51
|
Launay G, Simonson T. A large decoy set of protein-protein complexes produced by flexible docking. J Comput Chem 2010; 32:106-20. [DOI: 10.1002/jcc.21604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
52
|
Barbieri CM, Mack TR, Robinson VL, Miller MT, Stock AM. Regulation of response regulator autophosphorylation through interdomain contacts. J Biol Chem 2010; 285:32325-35. [PMID: 20702407 PMCID: PMC2952233 DOI: 10.1074/jbc.m110.157164] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/29/2010] [Indexed: 11/17/2022] Open
Abstract
DNA-binding response regulators (RRs) of the OmpR/PhoB subfamily alternate between inactive and active conformational states, with the latter having enhanced DNA-binding affinity. Phosphorylation of an aspartate residue in the receiver domain, usually via phosphotransfer from a cognate histidine kinase, stabilizes the active conformation. Many of the available structures of inactive OmpR/PhoB family proteins exhibit extensive interfaces between the N-terminal receiver and C-terminal DNA-binding domains. These interfaces invariably involve the α4-β5-α5 face of the receiver domain, the locus of the largest differences between inactive and active conformations and the surface that mediates dimerization of receiver domains in the active state. Structures of receiver domain dimers of DrrB, DrrD, and MtrA have been determined, and phosphorylation kinetics were analyzed. Analysis of phosphotransfer from small molecule phosphodonors has revealed large differences in autophosphorylation rates among OmpR/PhoB RRs. RRs with substantial domain interfaces exhibit slow rates of phosphorylation. Rates are greatly increased in isolated receiver domain constructs. Such differences are not observed between autophosphorylation rates of full-length and isolated receiver domains of a RR that lacks interdomain interfaces, and they are not observed in histidine kinase-mediated phosphotransfer. These findings suggest that domain interfaces restrict receiver domain conformational dynamics, stabilizing an inactive conformation that is catalytically incompetent for phosphotransfer from small molecule phosphodonors. Inhibition of phosphotransfer by domain interfaces provides an explanation for the observation that some RRs cannot be phosphorylated by small molecule phosphodonors in vitro and provides a potential mechanism for insulating some RRs from small molecule-mediated phosphorylation in vivo.
Collapse
Affiliation(s)
- Christopher M. Barbieri
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635 and
| | - Timothy R. Mack
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Graduate School of Biomedical Sciences, and
| | - Victoria L. Robinson
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635 and
| | - Matthew T. Miller
- From the Center for Advanced Biotechnology and Medicine
- the Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854-8066
| | - Ann M. Stock
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635 and
| |
Collapse
|
53
|
Volkamer A, Griewel A, Grombacher T, Rarey M. Analyzing the Topology of Active Sites: On the Prediction of Pockets and Subpockets. J Chem Inf Model 2010; 50:2041-52. [DOI: 10.1021/ci100241y] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Volkamer
- Research Group for Computational Molecular Design, Bundesstr. 43, 20146 Hamburg, Germany, and Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Axel Griewel
- Research Group for Computational Molecular Design, Bundesstr. 43, 20146 Hamburg, Germany, and Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Thomas Grombacher
- Research Group for Computational Molecular Design, Bundesstr. 43, 20146 Hamburg, Germany, and Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Matthias Rarey
- Research Group for Computational Molecular Design, Bundesstr. 43, 20146 Hamburg, Germany, and Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| |
Collapse
|
54
|
Xu Q, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Cai X, Carlton D, Chen C, Chiu HJ, Clayton T, Das D, Deller MC, Duan L, Ellrott K, Farr CL, Feuerhelm J, Grant JC, Grzechnik A, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Lam WW, Marciano D, Miller MD, Morse AT, Nigoghossian E, Nopakun A, Okach L, Puckett C, Reyes R, Tien HJ, Trame CB, van den Bedem H, Weekes D, Wooten T, Yeh A, Zhou J, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA. Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiont Bacteroides thetaiotaomicron. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1297-305. [PMID: 20944225 PMCID: PMC2954219 DOI: 10.1107/s1744309110023055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 06/15/2010] [Indexed: 11/11/2022]
Abstract
Membrane-attack complex/perforin (MACPF) proteins are transmembrane pore-forming proteins that are important in both human immunity and the virulence of pathogens. Bacterial MACPFs are found in diverse bacterial species, including most human gut-associated Bacteroides species. The crystal structure of a bacterial MACPF-domain-containing protein BT_3439 (Bth-MACPF) from B. thetaiotaomicron, a predominant member of the mammalian intestinal microbiota, has been determined. Bth-MACPF contains a membrane-attack complex/perforin (MACPF) domain and two novel C-terminal domains that resemble ribonuclease H and interleukin 8, respectively. The entire protein adopts a flat crescent shape, characteristic of other MACPF proteins, that may be important for oligomerization. This Bth-MACPF structure provides new features and insights not observed in two previous MACPF structures. Genomic context analysis infers that Bth-MACPF may be involved in a novel protein-transport or nutrient-uptake system, suggesting an important role for these MACPF proteins, which were likely to have been inherited from eukaryotes via horizontal gene transfer, in the adaptation of commensal bacteria to the host environment.
Collapse
Affiliation(s)
- Qingping Xu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Polat Abdubek
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Tamara Astakhova
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Herbert L. Axelrod
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Constantina Bakolitsa
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Xiaohui Cai
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Dennis Carlton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Connie Chen
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Hsiu-Ju Chiu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Thomas Clayton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Debanu Das
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Marc C. Deller
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lian Duan
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Kyle Ellrott
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Carol L. Farr
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Julie Feuerhelm
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Joanna C. Grant
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Anna Grzechnik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gye Won Han
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lukasz Jaroszewski
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Kevin K. Jin
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Heath E. Klock
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Mark W. Knuth
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Piotr Kozbial
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - S. Sri Krishna
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Abhinav Kumar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Winnie W. Lam
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - David Marciano
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Mitchell D. Miller
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Andrew T. Morse
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Edward Nigoghossian
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Amanda Nopakun
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Linda Okach
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Christina Puckett
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Ron Reyes
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Henry J. Tien
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Christine B. Trame
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Henry van den Bedem
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Dana Weekes
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Tiffany Wooten
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Andrew Yeh
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Jiadong Zhou
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Keith O. Hodgson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - John Wooley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Marc-André Elsliger
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashley M. Deacon
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Adam Godzik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Scott A. Lesley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A. Wilson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
55
|
The structural basis of peptide-protein binding strategies. Structure 2010; 18:188-99. [PMID: 20159464 DOI: 10.1016/j.str.2009.11.012] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/08/2009] [Accepted: 11/11/2009] [Indexed: 02/05/2023]
Abstract
Peptide-protein interactions are very prevalent, mediating key processes such as signal transduction and protein trafficking. How can peptides overcome the entropic cost involved in switching from an unstructured, flexible peptide to a rigid, well-defined bound structure? A structure-based analysis of peptide-protein interactions unravels that most peptides do not induce conformational changes on their partner upon binding, thus minimizing the entropic cost of binding. Furthermore, peptides display interfaces that are better packed than protein-protein interfaces and contain significantly more hydrogen bonds, mainly those involving the peptide backbone. Additionally, "hot spot" residues contribute most of the binding energy. Finally, peptides tend to bind in the largest pockets available on the protein surface. Our study is based on peptiDB, a new and comprehensive data set of 103 high-resolution peptide-protein complex structures. In addition to improved understanding of peptide-protein interactions, our findings have direct implications for the structural modeling, design, and manipulation of these interactions.
