aymeric Fouquier d'Hérouël
- Department of Computational Biology, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Caroline Lacoux
- INRA, UMR1319 Micalis, Domaine de Vilvert, F-78352, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Domaine de Vilvert, F-78350, Jouy-en-Josas, France
| | - Rémy A Bonnin
- Institut de Génétique et Microbiologie, Université Paris-Sud, CNRS, UMR8621, F-91405, Orsay, France
| | - Sean P Kennedy
- INRA, MetaGenoPolis US1367, Domaine de Vilvert, F-78350, Jouy-en-Josas, France
| | - Françoise Wessner
- INRA, UMR1319 Micalis, Domaine de Vilvert, F-78352, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Domaine de Vilvert, F-78350, Jouy-en-Josas, France
| | - Pascale Serror
- INRA, UMR1319 Micalis, Domaine de Vilvert, F-78352, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Domaine de Vilvert, F-78350, Jouy-en-Josas, France
| | - Philippe Bouloc
- Institut de Génétique et Microbiologie, Université Paris-Sud, CNRS, UMR8621, F-91405, Orsay, France
| | - Francis Repoila
- INRA, UMR1319 Micalis, Domaine de Vilvert, F-78352, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Domaine de Vilvert, F-78350, Jouy-en-Josas, France
| | - Erik Aurell
- Department of Computational Biology, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden Department of Information and Computer Science, Aalto University, FI-02150 Espoo, Finland
| |
Collapse
|
52
|
Esquerré T, Moisan A, Chiapello H, Arike L, Vilu R, Gaspin C, Cocaign-Bousquet M, Girbal L. Genome-wide investigation of mRNA lifetime determinants in Escherichia coli cells cultured at different growth rates. BMC Genomics 2015; 16:275. [PMID: 25887031 PMCID: PMC4421995 DOI: 10.1186/s12864-015-1482-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/24/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Changes to mRNA lifetime adjust mRNA concentration, facilitating the adaptation of growth rate to changes in growth conditions. However, the mechanisms regulating mRNA lifetime are poorly understood at the genome-wide scale and have not been investigated in bacteria growing at different rates. RESULTS We used linear covariance models and the best model selected according to the Akaike information criterion to identify and rank intrinsic and extrinsic general transcript parameters correlated with mRNA lifetime, using mRNA half-life datasets for E. coli, obtained at four growth rates. The principal parameter correlated with mRNA stability was mRNA concentration, the mRNAs most concentrated in the cells being the least stable. However, sequence-related features (codon adaptation index (CAI), ORF length, GC content, polycistronic mRNA), gene function and essentiality also affected mRNA lifetime at all growth rates. We also identified sequence motifs within the 5'UTRs potentially related to mRNA stability. Growth rate-dependent effects were confined to particular functional categories (e.g. carbohydrate and nucleotide metabolism). Finally, mRNA stability was less strongly correlated with the amount of protein produced than mRNA concentration and CAI. CONCLUSIONS This study provides the most complete genome-wide analysis to date of the general factors correlated with mRNA lifetime in E. coli. We have generalized for the entire population of transcripts or excluded determinants previously defined as regulators of stability for some particular mRNAs and identified new, unexpected general indicators. These results will pave the way for discussions of the underlying mechanisms and their interaction with the growth physiology of bacteria.
Collapse
Affiliation(s)
- Thomas Esquerré
- Université de Toulouse; ISBP, INSA, UPS, INP; LISBP, 135, avenue de Rangueil, 31077, Toulouse cedex 4, France. .,INRA, UMR792 Ingénierie des systèmes biologiques et des procédés, 31400, Toulouse, France. .,CNRS, UMR5504, 31400, Toulouse, France. .,Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France.
| | | | | | - Liisa Arike
- Competence Center of Food and Fermentation Technologies, Akadeemia tee 15A, 12618, Tallinn, Estonia.
| | - Raivo Vilu
- Competence Center of Food and Fermentation Technologies, Akadeemia tee 15A, 12618, Tallinn, Estonia. .,Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | | | - Muriel Cocaign-Bousquet
- Université de Toulouse; ISBP, INSA, UPS, INP; LISBP, 135, avenue de Rangueil, 31077, Toulouse cedex 4, France. .,INRA, UMR792 Ingénierie des systèmes biologiques et des procédés, 31400, Toulouse, France. .,CNRS, UMR5504, 31400, Toulouse, France.
