51
|
Abstract
Peanut is recognized as a potent food allergen producing one of the most frequent food allergies. This fact has originated the publication of an elevated number of scientific reports dealing with peanut allergens and, especially, the prevalence of peanut allergy. For this reason, the information available on peanut allergens is increasing and the debate about peanut allergy is always renewed. This article reviews the information currently available on peanut allergens and on the techniques used for their chemical characterization. Moreover, a general overview on the current biotechnological approaches used to reduce or eliminate peanut allergens is also provided.
Collapse
Affiliation(s)
- Jorge Sáiz
- Department of Chemistry I, Faculty of Biology, Environmental Sciences, and Chemistry, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | | | | | | |
Collapse
|
52
|
Gutierrez-Carbonell E, Lattanzio G, Sagardoy R, Rodríguez-Celma J, Ríos Ruiz JJ, Matros A, Abadía A, Abadía J, López-Millán AF. Changes induced by zinc toxicity in the 2-DE protein profile of sugar beet roots. J Proteomics 2013; 94:149-61. [DOI: 10.1016/j.jprot.2013.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/28/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
|
53
|
Printz B, Sergeant K, Guignard C, Renaut J, Hausman JF. Physiological and proteome study of sunflowers exposed to a polymetallic constraint. Proteomics 2013; 13:1993-2015. [PMID: 23595958 DOI: 10.1002/pmic.201200400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 02/27/2013] [Accepted: 03/19/2013] [Indexed: 01/26/2023]
Abstract
The new energy requirements of the growing world population together with the actual ecological trend of phytoremediation have made challenging the cultivation of energetic crops on nonagricultural lands, such as those contaminated with trace elements. In this study, phenotypical characterization and biochemical analyses were combined to emphasize the global response of young sunflowers (Helianthus annuus L.) grown in hydroponic media contaminated with different Cd, Ni, and Zn concentrations. Leaves and roots of sunflowers reaching the stage "2-extended leaves" and exposed to different trace metal concentrations were harvested and analyzed by 2D-DIGE in order to study in depth the molecular responses of the young plants upon the polymetallic exposure. Proteomics confirmed the observed global reduction in growth and development. If photosynthetic light reactions and carbon metabolism were the most affected in leaves, in roots significant disruptions were observed in proteins involved in respiration, oxidative balance, protein and gene expression, and in the induction of programmed cell death. Elemental analyses of the plantlets indicated a profound impact of the treatment resulting in misbalance in essential micronutrients. Altogether, this study highlights the sensitivity of the sunflower to a polymetallic pollution and indicates that its use as a remediative tool of trace element polluted soils is limited.
Collapse
Affiliation(s)
- Bruno Printz
- Centre de Recherche Public-Gabriel Lippmann, Département Environnement et Agrobiotechnologies, Belvaux, Luxembourg
| | | | | | | | | |
Collapse
|
54
|
Grau J, Wolf A, Reschke M, Bonas U, Posch S, Boch J. Computational predictions provide insights into the biology of TAL effector target sites. PLoS Comput Biol 2013; 9:e1002962. [PMID: 23526890 PMCID: PMC3597551 DOI: 10.1371/journal.pcbi.1002962] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/14/2013] [Indexed: 11/19/2022] Open
Abstract
Transcription activator-like (TAL) effectors are injected into host plant cells by Xanthomonas bacteria to function as transcriptional activators for the benefit of the pathogen. The DNA binding domain of TAL effectors is composed of conserved amino acid repeat structures containing repeat-variable diresidues (RVDs) that determine DNA binding specificity. In this paper, we present TALgetter, a new approach for predicting TAL effector target sites based on a statistical model. In contrast to previous approaches, the parameters of TALgetter are estimated from training data computationally. We demonstrate that TALgetter successfully predicts known TAL effector target sites and often yields a greater number of predictions that are consistent with up-regulation in gene expression microarrays than an existing approach, Target Finder of the TALE-NT suite. We study the binding specificities estimated by TALgetter and approve that different RVDs are differently important for transcriptional activation. In subsequent studies, the predictions of TALgetter indicate a previously unreported positional preference of TAL effector target sites relative to the transcription start site. In addition, several TAL effectors are predicted to bind to the TATA-box, which might constitute one general mode of transcriptional activation by TAL effectors. Scrutinizing the predicted target sites of TALgetter, we propose several novel TAL effector virulence targets in rice and sweet orange. TAL-mediated induction of the candidates is supported by gene expression microarrays. Validity of these targets is also supported by functional analogy to known TAL effector targets, by an over-representation of TAL effector targets with similar function, or by a biological function related to pathogen infection. Hence, these predicted TAL effector virulence targets are promising candidates for studying the virulence function of TAL effectors. TALgetter is implemented as part of the open-source Java library Jstacs, and is freely available as a web-application and a command line program.
Collapse
Affiliation(s)
- Jan Grau
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | | | | | | | | | | |
Collapse
|
55
|
Patnaik BB, Kim DH, Oh SH, Song YS, Chanh NDM, Kim JS, Jung WJ, Saha AK, Bindroo BB, Han YS. Molecular cloning and characterization of novel Morus alba germin-like protein gene which encodes for a silkworm gut digestion-resistant antimicrobial protein. PLoS One 2012; 7:e50900. [PMID: 23284650 PMCID: PMC3526618 DOI: 10.1371/journal.pone.0050900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/26/2012] [Indexed: 11/19/2022] Open
Abstract
Background Silkworm fecal matter is considered one of the richest sources of antimicrobial and antiviral protein (substances) and such economically feasible and eco-friendly proteins acting as secondary metabolites from the insect system can be explored for their practical utility in conferring broad spectrum disease resistance against pathogenic microbial specimens. Methodology/Principal Findings Silkworm fecal matter extracts prepared in 0.02 M phosphate buffer saline (pH 7.4), at a temperature of 60°C was subjected to 40% saturated ammonium sulphate precipitation and purified by gel-filtration chromatography (GFC). SDS-PAGE under denaturing conditions showed a single band at about 21.5 kDa. The peak fraction, thus obtained by GFC wastested for homogeneityusing C18reverse-phase high performance liquid chromatography (HPLC). The activity of the purified protein was tested against selected Gram +/− bacteria and phytopathogenic Fusarium species with concentration-dependent inhibitionrelationship. The purified bioactive protein was subjected to matrix-assisted laser desorption and ionization-time of flight mass spectrometry (MALDI-TOF-MS) and N-terminal sequencing by Edman degradation towards its identification. The N-terminal first 18 amino acid sequence following the predicted signal peptide showed homology to plant germin-like proteins (Glp). In order to characterize the full-length gene sequence in detail, the partial cDNA was cloned and sequenced using degenerate primers, followed by 5′- and 3′-rapid amplification of cDNA ends (RACE-PCR). The full-length cDNA sequence composed of 630 bp encoding 209 amino acids and corresponded to germin-like proteins (Glps) involved in plant development and defense. Conclusions/Significance The study reports, characterization of novel Glpbelonging to subfamily 3 from M. alba by the purification of mature active protein from silkworm fecal matter. The N-terminal amino acid sequence of the purified protein was found similar to the deduced amino acid sequence (without the transit peptide sequence) of the full length cDNA from M. alba.
Collapse
Affiliation(s)
- Bharat Bhusan Patnaik
- Division of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
- * E-mail: (BBP); (YSH)
| | - Dong Hyun Kim
- Division of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Seung Han Oh
- Division of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Yong-Su Song
- Division of Applied Bioscience and Biotechnology, Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju, Republic of Korea
| | - Nguyen Dang Minh Chanh
- Division of Applied Bioscience and Biotechnology, Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju, Republic of Korea
| | - Jong Sun Kim
- Institute of Insect and Sericultural Research, Jeonnam Agricultural Research and Extension Service, Jangseong, Republic of Korea
| | - Woo-jin Jung
- Division of Applied Bioscience and Biotechnology, Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju, Republic of Korea
| | - Atul Kumar Saha
- Central Sericultural Research and Training Institute, Central Silk Board (Govt. of India), Berhampore, West Bengal, India
| | - Bharat Bhushan Bindroo
- Central Sericultural Research and Training Institute, Central Silk Board (Govt. of India), Berhampore, West Bengal, India
| | - Yeon Soo Han
- Division of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
- * E-mail: (BBP); (YSH)
| |
Collapse
|
56
|
Khare H, Ratnaparkhi V, Chavan S, Jayraman V. Prediction of protein-mannose binding sites using random forest. Bioinformation 2012; 8:1202-5. [PMID: 23275720 PMCID: PMC3530872 DOI: 10.6026/97320630081202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 11/23/2022] Open
Abstract
Mannose is an abundant cell surface monosaccharide and has an important role in many biochemical processes. It binds to a great diversity of receptor proteins. In this study we have employed Random Forest for prediction of mannose binding sites. Mannosebinding site is taken to be a sphere around the centroid of the ligand and the sphere is subdivided into different layers and atom wise and residue wise features were extracted for each layer. The method achieves 95.59 % of accuracy using Random Forest with 10 fold cross validation. Prediction of mannose binding site analysis will be quite useful in drug design.