Collapse
|
56
|
Kowalsman N, Eisenstein M. Combining interface core and whole interface descriptors in postscan processing of protein-protein docking models. Proteins 2009; 77:297-318. [DOI: 10.1002/prot.22436] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
57
|
Merlino A, Avella G, Di Gaetano S, Arciello A, Piccoli R, Mazzarella L, Sica F. Structural features for the mechanism of antitumor action of a dimeric human pancreatic ribonuclease variant. Protein Sci 2009; 18:50-7. [PMID: 19177350 DOI: 10.1002/pro.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A specialized class of RNases shows a high cytotoxicity toward tumor cell lines, which is critically dependent on their ability to reach the cytosol and to evade the action of the ribonuclease inhibitor (RI). The cytotoxicity and antitumor activity of bovine seminal ribonuclease (BSRNase), which exists in the native state as an equilibrium mixture of a swapped and an unswapped dimer, are peculiar properties of the swapped form. A dimeric variant (HHP2-RNase) of human pancreatic RNase, in which the enzyme has been engineered to reproduce the sequence of BSRNase helix-II (Gln28-->Leu, Arg31-->Cys, Arg32-->Cys, and Asn34-->Lys) and to eliminate a negative charge on the surface (Glu111-->Gly), is also extremely cytotoxic. Surprisingly, this activity is associated also to the unswapped form of the protein. The crystal structure reveals that on this molecule the hinge regions, which are highly disordered in the unswapped form of BSRNase, adopt a very well-defined conformation in both subunits. The results suggest that the two hinge peptides and the two Leu28 side chains may provide an anchorage to a transient noncovalent dimer, which maintains Cys31 and Cys32 of the two subunits in proximity, thus stabilizing a quaternary structure, similar to that found for the noncovalent swapped dimer of BSRNase, that allows the molecule to escape RI and/or to enhance the formation of the interchain disulfides.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Via Cintia, Napoli 80126, Italy
| | | | | | | | | | | | | |
Collapse
|
58
|
Friedman EJ, Temple BRS, Hicks SN, Sondek J, Jones CD, Jones AM. Prediction of protein-protein interfaces on G-protein beta subunits reveals a novel phospholipase C beta2 binding domain. J Mol Biol 2009; 392:1044-54. [PMID: 19646992 DOI: 10.1016/j.jmb.2009.07.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 07/08/2009] [Accepted: 07/27/2009] [Indexed: 11/25/2022]
Abstract
Gbeta subunits from heterotrimeric G-proteins (guanine nucleotide-binding proteins) directly bind diverse proteins, including effectors and regulators, to modulate a wide array of signaling cascades. These numerous interactions constrained the evolution of the molecular surface of Gbeta. Although mammals contain five Gbeta genes comprising two classes (Gbeta1-like and Gbeta5-like), plants and fungi have a single ortholog, and organisms such as Caenorhabditis elegans and Drosophila melanogaster contain one copy from each class. A limited number of crystal structures of complexes containing Gbeta subunits and complementary biochemical data highlight specific sites within Gbetas needed for protein interactions. It is difficult to determine from these interaction sites what, if any, additional regions of the Gbeta molecular surface comprise interaction interfaces essential to Gbeta's role as a nexus in numerous signaling cascades. We used a comparative evolutionary approach to identify five known and eight previously unknown putative interfaces on the surface of Gbeta. We show that one such novel interface occurs between Gbeta and phospholipase C beta2 (PLC-beta2), a mammalian Gbeta interacting protein. Substitutions of residues within this Gbeta-PLC-beta2 interface reduce the activation of PLC-beta2 by Gbeta1, confirming that our de novo comparative evolutionary approach predicts previously unknown Gbeta-protein interfaces. Similarly, we hypothesize that the seven remaining untested novel regions contribute to putative interfaces for other Gbeta interacting proteins. Finally, this comparative evolutionary approach is suitable for application to any protein involved in a significant number of protein-protein interactions.
Collapse
Affiliation(s)
- Erin J Friedman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
59
|
Wang N, Smith WF, Miller BR, Aivazian D, Lugovskoy AA, Reff ME, Glaser SM, Croner LJ, Demarest SJ. Conserved amino acid networks involved in antibody variable domain interactions. Proteins 2009; 76:99-114. [PMID: 19089973 DOI: 10.1002/prot.22319] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Engineered antibodies are a large and growing class of protein therapeutics comprising both marketed products and many molecules in clinical trials in various disease indications. We investigated naturally conserved networks of amino acids that support antibody V(H) and V(L) function, with the goal of generating information to assist in the engineering of robust antibody or antibody-like therapeutics. We generated a large and diverse sequence alignment of V-class Ig-folds, of which V(H) and V(L) domains are family members. To identify conserved amino acid networks, covariations between residues at all possible position pairs were quantified as correlation coefficients (phi-values). We provide rosters of the key conserved amino acid pairs in antibody V(H) and V(L) domains, for reference and use by the antibody research community. The majority of the most strongly conserved amino acid pairs in V(H) and V(L) are at or adjacent to the V(H)-V(L) interface suggesting that the ability to heterodimerize is a constraining feature of antibody evolution. For the V(H) domain, but not the V(L) domain, residue pairs at the variable-constant domain interface (V(H)-C(H)1 interface) are also strongly conserved. The same network of conserved V(H) positions involved in interactions with both the V(L) and C(H)1 domains is found in camelid V(HH) domains, which have evolved to lack interactions with V(L) and C(H)1 domains in their mature structures; however, the amino acids at these positions are different, reflecting their different function. Overall, the data describe naturally occurring amino acid networks in antibody Fv regions that can be referenced when designing antibodies or antibody-like fragments with the goal of improving their biophysical properties.
Collapse
Affiliation(s)
- Norman Wang
- Biogen Idec, San Diego, California 92122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Tuncbag N, Kar G, Keskin O, Gursoy A, Nussinov R. A survey of available tools and web servers for analysis of protein-protein interactions and interfaces. Brief Bioinform 2009; 10:217-32. [PMID: 19240123 DOI: 10.1093/bib/bbp001] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The unanimous agreement that cellular processes are (largely) governed by interactions between proteins has led to enormous community efforts culminating in overwhelming information relating to these proteins; to the regulation of their interactions, to the way in which they interact and to the function which is determined by these interactions. These data have been organized in databases and servers. However, to make these really useful, it is essential not only to be aware of these, but in particular to have a working knowledge of which tools to use for a given problem; what are the tool advantages and drawbacks; and no less important how to combine these for a particular goal since usually it is not one tool, but some combination of tool-modules that is needed. This is the goal of this review.
Collapse
Affiliation(s)
- Nurcan Tuncbag
- Computational Sciences and Engineering Program at Koc University, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
61
|
Steinkellner G, Rader R, Thallinger GG, Kratky C, Gruber K. VASCo: computation and visualization of annotated protein surface contacts. BMC Bioinformatics 2009; 10:32. [PMID: 19166624 PMCID: PMC2649047 DOI: 10.1186/1471-2105-10-32] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 01/24/2009] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Structural data from crystallographic analyses contain a vast amount of information on protein-protein contacts. Knowledge on protein-protein interactions is essential for understanding many processes in living cells. The methods to investigate these interactions range from genetics to biophysics, crystallography, bioinformatics and computer modeling. Also crystal contact information can be useful to understand biologically relevant protein oligomerisation as they rely in principle on the same physico-chemical interaction forces. Visualization of crystal and biological contact data including different surface properties can help to analyse protein-protein interactions. RESULTS VASCo is a program package for the calculation of protein surface properties and the visualization of annotated surfaces. Special emphasis is laid on protein-protein interactions, which are calculated based on surface point distances. The same approach is used to compare surfaces of two aligned molecules. Molecular properties such as electrostatic potential or hydrophobicity are mapped onto these surface points. Molecular surfaces and the corresponding properties are calculated using well established programs integrated into the package, as well as using custom developed programs. The modular package can easily be extended to include new properties for annotation. The output of the program is most conveniently displayed in PyMOL using a custom-made plug-in. CONCLUSION VASCo supplements other available protein contact visualisation tools and provides additional information on biological interactions as well as on crystal contacts. The tool provides a unique feature to compare surfaces of two aligned molecules based on point distances and thereby facilitates the visualization and analysis of surface differences.