| | - Laurence Girbal
- Université de Toulouse; ISBP, INSA, UPS, INP; LISBP, 135, avenue de Rangueil, 31077, Toulouse cedex 4, France. .,INRA, UMR792 Ingénierie des systèmes biologiques et des procédés, 31400, Toulouse, France. .,CNRS, UMR5504, 31400, Toulouse, France.
| |
Collapse
|
53
|
Walter ND, Dolganov GM, Garcia BJ, Worodria W, Andama A, Musisi E, Ayakaka I, Van TT, Voskuil MI, de Jong BC, Davidson RM, Fingerlin TE, Kechris K, Palmer C, Nahid P, Daley CL, Geraci M, Huang L, Cattamanchi A, Strong M, Schoolnik GK, Davis JL. Transcriptional Adaptation of Drug-tolerant Mycobacterium tuberculosis During Treatment of Human Tuberculosis. J Infect Dis 2015; 212:990-8. [PMID: 25762787 DOI: 10.1093/infdis/jiv149] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/02/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Treatment initiation rapidly kills most drug-susceptible Mycobacterium tuberculosis, but a bacterial subpopulation tolerates prolonged drug exposure. We evaluated drug-tolerant bacilli in human sputum by comparing messenger RNA (mRNA) expression of drug-tolerant bacilli that survive the early bactericidal phase with treatment-naive bacilli. METHODS M. tuberculosis gene expression was quantified via reverse-transcription polymerase chain reaction in serial sputa from 17 Ugandans treated for drug-susceptible pulmonary tuberculosis. RESULTS Within 4 days, bacterial mRNA abundance declined >98%, indicating rapid killing. Thereafter, the rate of decline slowed >94%, indicating drug tolerance. After 14 days, 16S ribosomal RNA transcripts/genome declined 96%, indicating slow growth. Drug-tolerant bacilli displayed marked downregulation of genes associated with growth, metabolism, and lipid synthesis and upregulation in stress responses and key regulatory categories-including stress-associated sigma factors, transcription factors, and toxin-antitoxin genes. Drug efflux pumps were upregulated. The isoniazid stress signature was induced by initial drug exposure, then disappeared after 4 days. CONCLUSIONS Transcriptional patterns suggest that drug-tolerant bacilli in sputum are in a slow-growing, metabolically and synthetically downregulated state. Absence of the isoniazid stress signature in drug-tolerant bacilli indicates that physiological state influences drug responsiveness in vivo. These results identify novel drug targets that should aid in development of novel shorter tuberculosis treatment regimens.
Collapse
Affiliation(s)
- Nicholas D Walter
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora Pulmonary Division, Denver Veterans Administration Medical Center, Colorado
| | - Gregory M Dolganov
- Department of Microbiology and Immunology, Stanford University, California
| | - Benjamin J Garcia
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver Computational Bioscience Program, University of Colorado Denver, Aurora
| | - William Worodria
- Makerere University-University of California, San Francisco Research Collaboration, Kampala, Uganda
| | - Alfred Andama
- Makerere University-University of California, San Francisco Research Collaboration, Kampala, Uganda
| | - Emmanuel Musisi
- Makerere University-University of California, San Francisco Research Collaboration, Kampala, Uganda
| | - Irene Ayakaka
- Makerere University-University of California, San Francisco Research Collaboration, Kampala, Uganda
| | - Tran T Van
- Department of Microbiology and Immunology, Stanford University, California
| | - Martin I Voskuil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora
| | | | - Rebecca M Davidson
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver
| | - Tasha E Fingerlin
- Department of Epidemiology and Biostatistics Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora
| | - Claire Palmer
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora
| | - Payam Nahid
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco
| | - Charles L Daley
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, Colorado
| | - Mark Geraci
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora
| | - Laurence Huang
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco HIV/AIDS Division, University of California San Francisco
| | - Adithya Cattamanchi
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco
| | - Michael Strong
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver
| | - Gary K Schoolnik
- Department of Microbiology and Immunology, Stanford University, California
| | - John Lucian Davis
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco
| |
Collapse
|
54
|
Abstract
Metabolism underpins the physiology and pathogenesis of Mycobacterium tuberculosis. However, although experimental mycobacteriology has provided key insights into the metabolic pathways that are essential for survival and pathogenesis, determining the metabolic status of bacilli during different stages of infection and in different cellular compartments remains challenging. Recent advances-in particular, the development of systems biology tools such as metabolomics-have enabled key insights into the biochemical state of M. tuberculosis in experimental models of infection. In addition, their use to elucidate mechanisms of action of new and existing antituberculosis drugs is critical for the development of improved interventions to counter tuberculosis. This review provides a broad summary of mycobacterial metabolism, highlighting the adaptation of M. tuberculosis as specialist human pathogen, and discusses recent insights into the strategies used by the host and infecting bacillus to influence the outcomes of the host-pathogen interaction through modulation of metabolic functions.