Collapse
Affiliation(s)
| | | | - Sonali Chavan
- Bioinformatics centre, University of Pune, Pune, India
| | - Valadi Jayraman
- Centre for Development of Advanced Computing (C-DAC), Pune, India
| |
Collapse
|
57
|
Abstract
Ring-cleaving dioxygenases catalyze key reactions in the aerobic microbial degradation of aromatic compounds. Many pathways converge to catecholic intermediates, which are subject to ortho or meta cleavage by intradiol or extradiol dioxygenases, respectively. However, a number of degradation pathways proceed via noncatecholic hydroxy-substituted aromatic carboxylic acids like gentisate, salicylate, 1-hydroxy-2-naphthoate, or aminohydroxybenzoates. The ring-cleaving dioxygenases active toward these compounds belong to the cupin superfamily, which is characterized by a six-stranded β-barrel fold and conserved amino acid motifs that provide the 3His or 2- or 3His-1Glu ligand environment of a divalent metal ion. Most cupin-type ring cleavage dioxygenases use an Fe(II) center for catalysis, and the proposed mechanism is very similar to that of the canonical (type I) extradiol dioxygenases. The metal ion is presumed to act as an electron conduit for single electron transfer from the metal-bound substrate anion to O(2), resulting in activation of both substrates to radical species. The family of cupin-type dioxygenases also involves quercetinase (flavonol 2,4-dioxygenase), which opens up two C-C bonds of the heterocyclic ring of quercetin, a wide-spread plant flavonol. Remarkably, bacterial quercetinases are capable of using different divalent metal ions for catalysis, suggesting that the redox properties of the metal are relatively unimportant for the catalytic reaction. The major role of the active-site metal ion could be to correctly position the substrate and to stabilize transition states and intermediates rather than to mediate electron transfer. The tentative hypothesis that quercetinase catalysis involves direct electron transfer from metal-bound flavonolate to O(2) is supported by model chemistry.
Collapse
|
58
|
Ab initio structural modeling of and experimental validation for Chlamydia trachomatis protein CT296 reveal structural similarity to Fe(II) 2-oxoglutarate-dependent enzymes. J Bacteriol 2011; 193:6517-28. [PMID: 21965559 DOI: 10.1128/jb.05488-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chlamydia trachomatis is a medically important pathogen that encodes a relatively high percentage of proteins with unknown function. The three-dimensional structure of a protein can be very informative regarding the protein's functional characteristics; however, determining protein structures experimentally can be very challenging. Computational methods that model protein structures with sufficient accuracy to facilitate functional studies have had notable successes. To evaluate the accuracy and potential impact of computational protein structure modeling of hypothetical proteins encoded by Chlamydia, a successful computational method termed I-TASSER was utilized to model the three-dimensional structure of a hypothetical protein encoded by open reading frame (ORF) CT296. CT296 has been reported to exhibit functional properties of a divalent cation transcription repressor (DcrA), with similarity to the Escherichia coli iron-responsive transcriptional repressor, Fur. Unexpectedly, the I-TASSER model of CT296 exhibited no structural similarity to any DNA-interacting proteins or motifs. To validate the I-TASSER-generated model, the structure of CT296 was solved experimentally using X-ray crystallography. Impressively, the ab initio I-TASSER-generated model closely matched (2.72-Å C(α) root mean square deviation [RMSD]) the high-resolution (1.8-Å) crystal structure of CT296. Modeled and experimentally determined structures of CT296 share structural characteristics of non-heme Fe(II) 2-oxoglutarate-dependent enzymes, although key enzymatic residues are not conserved, suggesting a unique biochemical process is likely associated with CT296 function. Additionally, functional analyses did not support prior reports that CT296 has properties shared with divalent cation repressors such as Fur.
Collapse
|
59
|
Jiang S, Wang S, Sun Y, Zhou Z, Wang G. Molecular characterization of major allergens Ara h 1, 2, 3 in peanut seed. PLANT CELL REPORTS 2011; 30:1135-1143. [PMID: 21305299 DOI: 10.1007/s00299-011-1022-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/12/2011] [Accepted: 01/21/2011] [Indexed: 05/30/2023]
Abstract
Peanut is among the most commonly used dietary seeds, but peanut allergens, especially Ara h 1 (Arachis hypogaea allergy 1), 2 and 3, can cause severe IgE-mediated reactions. In this study, the molecular characterization and expression pattern of three allergens in peanut LUHUA 8, the representative of the cultivated lines in China, are reported. In situ hybridization and real time PCR analysis revealed high expression levels and different tissue expression patterns of the three allergens, which might be connected with many aspects, such as the strong conservation of intron phase of the allergen genes, the low energy of the mRNA's regions, and the complicated post-translational modifications. Furthermore, the different sequences between the cloned allergens and the reported sequences previously involved the charged amino acids especially in IgE epitopes, which might alter specific physicochemical and physiological properties, and thus influence the immunity of the allergens. The identification of the specific features of the allergen genes would be of considerable importance to the basic understanding of the specific characteristics of peanut seed allergens.
Collapse
Affiliation(s)
- Shengjuan Jiang
- College of Life Science, Anhui Science and Technology University, Anhui Fengyang 233100, China.
| | | | | | | | | |
Collapse
|
60
|
Du Y, He YX, Gaowa S, Zhang X, Chen Y, Zhang SC, Zhou CZ. Crystal structures of the apo and GDP-bound forms of a cupin-like protein BbDUF985 from Branchiostoma belcheri tsingtauense. Proteins 2010; 78:2714-9. [PMID: 20589641 DOI: 10.1002/prot.22771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yang Du
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
61
|
Hu Y, Sun G. Leaf nitrogen dioxide uptake coupling apoplastic chemistry, carbon/sulfur assimilation, and plant nitrogen status. PLANT CELL REPORTS 2010; 29:1069-77. [PMID: 20628880 DOI: 10.1007/s00299-010-0898-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 07/03/2010] [Accepted: 07/04/2010] [Indexed: 05/08/2023]
Abstract
Emission and plant uptake of atmospheric nitrogen oxides (NO + NO(2)) significantly influence regional climate change by regulating the oxidative chemistry of the lower atmosphere, species composition and the recycling of carbon and nutrients, etc. Plant uptake of nitrogen dioxide (NO(2)) is concentration-dependent and species-specific, and covaries with environmental factors. An important factor determining NO(2) influx into leaves is the replenishment of the substomatal cavity. The apoplastic chemistry of the substomatal cavity plays crucial roles in NO(2) deposition rates and the tolerance to NO(2), involving the reactions between NO(2) and apoplastic antioxidants, NO(2)-responsive germin-like proteins, apoplastic acidification, and nitrite-dependent NO synthesis, etc. Moreover, leaf apoplast is a favorable site for the colonization by microbes, which disturbs nitrogen metabolism of host plants. For most plant species, NO(2) assimilation in a leaf primarily depends on the nitrate (NO(3) (-)) assimilation pathway. NO(2)-N assimilation is coupled with carbon and sulfur (sulfate and SO(2)) assimilation as indicated by the mutual needs for metabolic intermediates (or metabolites) and the NO(2)-caused changes of key metabolic enzymes such as phosphoenolpyruvate carboxylase (PEPc) and adenosine 5'-phosphosulfate sulfotransferase, organic acids, and photorespiration. Moreover, arbuscular mycorrhizal (AM) colonization improves the tolerance of host plants to NO(2) by enhancing the efficiency of nutrient absorption and translocation and influencing foliar chemistry. Further progress is proposed to gain a better understanding of the coordination between NO(2)-N, S and C assimilation, especially the investigation of metabolic checkpoints, and the effects of photorespiratory nitrogen cycle, diverse PEPc and the metabolites such as cysteine, O-acetylserine (OAS) and glutathione.