Collapse
Affiliation(s)
- Georg Steinkellner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
- Research Centre Applied Biocatalysis, Petersgasse 14, 8010 Graz, Austria
| | - Robert Rader
- Institute for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
- Christian Doppler Laboratory for Genomics and Bioinformatics, Petersgasse 14, 8010 Graz, Austria
| | - Gerhard G Thallinger
- Institute for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Christoph Kratky
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
- Research Centre Applied Biocatalysis, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
62
|
Mohan PK, Hosur RV. pH dependent unfolding characteristics of DLC8 dimer: Residue level details from NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1795-803. [DOI: 10.1016/j.bbapap.2008.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 06/30/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
|
63
|
Aprodu I, Soncini M, Redaelli A. Interaction forces and interface properties of KIF1A kinesin-alphabeta tubulin complex assessed by molecular dynamics. J Biomech 2008; 41:3196-201. [PMID: 18829030 DOI: 10.1016/j.jbiomech.2008.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/14/2008] [Accepted: 08/15/2008] [Indexed: 11/27/2022]
Abstract
Kinesin is a microtubule-based motor protein that generates motion involved in intracellular trafficking and cell division. Even if the force-generating and enzymatic properties of kinesin were extensively studied, the molecular basis of its interaction with the microtubule is still not well understood. The aim of the present study is to provide a detailed description, in terms of conformational changes and interaction properties, of the kinesin-alphabeta tubulin complex during a cycle of ATP hydrolysis. Four different nucleotide-dependent conformations (nucleotide-free, ATP, ADP.Pi and ADP) of the kinesin-alphabeta tubulin were constructed and investigated by performing molecular dynamics simulations. Computational results show that small conformational changes, in the order of few Angstrom, occurring in the kinesin structure reflect on its affinity for the filament substrate. Indeed the rotation of the alpha4 helix due to the transition from the bound (ADP.Pi) to the unbound (ADP) state, when the Pi is released from the complex, coupled with the modification occurred in the loop L9 of switch I domain are associated to a marked decrease (approximately 45%) of the maximum interaction force between the kinesin motor and the tubulin dimer.
Collapse
Affiliation(s)
- Iuliana Aprodu
- Department of Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | | | | |
Collapse
|
64
|
Keskin O, Gursoy A, Ma B, Nussinov R. Principles of Protein−Protein Interactions: What are the Preferred Ways For Proteins To Interact? Chem Rev 2008; 108:1225-44. [DOI: 10.1021/cr040409x] [Citation(s) in RCA: 476] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
65
|
Costa S, Cesareni G. Domains mediate protein-protein interactions and nucleate protein assemblies. Handb Exp Pharmacol 2008:383-405. [PMID: 18491061 DOI: 10.1007/978-3-540-72843-6_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cell physiology is governed by an intricate mesh of physical and functional links among proteins, nucleic acids and other metabolites. The recent information flood coming from large-scale genomic and proteomic approaches allows us to foresee the possibility of compiling an exhaustive list of the molecules present within a cell, enriched with quantitative information on concentration and cellular localization. Moreover, several high-throughput experimental and computational techniques have been devised to map all the protein interactions occurring in a living cell. So far, such maps have been drawn as graphs where nodes represent proteins and edges represent interactions. However, this representation does not take into account the intrinsically modular nature of proteins and thus fails in providing an effective description of the determinants of binding. Since proteins are composed of domains that often confer on proteins their binding capabilities, a more informative description of the interaction network would detail, for each pair of interacting proteins in the network, which domains mediate the binding. Understanding how protein domains combine to mediate protein interactions would allow one to add important features to the protein interaction network, making it possible to discriminate between simultaneously occurring and mutually exclusive interactions. This objective can be achieved by experimentally characterizing domain recognition specificity or by analyzing the frequency of co-occurring domains in proteins that do interact. Such approaches allow gaining insights on the topology of complexes with unknown three-dimensional structure, thus opening the prospect of adopting a more rational strategy in developing drugs designed to selectively target specific protein interactions.
Collapse
Affiliation(s)
- S Costa
- University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
| | | |
Collapse
|
66
|
Zhao X, Copeland DM, Soares AS, West AH. Crystal structure of a complex between the phosphorelay protein YPD1 and the response regulator domain of SLN1 bound to a phosphoryl analog. J Mol Biol 2007; 375:1141-51. [PMID: 18076904 DOI: 10.1016/j.jmb.2007.11.045] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 11/09/2007] [Accepted: 11/14/2007] [Indexed: 11/17/2022]
Abstract
The crystal structure of the yeast SLN1 response regulator (RR) domain bound to both a phosphoryl analog [beryllium fluoride (BeF(3)(-))] and Mg(2+), in complex with its downstream phosphorelay signaling partner YPD1, has been determined at a resolution of 1.70 A. Comparisons between the BeF(3)(-)-activated complex and the unliganded (or apo) complex determined previously reveal modest but important differences. The SLN1-R1 x Mg(2+) x BeF(3)(-) structure from the complex provides evidence for the first time that the mechanism of phosphorylation-induced activation is highly conserved between bacterial RR domains and this example from a eukaryotic organism. Residues in and around the active site undergo slight rearrangements in order to form bonds with the essential divalent cation and fluorine atoms of BeF(3)(-). Two conserved switch-like residues (Thr1173 and Phe1192) occupy distinctly different positions in the apo versus BeF(3)(-)-bound structures, consistent with the "Y-T" coupling mechanism proposed for the activation of CheY and other bacterial RRs. Several loop regions and the alpha 4-beta 5-alpha 5 surface of the SLN1-R1 domain undergo subtle conformational changes ( approximately 1-3 A displacements relative to the apo structure) that lead to significant changes in terms of contacts that are formed with YPD1. Detailed structural comparisons of protein-protein interactions in the apo and BeF(3)(-)-bound complexes suggest at least a two-state equilibrium model for the formation of a transient encounter complex, in which phosphorylation of the RR promotes the formation of a phosphotransfer-competent complex. In the BeF(3)(-)-activated complex, the position of His64 from YPD1 needs to be within ideal distance of and in near-linear geometry with Asp1144 from the SLN1-R1 domain for phosphotransfer to occur. The ground-state structure presented here suggests that phosphoryl transfer will likely proceed through an associative mechanism involving the formation of a pentacoordinate phosphorus intermediate.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019, USA
| | | | | | | |
Collapse
|
67
|
Negi SS, Braun W. Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces. J Mol Model 2007; 13:1157-67. [PMID: 17828612 PMCID: PMC2628805 DOI: 10.1007/s00894-007-0237-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
We have developed a fully automated method, InterProSurf, to predict interacting amino acid residues on protein surfaces of monomeric 3D structures. Potential interacting residues are predicted based on solvent accessible surface areas, a new scale for interface propensities, and a cluster algorithm to locate surface exposed areas with high interface propensities. Previous studies have shown the importance of hydrophobic residues and specific charge distribution as characteristics for interfaces. Here we show differences in interface and surface regions of all physical chemical properties of residues as represented by five quantitative descriptors. In the current study a set of 72 protein complexes with known 3D structures were analyzed to obtain interface propensities of residues, and to find differences in the distribution of five quantitative descriptors for amino acid residues. We also investigated spatial pair correlations of solvent accessible residues in interface and surface areas, and compared log-odds ratios for interface and surface areas. A new scoring method to predict potential functional sites on the protein surface was developed and tested for a new dataset of 21 protein complexes, which were not included in the original training dataset. Empirically we found that the algorithm achieves a good balance in the accuracy of precision and sensitivity by selecting the top eight highest scoring clusters as interface regions. The performance of the method is illustrated for a dimeric ATPase of the hyperthermophile, Methanococcus jannaschii, and the capsid protein of Human Hepatitis B virus. An automated version of the method can be accessed from our web server at http://curie.utmb.edu/prosurf.html.
