51
|
Wang L, Xie X, Lv B, Liu Y, Li W, Zhang Z, Yang J, Yan G, Chen W, Zhang C, Wang F, Li C, Ma L. A bacterial Argonaute with efficient DNA and RNA cleavage activity guided by small DNA and RNA. Cell Rep 2022; 41:111533. [PMID: 36288702 DOI: 10.1016/j.celrep.2022.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/18/2022] [Accepted: 09/29/2022] [Indexed: 11/03/2022] Open
Abstract
Argonaute proteins are widespread in prokaryotes and eukaryotes with diversified catalytic activities. Here, we describe an Argonaute from Marinitoga hydrogenitolerans (MhAgo) with all eight cleavage activities. Utilization of all four types of guides and efficient cleavage of single-stranded DNA (ssDNA) and RNA targets are revealed. The preference for the 5'-terminus nucleotides of 5'P guides, but no obvious preferences for that in 5'OH guides, is further uncovered. Moreover, the cleavage efficiency is heavily impaired by mismatches in the central and 3'-supplementary regions of guides, and the affinity between guides or guides/target duplex and MhAgo is proved as one of the factors affecting cleavage efficiency. Structural and mutational analyses imply some unknown distinctive structural features behind the cleavage activity of MhAgo. Meanwhile, 5'OH-guide RNA (gRNA)-mediated plasmid cleavage activity is unveiled. Conclusively, MhAgo is versatile, and its biochemical characteristics improve our understanding of pAgos and the pAgo-based techniques.
Collapse
Affiliation(s)
- Longyu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xiaochen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Bin Lv
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wenqiang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Zhiwei Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Guangbo Yan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Cheng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Chunhua Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
52
|
Chen J, Qiud T, Mauk MG, Su Z, Fan Y, Yuan DJ, Zhou Q, Qiao Y, Bau HH, Ying J, Song J. Programmable endonuclease combined with isothermal polymerase amplification to selectively enrich for rare mutant allele fractions. CHINESE CHEM LETT 2022; 33:4126-4132. [PMID: 36091579 PMCID: PMC9454931 DOI: 10.1016/j.cclet.2021.11.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Liquid biopsy is a highly promising method for non-invasive detection of tumor-associated nucleic acid fragments in body fluids but is challenged by the low abundance of nucleic acids of clinical interest and their sequence homology with the vast background of nucleic acids from healthy cells. Recently, programmable endonucleases such as clustered regularly interspaced short palindromic repeat (CRISPR) associated protein (Cas) and prokaryotic Argonautes have been successfully used to remove background nucleic acids and enrich mutant allele fractions, enabling their detection with deep next generation sequencing (NGS). However, the enrichment level achievable with these assays is limited by futile binding events and off-target cleavage. To overcome these shortcomings, we conceived a new assay (Programmable Enzyme-Assisted Selective Exponential Amplification, PASEA) that combines the cleavage of wild type alleles with concurrent polymerase amplification. While PASEA increases the numbers of both wild type and mutant alleles, the numbers of mutant alleles increase at much greater rates, allowing PASEA to achieve an unprecedented level of selective enrichment of targeted alleles. By combining CRISPR-Cas9 based cleavage with recombinase polymerase amplification, we converted samples with 0.01% somatic mutant allele fractions (MAFs) to products with 70% MAFs in a single step within 20 min, enabling inexpensive, rapid genotyping with such as Sanger sequencers. Furthermore, PASEA's extraordinary efficiency facilitates sensitive real-time detection of somatic mutant alleles at the point of care with custom designed Exo-RPA probes. Real-time PASEA' performance was proved equivalent to clinical amplification refractory mutation system (ARMS)-PCR and NGS when testing over hundred cancer patients' samples. This strategy has the potential to reduce the cost and time of cancer screening and genotyping, and to enable targeted therapies in resource-limited settings.
Collapse
Affiliation(s)
- Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tian Qiud
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Michael G. Mauk
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zheng Su
- Center for Global Health, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dennis J. Yuan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qinghua Zhou
- Sichuan Lung Cancer Institute, Sichuan Lung Cancer Center, West China Hospital, Chengdu, Sichuan University, China
| | - Youlin Qiao
- Center for Global Health, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Haim H. Bau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jinzhao Song
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
53
|
Lin Q, Han G, Fang X, Chen H, Weng W, Kong J. Programmable Analysis of MicroRNAs by Thermus thermophilus Argonaute-Assisted Exponential Isothermal Amplification for Multiplex Detection (TEAM). Anal Chem 2022; 94:11290-11297. [PMID: 35894425 DOI: 10.1021/acs.analchem.2c01945] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The simultaneous analysis of the levels of multiple microRNAs (miRNAs) is critical to the early diagnosis of cancer. However, this analysis is challenging because of the low concentrations of miRNAs and their high sequence homology. Here, we report a general and programmable diagnostic strategy for miRNA analysis: Thermus thermophilus Argonaute (TtAgo)-assisted exponential isothermal amplification for multiplex detection (TEAM). This system combines exponential isothermal amplification (EXPAR), for target amplification, with programmable TtAgo cleavage, for the generation of the reporting signal. The TEAM assay achieved attomolar sensitivity with a rapid turnaround time (30-35 min). Because of the single-nucleotide precision of TtAgo, the system demonstrated robust multiplex capability in the simultaneous detection of four miRNA targets and the classification of let-7 family members. The TEAM assay was superior in differentiating colorectal cancer patients from healthy individuals relative to the conventional EXPAR and reverse transcription polymerase chain reaction (RT-PCR) methods. This tunable and scalable approach is a powerful nucleic acid analysis tool that holds promise in scientific and clinical applications.