Collapse
Affiliation(s)
- Yanbo Hu
- College of Life Science, Northeast Forestry University, 26# Hexing Road, Xiangfang District, Harbin 150040, People's Republic of China.
| | | |
Collapse
|
62
|
Breen J, Bellgard M. Germin-like proteins (GLPs) in cereal genomes: gene clustering and dynamic roles in plant defence. Funct Integr Genomics 2010; 10:463-76. [PMID: 20683632 DOI: 10.1007/s10142-010-0184-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 11/29/2022]
Abstract
The recent release of the genome sequences of a number of crop and model plant species has made it possible to define the genome organisation and functional characteristics of specific genes and gene families of agronomic importance. For instance, Sorghum bicolor, maize (Zea mays) and Brachypodium distachyon genome sequences along with the model grass species rice (Oryza sativa) enable the comparative analysis of genes involved in plant defence. Germin-like proteins (GLPs) are a small, functionally and taxonomically diverse class of cupin-domain containing proteins that have recently been shown to cluster in an area of rice chromosome 8. The genomic location of this gene cluster overlaps with a disease resistance QTL that provides defence against two rice fungal pathogens (Magnaporthe oryzae and Rhizoctonia solani). Studies showing the involvement of GLPs in basal host resistance against powdery mildew (Blumeria graminis ssp.) have also been reported in barley and wheat. In this mini-review, we compare the close proximity of GLPs in publicly available cereal crop genomes and discuss the contribution that these proteins, and their genome sequence organisation, play in plant defence.
Collapse
Affiliation(s)
- James Breen
- Institute for Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| | | |
Collapse
|
63
|
van Staalduinen LM, Park CS, Yeom SJ, Adams-Cioaba MA, Oh DK, Jia Z. Structure-based annotation of a novel sugar isomerase from the pathogenic E. coli O157:H7. J Mol Biol 2010; 401:866-81. [PMID: 20615418 DOI: 10.1016/j.jmb.2010.06.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 11/16/2022]
Abstract
Prokaryotes can use a variety of sugars as carbon sources in order to provide a selective survival advantage. The gene z5688 found in the pathogenic Escherichia coli O157:H7 encodes a "hypothetical" protein of unknown function. Sequence analysis identified the gene product as a putative member of the cupin superfamily of proteins, but no other functional information was known. We have determined the crystal structure of the Z5688 protein at 1.6 A resolution and identified the protein as a novel E. coli sugar isomerase (EcSI) through overall fold analysis and secondary-structure matching. Extensive substrate screening revealed that EcSI is capable of acting on d-lyxose and d-mannose. The complex structure of EcSI with fructose allowed the identification of key active-site residues, and mutagenesis confirmed their importance. The structure of EcSI also suggested a novel mechanism for substrate binding and product release in a cupin sugar isomerase. Supplementation of a nonpathogenic E. coli strain with EcSI enabled cell growth on the rare pentose d-lyxose.
Collapse
|
64
|
El-Sharkawy I, Mila I, Bouzayen M, Jayasankar S. Regulation of two germin-like protein genes during plum fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1761-70. [PMID: 20202999 PMCID: PMC2852666 DOI: 10.1093/jxb/erq043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Germin-like proteins (GLPs) have several proposed roles in plant development and defence. Two novel genes (Ps-GLP1 and 2) encoding germin-like protein were isolated from plum (Prunus salicina). Their regulation was studied throughout fruit development and during ripening of early and late cultivars. These two genes exhibited similar expression patterns throughout the various stages of fruit development excluding two important stages, pit hardening (S2) and fruit ripening (S4). During fruit development until the ripening phase, the accumulation of both Ps-GLPs is related to the evolution of auxin. However, during the S2 stage only Ps-GLP1 is induced and this could putatively be in a H(2)O(2)-dependent manner. On the other hand, the diversity in the Ps-GLPs accumulation profile during the ripening process seems to be putatively due to the variability of endogenous auxin levels among the two plum cultivars, which consequently change the levels of autocatalytic ethylene available for the fruit to co-ordinate ripening. The effect of auxin on stimulating ethylene production and in regulating Ps-GLPs transcripts was also investigated. These data, supported by their localization in the extracellular matrix, suggest that auxin is somehow involved in the regulation of both transcripts throughout fruit development and ripening.
Collapse
Affiliation(s)
- I. El-Sharkawy
- Vineland Research and Innovation Centre, 4890 Victoria Av. N, PO Box 4000, Vineland Station, ON, L0R 2E0 Canada
| | - I. Mila
- UMR 990 INRA/INPT-ENSAT ‘Génomique et Biotechnologie des Fruits’, Av. de l'Agrobiopole, BP 32607, F-31326 Castanet-Tolosan Cedex, France
| | - M. Bouzayen
- UMR 990 INRA/INPT-ENSAT ‘Génomique et Biotechnologie des Fruits’, Av. de l'Agrobiopole, BP 32607, F-31326 Castanet-Tolosan Cedex, France
| | - S. Jayasankar
- University of Guelph, Department of Plant Agriculture, 4890 Victoria Av. N, PO Box 7000, Vineland Station, ON, L0R 2E0 Canada
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
65
|
Mäkelä MR, Hildén K, Lundell TK. Oxalate decarboxylase: biotechnological update and prevalence of the enzyme in filamentous fungi. Appl Microbiol Biotechnol 2010; 87:801-14. [PMID: 20464388 DOI: 10.1007/s00253-010-2650-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/26/2010] [Accepted: 04/26/2010] [Indexed: 12/17/2022]
Abstract
Oxalate decarboxylase (ODC) is a manganese-containing, multimeric enzyme of the cupin protein superfamily. ODC is one of the three enzymes identified to decompose oxalic acid and oxalate, and within ODC catalysis, oxalate is split into formate and CO(2). This primarily intracellular enzyme is found in fungi and bacteria, and currently the best characterized enzyme is the Bacillus subtilis OxdC. Although the physiological role of ODC is yet unidentified, the feasibility of this enzyme in diverse biotechnological applications has been recognized for a long time. ODC could be exploited, e.g., in diagnostics, therapeutics, process industry, and agriculture. So far, the sources of ODC enzyme have been limited including only a few fungal and bacterial species. Thus, there is potential for identification and cloning of new ODC variants with diverse biochemical properties allowing e.g. more enzyme fitness to process applications. This review gives an insight to current knowledge on the biochemical characteristics of ODC, and the relevance of oxalate-converting enzymes in biotechnological applications. Particular emphasis is given to fungal enzymes and the inter-connection of ODC to fungal metabolism of oxalic acid.
Collapse
Affiliation(s)
- Miia R Mäkelä
- Department of Food and Environmental Sciences, Division of Microbiology, Viikki Biocenter 1, P.O.B. 56, 00014, Helsinki, Finland.
| | | | | |
Collapse
|
66
|
Banerjee J, Maiti MK. Functional role of rice germin-like protein1 in regulation of plant height and disease resistance. Biochem Biophys Res Commun 2010; 394:178-83. [PMID: 20188068 DOI: 10.1016/j.bbrc.2010.02.142] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 02/22/2010] [Indexed: 11/19/2022]
Abstract
The functional role of rice (Oryza sativa) germin-like protein1 (OsGLP1) was elucidated through development of transgenic plants involving endogenous gene silencing in rice and heterologous gene expression in tobacco. Usually, the single copy OsGLP1 gene in rice plant was found to be expressed predominantly in green vegetative tissues. The transgenic rice lines showed significant reduction in endogenous OsGLP1 expression due to 26nt siRNA-mediated gene silencing, displayed semi-dwarfism and were affected seriously by fungal diseases, compared to the untransformed plant. Structural homology modeling predicted a superoxide dismutase (SOD) domain in OsGLP1 protein which upon over-expression in transgenic tobacco plant clearly documented SOD activity. Our observations on the maintenance of cell dimension, cell wall-associated localization particularly in the sub-epidermal tissues and the SOD activity of OsGLP1 could explain its functional role in regulation of plant height and disease resistance in rice plant.
Collapse
Affiliation(s)
- Joydeep Banerjee
- Department of Biotechnology and Adv Lab for Plant Genetic Engineering, Advanced Technology Development Center, Indian Institute of Technology, Kharagpur 721302, India
| | | |
Collapse
|
67
|
Nassif H, Al-Ali H, Khuri S, Keirouz W, Page D. An Inductive Logic Programming Approach to Validate Hexose Binding Biochemical Knowledge. INDUCTIVE LOGIC PROGRAMMING. ILP 2010; 5989:149-165. [PMID: 25309972 PMCID: PMC4190110 DOI: 10.1007/978-3-642-13840-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hexoses are simple sugars that play a key role in many cellular pathways, and in the regulation of development and disease mechanisms. Current protein-sugar computational models are based, at least partially, on prior biochemical findings and knowledge. They incorporate different parts of these findings in predictive black-box models. We investigate the empirical support for biochemical findings by comparing Inductive Logic Programming (ILP) induced rules to actual biochemical results. We mine the Protein Data Bank for a representative data set of hexose binding sites, non-hexose binding sites and surface grooves. We build an ILP model of hexose-binding sites and evaluate our results against several baseline machine learning classifiers. Our method achieves an accuracy similar to that of other black-box classifiers while providing insight into the discriminating process. In addition, it confirms wet-lab findings and reveals a previously unreported Trp-Glu amino acids dependency.