Collapse
Affiliation(s)
- Digby F Warner
- Medical Research Council/National Health Laboratory Services/University of Cape Town Molecular Mycobacteriology Research Unit and Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine and Division of Medical Microbiology, University of Cape Town, Rondebosch 7700, South Africa
| |
Collapse
|
55
|
Xu S, Wang X, Du G, Zhou J, Chen J. Enhanced production of L-sorbose from D-sorbitol by improving the mRNA abundance of sorbitol dehydrogenase in Gluconobacter oxydans WSH-003. Microb Cell Fact 2014; 13:146. [PMID: 25323199 PMCID: PMC4205284 DOI: 10.1186/s12934-014-0146-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 10/08/2014] [Indexed: 11/12/2022] Open
Abstract
Background Production of L-sorbose from D-sorbitol by Gluconobacter oxydans is the first step to produce L-ascorbic acid on industrial scale. The sldhAB gene, which encodes the sorbitol dehydrogenase (SLDH), was overexpressed in an industrial strain G. oxydans WSH-003 with a strong promoter, PtufB. To enhance the mRNA abundance, a series of artificial poly(A/T) tails were added to the 3′-terminal of sldhAB gene. Besides, their role in sldhAB overexpression and their subsequent effects on L-sorbose production were investigated. Results The mRNA abundance of the sldhAB gene could be enhanced in G. oxydans by suitable poly(A/T) tails. By self-overexpressing the sldhAB gene in G. oxydans WSH-003 with an optimal poly(A/T) tail under the constitutive promoter PtufB, the titer and the productivity of L-sorbose were enhanced by 36.3% and 25.0%, respectively, in a 1-L fermenter. Immobilization of G. oxydans-sldhAB6 cells further improved the L-sorbose titer by 33.7% after 20 days of semi-continuous fed-batch fermentation. Conclusions The artificial poly(A/T) tails could significantly enhance the mRNA abundance of the sldhAB. Immobilized G. oxydans-sldhAB6 cells could further enlarge the positive effect caused by enhanced mRNA abundance of the sldhAB.
Collapse
Affiliation(s)
- Sha Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Xiaobei Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
56
|
Abstract
Efforts to understand the molecular basis of mycobacterial gene regulation are dominated by a protein-centric view. However, there is a growing appreciation that noncoding RNA, i.e., RNA that is not translated, plays a role in a wide variety of molecular mechanisms. Noncoding RNA comprises rRNA, tRNA, 4.5S RNA, RnpB, and transfer-messenger RNA, as well as a vast population of regulatory RNA, often dubbed "the dark matter of gene regulation." The regulatory RNA species comprise 5' and 3' untranslated regions and a rapidly expanding category of transcripts with the ability to base-pair with mRNAs or to interact with proteins. Regulatory RNA plays a central role in the bacterium's response to changes in the environment, and in this article we review emerging information on the presence and abundance of different types of noncoding RNA in mycobacteria.
Collapse
|
57
|
Esquerré T, Laguerre S, Turlan C, Carpousis AJ, Girbal L, Cocaign-Bousquet M. Dual role of transcription and transcript stability in the regulation of gene expression in Escherichia coli cells cultured on glucose at different growth rates. Nucleic Acids Res 2014; 42:2460-72. [PMID: 24243845 PMCID: PMC3936743 DOI: 10.1093/nar/gkt1150] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 11/13/2022] Open
Abstract
Microorganisms extensively reorganize gene expression to adjust growth rate to changes in growth conditions. At the genomic scale, we measured the contribution of both transcription and transcript stability to regulating messenger RNA (mRNA) concentration in Escherichia coli. Transcriptional control was the dominant regulatory process. Between growth rates of 0.10 and 0.63 h(-1), there was a generic increase in the bulk mRNA transcription. However, many transcripts became less stable and the median mRNA half-life decreased from 4.2 to 2.8 min. This is the first evidence that mRNA turnover is slower at extremely low-growth rates. The destabilization of many, but not all, transcripts at high-growth rate correlated with transcriptional upregulation of genes encoding the mRNA degradation machinery. We identified five classes of growth-rate regulation ranging from mainly transcriptional to mainly degradational. In general, differential stability within polycistronic messages encoded by operons does not appear to be affected by growth rate. We show here that the substantial reorganization of gene expression involving downregulation of tricarboxylic acid cycle genes and acetyl-CoA synthetase at high-growth rates is controlled mainly by transcript stability. Overall, our results demonstrate that the control of transcript stability has an important role in fine-tuning mRNA concentration during changes in growth rate.