Collapse
Affiliation(s)
- Qiuyuan Lin
- Department of Chemistry, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Guobin Han
- Department of Chemistry, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Xueen Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Hui Chen
- Department of Chemistry, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Wenhao Weng
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, 450 Tengyue Road, 200090 Shanghai, China
| | - Jilie Kong
- Department of Chemistry, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| |
Collapse
|
54
|
Li X, Dong H, Guo X, Huang F, Xu X, Li N, Yang Y, Yao T, Feng Y, Liu Q. Mesophilic Argonaute-based isothermal detection of SARS-CoV-2. Front Microbiol 2022; 13:957977. [PMID: 35966688 PMCID: PMC9363790 DOI: 10.3389/fmicb.2022.957977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
Coronavirus disease (COVID-19), caused by SARS-CoV-2 infection and its mutations, has spread rapidly all over the world and still requires sensitive detection to distinguish mutations. CRISPR-based diagnosis has been regarded as a next-generation detection method; however, it has some limitations, such as the need for specific recognition sequences and multiple enzymes for multiplex detection. Therefore, research on the exploration and development of novel nucleases helps to promote specific and sensitive diagnoses. Prokaryotic Argonaute (Ago) proteins exert directed nuclease activity that can target any sequence. Recently, thermophilic Agos have been developed as new detection techniques achieving multiplexity for multiple targets using a single enzyme, as well as accurate recognition of single-base differential sequences. In this study, to overcome the requirement for high reaction temperature of thermophilic Ago-based methods, we expanded the mining of mesophilic Agos to achieve CRISPR-like isothermal detection, named mesophilic Ago-based isothermal detection method (MAIDEN). The principle of MAIDEN uses mesophilic Ago cleavage combined with reverse transcription, which can provide single-strand DNA as a substrate and allow cleavage of fluorescence probes to sense SARS-CoV-2 at moderate temperature. We first mined and optimized the mesophilic Ago and the fluorescence reporter system and then selected a compatible reverse transcription reaction. Furthermore, we optimized MAIDEN into a one-step reaction that can detect SARS-CoV-2 RNA at the nanomolar concentration at a constant temperature of 42°C within 60 min. Therefore, MAIDEN shows advantageous portability and easy-to-implement operation, avoiding the possibility of open-lid contamination. Our study was the first attempt to demonstrate that mesophilic Agos can be harnessed as diagnostic tools, and MAIDEN was easily extended to detect other pathogens in a rapid and efficient manner.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huarong Dong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyi Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nuolan Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tianbao Yao
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
55
|
Zheng L, Lu H, Zan B, Li S, Liu H, Liu Z, Huang J, Liu Y, Jiang F, Liu Q, Feng Y, Hong L. Loosely-packed dynamical structures with partially-melted surface being the key for thermophilic argonaute proteins achieving high DNA-cleavage activity. Nucleic Acids Res 2022; 50:7529-7544. [PMID: 35766425 PMCID: PMC9303296 DOI: 10.1093/nar/gkac565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/19/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Prokaryotic Argonaute proteins (pAgos) widely participate in hosts to defend against the invasion of nucleic acids. Compared with the CRISPR-Cas system, which requires a specific motif on the target and can only use RNA as guide, pAgos exhibit precise endonuclease activity on any arbitrary target sequence and can use both RNA and DNA as guide, thus rendering great potential for genome editing applications. Hitherto, most in-depth studies on the structure-function relationship of pAgos were conducted on thermophilic ones, functioning at ∼60 to 100°C, whose structures were, however, determined experimentally at much lower temperatures (20-33°C). It remains unclear whether these low-temperature structures can represent the true conformations of the thermophilic pAgos under their physiological conditions. The present work studied three pAgos, PfAgo, TtAgo and CbAgo, whose physiological temperatures differ significantly (95, 75 and 37°C). By conducting thorough experimental and simulation studies, we found that thermophilic pAgos (PfAgo and TtAgo) adopt a loosely-packed structure with a partially-melted surface at the physiological temperatures, largely different from the compact crystalline structures determined at moderate temperatures. In contrast, the mesophilic pAgo (CbAgo) assumes a compact crystalline structure at its optimal function temperature. Such a partially-disrupted structure endows thermophilic pAgos with great flexibility both globally and locally at the catalytic sites, which is crucial for them to achieve high DNA-cleavage activity. To further prove this, we incubated thermophilic pAgos with urea to purposely disrupt their structures, and the resulting cleavage activity was significantly enhanced below the physiological temperature, even at human body temperature. Further testing of many thermophilic Agos present in various thermophilic prokaryotes demonstrated that their structures are generally disrupted under physiological conditions. Therefore, our findings suggest that the highly dynamical structure with a partially-melted surface, distinct from the low-temperature crystalline structure, could be a general strategy assumed by thermophilic pAgos to achieve the high DNA-cleavage activity.
Collapse
Affiliation(s)
- Lirong Zheng
- School of Physics and Astronomy, Institute of Natural Sciences, School of Medicine, Shanghai National Center for Applied Mathematics (SJTU center), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Lu
- State Key laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Zan
- School of Physics and Astronomy, Institute of Natural Sciences, School of Medicine, Shanghai National Center for Applied Mathematics (SJTU center), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Song Li
- School of Physics and Astronomy, Institute of Natural Sciences, School of Medicine, Shanghai National Center for Applied Mathematics (SJTU center), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Liu
- School of Physics and Astronomy, Institute of Natural Sciences, School of Medicine, Shanghai National Center for Applied Mathematics (SJTU center), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuo Liu
- School of Physics and Astronomy, Institute of Natural Sciences, School of Medicine, Shanghai National Center for Applied Mathematics (SJTU center), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Huang
- State Key laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongjia Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Jiang
- School of Physics and Astronomy, Institute of Natural Sciences, School of Medicine, Shanghai National Center for Applied Mathematics (SJTU center), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Liu
- State Key laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- School of Physics and Astronomy, Institute of Natural Sciences, School of Medicine, Shanghai National Center for Applied Mathematics (SJTU center), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
56
|
Ye X, Zhou H, Guo X, Liu D, Li Z, Sun J, Huang J, Liu T, Zhao P, Xu H, Li K, Wang H, Wang J, Wang L, Zhao W, Liu Q, Xu S, Feng Y. Argonaute-integrated isothermal amplification for rapid, portable, multiplex detection of SARS-CoV-2 and influenza viruses. Biosens Bioelectron 2022; 207:114169. [PMID: 35334329 PMCID: PMC9759211 DOI: 10.1016/j.bios.2022.114169] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022]
Abstract
Isothermal amplification methods are a promising trend in virus detection because of their superiority in rapidity and sensitivity. However, the generation of false positives and limited multiplexity are major bottlenecks that must be addressed. In this study, we developed a multiplex Argonaute (Ago)-based nucleic acid detection system (MULAN) that integrates rapid isothermal amplification with the multiplex inclusiveness of a single Ago for simultaneous detection of multiple targets such as SARS-CoV-2 and influenza viruses. Owing to its high specificity, MULAN can distinguish targets at a single-base resolution for mutant genotyping. Moreover, MULAN also supports portable and visible devices with a limit of detection of five copies per reaction. Validated by SARS-CoV-2 pseudoviruses and clinical samples of influenza viruses, MULAN showed 100% agreement with quantitative reverse-transcription PCR. These results demonstrated that MULAN has great potential to facilitate reliable, easy, and quick point-of-care diagnosis for promoting the control of infectious diseases.