Collapse
Affiliation(s)
- Houssam Nassif
- Department of Computer Sciences, University of Wisconsin-Madison, USA
| | - Hassan Al-Ali
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, USA
| | - Sawsan Khuri
- Department of Biochemistry and Molecular Biology, University of Miami, Florida, USA
| | - Walid Keirouz
- Center for Computational Science, University of Miami, Florida, USA
| | - David Page
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Florida, USA
| |
Collapse
|
68
|
Nassif H, Al-Ali H, Khuri S, Keirouz W. Prediction of protein-glucose binding sites using support vector machines. Proteins 2009; 77:121-32. [DOI: 10.1002/prot.22424] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
69
|
Leitgeb S, Straganz GD, Nidetzky B. Functional characterization of an orphan cupin protein from Burkholderia xenovorans reveals a mononuclear nonheme Fe2+-dependent oxygenase that cleaves β-diketones. FEBS J 2009; 276:5983-97. [DOI: 10.1111/j.1742-4658.2009.07308.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
70
|
Mäkelä MR, Hildén K, Hatakka A, Lundell TK. Oxalate decarboxylase of the white-rot fungus Dichomitus squalens demonstrates a novel enzyme primary structure and non-induced expression on wood and in liquid cultures. Microbiology (Reading) 2009; 155:2726-2738. [DOI: 10.1099/mic.0.028860-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Oxalate decarboxylase (ODC) catalyses the conversion of oxalic acid to formic acid and CO2 in bacteria and fungi. In wood-decaying fungi the enzyme has been linked to the regulation of intra- and extracellular quantities of oxalic acid, which is one of the key components in biological decomposition of wood. ODC enzymes are biotechnologically interesting for their potential in diagnostics, agriculture and environmental applications, e.g. removal of oxalic acid from industrial wastewaters. We identified a novel ODC in mycelial extracts of two wild-type isolates of Dichomitus squalens, and cloned the corresponding Ds-odc gene. The primary structure of the Ds-ODC protein contains two conserved Mn-binding cupin motifs, but at the N-terminus, a unique, approximately 60 aa alanine-serine-rich region is found. Real-time quantitative RT-PCR analysis confirmed gene expression when the fungus was cultivated on wood and in liquid medium. However, addition of oxalic acid in liquid cultures caused no increase in transcript amounts, thereby indicating a constitutive rather than inducible expression of Ds-odc. The detected stimulation of ODC activity by oxalic acid is more likely due to enzyme activation than to transcriptional upregulation of the Ds-odc gene. Our results support involvement of ODC in primary rather than secondary metabolism in fungi.
Collapse
Affiliation(s)
- Miia R. Mäkelä
- Department of Applied Chemistry and Microbiology, Division of Microbiology, Viikki Biocenter, PO Box 56, FIN-00014 University of Helsinki, Finland
| | - Kristiina Hildén
- Department of Applied Chemistry and Microbiology, Division of Microbiology, Viikki Biocenter, PO Box 56, FIN-00014 University of Helsinki, Finland
| | - Annele Hatakka
- Department of Applied Chemistry and Microbiology, Division of Microbiology, Viikki Biocenter, PO Box 56, FIN-00014 University of Helsinki, Finland
| | - Taina K. Lundell
- Department of Applied Chemistry and Microbiology, Division of Microbiology, Viikki Biocenter, PO Box 56, FIN-00014 University of Helsinki, Finland
| |
Collapse
|
71
|
Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou JP, Pugin A, Wendehenne D. Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. PLANT PHYSIOLOGY 2009; 149:1302-15. [PMID: 19168643 PMCID: PMC2649387 DOI: 10.1104/pp.108.133348] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 01/20/2009] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd(2+)), a nonessential and toxic metal. We demonstrate that Cd(2+) induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd(2+). By analyzing the incidence of NO scavenging or inhibition of its synthesis during Cd(2+) treatment, we demonstrated that NO contributes to Cd(2+)-triggered inhibition of root growth. To understand the mechanisms underlying this process, a microarray analysis was performed in order to identify NO-modulated root genes up- and down-regulated during Cd(2+) treatment. Forty-three genes were identified encoding proteins related to iron homeostasis, proteolysis, nitrogen assimilation/metabolism, and root growth. These genes include IRT1. Investigation of the metal and ion contents in Cd(2+)-treated roots in which NO synthesis was impaired indicates that IRT1 up-regulation by NO was consistently correlated to NO's ability to promote Cd(2+) accumulation in roots. This analysis also highlights that NO is responsible for Cd(2+)-induced inhibition of root Ca(2+) accumulation. Taken together, our results suggest that NO contributes to Cd(2+) toxicity by favoring Cd(2+) versus Ca(2+) uptake and by initiating a cellular pathway resembling those activated upon iron deprivation.
Collapse
Affiliation(s)
- Angélique Besson-Bard
- UMR INRA 1088/CNRS 5184/Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Differential expression of sigH paralogs during growth and under different stress conditions in Mycobacterium smegmatis. J Bacteriol 2009; 191:2888-93. [PMID: 19218386 DOI: 10.1128/jb.01773-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SigH regulates a transcriptional network that responds to heat and oxidative stress in mycobacteria. Seven sigH paralogs are reported to exist in the Mycobacterium smegmatis genome. A comprehensive real-time reverse transcriptase PCR analysis during different stages of growth and upon exposure to various stress conditions and antimycobacterial compounds showed differential expression of sigH paralogs during stationary phase and severalfold increases in the levels of transcription of sigH1, sigH4, sigH5, sigH6, and sigH7 under specific stress conditions.
Collapse
|
73
|
Barba de la Rosa A, Fomsgaard IS, Laursen B, Mortensen AG, Olvera-Martínez L, Silva-Sánchez C, Mendoza-Herrera A, González-Castañeda J, De León-Rodríguez A. Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: Phenolic acids and flavonoids with potential impact on its nutraceutical quality. J Cereal Sci 2009. [DOI: 10.1016/j.jcs.2008.07.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
74
|
Tello M, Rejzek M, Wilkinson B, Lawson DM, Field RA. Tyl1a, a TDP-6-deoxy-D-xylo-4-hexulose 3,4-isomerase from Streptomyces fradiae: structure prediction, mutagenesis and solvent isotope incorporation experiments to investigate reaction mechanism. Chembiochem 2008; 9:1295-302. [PMID: 18425854 DOI: 10.1002/cbic.200800021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Understanding the structure and mechanism of sugar nucleotide processing enzymes is invaluable in the generation of designer enzymes for biotransformation, for instance, in connection with engineering antibiotic glycosylation. In this study, homology modelling and mechanistic comparison to the structurally related RmlC epimerase family has been used to identify and assign functions to active-site residues in the Tyl1a-catalysed keto-sugar nucleotide isomerisation process. Tyl1a His63 is implicated as the base that initiates the isomerisation process by substrate C-3 deprotonation, with Arg109 stabilising the resulting enolate. Subsequent O-3 deprotonation (potentially by His65) and C-4 protonation (potentially by Tyr49) complete the isomerisation process.
Collapse
Affiliation(s)
- Mónica Tello
- School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | | | | | |
Collapse
|
75
|
Laudencia-Chingcuanco DL, Vensel WH. Globulins are the main seed storage proteins in Brachypodium distachyon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:555-63. [PMID: 18528675 DOI: 10.1007/s00122-008-0799-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 05/12/2008] [Indexed: 05/24/2023]
Abstract
Brachypodium distachyon is being developed as a model system to study temperate cereals and forage grasses. We have begun to investigate its utility to understand seed development and grain filling by identifying the major seed storage proteins in a diploid accession Bd21. With the use of ID SDS-PAGE and mass spectrometry we detected seven major storage protein bands, six of which were identified as globulins. A subset of the major seed proteins isolated from three hexaploid accessions, Bd4, Bd14 and Bd17 were also identified as globulins. Several Brachypodium cDNAs clones encoding globulin were completely sequenced. Two types of globulin genes were identified, Bd.glo1 and Bd.glo2, which are similar to maize 7S and oat 12S globulins, respectively. The derived polypeptide sequences of the globulins contain a typical signal peptide sequence in their polypeptide N-termini and two cupin domains. Bd.glo1 is encoded by a single copy gene, whereas, Bd.glo2 belongs to a gene family.