Collapse
Affiliation(s)
- Thomas Esquerré
- Université de Toulouse; INSA, UPS, INP; LISBP, 135, avenue de Rangueil, 31077 Toulouse, France, INRA, UMR792 Ingénierie des systèmes biologiques et des procédés, 31400 Toulouse, France, CNRS, UMR5504, 31400 Toulouse, France and Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Sandrine Laguerre
- Université de Toulouse; INSA, UPS, INP; LISBP, 135, avenue de Rangueil, 31077 Toulouse, France, INRA, UMR792 Ingénierie des systèmes biologiques et des procédés, 31400 Toulouse, France, CNRS, UMR5504, 31400 Toulouse, France and Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Catherine Turlan
- Université de Toulouse; INSA, UPS, INP; LISBP, 135, avenue de Rangueil, 31077 Toulouse, France, INRA, UMR792 Ingénierie des systèmes biologiques et des procédés, 31400 Toulouse, France, CNRS, UMR5504, 31400 Toulouse, France and Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Agamemnon J. Carpousis
- Université de Toulouse; INSA, UPS, INP; LISBP, 135, avenue de Rangueil, 31077 Toulouse, France, INRA, UMR792 Ingénierie des systèmes biologiques et des procédés, 31400 Toulouse, France, CNRS, UMR5504, 31400 Toulouse, France and Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Laurence Girbal
- Université de Toulouse; INSA, UPS, INP; LISBP, 135, avenue de Rangueil, 31077 Toulouse, France, INRA, UMR792 Ingénierie des systèmes biologiques et des procédés, 31400 Toulouse, France, CNRS, UMR5504, 31400 Toulouse, France and Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Muriel Cocaign-Bousquet
- Université de Toulouse; INSA, UPS, INP; LISBP, 135, avenue de Rangueil, 31077 Toulouse, France, INRA, UMR792 Ingénierie des systèmes biologiques et des procédés, 31400 Toulouse, France, CNRS, UMR5504, 31400 Toulouse, France and Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
58
|
Rittershaus ESC, Baek SH, Sassetti CM. The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe 2013; 13:643-51. [PMID: 23768489 DOI: 10.1016/j.chom.2013.05.012] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
All microorganisms are exposed to periodic stresses that inhibit growth. Many bacteria and fungi weather these periods by entering a hardy, nonreplicating state, often termed quiescence or dormancy. When this occurs during an infection, the resulting slowly growing pathogen is able to tolerate both immune insults and prolonged antibiotic exposure. While the stresses encountered in a free-living environment may differ from those imposed by host immunity, these growth-limiting conditions impose common pressures, and many of the corresponding microbial responses appear to be universal. In this review, we discuss the common features of these growth-limited states, which suggest new approaches for treating chronic infections such as tuberculosis.
Collapse
Affiliation(s)
- Emily S C Rittershaus
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
59
|
Mezan S, Ashwal-Fluss R, Shenhav R, Garber M, Kadener S. Genome-wide assessment of post-transcriptional control in the fly brain. Front Mol Neurosci 2013; 6:49. [PMID: 24367289 PMCID: PMC3856366 DOI: 10.3389/fnmol.2013.00049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/20/2013] [Indexed: 11/13/2022] Open
Abstract
Post-transcriptional control of gene expression has central importance during development and adulthood and in physiology in general. However, little is known about the extent of post-transcriptional control of gene expression in the brain. Most post-transcriptional regulatory effectors (e.g., miRNAs) destabilize target mRNAs by shortening their polyA tails. Hence, the fraction of a given mRNA that it is fully polyadenylated should correlate with its stability and serves as a good measure of post-transcriptional control. Here, we compared RNA-seq datasets from fly brains that were generated either from total (rRNA-depleted) or polyA-selected RNA. By doing this comparison we were able to compute a coefficient that measures the extent of post-transcriptional control for each brain-expressed mRNA. In agreement with current knowledge, we found that mRNAs encoding ribosomal proteins, metabolic enzymes, and housekeeping genes are among the transcripts with least post-transcriptional control, whereas mRNAs that are known to be highly unstable, like circadian mRNAs and mRNAs expressing synaptic proteins and proteins with neuronal functions, are under strong post-transcriptional control. Surprisingly, the latter group included many specific groups of genes relevant to brain function and behavior. In order to determine the importance of miRNAs in this regulation, we profiled miRNAs from fly brains using oligonucleotide microarrays. Surprisingly, we did not find a strong correlation between the expression levels of miRNAs in the brain and the stability of their target mRNAs; however, genes identified as highly regulated post-transcriptionally were strongly enriched for miRNA targets. This demonstrates a central role of miRNAs for modulating the levels and turnover of brain-specific mRNAs in the fly.