Collapse
Affiliation(s)
- Xingyu Ye
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiwei Zhou
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Xiang Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Donglai Liu
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Zhonglei Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junwei Sun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Tao Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengshu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Heshan Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai Li
- GeneTalks Biotechnology Inc., Changsha, 410013, China
| | - Hanming Wang
- Guangdong Medical Laboratory Technology (Rapid Diagnostic) Engineering Technology Research Center, Guangzhou, 510641, China; Guangzhou Wondfo Biotech Co., Ltd., Guangzhou, 510641, China
| | - Jihua Wang
- Guangdong Medical Laboratory Technology (Rapid Diagnostic) Engineering Technology Research Center, Guangzhou, 510641, China; Guangzhou Wondfo Biotech Co., Ltd., Guangzhou, 510641, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200025, China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200025, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Sihong Xu
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
57
|
Pre-PCR Mutation-Enrichment Methods for Liquid Biopsy Applications. Cancers (Basel) 2022; 14:cancers14133143. [PMID: 35804916 PMCID: PMC9264780 DOI: 10.3390/cancers14133143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023] Open
Abstract
Liquid biopsy is having a remarkable impact on healthcare- and disease-management in the context of personalized medicine. Circulating free DNA (cfDNA) is one of the most instructive liquid-biopsy-based biomarkers and harbors valuable information for diagnostic, predictive, and prognostic purposes. When it comes to cancer, circulating DNA from the tumor (ctDNA) has a wide range of applications, from early cancer detection to the early detection of relapse or drug resistance, and the tracking of the dynamic genomic make-up of tumor cells. However, the detection of ctDNA remains technically challenging, due, in part, to the low frequency of ctDNA among excessive circulating cfDNA originating from normal tissues. During the past three decades, mutation-enrichment methods have emerged to boost sensitivity and enable facile detection of low-level mutations. Although most developed techniques apply mutation enrichment during or following initial PCR, there are a few techniques that allow mutation selection prior to PCR, which provides advantages. Pre-PCR enrichment techniques can be directly applied to genomic DNA and diminish the influence of PCR errors that can take place during amplification. Moreover, they have the capability for high multiplexity and can be followed by established mutation detection and enrichment technologies without changes to their established procedures. The first approaches for pre-PCR enrichment were developed by employing restriction endonucleases directly on genomic DNA in the early 1990s. However, newly developed pre-PCR enrichment methods provide higher sensitivity and versatility. This review describes the available pre-PCR enrichment methods and focuses on the most recently developed techniques (NaME-PrO, UVME, and DEASH/MAESTRO), emphasizing their applications in liquid biopsies.
Collapse
|
58
|
Zhang K, Pinto A, Cheng LY, Song P, Dai P, Wang M, Rodriguez L, Weller C, Zhang DY. Hairpin Structure Facilitates Multiplex High-Fidelity DNA Amplification in Real-Time Polymerase Chain Reaction. Anal Chem 2022; 94:9586-9594. [PMID: 35749270 DOI: 10.1021/acs.analchem.2c00575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clinically and biologically, it is essential to detect rare DNA-sequence variants for early cancer diagnosis or drug-resistance mutation identification. Some of the common quantitative polymerase chain reaction (qPCR)-based variant detection methods are restricted in the limit of detection (LoD) because the DNA polymerases used for these methods have a high polymerase misincorporation rate; thus, the detection sensitivity is sometimes unsatisfactory. With the proofreading activity, high-fidelity (HiFi) DNA polymerases have a 50- to 250-fold higher fidelity. However, there are currently no proper probe-based designs functioning as the fluorescence indicator allowing multiplexed HiFi qPCR reactions, thus restricting the application of HiFi DNA polymerases like the variant detection. We presented the occlusion system, composed of a 5'-overhanged primer with a fluorophore modification and a probe with a short-stem hairpin and a 3' quencher modification. We demonstrated that the occlusion system allowed multiplexing HiFi qPCR reaction, and it was compatible with the current variant-enrichment method to improve the LoD up to 10-fold. Thus, the occlusion system satisfactorily functioned as an efficient fluorescence indicator in HiFi qPCR reactions and allowed the application of HiFi DNA polymerases in variant detection methods to improve detection sensitivity.