Collapse
|
76
|
Salicylate 1,2-Dioxygenase from Pseudaminobacter salicylatoxidans: Crystal Structure of a Peculiar Ring-cleaving Dioxygenase. J Mol Biol 2008; 380:856-68. [DOI: 10.1016/j.jmb.2008.05.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/13/2008] [Accepted: 05/18/2008] [Indexed: 11/24/2022]
|
77
|
Carbonaro M, Maselli P, Dore P, Nucara A. Application of Fourier transform infrared spectroscopy to legume seed flour analysis. Food Chem 2008. [DOI: 10.1016/j.foodchem.2007.10.045] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
78
|
Schallau A, Kakhovskaya I, Tewes A, Czihal A, Tiedemann J, Mohr M, Grosse I, Manteuffel R, Bäumlein H. Phylogenetic footprints in fern spore- and seed-specific gene promoters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:414-24. [PMID: 18086283 DOI: 10.1111/j.1365-313x.2007.03354.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Spermatophyte seed-storage proteins have descended from a group of proteins involved in cellular desiccation/hydration processes. Conserved protein structures are found across all plant phyla and in the fungi and Archaea. We investigated whether conservation in the coding region sequence is paralleled by common gene regulatory processes. Seed- and spore-specific gene promoters of three phylogenetically diverse plants were analysed by transient and transgenic expression in Arabidopsis thaliana and tobacco. The transcription factors FUS3 and ABI3, which are central regulators of seed maturation processes, interact with cis-motifs of seed-specific promoters from distantly related plants. The promoter of a fern spore-specific gene encoding a seed-storage globulin-like protein exhibits strong seed-specific activity in both Arabidopsis and tobacco. The existence of phylogenetic footprints indicates good conservation of regulatory pathways controlling gene expression in fern spores and in gymnosperm and angiosperm seeds, reflecting the concerted evolution of coding and regulatory regions.
Collapse
Affiliation(s)
- Anna Schallau
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Mathieu M, Lelu-Walter MA, Blervacq AS, David H, Hawkins S, Neutelings G. Germin-like genes are expressed during somatic embryogenesis and early development of conifers. PLANT MOLECULAR BIOLOGY 2006; 61:615-27. [PMID: 16897479 DOI: 10.1007/s11103-006-0036-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 03/01/2006] [Indexed: 05/11/2023]
Abstract
Germins and germin-like proteins (GLPs) are members of a superfamily of proteins widely distributed in plants. Their localization within the extracellular matrix and in some cases their hydrogen peroxide-producing activity suggests that these proteins are involved in cell wall metabolism during stress responses and developmental processes. Several very highly conserved conifer GLPs have been identified in somatic embryo tissues. In order to gain more knowledge on their potential involvement in the development of this particular tissue, we have characterized a new GLP gene, LmGER1 in hybrid larch. Anti-GLP immunserum and in-gel activity analyses suggested the presence of superoxide dismutase activity in apoplastic proteins from larch somatic embryos. These results could indicate a possible role for LmGER1 in this physiological process. The expression of LmGER1 has been followed during the maturation of somatic embryos and in different organs of young plantlets by homologous transformation with a promoter-gus construct. This promoter was activated in the root cap of young embryos and, later on, in the cotyledons and in the vascular procambium and xylem. Furthermore, the importance of this gene in embryo development was evaluated by transforming embryonal masses with a gene construct encoding a hairpin RNA leading to gene silencing. The potential role of LmGER1 in cross-linking of cell wall components is discussed.
Collapse
Affiliation(s)
- M Mathieu
- Laboratoire de Physiologie des Parois Végétales UPRES EA3568-USC INRA, Université des Sciences et Technologies de Lille, Bât SN2, 59655, Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | |
Collapse
|
80
|
Kurian D, Phadwal K, Mäenpää P. Proteomic characterization of acid stress response inSynechocystis sp. PCC 6803. Proteomics 2006; 6:3614-24. [PMID: 16691555 DOI: 10.1002/pmic.200600033] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A comparative proteomic analysis using 2-DE coupled with MALDI-MS and LC-MS/MS was performed in Synechocystis sp. PCC 6803 to identify protein candidates involved in acid stress response in cyanobacteria. Comparison of soluble proteins from the cytoplasmic fraction of cells grown on media set at pH 7.5 and 5.5 using 2-DE identified four proteins, which showed significant changes in the abundance. Surprisingly, several general stress proteins, either the heat shock family proteins or chaperonins, did not show perceptible fold changes in response to acidity. Compared to the cytoplasmic proteome, the periplasmic proteome showed remarkable changes as a function of external pH. Protein expression profiling at different external pH, i.e., 9.0, 7.5, 6.0 and 5.5, allowed classifying the periplasmic proteins depending on their preferential expression patterns towards acidity or alkalinity. Among the acid- and base-induced proteins, oxalate decarboxylase and carbonic anhydrase were already known for their role in pH homeostasis. Several unknown proteins from the periplasm, that showed significant changes in response to pH, provide ideal targets for further studies in understanding pH stress response in cyanobacteria. This study also identified 14 novel proteins, hitherto unknown from the periplasmic space of Synechocystis.
Collapse
Affiliation(s)
- Dominic Kurian
- Laboratory of Plant Physiology and Molecular Biology, Department of Biology, University of Turku, Finland.
| | | | | |
Collapse
|
81
|
Mnayer L, Khuri S, Merheby HAA, Meroni G, Elsas LJ. A structure-function study of MID1 mutations associated with a mild Opitz phenotype. Mol Genet Metab 2006; 87:198-203. [PMID: 16378742 DOI: 10.1016/j.ymgme.2005.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/24/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
The X-linked form of Opitz syndrome (OS) affects midline structures and produces a characteristic, but heterogeneous, phenotype that may include severe mental retardation, hypertelorism, broad nasal bridge, widow's peak, cleft lip/cleft palate, congenital heart disease, laryngotracheal defects, and hypospadias. The MID1 gene was implicated in OS by linkage to Xp22. It encodes a 667 amino acid protein that contains a RING finger motif, two B-box zinc fingers, a coiled-coil, a fibronectin type III (FNIII) domain, and a B30.2 domain. Several mutations in MID1 are associated with severe OS. Here, we describe an intelligent male with a milder phenotype characterized by hypertelorism, broad nasal bridge, widow's peak, mild hypospadias, pectus excavatum, and a surgically corrected tracheo-esophageal fistula. He has an above average intelligence and no cleft lip/palate or heart disease. We identified a novel mutation in MID1 (P441L) which is in exon 8 and functionally associated with the FNIII domain. While OS phenotypes have been attributed to mutations in the C-terminal part of MID1, little is currently known about the structure-function relationships of MID1 mutations, and how they affect phenotype. We find from a literature review that missense mutations within the FNIII domain of MID1 are associated with a milder presentation of OS than missense mutations elsewhere in MID1. All truncating mutations (frameshift, insertions/deletions) lead to severe OS. We used homology analysis of the MID1 FNIII domain to investigate structure-function changes caused by our missense mutation. This and other missense mutations probably cause disruption of protein-protein interactions, either within MID1 or between MID1 and other proteins. We correlate these protein structure-function findings to the absence of CNS or palatal changes and conclude that the FNIII domain of the MID1 protein may be involved in midline differentiation after neural tube and palatal structures are completed.
Collapse
Affiliation(s)
- Laila Mnayer
- The Dr. John T. Macdonald Foundation Center for Medical Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.
| | | | | | | | | |
Collapse
|
82
|
Luo S, Liu DQ, Liu H, Zhou NY. Site-directed mutagenesis of gentisate 1,2-dioxygenases from Klebsiella pneumoniae M5a1 and Ralstonia sp. strain U2. Microbiol Res 2006; 161:138-44. [PMID: 16427517 DOI: 10.1016/j.micres.2005.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2005] [Indexed: 11/26/2022]
Abstract
Gentisate 1,2-dioxygenase (GDO, EC 1.13.11.4) is the first enzyme in gentisate pathway that catalyses the ring fission of gentisate to form maleylpyruvate. Phylogenetic tree of amino acid sequences from 11 GDOs demonstrates that the GDOs from different genus share identities between 12.1% and 64.8%. According to the alignment result, four highly conserved histidine residues in GDO from Klebsiella pneumoniae M5a1 and Ralstonia sp. strain U2 were chosen to be substituted with aspartate residues. Enzyme analysis indicated that substitution of any of these four histidine residues had resulted in the complete loss of its catalytic activity.