Collapse
Affiliation(s)
- Surendra S Negi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0857, USA
| | | |
Collapse
|
68
|
Toshchakov VY, Vogel SN. Cell-penetrating TIR BB loop decoy peptides a novel class of TLR signaling inhibitors and a tool to study topology of TIR-TIR interactions. Expert Opin Biol Ther 2007; 7:1035-50. [PMID: 17665992 DOI: 10.1517/14712598.7.7.1035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Toll-like receptors (TLR), a family of closely related type I, transmembrane, signal transducing proteins, sense invading pathogens early in the immune response to infection and deliver intracellular signals to the cell. Both TLRs and their adapter proteins possess a conserved region, the Toll/IL-1 resistance (TIR) domain. A subregion of approximately 14 amino acids within the TIR domain, the BB loop, enables interactions between certain TLRs or between certain TLRs and their adapter molecules. Use of cell-penetrating decoy peptides composed of the sequence of the Drosophila antennapedia peptide (16 amino acids) juxtaposed to a specific TIR BB loop 14 amino acid sequences enables an evaluation of the relative efficacy of such BB loop peptides to inhibit TIR-TIR interactions and signaling. Moreover, failure of specific BB loop peptides to inhibit signaling suggests that this region of a particular TIR domain is likely to not be involved in signaling. This review discusses cell-penetrating decoy peptides as a new tool to further understanding of the molecular interactions required for TLR signaling and evaluates the potential of this approach for the creation of therapeutic agents.
Collapse
Affiliation(s)
- Vladimir Y Toshchakov
- University of Maryland, Department of Microbiology and Immunology, School of Medicine, MD 21201-1559, Baltimore, USA.
| | | |
Collapse
|
69
|
Baez M, Cabrera R, Guixé V, Babul J. Unfolding pathway of the dimeric and tetrameric forms of phosphofructokinase-2 from Escherichia coli. Biochemistry 2007; 46:6141-8. [PMID: 17469854 DOI: 10.1021/bi7002247] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli phosphofructokinase-2 (Pfk-2) is an oligomeric enzyme characterized by two kinds of interfaces: a monomer-monomer interface, critical for enzymatic activity, and a dimer-dimer interface formed upon tetramerization due to allosteric binding of MgATP. In this work, Pfk-2 was denatured by guanidine hydrochloride (GdnHCl) and the impact of ligand binding on the unfolding pathway of the dimeric and the tertrameric forms of the enzyme was examined. The unligated dimeric form unfolds and dissociates from 0.15 to 0.8 M GdnHCl without the accumulation of native monomers, as indicated by circular dichroism and size exclusion chromatography measurements. However, a monomeric intermediate with an expanded volume and residual secondary structure accumulates above 0.8 M GdnHCl. The dimeric fructose-6-P-enzyme complex shows a shift in the simultaneous dissociation and unfolding process to elevated GdnHCl concentrations (from 0.8 to 1.4 M) together with the expulsion of the ligand detected by intrinsic fluorescence measurements. The unfolding pathway of the tetrameric MgATP-enzyme complex shows the accumulation of a tetrameric intermediate with altered fluorescence properties at about 0.4 M GdnHCl. Above this concentration a sharp transition from tetramers to monomers, without the accumulation of either compact dimers or monomers, was detected by light scattering measurements. Indeed, the most populated species was a partially unfolded monomer about 0.7 M GdnHCl. On the basis of these results, we suggest that the subunit contacts are critical for the maintenance of the overall structure of Pfk-2 and for the binding of ligands, explaining the reported importance of the dimeric state for enzymatic activity.
Collapse
Affiliation(s)
- Mauricio Baez
- Departamento de Biología, Facultad de Ciencias Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | |
Collapse
|
70
|
Ezezika OC, Haddad S, Neidle EL, Momany C. Oligomerization of BenM, a LysR-type transcriptional regulator: structural basis for the aggregation of proteins in this family. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:361-8. [PMID: 17565172 PMCID: PMC2334995 DOI: 10.1107/s1744309107019185] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 04/17/2007] [Indexed: 11/10/2022]
Abstract
LysR-type transcriptional regulators comprise the largest family of homologous regulatory DNA-binding proteins in bacteria. A problematic challenge in the crystallization of LysR-type regulators stems from the insolubility and precipitation difficulties encountered with high concentrations of the full-length versions of these proteins. A general oligomerization scheme is proposed for this protein family based on the structures of the effector-binding domain of BenM in two different space groups, P4(3)22 and C222(1). These structures used the same oligomerization scheme of dimer-dimer interactions as another LysR-type regulator, CbnR, the full-length structure of which is available [Muraoka et al. (2003), J. Mol. Biol. 328, 555-566]. Evaluation of packing relationships and surface features suggests that BenM can form infinite oligomeric arrays in crystals through these dimer-dimer interactions. By extrapolation to the liquid phase, such dimer-dimer interactions may contribute to the significant difficulty in crystallizing full-length members of this family. The oligomerization of dimeric units to form biologically important tetramers appears to leave unsatisfied oligomerization sites. Under conditions that favor association, such as neutral pH and concentrations appropriate for crystallization, higher order oligomerization could cause solubility problems with purified proteins. A detailed model by which BenM and other LysR-type transcriptional regulators may form these arrays is proposed.
Collapse
Affiliation(s)
| | - Sandra Haddad
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Ellen L. Neidle
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Cory Momany
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
71
|
Jefferson ER, Walsh TP, Roberts TJ, Barton GJ. SNAPPI-DB: a database and API of Structures, iNterfaces and Alignments for Protein-Protein Interactions. Nucleic Acids Res 2007; 35:D580-9. [PMID: 17202171 PMCID: PMC1899103 DOI: 10.1093/nar/gkl836] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
SNAPPI-DB, a high performance database of Structures, iNterfaces and Alignments of Protein–Protein Interactions, and its associated Java Application Programming Interface (API) is described. SNAPPI-DB contains structural data, down to the level of atom co-ordinates, for each structure in the Protein Data Bank (PDB) together with associated data including SCOP, CATH, Pfam, SWISSPROT, InterPro, GO terms, Protein Quaternary Structures (PQS) and secondary structure information. Domain–domain interactions are stored for multiple domain definitions and are classified by their Superfamily/Family pair and interaction interface. Each set of classified domain–domain interactions has an associated multiple structure alignment for each partner. The API facilitates data access via PDB entries, domains and domain–domain interactions. Rapid development, fast database access and the ability to perform advanced queries without the requirement for complex SQL statements are provided via an object oriented database and the Java Data Objects (JDO) API. SNAPPI-DB contains many features which are not available in other databases of structural protein–protein interactions. It has been applied in three studies on the properties of protein–protein interactions and is currently being employed to train a protein–protein interaction predictor and a functional residue predictor. The database, API and manual are available for download at: .