Collapse
Affiliation(s)
- Kerou Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Alessandro Pinto
- NuProbe USA, 2575 W Bellfort Street, Houston, Texas 77054, United States
| | - Lauren Yuxuan Cheng
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Ping Song
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Peng Dai
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Michael Wang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Luis Rodriguez
- NuProbe USA, 2575 W Bellfort Street, Houston, Texas 77054, United States
| | - Cailin Weller
- NuProbe USA, 2575 W Bellfort Street, Houston, Texas 77054, United States
| | - David Yu Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States.,Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
59
|
Darbeheshti F, Yu F, Ahmed F, Adalsteinsson VA, Makrigiorgos GM. Recent Developments in Mutation Enrichment and Detection Technologies. Clin Chem 2022; 68:1250-1260. [PMID: 35716101 DOI: 10.1093/clinchem/hvac093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Presence of excess unaltered, wild-type DNA (wtDNA) providing information of little clinical value may often mask low-level mutations containing important diagnostic or therapeutic clues. This is a recurring hurdle in biotechnology and medicine, including cancer, prenatal diagnosis, infectious diseases, and organ transplantation. Mutation enrichment techniques that allow reduction of unwanted DNA to enable the detection of low-level mutations have emerged since the early 1990s. They are continuously being refined and updated with new technologies. The burgeoning interest in liquid biopsies for residual cancer monitoring, detection of resistance to therapy, and early cancer detection has driven an expanded interest in new and improved methodologies for practical and effective mutation enrichment and detection of low-level mutations of clinical relevance. CONTENT Newly developed mutation enrichment technologies are described and grouped according to the main principle of operation, PCR-blocking technologies, enzymatic methods, and physicochemical approaches. Special emphasis is given to technologies enabling pre-PCR blockage of wtDNA to bypass PCR errors [nuclease-assisted minor-allele enrichment assay with overlapping probes (NaME-PrO) and UV-mediated cross-linking minor allele enrichment (UVME)] or providing high multiplexity followed by next-generation sequencing [Minor allele enriched sequencing through recognition oligonucleotides (MAESTRO)]. SUMMARY This review summarizes technological developments in rare mutation enrichment over the last 12 years, complementing pre-2010 reviews on this topic. The expanding field of liquid biopsy calls for improved limits of detection (LOD) and highly parallel applications, along with the traditional requirements for accuracy, speed, and cost-effectiveness. The current technologies are reviewed with regards to these new requirements.
Collapse
Affiliation(s)
- Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fangyan Yu
- Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Farzana Ahmed
- Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - G Mike Makrigiorgos
- Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
60
|
Fang M, Xu Z, Huang D, Naeem M, Zhu X, Xu Z. Characterization and application of a thermophilic Argonaute from archaeon
Thermococcus thioreducens. Biotechnol Bioeng 2022; 119:2388-2398. [DOI: 10.1002/bit.28153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Mengjun Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
- Institute of Biological Engineering, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
| | - Zhipeng Xu
- The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Di Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
- Institute of Biological Engineering, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
| | - Muhammad Naeem
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
- Institute of Biological Engineering, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine at Central South UniversityChangshaHunanChina
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
- Institute of Biological Engineering, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
| |
Collapse
|
61
|
Sun Y, Guo X, Lu H, Chen L, Huang F, Liu Q, Feng Y. An Argonaute from Thermus parvatiensis exhibits endonuclease activity mediated by 5' chemically modified DNA guides. Acta Biochim Biophys Sin (Shanghai) 2022; 54:686-695. [PMID: 35643958 PMCID: PMC9828299 DOI: 10.3724/abbs.2022047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Prokaryotic Argonaute (pAgo) nucleases with precise DNA cleavage activity show great potential for gene manipulation. Extensive biochemical studies have revealed that recognition of guides with different 5' groups by Ago is important for biocatalysis. Here, we identified an Ago from the thermophilic Thermus parvatiensis ( TpsAgo) and analyzed the regulatory effect of 5'-modified guides on TpsAgo cleavage activity. Recombinant TpsAgo cleaves single-stranded DNA and RNA targets at 65-90°C, which is mediated by a 5' hydroxyl or phosphate DNA guide. Notably, TpsAgo can utilize various 5'-modified DNA guides for catalysis, including 5'-NH 2C 6, 5'-Biotin, 5'-FAM and 5'-SHC 6 guides. Moreover, TpsAgo performs programmable cleavage of double-stranded DNA at temperatures over 80°C and strongly tolerates NaCl concentrations up to 3.2 M. These results provide insight into the catalytic performance of Agos by guide regulation, which may facilitate their biotechnological applications.
Collapse
Affiliation(s)
- Yingying Sun
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xiang Guo
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Hui Lu
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Liuqing Chen
- Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Fei Huang
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Qian Liu
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Yan Feng
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China,Correspondence address. Tel: +86-21-34207189; E-mail:
| |
Collapse
|
62
|
Huang F, Xu X, Dong H, Li N, Zhong B, Lu H, Liu Q, Feng Y. Catalytic properties and biological function of a PIWI-RE nuclease from Pseudomonas stutzeri. BIORESOUR BIOPROCESS 2022; 9:57. [PMID: 38647609 PMCID: PMC10991935 DOI: 10.1186/s40643-022-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prokaryotic Argonaute (pAgo) proteins are well-known oligonucleotide-directed endonucleases, which contain a conserved PIWI domain required for endonuclease activity. Distantly related to pAgos, PIWI-RE family, which is defined as PIWI with conserved R and E residues, has been suggested to exhibit divergent activities. The distinctive biochemical properties and physiological functions of PIWI-RE family members need to be elucidated to explore their applications in gene editing. RESULTS Here, we describe the catalytic performance and cellular functions of a PIWI-RE family protein from Pseudomonas stutzeri (PsPIWI-RE). Structural modelling suggests that the protein possesses a PIWI structure similar to that of pAgo, but with different PAZ-like and N-terminal domains. Unlike previously reported pAgos, recombinant PsPIWI-RE acts as an RNA-guided DNA nuclease, as well as a DNA-guided RNA nuclease. It cleaves single-stranded DNA at temperatures ranging from 20 to 65 °C, with an optimum temperature of 45 °C. Mutation at D525 or D610 significantly reduced its endonuclease activity, confirming that both residues are key for catalysis. Comparing with wild-type, mutant with PIWI-RE knockout is more sensitive to ciprofloxacin as DNA replication inhibitor, suggesting PIWI-RE may potentially be involved in DNA replication. CONCLUSION Our study provides the first insights into the programmable nuclease activity and biological function of the unknown PIWI-RE family of proteins, emphasizing their important role in vivo and potential application in genomic DNA modification.