Collapse
Affiliation(s)
- Shaul Mezan
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Reut Ashwal-Fluss
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Rom Shenhav
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School Worcester, MA, USA
| | - Sebastian Kadener
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|
60
|
Genome-wide mapping of transcriptional start sites defines an extensive leaderless transcriptome in Mycobacterium tuberculosis. Cell Rep 2013; 5:1121-31. [PMID: 24268774 PMCID: PMC3898074 DOI: 10.1016/j.celrep.2013.10.031] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/04/2013] [Accepted: 10/18/2013] [Indexed: 12/11/2022] Open
Abstract
Deciphering physiological changes that mediate transition of Mycobacterium tuberculosis between replicating and nonreplicating states is essential to understanding how the pathogen can persist in an individual host for decades. We have combined RNA sequencing (RNA-seq) of 5′ triphosphate-enriched libraries with regular RNA-seq to characterize the architecture and expression of M. tuberculosis promoters. We identified over 4,000 transcriptional start sites (TSSs). Strikingly, for 26% of the genes with a primary TSS, the site of transcriptional initiation overlapped with the annotated start codon, generating leaderless transcripts lacking a 5′ UTR and, hence, the Shine-Dalgarno sequence commonly used to initiate ribosomal engagement in eubacteria. Genes encoding proteins with active growth functions were markedly depleted from the leaderless transcriptome, and there was a significant increase in the overall representation of leaderless mRNAs in a starvation model of growth arrest. The high percentage of leaderless genes may have particular importance in the physiology of nonreplicating M. tuberculosis. A resource for the identification of in vitro active promoters in M. tuberculosis A quarter of all genes in M. tuberculosis are expressed as leaderless mRNAs Leaderless mRNAs are differentially associated with toxin-antitoxin modules Abundance of leaderless mRNAs increases during starvation-induced growth arrest
Collapse
|
61
|
Initiation of mRNA decay in bacteria. Cell Mol Life Sci 2013; 71:1799-828. [PMID: 24064983 PMCID: PMC3997798 DOI: 10.1007/s00018-013-1472-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 12/24/2022]
Abstract
The instability of messenger RNA is fundamental to the control of gene expression. In bacteria, mRNA degradation generally follows an "all-or-none" pattern. This implies that if control is to be efficient, it must occur at the initiating (and presumably rate-limiting) step of the degradation process. Studies of E. coli and B. subtilis, species separated by 3 billion years of evolution, have revealed the principal and very disparate enzymes involved in this process in the two organisms. The early view that mRNA decay in these two model organisms is radically different has given way to new models that can be resumed by "different enzymes-similar strategies". The recent characterization of key ribonucleases sheds light on an impressive case of convergent evolution that illustrates that the surprisingly similar functions of these totally unrelated enzymes are of general importance to RNA metabolism in bacteria. We now know that the major mRNA decay pathways initiate with an endonucleolytic cleavage in E. coli and B. subtilis and probably in many of the currently known bacteria for which these organisms are considered representative. We will discuss here the different pathways of eubacterial mRNA decay, describe the major players and summarize the events that can precede and/or favor nucleolytic inactivation of a mRNA, notably the role of the 5' end and translation initiation. Finally, we will discuss the role of subcellular compartmentalization of transcription, translation, and the RNA degradation machinery.
Collapse
|
62
|
Abstract
The importance of gene regulation in the enzootic cycle of Borrelia burgdorferi, the spirochete that causes Lyme disease, is well established. B. burgdorferi regulates gene expression in response to changes in environmental stimuli associated with changing hosts. In this study, we monitored mRNA decay in B. burgdorferi following transcriptional arrest with actinomycin D. The time-dependent decay of transcripts encoding RNA polymerase subunits (rpoA and rpoS), ribosomal proteins (rpsD, rpsK, rpsM, rplQ, and rpsO), a nuclease (pnp), outer surface lipoproteins (ospA and ospC), and a flagellar protein (flaB) have different profiles and indicate half-lives ranging from approximately 1 min to more than 45 min in cells cultured at 35°C. Our results provide a first step in characterizing mRNA decay in B. burgdorferi and in investigating its role in gene expression and regulation.
Collapse
|