Collapse
Affiliation(s)
| | | | | | - Geoffrey J. Barton
- To whom correspondence should be addressed. Tel: +44 01382 385860; Fax: +44 01382 385764;
| |
Collapse
|
72
|
Bahia D, Aviñó A, Darzynkiewicz E, Eritja R, Bach-Elias M. Trimethylguanosine nucleoside inhibits cross-linking between Snurportin 1 and m3G-CAPPED U1 snRNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:909-23. [PMID: 16901822 DOI: 10.1080/15257770600793901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Macromolecular nuclear import is an energy-and signal-dependent process. The best characterized type of nuclear import consists of proteins carrying the classical NLS that is mediated by the heterodimeric receptor importin alpha/beta. Spliceosomal snRNPs U1, U2, U4, and U5 nuclear import depend both on the 5' terminal m3G (trimethylguanosine) cap structure of the U snRNA and the Sm core domain. Snurportin 1 recognizes the m3G-cap structure of m3G-capped U snRNPs. In this report, we show how a synthesized trimethylguanosine nucleoside affects the binding of Snurportin 1 to m3G-capped U1 snRNA in a UV-cross-linking assay. The data indicated that TMG nucleoside is an essential component required in the recognition by Snurportin 1, thus suggesting that interaction of Snurportin 1 with U1 snRNA is not strictly dependent on the presence of the whole cap structure, but rather on the presence of the TMG nucleoside structure. These results indicate that the free nucleoside TMG could be a candidate to be an inhibitor of the interaction between Snurportin 1 and U snRNAs. We also show the behavior of free TMG nucleoside in in vitro U snRNPs nuclear import.
Collapse
Affiliation(s)
- Diana Bahia
- Institut de Biología Molecular de Barcelona, CSIC (IBMB-CSIC), Barcelona.
| | | | | | | | | |
Collapse
|
73
|
Han JH, Kerrison N, Chothia C, Teichmann SA. Divergence of interdomain geometry in two-domain proteins. Structure 2006; 14:935-45. [PMID: 16698554 DOI: 10.1016/j.str.2006.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 12/23/2005] [Accepted: 01/18/2006] [Indexed: 10/24/2022]
Abstract
For homologous protein chains composed of two domains, we have determined the extent to which they conserve (1) their interdomain geometry and (2) the molecular structure of the domain interface. This work was carried out on 128 unique two-domain architectures. Of the 128, we find 75 conserve their interdomain geometry and the structure of their domain interface; 5 conserve their interdomain geometry but not the structure of their interface; and 48 have variable geometries and divergent interface structure. We describe how different types of interface changes or the absence of an interface is responsible for these differences in geometry. Variable interdomain geometries can be found in homologous structures with high sequence identities (70%).
Collapse
Affiliation(s)
- Jung-Hoon Han
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, United Kingdom.
| | | | | | | |
Collapse
|
74
|
Lise S, Walker-Taylor A, Jones DT. Docking protein domains in contact space. BMC Bioinformatics 2006; 7:310. [PMID: 16790041 PMCID: PMC1559650 DOI: 10.1186/1471-2105-7-310] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 06/21/2006] [Indexed: 11/10/2022] Open
Abstract
Background Many biological processes involve the physical interaction between protein domains. Understanding these functional associations requires knowledge of the molecular structure. Experimental investigations though present considerable difficulties and there is therefore a need for accurate and reliable computational methods. In this paper we present a novel method that seeks to dock protein domains using a contact map representation. Rather than providing a full three dimensional model of the complex, the method predicts contacting residues across the interface. We use a scoring function that combines structural, physicochemical and evolutionary information, where each potential residue contact is assigned a value according to the scoring function and the hypothesis is that the real configuration of contacts is the one that maximizes the score. The search is performed with a simulated annealing algorithm directly in contact space. Results We have tested the method on interacting domain pairs that are part of the same protein (intra-molecular domains). We show that it correctly predicts some contacts and that predicted residues tend to be significantly closer to each other than other pairs of residues in the same domains. Moreover we find that predicted contacts can often discriminate the best model (or the native structure, if present) among a set of optimal solutions generated by a standard docking procedure. Conclusion Contact docking appears feasible and able to complement other computational methods for the prediction of protein-protein interactions. With respect to more standard docking algorithms it might be more suitable to handle protein conformational changes and to predict complexes starting from protein models.
Collapse
Affiliation(s)
- Stefano Lise
- Department of Biochemistry and Molecular Biology, University College London, UK
| | | | - David T Jones
- Department of Biochemistry and Molecular Biology, University College London, UK
- Department of Computer Science, University College London, UK
| |
Collapse
|
75
|
Rekha N, Machado SM, Narayanan C, Krupa A, Srinivasan N. Interaction interfaces of protein domains are not topologically equivalent across families within superfamilies: Implications for metabolic and signaling pathways. Proteins 2006; 58:339-53. [PMID: 15562516 DOI: 10.1002/prot.20319] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using a data set of aligned protein domain superfamilies of known three-dimensional structure, we compared the location of interdomain interfaces on the tertiary folds between members of distantly related protein domain superfamilies. The data set analyzed is comprised of interdomain interfaces, with domains occurring within a polypeptide chain and those between two polypeptide chains. We observe that, in general, the interfaces between protein domains are formed entirely in different locations on the tertiary folds in such pairs. This variation in the location of interface happens in protein domains involved in a wide range of functions, such as enzymes, adapters, and domains that bind protein ligands, or cofactors. While basic biochemical functionality is preserved at the domain superfamily level, the effect of biochemical function on protein assemblies is different in these protein domains related by superfamily. The divergence between proteins, in most cases, is coupled with domain recruitment, with different modes of interaction with the recruited domain. This is in complete contrast to the observation that in closely related homologous protein domains, almost always the interaction interfaces are topologically equivalent. In a small subset of interacting domains within proteins related by remote homology, we observe that the relative positioning of domains with respect to one another is preserved. Based on the analysis of multidomain proteins of known or unknown structure, we suggest that variation in protein-protein interactions in members within a superfamily could serve as diverging points in otherwise parallel metabolic or signaling pathways. We discuss a few representative cases of diverging pathways involving domains in a superfamily.
Collapse
Affiliation(s)
- N Rekha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | | | | |
Collapse
|
76
|
Abstract
We show that protein complexes can be represented as small-world networks, exhibiting a relatively small number of highly central amino-acid residues occurring frequently at protein-protein interfaces. We further base our analysis on a set of different biological examples of protein-protein interactions with experimentally validated hot spots, and show that 83% of these predicted highly central residues, which are conserved in sequence alignments and nonexposed to the solvent in the protein complex, correspond to or are in direct contact with an experimentally annotated hot spot. The remaining 17% show a general tendency to be close to an annotated hot spot. On the other hand, although there is no available experimental information on their contribution to the binding free energy, detailed analysis of their properties shows that they are good candidates for being hot spots. Thus, highly central residues have a clear tendency to be located in regions that include hot spots. We also show that some of the central residues in the protein complex interfaces are central in the monomeric structures before dimerization and that possible information relating to hot spots of binding free energy could be obtained from the unbound structures.
Collapse
|
77
|
Abstract
Considering the limited success of the most sophisticated docking methods available and the amount of computation required for systematic docking, cataloging all the known interfaces may be an alternative basis for the prediction of protein tertiary and quaternary structures. We classify domain interfaces according to the geometry of domain-domain association. By applying a simple and efficient method called "interface tag clustering," more than 4,000 distinct types of domain interfaces are collected from Protein Quaternary Structure Server and Protein Data Bank. Given a pair of interacting domains, we define "face" as the set of interacting residues in each single domain and the pair of interacting faces as an "interface." We investigate how the geometry of interfaces relates to a network of interacting protein families, such as how many different binding orientations are possible between two families or whether a family uses distinct surfaces or the same surface when the family has diverse interaction partners from various families. We show there are, on average, 1.2-1.9 different types of interfaces between interacting domains and a significant number of family pairs associate in multiple orientations. In general, a family tends to use distinct faces for each partner when the family has diverse interaction partners. Each face is highly specific to its interaction partner and the binding orientation. The relative positions of interface residues are generally well conserved within the same type of interface even between remote homologs. The classification result is available at http://www.biotec.tu-dresden.de/~wkim/supplement.