Collapse
Affiliation(s)
- Fei Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyi Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huarong Dong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nuolan Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bozitao Zhong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Lu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
63
|
Li W, Liu Y, He R, Wang L, Wang Y, Zeng W, Zhang Z, Wang F, Ma L. A programmable pAgo nuclease with RNA target preference from the psychrotolerant bacterium Mucilaginibacter paludis. Nucleic Acids Res 2022; 50:5226-5238. [PMID: 35524569 PMCID: PMC9122594 DOI: 10.1093/nar/gkac315] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022] Open
Abstract
Argonaute (Ago) proteins are programmable nucleases found in eukaryotes and prokaryotes. Prokaryotic Agos (pAgos) share a high degree of structural homology with eukaryotic Agos (eAgos), and eAgos originate from pAgos. Although eAgos exclusively cleave RNA targets, most characterized pAgos cleave DNA targets. This study characterized a novel pAgo, MbpAgo, from the psychrotolerant bacterium Mucilaginibacter paludis which prefers to cleave RNA targets rather than DNA targets. Compared to previously studied Agos, MbpAgo can utilize both 5′phosphorylated(5′P) and 5′hydroxylated(5′OH) DNA guides (gDNAs) to efficiently cleave RNA targets at the canonical cleavage site if the guide is between 15 and 17 nt long. Furthermore, MbpAgo is active at a wide range of temperatures (4–65°C) and displays no obvious preference for the 5′-nucleotide of a guide. Single-nucleotide and most dinucleotide mismatches have no or little effects on cleavage efficiency, except for dinucleotide mismatches at positions 11–13 that dramatically reduce target cleavage. MbpAgo can efficiently cleave highly structured RNA targets using both 5′P and 5′OH gDNAs in the presence of Mg2+ or Mn2+. The biochemical characterization of MbpAgo paves the way for its use in RNA manipulations such as nucleic acid detection and clearance of RNA viruses.
Collapse
Affiliation(s)
- Wenqiang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Ruyi He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Longyu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yaping Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wanting Zeng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Zhiwei Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
64
|
Emerging Argonaute-based nucleic acid biosensors. Trends Biotechnol 2022; 40:910-914. [DOI: 10.1016/j.tibtech.2022.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
|
65
|
Rapid Multiplex Strip Test for the Detection of Circulating Tumor DNA Mutations for Liquid Biopsy Applications. BIOSENSORS 2022; 12:bios12020097. [PMID: 35200357 PMCID: PMC8869478 DOI: 10.3390/bios12020097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 01/16/2023]
Abstract
In the era of personalized medicine, molecular profiling of patient tumors has become the standard practice, especially for patients with advanced disease. Activating point mutations of the KRAS proto-oncogene are clinically relevant for many types of cancer, including colorectal cancer (CRC). While several approaches have been developed for tumor genotyping, liquid biopsy has been gaining much attention in the clinical setting. Analysis of circulating tumor DNA for genetic alterations has been challenging, and many methodologies with both advantages and disadvantages have been developed. We here developed a gold nanoparticle-based rapid strip test that has been applied for the first time for the multiplex detection of KRAS mutations in circulating tumor DNA (ctDNA) of CRC patients. The method involved ctDNA isolation, PCR-amplification of the KRAS gene, multiplex primer extension (PEXT) reaction, and detection with a multiplex strip test. We have optimized the efficiency and specificity of the multiplex strip test in synthetic DNA targets, in colorectal cancer cell lines, in tissue samples, and in blood-derived ctDNA from patients with advanced colorectal cancer. The proposed strip test achieved rapid and easy multiplex detection (normal allele and three major single-point mutations) of the clinically relevant KRAS mutations in ctDNA in blood samples of CRC patients with high specificity and repeatability. This multiplex strip test represents a minimally invasive, rapid, low-cost, and promising diagnostic tool for the detection of clinically relevant mutations in cancer patients.
Collapse
|
66
|
Kropocheva EV, Lisitskaya LA, Agapov AA, Musabirov AA, Kulbachinskiy AV, Esyunina DM. Prokaryotic Argonaute Proteins as a Tool for Biotechnology. Mol Biol 2022; 56:854-873. [PMID: 36060308 PMCID: PMC9427165 DOI: 10.1134/s0026893322060103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Programmable nucleases are the most important tool for manipulating the genes and genomes of both prokaryotes and eukaryotes. Since the end of the 20th century, many approaches were developed for specific modification of the genome. The review briefly considers the advantages and disadvantages of the main genetic editors known to date. The main attention is paid to programmable nucleases from the family of prokaryotic Argonaute proteins. Argonaute proteins can recognize and cleave DNA sequences using small complementary guide molecules and play an important role in protecting prokaryotic cells from invading DNA. Argonaute proteins have already found applications in biotechnology for targeted cleavage and detection of nucleic acids and can potentially be used for genome editing.
Collapse
Affiliation(s)
- E. V. Kropocheva
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - L. A. Lisitskaya
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. A. Agapov
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. A. Musabirov
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. V. Kulbachinskiy
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - D. M. Esyunina
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
67
|
Leong KW, Yu F, Makrigiorgos GM. Mutation enrichment in human DNA samples via UV-mediated cross-linking. Nucleic Acids Res 2021; 50:e32. [PMID: 34904676 PMCID: PMC8989544 DOI: 10.1093/nar/gkab1222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/28/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Detection of low-level DNA mutations can reveal recurrent, hotspot genetic changes of clinical relevance to cancer, prenatal diagnostics, organ transplantation or infectious diseases. However, the high excess of wild-type (WT) alleles, which are concurrently present, often hinders identification of salient genetic changes. Here, we introduce UV-mediated cross-linking minor allele enrichment (UVME), a novel approach that incorporates ultraviolet irradiation (∼365 nm UV) DNA cross-linking either before or during PCR amplification. Oligonucleotide probes matching the WT target sequence and incorporating a UV-sensitive 3-cyanovinylcarbazole nucleoside modification are employed for cross-linking WT DNA. Mismatches formed with mutated alleles reduce DNA binding and UV-mediated cross-linking and favor mutated DNA amplification. UV can be applied before PCR and/or at any stage during PCR to selectively block WT DNA amplification and enable identification of traces of mutated alleles. This enables a single-tube PCR reaction directly from genomic DNA combining optimal pre-amplification of mutated alleles, which then switches to UV-mediated mutation enrichment-based DNA target amplification. UVME cross-linking enables enrichment of mutated KRAS and p53 alleles, which can be screened directly via Sanger sequencing, high-resolution melting, TaqMan genotyping or digital PCR, resulting in the detection of mutation allelic frequencies of 0.001–0.1% depending on the endpoint detection method. UV-mediated mutation enrichment provides new potential for mutation enrichment in diverse clinical samples.