Collapse
Affiliation(s)
- S Luo
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | |
Collapse
|
83
|
Kukavica B, Vucinić Z, Vuletić M. Superoxide dismutase, peroxidase, and germin-like protein activity in plasma membranes and apoplast of maize roots. PROTOPLASMA 2005; 226:191-7. [PMID: 16244808 DOI: 10.1007/s00709-005-0112-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 02/03/2005] [Indexed: 05/05/2023]
Abstract
The analysis of plasma membranes from maize roots by native gel electrophoresis revealed the existence of Mn-containing 120 kDa and CuZn-containing 70, 40, and 15 kDa superoxide dismutase (SOD) isoform activities. Isoelectric focusing of the plasma membranes differentiated anionic SOD isoforms with a pI of about 5 and cationic SOD isoforms at pI 8.6. Solubilization of the plasma membrane proteins further separated the cationic SOD into pI 8.6, 8.2, 8.4, and 7.2 isoforms. Double staining for both SOD and peroxidase activities showed an overlap of these activities only in the case of the high-molecular-mass (ca. 120 kDa) isoforms. High-temperature treatments demonstrated that the 120 kDa isoform was active even at 100 degrees C, indicating that it was a germin-like protein with superoxide-dismutating activity, different from the peroxidase with a similar molecular mass and the lower-molecular-mass CuZn-containing superoxide dismutases. These results are compared to those obtained from whole-tissue extract and apoplastic fluid.
Collapse
Affiliation(s)
- B Kukavica
- Center for Multidisciplinary Studies, Belgrade University, 11081 Belgrade, Serbia and Montenegro
| | | | | |
Collapse
|
84
|
Hansen T, Schlichting B, Grötzinger J, Swan MK, Davies C, Schönheit P. Mutagenesis of catalytically important residues of cupin type phosphoglucose isomerase from Archaeoglobus fulgidus. FEBS J 2005; 272:6266-75. [PMID: 16336264 DOI: 10.1111/j.1742-4658.2005.05007.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recently, cupin type phosphoglucose isomerases have been described as a novel protein family representing a separate lineage in the evolution of phosphoglucose isomerases. The importance of eight active site residues completely conserved within the cPGI family has been assessed by site-directed mutagenesis using the cPGI from Archaeoglobus fulgidus (AfcPGI) as a model. The mutants T63A, G79A, G79L, H80A, H80D, H82A, E93A, E93D, Y95F, Y95K, H136A, and Y160F were constructed, purified, and the impact of the respective mutation on catalysis and/or metal ion binding as well as thermostability was analyzed. The variants G79A, G79L, and Y95F exhibited a lower thermostability. The catalytic efficiency of the enzyme was reduced by more than 100-fold in the G79A, G79L, H80A, H80D, E93D, Y95F variants and more than 15-fold in the T63A, H82A, Y95K, Y160F variants, but remained about the same in the H136A variant at Ni2+ saturating conditions. Further, the Ni2+ content of the mutants H80A, H80D, H82A, E93A, E93D and their apparent Ni2+ binding ability was reduced, resulting in an almost complete loss of activity and thus underlining the crucial role of the metal ion for catalysis. Evidence is presented that H80, H82 and E93 play an additional role in catalysis besides metal ion binding. E93 appears to be the key catalytic residue of AfcPGI, as the E93A mutant did not show any catalytic activity at all.
Collapse
Affiliation(s)
- Thomas Hansen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Germany
| | | | | | | | | | | |
Collapse
|
85
|
Hwang DR, Lai HY, Chang ML, Hsu JTA, Yeh CT. Emergence of mutation clusters in the HCV genome during sequential viral passages in Sip-L expressing cells. J Virol Methods 2005; 129:170-7. [PMID: 16005986 DOI: 10.1016/j.jviromet.2005.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 05/26/2005] [Accepted: 05/31/2005] [Indexed: 01/22/2023]
Abstract
Sip-L, a member of the Cupin superfamily, is a hepatic factor capable of supporting hepatitis C virus (HCV) replication in an otherwise non-permissive cell line. HCV-positive serum was used to infect Huh-7 and 293 cells stably expressing Sip-L. Using the culture medium of the infected cells as an infection source, sequential viral passages were carried out in both cell lines. Efficient viral passage was observed in 293-Sip-L cells but not in Huh-7-Sip-L cells. The viral concentrations in the culture medium increased gradually from less than 10(2) copies/mL to 5.3 x 10(4) copies/mL after 25 sequential passages in 293-Sip-L cells. Sequence analysis of the viral genomes obtained from both the initial and final inocula revealed emergence of mutation clusters in NS2, NS3, and NS5A coding regions. Immunofluorescence study revealed that only a small percentage of infected cells expressed a detectable level of viral protein. Caspase 3 activities in the infected cells increased progressively during the viral passages. In conclusion, perpetual propagation of HCV was achieved using Sip-L expressing cells, allowing for the development of mutation clusters in the genome. The mutant HCV can be used as an infection source to study the molecular mechanism of HCV replication.
Collapse
Affiliation(s)
- Der-Ren Hwang
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
86
|
Escutia MR, Bowater L, Edwards A, Bottrill AR, Burrell MR, Polanco R, Vicuña R, Bornemann S. Cloning and sequencing of two Ceriporiopsis subvermispora bicupin oxalate oxidase allelic isoforms: implications for the reaction specificity of oxalate oxidases and decarboxylases. Appl Environ Microbiol 2005; 71:3608-16. [PMID: 16000768 PMCID: PMC1169046 DOI: 10.1128/aem.71.7.3608-3616.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxalate oxidase is thought to be involved in the production of hydrogen peroxide for lignin degradation by the dikaryotic white rot fungus Ceriporiopsis subvermispora. This enzyme was purified, and after digestion with trypsin, peptide fragments of the enzyme were sequenced using quadrupole time-of-flight mass spectrometry. Starting with degenerate primers based on the peptide sequences, two genes encoding isoforms of the enzyme were cloned, sequenced, and shown to be allelic. Both genes contained 14 introns. The sequences of the isoforms revealed that they were both bicupins that unexpectedly shared the greatest similarity to microbial bicupin oxalate decarboxylases rather than monocupin plant oxalate oxidases (also known as germins). We have shown that both fungal isoforms, one of which was heterologously expressed in Escherichia coli, are indeed oxalate oxidases that possess < or =0.2% oxalate decarboxylase activity and that the organism is capable of rapidly degrading exogenously supplied oxalate. They are therefore the first bicupin oxalate oxidases to have been described. Heterologous expression of active enzyme was dependent on the addition of manganese salts to the growth medium. Molecular modeling provides new and independent evidence for the identity of the catalytic site and the key amino acid involved in defining the reaction specificities of oxalate oxidases and oxalate decarboxylases.
Collapse
Affiliation(s)
- Marta R Escutia
- Biological Chemistry Department, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Teplyakov A, Obmolova G, Toedt J, Galperin MY, Gilliland GL. Crystal structure of the bacterial YhcH protein indicates a role in sialic acid catabolism. J Bacteriol 2005; 187:5520-7. [PMID: 16077096 PMCID: PMC1196062 DOI: 10.1128/jb.187.16.5520-5527.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yhcH gene is part of the nan operon in bacteria that encodes proteins involved in sialic acid catabolism. Determination of the crystal structure of YhcH from Haemophilus influenzae was undertaken as part of a structural genomics effort in order to assist with the functional assignment of the protein. The structure was determined at 2.2-A resolution by multiple-wavelength anomalous diffraction. The protein fold is a variation of the double-stranded beta-helix. Two antiparallel beta-sheets form a funnel opened at one side, where a putative active site contains a copper ion coordinated to the side chains of two histidine and two carboxylic acid residues. A comparison to other proteins with a similar fold and analysis of the genomic context suggested that YhcH may be a sugar isomerase involved in processing of exogenous sialic acid.
Collapse
Affiliation(s)
- Alexey Teplyakov
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute and National Institute of Standards and Technology, Rockville, Maryland, USA.
| | | | | | | | | |
Collapse
|
88
|
Svedruzić D, Jónsson S, Toyota CG, Reinhardt LA, Ricagno S, Lindqvist Y, Richards NGJ. The enzymes of oxalate metabolism: unexpected structures and mechanisms. Arch Biochem Biophys 2005; 433:176-92. [PMID: 15581576 DOI: 10.1016/j.abb.2004.08.032] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 08/31/2004] [Indexed: 10/26/2022]
Abstract
Oxalate degrading enzymes have a number of potential applications, including medical diagnosis and treatments for hyperoxaluria and other oxalate-related diseases, the production of transgenic plants for human consumption, and bioremediation of the environment. This review seeks to provide a brief overview of current knowledge regarding the major classes of enzymes and related proteins that are employed in plants, fungi, and bacteria to convert oxalate into CO(2) and/or formate. Not only do these enzymes employ intriguing chemical strategies for cleaving the chemically unreactive C-C bond in oxalate, but they also offer the prospect of providing new insights into the molecular processes that underpin the evolution of biological catalysts.