Collapse
Affiliation(s)
- Wan Kyu Kim
- Biotechnological Centre, TU Dresden, Germany
| | | |
Collapse
|
78
|
Heuser P, Baù D, Benkert P, Schomburg D. Refinement of unbound protein docking studies using biological knowledge. Proteins 2006; 61:1059-67. [PMID: 16208723 DOI: 10.1002/prot.20634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this work we present two methods for the reranking of protein-protein docking studies. One scoring method searches the InterDom database for domains that are available in the proteins to be docked and evaluates the interaction of these domains in other complexes of known structure. The second one analyzes the interface of each proposed conformation with regard to the conservation of Phe, Met, and Trp and their polar neighbor residues. The special relevance of these residues is based on a publication by Ma et al. (Proc Natl Acad Sci USA 2003;100:5772-5777), who compared the conservation of all residues in the interface region to the conservation on the rest of the protein's surface. The scoring functions were tested on 30 unbound docking test cases. The evaluation of the methods is based on the ability to rerank the output of a Fast Fourier Transformation (FFT) docking. Both were able to improve the ranking of the docking output. The best improvement was achieved for enzyme-inhibitor examples. Especially the domain-based scoring function was successful and able to place a near-native solution on one of the first six ranks for 13 of 17 (76%) enzyme-inhibitor complexes [in 53% (nine complexes) even on the first rank]. The method evaluating residue conservation allowed us to increase the number of good solutions within the first 100 ranks out of approximately 9000 in 82% of the 17 enzyme-inhibitor test cases, and for seven (41%) out of 17 enzyme-inhibitor complexes, a near native solution was placed within the first seven ranks.
Collapse
Affiliation(s)
- Philipp Heuser
- CUBIC-Cologne University BioInformatics Center, Cologne, Germany
| | | | | | | |
Collapse
|
79
|
Sistla RK, K V B, Vishveshwara S. Identification of domains and domain interface residues in multidomain proteins from graph spectral method. Proteins 2006; 59:616-26. [PMID: 15789418 DOI: 10.1002/prot.20444] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We present a novel method for the identification of structural domains and domain interface residues in proteins by graph spectral method. This method converts the three-dimensional structure of the protein into a graph by using atomic coordinates from the PDB file. Domain definitions are obtained by constructing either a protein backbone graph or a protein side-chain graph. The graph is constructed based on the interactions between amino acid residues in the three-dimensional structure of the proteins. The spectral parameters of such a graph contain information regarding the domains and subdomains in the protein structure. This is based on the fact that the interactions among amino acids are higher within a domain than across domains. This is evident in the spectra of the protein backbone and the side-chain graphs, thus differentiating the structural domains from one another. Further, residues that occur at the interface of two domains can also be easily identified from the spectra. This method is simple, elegant, and robust. Moreover, a single numeric computation yields both the domain definitions and the interface residues.
Collapse
Affiliation(s)
- Ramesh K Sistla
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
80
|
Teyra J, Doms A, Schroeder M, Pisabarro MT. SCOWLP: a web-based database for detailed characterization and visualization of protein interfaces. BMC Bioinformatics 2006; 7:104. [PMID: 16512892 PMCID: PMC1459204 DOI: 10.1186/1471-2105-7-104] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 03/02/2006] [Indexed: 11/25/2022] Open
Abstract
Background Currently there is a strong need for methods that help to obtain an accurate description of protein interfaces in order to be able to understand the principles that govern molecular recognition and protein function. Many of the recent efforts to computationally identify and characterize protein networks extract protein interaction information at atomic resolution from the PDB. However, they pay none or little attention to small protein ligands and solvent. They are key components and mediators of protein interactions and fundamental for a complete description of protein interfaces. Interactome profiling requires the development of computational tools to extract and analyze protein-protein, protein-ligand and detailed solvent interaction information from the PDB in an automatic and comparative fashion. Adding this information to the existing one on protein-protein interactions will allow us to better understand protein interaction networks and protein function. Description SCOWLP (Structural Characterization Of Water, Ligands and Proteins) is a user-friendly and publicly accessible web-based relational database for detailed characterization and visualization of the PDB protein interfaces. The SCOWLP database includes proteins, peptidic-ligands and interface water molecules as descriptors of protein interfaces. It contains currently 74,907 protein interfaces and 2,093,976 residue-residue interactions formed by 60,664 structural units (protein domains and peptidic-ligands) and their interacting solvent. The SCOWLP web-server allows detailed structural analysis and comparisons of protein interfaces at atomic level by text query of PDB codes and/or by navigating a SCOP-based tree. It includes a visualization tool to interactively display the interfaces and label interacting residues and interface solvent by atomic physicochemical properties. SCOWLP is automatically updated with every SCOP release. Conclusion SCOWLP enriches substantially the description of protein interfaces by adding detailed interface information of peptidic-ligands and solvent to the existing protein-protein interaction databases. SCOWLP may be of interest to many structural bioinformaticians. It provides a platform for automatic global mapping of protein interfaces at atomic level, representing a useful tool for classification of protein interfaces, protein binding comparative studies, reconstruction of protein complexes and understanding protein networks. The web-server with the database and its additional summary tables used for our analysis are available at .
Collapse
Affiliation(s)
- Joan Teyra
- Department of Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Andreas Doms
- Department of Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Michael Schroeder
- Department of Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - M Teresa Pisabarro
- Department of Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| |
Collapse
|
81
|
Janssen MEW, Kim E, Liu H, Fujimoto LM, Bobkov A, Volkmann N, Hanein D. Three-dimensional structure of vinculin bound to actin filaments. Mol Cell 2006; 21:271-81. [PMID: 16427016 DOI: 10.1016/j.molcel.2005.11.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 11/11/2005] [Accepted: 11/17/2005] [Indexed: 11/18/2022]
Abstract
Vinculin plays a pivotal role in cell adhesion and migration by providing the link between the actin cytoskeleton and the transmembrane receptors, integrin and cadherin. We used a combination of electron microscopy, computational docking, and biochemistry to provide an atomic model of how the vinculin tail binds actin filaments. The vinculin tail actin binding site comprises two distinct regions. One of these regions is exposed in the full-length autoinhibited conformation of vinculin, whereas the second site is sterically occluded by vinculin's N-terminal domain. The partial accessibility of the F-actin binding site in the autoinhibited full-length vinculin structure suggests that F-actin can act as part of a combinatorial input framework with other binding partners such as alpha-catenin or talin to induce vinculin head-tail dissociation, thus promoting vinculin activation. Furthermore, binding to F-actin potentiates a local rearrangement in the vinculin tail that in turn promotes vinculin dimerization and, hence, formation of actin bundles.