Collapse
Affiliation(s)
- Ka Wai Leong
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA
| | - Fangyan Yu
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA
| | - G Mike Makrigiorgos
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA
| |
Collapse
|
68
|
Chen J, Qiu T, Mauk MG, Fan Y, Jiang Y, Ying J, Zhou Q, Qiao Y, Bau HH, Song J. CRISPR Cas9-Mediated Selective Isothermal Amplification for Sensitive Detection of Rare Mutant Alleles. Clin Chem 2021; 67:1569-1571. [PMID: 34590692 PMCID: PMC8561782 DOI: 10.1093/clinchem/hvab163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Junman Chen
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - Tian Qiu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Michael G Mauk
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong Jiang
- Center for Global Health, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinghua Zhou
- Sichuan Lung Cancer Institute, Sichuan Lung Cancer Center, West China Hospital, Chengdu, Sichuan University, China
| | - Youlin Qiao
- Center for Global Health, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haim H Bau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinzhao Song
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
69
|
Liu Q, Guo X, Xun G, Li Z, Chong Y, Yang L, Wang H, Zhang F, Luo S, Cui L, Zhao P, Ye X, Xu H, Lu H, Li X, Deng Z, Li K, Feng Y. Argonaute integrated single-tube PCR system enables supersensitive detection of rare mutations. Nucleic Acids Res 2021; 49:e75. [PMID: 33905513 PMCID: PMC8287959 DOI: 10.1093/nar/gkab274] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Technological advances in rare DNA mutations detection have revolutionized the diagnosis and monitoring of tumors, but they are still limited by the lack of supersensitive and high-coverage procedures for identifying low-abundance mutations. Here, we describe a single-tube, multiplex PCR-based system, A-Star, that involves a hyperthermophilic Argonaute from Pyrococcus furiosus (PfAgo) for highly efficient detection of rare mutations beneficial from its compatibility with DNA polymerase. This novel technique uses a specific guide design strategy to allow PfAgo selective cleavage with single-nucleotide resolution at 94°C, thus mostly eliminating wild-type DNA in the denaturation step and efficiently amplifying rare mutant DNA during the PCR process. The integrated single-tube system achieved great efficiency for enriching rare mutations compared with a divided system separating the cleavage and amplification. Thus, A-Star enables easy detection and quantification of 0.01% rare mutations with ≥5500-fold increase in efficiency. The feasibility of A-Star was also demonstrated for detecting oncogenic mutations in solid tumor tissues and blood samples. Remarkably, A-Star achieved simultaneous detection of multiple oncogenes through a simple single-tube reaction by orthogonal guide-directed specific cleavage. This study demonstrates a supersensitive and rapid nucleic acid detection system with promising potential for both research and therapeutic applications.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanhua Xun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhonglei Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuesheng Chong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Litao Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Fengchun Zhang
- Department of Oncology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School ofMedicine, Shanghai 200025, China
| | - Shukun Luo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengshu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingyu Ye
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Heshan Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Lu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Li
- GeneTalks Biotechnology Inc., Changsha, Hunan 410013, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
70
|
Brodyagin N, Katkevics M, Kotikam V, Ryan CA, Rozners E. Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications. Beilstein J Org Chem 2021; 17:1641-1688. [PMID: 34367346 PMCID: PMC8313981 DOI: 10.3762/bjoc.17.116] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Peptide nucleic acid (PNA) is arguably one of the most successful DNA mimics, despite a most dramatic departure from the native structure of DNA. The present review summarizes 30 years of research on PNA's chemistry, optimization of structure and function, applications as probes and diagnostics, and attempts to develop new PNA therapeutics. The discussion starts with a brief review of PNA's binding modes and structural features, followed by the most impactful chemical modifications, PNA enabled assays and diagnostics, and discussion of the current state of development of PNA therapeutics. While many modifications have improved on PNA's binding affinity and specificity, solubility and other biophysical properties, the original PNA is still most frequently used in diagnostic and other in vitro applications. Development of therapeutics and other in vivo applications of PNA has notably lagged behind and is still limited by insufficient bioavailability and difficulties with tissue specific delivery. Relatively high doses are required to overcome poor cellular uptake and endosomal entrapment, which increases the risk of toxicity. These limitations remain unsolved problems waiting for innovative chemistry and biology to unlock the full potential of PNA in biomedical applications.
Collapse
Affiliation(s)
- Nikita Brodyagin
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Venubabu Kotikam
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Christopher A Ryan
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| |
Collapse
|
71
|
Xun G, Liu Q, Chong Y, Guo X, Li Z, Li Y, Fei H, Li K, Feng Y. Argonaute with stepwise endonuclease activity promotes specific and multiplex nucleic acid detection. BIORESOUR BIOPROCESS 2021; 8:46. [PMID: 38650261 PMCID: PMC10991114 DOI: 10.1186/s40643-021-00401-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
Argonaute proteins (Agos) from thermophiles function as endonucleases via guide-target base-pairing cleavage for host defense. Since guides play a key role in regulating the catalytic specificity of Agos, elucidating its underlying molecular mechanisms would promote the application of Agos in the medical sciences. Here, we reveal that an Ago from Pyrococcus furiosus (PfAgo) showed a stepwise endonuclease activity, which was demonstrated through a double-stranded DNA cleavage directed by a single guide DNA (gDNA) rather than a canonical pair of gDNAs. We validated that the cleavage products with 5'-phosphorylated ends can be used as a new guide to induce a new round of cleavage. Based on the reprogrammable capacity of Ago's stepwise activity, we established a rapid and specific platform for unambiguous multiplex gene detection, termed Renewed-gDNA Assisted DNA cleavage by Argonaute (RADAR). Combined with a pre-amplification step, RADAR achieved sensitivity at the femtomolar level and specificity with at least a di-nucleotide resolution. Furthermore, RADAR simultaneously discriminated among multiple target sequences simply by corresponding multiple guides. We successfully distinguished four human papillomavirus serotypes from patient samples in a single reaction. Our technique, based on the unique properties of Ago, provides a versatile and sensitive method for molecular diagnosis.