Collapse
Affiliation(s)
- Drazenka Svedruzić
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Nakata M, Watanabe Y, Sakurai Y, Hashimoto Y, Matsuzaki M, Takahashi Y, Satoh T. Germin-like protein gene family of a moss, Physcomitrella patens, phylogenetically falls into two characteristic new clades. PLANT MOLECULAR BIOLOGY 2004; 56:381-395. [PMID: 15604751 DOI: 10.1007/s11103-004-3475-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We identified 77 EST clones encoding germin-like proteins (GLPs) from a moss, Physcomitrella patens in a database search. These Physcomitrella GLPs ( PpGLP s) were separated into seven groups based on DNA sequence homology. Phylogenetic analysis showed that these groups were divided into two novel clades clearly distinguishable from higher plant germins and GLPs, named bryophyte subfamilies 1 and 2. PpGLPs belonging to bryophyte subfamilies 1 lacked two cysteines at the conserved positions observed in higher plant germins or GLPs. PpGLPs belonging to bryophyte subfamily 2 contained two cysteines as observed in higher plant germins and GLPs. In bryophyte subfamily 1, 12 amino acids, in which one of two cysteines is included, were deleted between boxes A and B. Further, we determined the genomic structure of all of seven PpGLP genes. The sequences of PpGLP s of bryophyte subfamily 1 contained one or two introns, whereas those of bryophyte subfamily 2 contained no introns. Other GLPs from bryophytes, a liverwort GLP from Marchantia polymorpha , and two moss GLPs from Barbula unguiculata and Ceratodon purpureus also fell into bryophyte subfamily 1 and bryophyte subfamily 2, respectively. No higher plant germins and GLPs were grouped into the bryophyte subfamilies 1 and 2 by our analysis. Moreover, we revealed that PpGLP6 had manganese-containing extracellular superoxide dismutase activity. These results indicated that bryophyte possess characteristic GLPs, which phylogenetically are clearly distinguishable from higher plant GLPs.
Collapse
Affiliation(s)
- Masaru Nakata
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526, Japan.
| | | | | | | | | | | | | |
Collapse
|
90
|
Just VJ, Stevenson CEM, Bowater L, Tanner A, Lawson DM, Bornemann S. A Closed Conformation of Bacillus subtilis Oxalate Decarboxylase OxdC Provides Evidence for the True Identity of the Active Site. J Biol Chem 2004; 279:19867-74. [PMID: 14871895 DOI: 10.1074/jbc.m313820200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxalate decarboxylase (EC 4.1.1.2) catalyzes the conversion of oxalate to formate and carbon dioxide and utilizes dioxygen as a cofactor. By contrast, the evolutionarily related oxalate oxidase (EC 1.2.3.4) converts oxalate and dioxygen to carbon dioxide and hydrogen peroxide. Divergent free radical catalytic mechanisms have been proposed for these enzymes that involve the requirement of an active site proton donor in the decarboxylase but not the oxidase reaction. The oxidase possesses only one domain and manganese binding site per subunit, while the decarboxylase has two domains and two manganese sites per subunit. A structure of the decarboxylase together with a limited mutagenesis study has recently been interpreted as evidence that the C-terminal domain manganese binding site (site 2) is the catalytic site and that Glu-333 is the crucial proton donor (Anand, R., Dorrestein, P. C., Kinsland, C., Begley, T. P., and Ealick, S. E. (2002) Biochemistry 41, 7659-7669). The N-terminal binding site (site 1) of this structure is solvent-exposed (open) and lacks a suitable proton donor for the decarboxylase reaction. We report a new structure of the decarboxylase that shows a loop containing a 3(10) helix near site 1 in an alternative conformation. This loop adopts a "closed" conformation forming a lid covering the entrance to site 1. This conformational change brings Glu-162 close to the manganese ion, making it a new candidate for the crucial proton donor. Site-directed mutagenesis of equivalent residues in each domain provides evidence that Glu-162 performs this vital role and that the N-terminal domain is either the sole or the dominant catalytically active domain.
Collapse
Affiliation(s)
- Victoria J Just
- Biological Chemistry Department, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | |
Collapse
|
91
|
Moore BD. Bifunctional and moonlighting enzymes: lighting the way to regulatory control. TRENDS IN PLANT SCIENCE 2004; 9:221-8. [PMID: 15130547 DOI: 10.1016/j.tplants.2004.03.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Affiliation(s)
- Brandon d Moore
- Department of Genetics, Biochemistry, and Life Science Studies, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
92
|
Bowater L, Fairhurst SA, Just VJ, Bornemann S. Bacillus subtilis YxaG is a novel Fe-containing quercetin 2,3-dioxygenase. FEBS Lett 2004; 557:45-8. [PMID: 14741339 DOI: 10.1016/s0014-5793(03)01439-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Bacillus subtilis genome contains genes for three hypothetical proteins belonging to the bicupin family, two of which we have previously shown to be Mn(II)-dependent oxalate decarboxylases. We have now shown that the third, YxaG, exhibits quercetin 2,3-dioxygenase activity and that it contains Fe ions. This contrasts with the eukaryotic enzyme which contains a Cu ion. YxaG is the first prokaryotic carbon monoxide-forming enzyme that utilises a flavonol to be characterised and is only the second example of a prokaryotic dioxygenolytic carbon monoxide-forming enzyme known to contain a cofactor. It is proposed to rename the B. subtilis gene qdoI.
Collapse
Affiliation(s)
- Laura Bowater
- Biological Chemistry Department, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
93
|
Abstract
The cupin superfamily of proteins, named on the basis of a conserved beta-barrel fold ('cupa' is the Latin term for a small barrel), was originally discovered using a conserved motif found within germin and germin-like proteins from higher plants. Previous analysis of cupins had identified some 18 different functional classes that range from single-domain bacterial enzymes such as isomerases and epimerases involved in the modification of cell wall carbohydrates, through to two-domain bicupins such as the desiccation-tolerant seed storage globulins, and multidomain transcription factors including one linked to the nodulation response in legumes. Recent advances in comparative genomics, and the resolution of many more 3-D structures have now revealed that the largest subset of the cupin superfamily is the 2-oxyglutarate-Fe(2+) dependent dioxygenases. The substrates for this subclass of enzyme are many and varied and in total amount to probably 50-100 different biochemical reactions, including several involved in plant growth and development. Although the majority of enzymatic cupins contain iron as an active site metal, other members contain either copper, zinc, cobalt, nickel or manganese ions as a cofactor, with each cofactor allowing a different type of chemistry to occur within the conserved tertiary structure. This review discusses the range of structures and functions found in this most diverse of superfamilies.
Collapse
Affiliation(s)
- Jim M Dunwell
- The BioCentre, School of Plant Sciences, The University of Reading, Whiteknights, Reading, RG6 6AS, UK
| | | | | |
Collapse
|
94
|
Viquez OM, Konan KN, Dodo HW. Structure and organization of the genomic clone of a major peanut allergen gene, Ara h 1. Mol Immunol 2003; 40:565-71. [PMID: 14597159 DOI: 10.1016/j.molimm.2003.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peanut is one of the most allergenic foods. It contains multiple seed storage proteins identified as allergens, which are responsible for triggering IgE-mediated allergic reactions. Ara h 1 is a major peanut allergen recognized by over 90% of peanut sensitive population. The objectives of this study were to isolate, sequence, and determine the structure and organization of at least one genomic clone encoding Ara h 1. Two 100 bp oligonucleotides were synthesized and used as probes to screen a peanut genomic library constructed in a Lambda FIX II vector. After three rounds of screening, four putative positive clones were selected and their DNA digested with SacI. A unique 12-13 kb insert fragment was released, confirmed positive by Southern hybridization, subcloned into a pBluescript vector, and sequenced. Sequence analysis revealed a full-length Ara h 1 gene of 4447 bp with four exons of 721, 176, 81 and 903 bp and three introns of 71, 249 and 74 bp. The deduced amino acid encodes a protein of 626 residues that is identical to the Ara h 1 cDNA clone P41b. Several well characterized elements for promoter strength were found in the promoter region of Ara h 1 and include two TATA-boxes (TATATAAATA and TTATATATAT) at positions -89 and -348, respectively; a CAAT-box (CAAT) at position -133, a GC-box (CGGGACCGGGCCGG GCCTTCGGGCCGGGCCGGGT) at position -475, two G-boxes (TAACACGTACAC and ATGGACGTGAAA) at positions -264 and -1808, respectively; two RY elements (CATGCAC and CATGCAT) at positions -235 and -278, respectively; and other cis-element sequences. In the 3' UTR, a poly-A signal (AATAAA) was found at +2350, two additional stop codons (TAA) at +2303 and +2306, and TTTG/CTA/G motifs. Three introns and a potentially strong promoter could explain the high expression of the Ara h 1 gene. Amino acid sequence comparisons revealed high sequence similarity with other plant vicilins, member of the cupin superfamily.