Collapse
Affiliation(s)
- Mandy E W Janssen
- Program on Cell Adhesion, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Gong S, Park C, Choi H, Ko J, Jang I, Lee J, Bolser DM, Oh D, Kim DS, Bhak J. A protein domain interaction interface database: InterPare. BMC Bioinformatics 2005; 6:207. [PMID: 16122378 PMCID: PMC1236910 DOI: 10.1186/1471-2105-6-207] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 08/25/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most proteins function by interacting with other molecules. Their interaction interfaces are highly conserved throughout evolution to avoid undesirable interactions that lead to fatal disorders in cells. Rational drug discovery includes computational methods to identify the interaction sites of lead compounds to the target molecules. Identifying and classifying protein interaction interfaces on a large scale can help researchers discover drug targets more efficiently. DESCRIPTION We introduce a large-scale protein domain interaction interface database called InterPare http://interpare.net. It contains both inter-chain (between chains) interfaces and intra-chain (within chain) interfaces. InterPare uses three methods to detect interfaces: 1) the geometric distance method for checking the distance between atoms that belong to different domains, 2) Accessible Surface Area (ASA), a method for detecting the buried region of a protein that is detached from a solvent when forming multimers or complexes, and 3) the Voronoi diagram, a computational geometry method that uses a mathematical definition of interface regions. InterPare includes visualization tools to display protein interior, surface, and interaction interfaces. It also provides statistics such as the amino acid propensities of queried protein according to its interior, surface, and interface region. The atom coordinates that belong to interface, surface, and interior regions can be downloaded from the website. CONCLUSION InterPare is an open and public database server for protein interaction interface information. It contains the large-scale interface data for proteins whose 3D-structures are known. As of November 2004, there were 10,583 (Geometric distance), 10,431 (ASA), and 11,010 (Voronoi diagram) entries in the Protein Data Bank (PDB) containing interfaces, according to the above three methods. In the case of the geometric distance method, there are 31,620 inter-chain domain-domain interaction interfaces and 12,758 intra-chain domain-domain interfaces.
Collapse
Affiliation(s)
- Sungsam Gong
- National Genome Information Center (NGIC), KRIBB, Daejeon, Korea
- Biomatics Lab, Dept. of BioSystems, KAIST, Daejeon, Korea
| | - Changbum Park
- Geometric Computing Lab, Division of Computer Science, KAIST, Daejeon, Korea
| | - Hansol Choi
- Biomatics Lab, Dept. of BioSystems, KAIST, Daejeon, Korea
| | - Junsu Ko
- Object Interaction Technologies, Inc., Daejeon, Korea
| | - Insoo Jang
- National Genome Information Center (NGIC), KRIBB, Daejeon, Korea
| | - Jungsul Lee
- Laboratory of Computational and Cellular Biology, Dept. of BioSystems, KAIST, Daejeon, Korea
| | | | - Donghoon Oh
- Object Interaction Technologies, Inc., Daejeon, Korea
| | | | - Jong Bhak
- National Genome Information Center (NGIC), KRIBB, Daejeon, Korea
- BiO center, Daejeon, Korea
| |
Collapse
|
83
|
De S, Krishnadev O, Srinivasan N, Rekha N. Interaction preferences across protein-protein interfaces of obligatory and non-obligatory components are different. BMC STRUCTURAL BIOLOGY 2005; 5:15. [PMID: 16105176 PMCID: PMC1201154 DOI: 10.1186/1472-6807-5-15] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 08/16/2005] [Indexed: 11/26/2022]
Abstract
Background A polypeptide chain of a protein-protein complex is said to be obligatory if it is bound to another chain throughout its functional lifetime. Such a chain might not adopt the native fold in the unbound form. A non-obligatory polypeptide chain associates with another chain and dissociates upon molecular stimulus. Although conformational changes at the interaction interface are expected, the overall 3-D structure of the non-obligatory chain is unaltered. The present study focuses on protein-protein complexes to understand further the differences between obligatory and non-obligatory interfaces. Results A non-obligatory chain in a complex of known 3-D structure is recognized by its stable existence with same fold in the bound and unbound forms. On the contrary, an obligatory chain is detected by its existence only in the bound form with no evidence for the native-like fold of the chain in the unbound form. Various interfacial properties of a large number of complexes of known 3-D structures thus classified are comparatively analyzed with an aim to identify structural descriptors that distinguish these two types of interfaces. We report that the interaction patterns across the interfaces of obligatory and non-obligatory components are different and contacts made by obligatory chains are predominantly non-polar. The obligatory chains have a higher number of contacts per interface (20 ± 14 contacts per interface) than non-obligatory chains (13 ± 6 contacts per interface). The involvement of main chain atoms is higher in the case of obligatory chains (16.9 %) compared to non-obligatory chains (11.2 %). The β-sheet formation across the subunits is observed only among obligatory protein chains in the dataset. Apart from these, other features like residue preferences and interface area produce marginal differences and they may be considered collectively while distinguishing the two types of interfaces. Conclusion These results can be useful in distinguishing the two types of interfaces observed in structures determined in large-scale in the structural genomics initiatives, especially for those multi-component protein assemblies for which the biochemical characterization is incomplete.
Collapse
Affiliation(s)
- Subhajyoti De
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721 302, India
| | - O Krishnadev
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - N Srinivasan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - N Rekha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
84
|
Abstract
A non-redundant set of 170 protein-protein interfaces of known structure was statistically analyzed for residue and secondary-structure compositions, pairing preferences and side-chain-backbone interaction frequencies. By focussing mainly on transient protein-protein interfaces, the results underline previous findings for protein-protein interfaces but also show some new interesting aspects of transient interfaces. The residue compositions at interfaces found in this study correlate well with the results of other studies. On average, contacts between pairs of hydrophobic and polar residues were unfavorable, and the charged residues tended to pair subject to charge complementarity. Secondary structure composition analysis shows that neither helices nor beta-sheets are dominantly populated at interfaces. Analyzing the pairing preferences of the secondary structure elements revealed a higher affinity within the same elements and alludes to tight packings. In addition, the results for the side-chain and backbone interaction frequencies, which were measured under more stringent conditions, showed a high occurrence of side-chain-backbone interactions. Taking a closer look at the helix and beta-sheet binding frequencies for a given side-chain and backbone interaction underlined the relevance of tight packings. The polarity of interfaces increased with decreasing interface size. These types of information may be useful for scoring complexes in protein-protein docking studies or for prediction of protein-protein interfaces from the sequences alone.
Collapse
Affiliation(s)
- Sam Ansari
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | | |
Collapse
|
85
|
Abstract
We address the question of whether or not the positions of protein-binding sites on homologous protein structures are conserved irrespective of the identities of their binding partners. First, for each domain family in the Structural Classification of Proteins (SCOP), protein-binding sites are extracted from our comprehensive database of structurally defined binary domain interactions (PIBASE). Second, the binding sites within each family are superposed using a structural alignment of its members. Finally, the degree of localization of binding sites within each family is quantified by comparing it with localization expected by chance. We found that 72% of the 1847 SCOP domain families in PIBASE have binding sites with localization values greater than expected by chance. Moreover, 554 (30%) of these families have localizations that are statistically significant (i.e., more than four standard deviations away from the mean expected by chance). In contrast, only 144 (8%) families have significantly low localization. The absence of a significant correlation of the binding site localization with the average sequence and structural conservations in a family suggests that localization can be helpful for describing the functional diversity of protein-protein interactions, complementing measures of sequence and structural conservation. Consideration of the binding site localization may also result in spatial restraints for the modeling of protein assembly structures.