Collapse
Affiliation(s)
- Guanhua Xun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yuesheng Chong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiang Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhonglei Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yinhua Li
- Department of Obstetrics and Gynaecology, The Fifth People's Hospital of Shanghai Affiliated To Fudan University, Shanghai, 200240, People's Republic of China
| | - He Fei
- Department of Obstetrics and Gynaecology, The Fifth People's Hospital of Shanghai Affiliated To Fudan University, Shanghai, 200240, People's Republic of China
| | - Kai Li
- GeneTalks Biotechnology Inc., Changsha, 410013, Hunan, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
72
|
Guo X, Sun Y, Chen L, Huang F, Liu Q, Feng Y. A Hyperthermophilic Argonaute From Ferroglobus placidus With Specificity on Guide Binding Pattern. Front Microbiol 2021; 12:654345. [PMID: 34220743 PMCID: PMC8248672 DOI: 10.3389/fmicb.2021.654345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Argonaute proteins (Agos) from thermophilic archaea are involved in several important processes, such as host defense and DNA replication. The catalytic mechanism of Ago from different microbes with great diversity and genome editing potential is attracting increasing attention. Here, we describe an Argonaute from hyperthermophilic Ferroglobus placidus (FpAgo), with a typical DNA-guided DNA endonuclease activity but adopted with only a short guide 15–20 nt length rather than a broad guide selectivity for reported Agos. FpAgo performed the precise cleavage of phosphodiester bonds between 10 and 11 nt on the target strand (counting from the guide strand) guided strictly by 5′-phosphorylated DNA at temperatures ranging from 75 to 99°C. The cleavage activity was regulated by the divalent cations Mn2+, Mg2+, Co2+, and Ni2+. In addition, FpAgo possesses guide/target mismatch tolerance in the seed region but is sensitive to mismatches in the 3′-guide region. Notably, the EMSA assay revealed that the FpAgo-guide-target ternary complex exhibited a stronger binding affinity for short 15 and 16 nt guide DNAs than longer guides. Moreover, we performed structural modeling analyses that implied the unique PAZ domain of FpAgo for 3′-guide recognition and binding to affect guide length specificity. This study broadens our understanding of thermophilic Agos and paves the way for their use in DNA manipulation.
Collapse
Affiliation(s)
- Xiang Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Sun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liuqing Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
73
|
Integration of microfluidic sample preparation with PCR detection to investigate the effects of simultaneous DNA-Inhibitor separation and DNA solution exchange. Anal Chim Acta 2021; 1160:338449. [PMID: 33894958 DOI: 10.1016/j.aca.2021.338449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 11/20/2022]
Abstract
In this paper, we applied a curved-channel microfluidic device to separate DNA from PCR-inhibitor-containing water and simultaneously wash them into clean water for detection using a portable PCR thermocycler. Environmental DNA (eDNA) sampling has become an effective surveying approach for detecting rare organisms. However, low concentration eDNA molecules may be masked by PCR inhibitors during amplification and detection, increasing the risk of false negatives. Therefore, technologies for on-site DNA separation and washing are urgently needed. Our device consisted of a half-circle microchannel with a DNA-inhibitor sample inlet, a clean buffer inlet, and multiple outlets. By using the flow-induced inertial forces, 10 μm DNA-conjugated microparticles were focused at the inner-wall of the curved microchannel while separation from 1 μm inhibitor-conjugated microparticles and DNA washing were achieved simultaneously with the Dean flow. We achieved singleplex focusing, isolation and washing of 10 μm particles at an efficiency of 94.5 ± 2.0%. In duplex experiments with 1 μm and 10 μm particles, larger particles were washed with an efficiency of 92.1 ± 1.6% and a purity of 79 ± 2%. By surface-functionalizing the microparticles with affinity groups against Atlantic salmon DNA and humic acid (HA), and processing samples of various concentrations in our device, we achieved an effective purification and detection of DNA molecules using the portable PCR thermocycler. Our method significantly decreased PCR quantitation cycles from Cq > 38 to Cq = 30.35 ± 0.5, which confirmed enhancement of PCR amplification. The proposed device takes a promising step forward in sample preparation towards an integrated device that can be used for simultaneous purification and solution exchange of DNA in point-of-need environmental monitoring applications.
Collapse
|
74
|
Kropocheva E, Kuzmenko A, Aravin AA, Esyunina D, Kulbachinskiy A. A programmable pAgo nuclease with universal guide and target specificity from the mesophilic bacterium Kurthia massiliensis. Nucleic Acids Res 2021; 49:4054-4065. [PMID: 33744962 PMCID: PMC8053121 DOI: 10.1093/nar/gkab182] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 01/20/2023] Open
Abstract
Argonaute proteins are programmable nucleases that are found in both eukaryotes and prokaryotes and provide defense against invading genetic elements. Although some prokaryotic argonautes (pAgos) were shown to recognize RNA targets in vitro, the majority of studied pAgos have strict specificity toward DNA, which limits their practical use in RNA-centric applications. Here, we describe a unique pAgo nuclease, KmAgo, from the mesophilic bacterium Kurthia massiliensis that can be programmed with either DNA or RNA guides and can precisely cleave both DNA and RNA targets. KmAgo binds 16–20 nt long 5′-phosphorylated guide molecules with no strict specificity for their sequence and is active in a wide range of temperatures. In bacterial cells, KmAgo is loaded with small DNAs with no obvious sequence preferences suggesting that it can uniformly target genomic sequences. Mismatches between the guide and target sequences greatly affect the efficiency and precision of target cleavage, depending on the mismatch position and the nature of the reacting nucleic acids. Target RNA cleavage by KmAgo depends on the formation of secondary structure indicating that KmAgo can be used for structural probing of RNA. These properties of KmAgo open the way for its use for highly specific nucleic acid detection and cleavage.