Collapse
Affiliation(s)
- Olga M Viquez
- Food Biotechnology Laboratory, Department of Food and Animal Sciences, Alabama A&M University, Normal, AL 35762, USA.
| | | | | |
Collapse
|
95
|
Aravind L, Anantharaman V. HutC/FarR-like bacterial transcription factors of the GntR family contain a small molecule-binding domain of the chorismate lyase fold. FEMS Microbiol Lett 2003; 222:17-23. [PMID: 12757941 DOI: 10.1016/s0378-1097(03)00242-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Numerous bacterial transcription factors contain a DNA-binding helix-turn-helix domain and a signaling domain, linked together in a single polypeptide. Typically, this signaling domain is a small-molecule-binding domain that undergoes a conformational change upon recognizing a specific ligand. The HutC/FarR-like transcription factors of the GntR family are one of the largest groups of transcription factors in the proteomes of most free-living bacteria. Using sensitive sequence profile analysis we show that the HutC/FarR-like transcription factors contain a conserved ligand-binding domain, which possesses the same fold as chorismate lyase (Escherichia coli UbiC gene product). This relationship suggests that the C-terminal domain of the HutC/FarR-like transcription factors binds small molecules in a cleft similar to the substrate-binding site of the chorismate lyases. The sequence diversity within the predicted binding cleft of the HutC/FarR ligand-binding domains is consistent with the ability of these transcription factors to respond to diverse small molecules, such as histidine (HutC), fatty acids (FarR), sugars (TreR) and alkylphosphonate (PhnF). UbiC-like chorismate lyases function in the ubiquinone biosynthesis pathway, and have characteristic charged, catalytic residues. Genome comparisons reveal that chorismate lyase orthologs are found in several bacteria, chloroplasts of eukaryotic algae and euryarchaea. In contrast, the GntR transcription regulators lack the conserved catalytic residues of the chorismate lyases, and have so far been detected only in bacteria. An ancestral, generic small-molecule-binding domain appears to have given rise to the enzymatic and non-catalytic ligand-binding versions of the same fold under the influence of different selective pressures.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
96
|
Mathieu M, Neutelings G, Hawkins S, Grenier E, David H. Cloning of a pine germin-like protein (GLP) gene promoter and analysis of its activity in transgenic tobacco Bright Yellow 2 cells. PHYSIOLOGIA PLANTARUM 2003; 117:425-434. [PMID: 12654044 DOI: 10.1034/j.1399-3054.2003.00050.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Germins and germin-like proteins (GLPs) constitute a large and highly diverse family of ubiquitous plant cell wall proteins. These proteins seem to be involved in many developmental stages and stress-related processes, but their exact participation in these processes generally remains obscure. In Pinus caribaea Morelet, the PcGER1 gene is expressed uniquely in embryo tissues, and encodes a GLP ionically bound to the walls of pine embryo cells maintained in 2,4-D-containing medium. We have cloned a genomic fragment including the 1520 bp 5'-upstream promoter region of PcGER1. This sequence contains, in its 1200 bp distal part, several cis elements (e.g. SEF4, 60 kDa protein, ABA RE and Dof recognition sites) present in genes responding to hormones and/or expressed in embryo or seed tissues, or during germination. The PcGER1 promoter sequence was cloned upstream of the GUS (beta-glucuronidase) reporter gene and transferred to tobacco Bright Yellow 2 (BY-2) cells via Agrobacterium tumefaciens-mediated transformation. Promoter activity and growth performances of transgenic asynchronous cell suspensions were analysed in the presence or absence of 2,4-D and/or BA. Optimal growth, maximum cell-wall yield and PcGER1 promoter activity were observed in the presence of 2,4-D and BA at day 4, the end of the exponential growth phase where 70-75% cells have a 2C DNA content. Analysis of promoter activity during the cell cycle in an aphidicoline-synchronized culture suggested that the expression is maximum in G1 cells. We also showed that under optimal growth conditions, 5' promoter deletions decreased the activity of the reporter gene. We discuss the function of this gene with regards to cell growth. Accession number: The PcGER1 promoter sequence was submitted to the genbank database under the accession number AY077704.
Collapse
Affiliation(s)
- Mélanie Mathieu
- Laboratoire de Physiologie des Parois Végétales UPRES EA-USC INRA, Université des Sciences et Technologies de Lille, Bât SN2, 59655 Villeneuve d'Ascq cedex, France Laboratoire de Biologie des Ligneux et des Grandes Cultures, UPRES EA-1207, Antenne Scientifique Universitaire de Chartres, 21, rue de Loigny la Bataille, 28000 Chartres, France Cellule Statistique et Traitement Informatique des Données, Institut Supérieur Agricole de Beauvais, rue Pierre Waguet, 60026 Beauvais cedex, France
| | | | | | | | | |
Collapse
|
97
|
Dunwell JM, Culham A, Carter CE, Sosa-Aguirre CR, Goodenough PW. Evolution of functional diversity in the cupin superfamily. Trends Biochem Sci 2001; 26:740-6. [PMID: 11738598 DOI: 10.1016/s0968-0004(01)01981-8] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The cupin superfamily of proteins is among the most functionally diverse of any described to date. It was named on the basis of the conserved beta-barrel fold ('cupa' is the Latin term for a small barrel), and comprises both enzymatic and non-enzymatic members, which have either one or two cupin domains. Within the conserved tertiary structure, the variety of biochemical function is provided by minor variation of the residues in the active site and the identity of the bound metal ion. This review discusses the advantages of this particular scaffold and provides an evolutionary analysis of 18 different subclasses within the cupin superfamily.
Collapse
Affiliation(s)
- J M Dunwell
- School of Plant Sciences, The University of Reading, Whiteknights, RG6 6AS, Reading, UK.
| | | | | | | | | |
Collapse
|
98
|
Tanner A, Bowater L, Fairhurst SA, Bornemann S. Oxalate decarboxylase requires manganese and dioxygen for activity. Overexpression and characterization of Bacillus subtilis YvrK and YoaN. J Biol Chem 2001; 276:43627-34. [PMID: 11546787 DOI: 10.1074/jbc.m107202200] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Bacillus subtilis oxalate decarboxylase (EC ), YvrK, converts oxalate to formate and CO(2). YvrK and the related hypothetical proteins YoaN and YxaG from B. subtilis have been successfully overexpressed in Escherichia coli. Recombinant YvrK and YoaN were found to be soluble enzymes with oxalate decarboxylase activity only when expressed in the presence of manganese salts. No enzyme activity has yet been detected for YxaG, which was expressed as a soluble protein without the requirement for manganese salts. YvrK and YoaN were found to catalyze minor side reactions: oxalate oxidation to produce H(2)O(2); and oxalate-dependent, H(2)O(2)-independent dye oxidations. The oxalate decarboxylase activity of purified YvrK was O(2)-dependent. YvrK was found to contain between 0.86 and 1.14 atoms of manganese/subunit. EPR spectroscopy showed that the metal ion was predominantly but not exclusively in the Mn(II) oxidation state. The hyperfine coupling constant (A = 9.5 millitesla) of the main g = 2 signal was consistent with oxygen and nitrogen ligands with hexacoordinate geometry. The structure of YvrK was modeled on the basis of homology with oxalate oxidase, canavalin, and phaseolin, and its hexameric oligomerization was predicted by analogy with proglycinin and homogentisate 1,2-dioxygenase. Although YvrK possesses two potential active sites, only one could be fully occupied by manganese. The possibility that the C-terminal domain active site has no manganese bound and is buried in an intersubunit interface within the hexameric enzyme is discussed. A mechanism for oxalate decarboxylation is proposed, in which both Mn(II) and O(2) are cofactors that act together as a two-electron sink during catalysis.
Collapse
Affiliation(s)
- A Tanner
- Biological Chemistry Department, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| | | | | | | |
Collapse
|