Collapse
Affiliation(s)
- Ekaterina Kropocheva
- Institute of Molecular Genetics, National Research Centre 'Kurchatov Institute', Moscow 123182, Russia
| | - Anton Kuzmenko
- Institute of Molecular Genetics, National Research Centre 'Kurchatov Institute', Moscow 123182, Russia.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexei A Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Daria Esyunina
- Institute of Molecular Genetics, National Research Centre 'Kurchatov Institute', Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, National Research Centre 'Kurchatov Institute', Moscow 123182, Russia
| |
Collapse
|
75
|
Ganbaatar U, Liu C. CRISPR-Based COVID-19 Testing: Toward Next-Generation Point-of-Care Diagnostics. Front Cell Infect Microbiol 2021; 11:663949. [PMID: 33996635 PMCID: PMC8120276 DOI: 10.3389/fcimb.2021.663949] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
As the COVID-19 pandemic continues, people are becoming infected at an alarming rate, individuals are unknowingly spreading disease, and more lives are lost every day. There is an immediate need for a simple, rapid, early and sensitive point-of-care testing for COVID-19 disease. However, current testing approaches do not meet such need. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based detection methods have received substantial attention for nucleic acid-based molecular testing due to their simplicity, high sensitivity and specificity. This review explores the various CRISPR-based COVID-19 detection methods and related diagnostic devices. As with any emerging technology, CRISPR/Cas-based nucleic acid testing methods have several challenges that must be overcome for practical applications in clinics and hospitals. More importantly, these detection methods are not limited to COVID-19 but can be applied to detect any type of pathogen, virus, and fungi that may threaten humans, agriculture, and food industries in resource-limited settings. CRISPR/Cas-based detection methods have the potential to become simpler, more reliable, more affordable, and faster in the near future, which is highly important for achieving point-of-care diagnostics.
Collapse
Affiliation(s)
- Uyanga Ganbaatar
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Changchun Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
76
|
Liu Y, Li W, Jiang X, Wang Y, Zhang Z, Liu Q, He R, Chen Q, Yang J, Wang L, Wang F, Ma L. A programmable omnipotent Argonaute nuclease from mesophilic bacteria Kurthia massiliensis. Nucleic Acids Res 2021; 49:1597-1608. [PMID: 33444443 PMCID: PMC7897485 DOI: 10.1093/nar/gkaa1278] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Argonaute (Ago) proteins are conserved nucleic acid-guided proteins present in all domains of life. Eukaryotic Argonaute proteins (eAgos) are key players in RNA interference pathways and function as RNA-guided RNA endonucleases at physiological temperatures. Although eAgos are considered to evolve from prokaryotic Argonaute proteins (pAgos), previously studied pAgos were unable to catalyze RNA-guided RNA cleavage at physiological temperatures. Here, we describe a distinctive pAgo from mesophilic bacteria Kurthia massiliensis (KmAgo). KmAgo utilizes DNA guides to cleave single-stranded DNA (ssDNA) and RNA targets with high activity. KmAgo also utilizes RNA guides to cleave ssDNA and RNA targets at moderate temperatures. We show that KmAgo can use 5′ phosphorylated DNA guides as small as 9-mers to cut ssDNA and RNA, like Clostridium butyricum Ago. Small DNA binding confers remarkable thermostability on KmAgo, and we can suppress the guide-independent plasmid processing activity of empty KmAgo by elevating the DNA guide loaded temperature. Moreover, KmAgo performs programmable cleavage of double-stranded DNA and highly structured RNA at 37°C. Therefore, KmAgo can be regarded as a DNA-guided programmable omnipotent nuclease for cleaving most types of nucleic acids efficiently. This study broadens our understanding of Ago proteins and could expand the pAgo-based DNA and RNA manipulation toolbox.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wenqiang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xiaoman Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yaping Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Zhiwei Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Ruyi He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Quan Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Longyu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
77
|
PfAgo-based detection of SARS-CoV-2. Biosens Bioelectron 2020; 177:112932. [PMID: 33429204 PMCID: PMC7832551 DOI: 10.1016/j.bios.2020.112932] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023]
Abstract
In the present study, we upgraded Pyrococcus furiosus Argonaute (PfAgo) mediated nucleic acid detection method and established a highly sensitive and accurate molecular diagnosis platform for the large-scale screening of COVID-19 infection. Briefly, RT-PCR was performed with the viral RNA extracted from nasopharyngeal or oropharyngeal swabs as template to amplify conserved regions in the viral genome. Next, PfAgo, guide DNAs and molecular beacons in appropriate buffer were added to the PCR products, followed by incubating at 95 °C for 20-30 min. Subsequently, the fluorescence signal was detected. This method was named as SARS-CoV-2 PAND. The whole procedure is accomplished in approximately an hour with the using time of the Real-time fluorescence quantitative PCR instrument shortened from >1 h to only 3-5 min per batch in comparison with RT-qPCR, hence the shortage of the expensive Real-time PCR instrument is alleviated. Moreover, this platform was also applied to identify SARS-CoV-2 D614G mutant due to its single-nucleotide specificity. The diagnostic results of clinic samples with SARS-CoV-2 PAND displayed 100% consistence with RT-qPCR test.
Collapse
|
78
|
Liquid biopsy as a perioperative biomarker of digestive tract cancers: review of the literature. Surg Today 2020; 51:849-861. [PMID: 32979121 DOI: 10.1007/s00595-020-02148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Tissue biopsies are the gold-standard for investigating the molecular characterization of tumors. However, a "solid" biopsy is an invasive procedure that cannot capture real-time tumor dynamics and may yield inaccurate information because of intratumoral heterogeneity. In this review, we summarize the current state of knowledge about surgical treatment-associated "liquid" biopsy for patients with digestive organ tumors. A liquid biopsy is a technique involving the sampling and testing of non-solid biological materials, including blood, urine, saliva, and ascites. Previous studies have reported the potential value of blood-based biomarkers, circulating tumor cells, and cell-free nucleic acids as facilitators of cancer treatment. The applications of a liquid biopsy in a cancer treatment setting include screening and early diagnosis, prognostication, and outcome and recurrence monitoring of cancer. This technique has also been suggested as a useful tool in personalized medicine. The transition to precision medicine is still in its early stages. Soon, however, liquid biopsy is likely to form the basis of patient selection for molecular targeted therapies, predictions regarding chemotherapy sensitivity, and real-time evaluations of therapeutic effects.
Collapse
|