Collapse
Affiliation(s)
- Dmitry Korkin
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, CA 94143-2552, USA
| | | | | |
Collapse
|
86
|
Flaugh SL, Kosinski-Collins MS, King J. Contributions of hydrophobic domain interface interactions to the folding and stability of human gammaD-crystallin. Protein Sci 2005; 14:569-81. [PMID: 15722442 PMCID: PMC2279286 DOI: 10.1110/ps.041111405] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Human gammaD-crystallin (HgammaD-Crys) is a monomeric eye lens protein composed of two highly homologous beta-sheet domains. The domains interact through interdomain side chain contacts forming two structurally distinct regions, a central hydrophobic cluster and peripheral residues. The hydrophobic cluster contains Met43, Phe56, and Ile81 from the N-terminal domain (N-td) and Val132, Leu145, and Val170 from the C-terminal domain (C-td). Equilibrium unfolding/refolding of wild-type HgammaD-Crys in guanidine hydrochloride (GuHCl) was best fit to a three-state model with transition midpoints of 2.2 and 2.8 M GuHCl. The two transitions likely corresponded to sequential unfolding/refolding of the N-td and the C-td. Previous kinetic experiments revealed that the C-td refolds more rapidly than the N-td. We constructed alanine substitutions of the hydrophobic interface residues to analyze their roles in folding and stability. After purification from E. coli, all mutant proteins adopted a native-like structure similar to wild type. The mutants F56A, I81A, V132A, and L145A had a destabilized N-td, causing greater population of the single folded domain intermediate. Compared to wild type, these mutants also had reduced rates for productive refolding of the N-td but not the C-td. These data suggest a refolding pathway where the domain interface residues of the refolded C-td act as a nucleating center for refolding of the N-td. Specificity of domain interface interactions is likely important for preventing incorrect associations in the high protein concentrations of the lens nucleus.
Collapse
Affiliation(s)
- Shannon L Flaugh
- Department of Biology, Massachusetts Institute of Technology, Building 68, Room 330, 31 Ames Street, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
87
|
Raih MF, Ahmad S, Zheng R, Mohamed R. Solvent accessibility in native and isolated domain environments: general features and implications to interface predictability. Biophys Chem 2005; 114:63-9. [PMID: 15792862 DOI: 10.1016/j.bpc.2004.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 10/20/2004] [Accepted: 10/26/2004] [Indexed: 11/29/2022]
Abstract
A non-redundant database of 4536 structural domains, comprising more than 790,000 residues, has been used for the calculation of their solvent accessibility in the native protein environment and then in the isolated domain environment. Nearly 140,000 (18%) residues showed a change in accessible surface area in the above two conditions. General features of this change under these two circumstances have been pointed out. Propensities of these interfacing amino acid residues have been calculated and their variation for different secondary structure types has been analyzed. Actual amount of surface area lost by different secondary structures is higher in the case of helix and strands compared to coil and other conformations. Overall change in surface area in hydrophobic and uncharged residues is higher than that in charged residues. An attempt has been made to know the predictability of interface residues from sequence environments. This analysis and prediction results have significant implications towards determining interacting residues in proteins and for the prediction of protein-protein, protein-ligand, protein-DNA and similar interactions.
Collapse
Affiliation(s)
- Mohd Firdaus Raih
- National Institute for Genomics and Molecular Biology (Interim Laboratory), and School of Biosciences and Biotechnology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | | | | | | |
Collapse
|
88
|
Chimento DP, Kadner RJ, Wiener MC. Comparative structural analysis of TonB-dependent outer membrane transporters: Implications for the transport cycle. Proteins 2005; 59:240-51. [PMID: 15739205 DOI: 10.1002/prot.20416] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
TonB-dependent outer membrane transporters (TBDTs) transport organometallic substrates across the outer membranes of Gram-negative bacteria. Currently, structures of four different TBDTs have been determined by X-ray crystallography. TBDT structures consist of a 22-stranded beta-barrel enclosing a hatch domain. Structure-based sequence alignment of these four TBDTs indicates the presence of highly conserved motifs in both the hatch and barrel domains. The conserved motifs of the two domains are always in close proximity to each other and interact. We analyzed the very large interfaces between the barrel and hatch domains of TBDTs and compared their properties to those of other protein-protein interfaces. These interfaces are extensively hydrated. Most of the interfacial waters form hydrogen bonds to either the barrel or the hatch domain, with the remainder functioning as bridging waters in the interface. The hatch/barrel interfacial properties most resemble those of obligate transient protein complexes, suggesting that the interface is conducive to conformational change and/or movement of the hatch within the barrel. These results indicate that TBDTs can readily accommodate substantial conformational change and movement of their hatch domains during the active transport cycle. Also, these structural changes may require only modest forces exerted by the energy-coupling TonB protein upon the transporter.
Collapse
Affiliation(s)
- David P Chimento
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
89
|
Abstract
MOTIVATION In recent years, the Protein Data Bank (PDB) has experienced rapid growth. To maximize the utility of the high resolution protein-protein interaction data stored in the PDB, we have developed PIBASE, a comprehensive relational database of structurally defined interfaces between pairs of protein domains. It is composed of binary interfaces extracted from structures in the PDB and the Probable Quaternary Structure server using domain assignments from the Structural Classification of Proteins and CATH fold classification systems. RESULTS PIBASE currently contains 158,915 interacting domain pairs between 105,061 domains from 2125 SCOP families. A diverse set of geometric, physiochemical and topologic properties are calculated for each complex, its domains, interfaces and binding sites. A subset of the interface properties are used to remove interface redundancy within PDB entries, resulting in 20,912 distinct domain-domain interfaces. The complexes are grouped into 989 topological classes based on their patterns of domain-domain contacts. The binary interfaces and their corresponding binding sites are categorized into 18,755 and 30,975 topological classes, respectively, based on the topology of secondary structure elements. The utility of the database is illustrated by outlining several current applications. AVAILABILITY The database is accessible via the world wide web at http://salilab.org/pibase SUPPLEMENTARY INFORMATION http://salilab.org/pibase/suppinfo.html.
Collapse
Affiliation(s)
- Fred P Davis
- Graduate Group in Biophysics, California Institute for Quantitative Biomedical Research, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
90
|
Littler SJ, Hubbard SJ. Conservation of orientation and sequence in protein domain--domain interactions. J Mol Biol 2004; 345:1265-79. [PMID: 15644220 DOI: 10.1016/j.jmb.2004.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 11/05/2004] [Indexed: 11/16/2022]
Abstract
The repertoire of naturally occurring protein structures is usually characterised in structural terms at the domain level by their constituent folds. As structure is acknowledged to be an important stepping stone to the understanding of protein function, an appreciation of how individual domain interactions are built to form complete, functional protein structures is essential. A comprehensive study of protein domain interactions has been undertaken, covering all those observed in known structures, as well as those predicted to occur in 46 completed genome sequences from all three domains of life. In particular, we examine the promiscuity of protein domains characterised by SCOP superfamilies in terms of their interacting partners, the surface they use to form these interactions, and the relative orientations of their domain partners. Protein domains are shown to display a variety of behaviours, ranging from high promiscuity to absolute monogamy of domain surface employed, with both multiple and single domain partners. In addition, the conservation of sequence and volume at domain interface surfaces is observed to be significantly higher than at accessible surface in general, acting as a powerful potential predictor for domain interactions. We also examine the separation of interacting domains in protein sequence, showing that standard thresholds of 30 amino acid residues lead to a significant false positive rate, and an even more significant false negative rate of approximately 40%. These data suggest that there may be many more than the 2000 domain--domain interactions that have not yet been observed structurally, and we provide a top 30 hit-list of putative domain interactions which should be targeted.
Collapse
Affiliation(s)
- Stephen J Littler
- Faculty of Life Sciences, The University of Manchester, Jackson's Mill, P.O. Box 88, Manchester M60 1QD, UK
| | | |
Collapse
|
91
|
Liu J, Hegyi H, Acton TB, Montelione GT, Rost B. Automatic target selection for structural genomics on eukaryotes. Proteins 2004; 56:188-200. [PMID: 15211504 DOI: 10.1002/prot.20012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A central goal of structural genomics is to experimentally determine representative structures for all protein families. At least 14 structural genomics pilot projects are currently investigating the feasibility of high-throughput structure determination; the National Institutes of Health funded nine of these in the United States. Initiatives differ in the particular subset of "all families" on which they focus. At the NorthEast Structural Genomics consortium (NESG), we target eukaryotic protein domain families. The automatic target selection procedure has three aims: 1) identify all protein domain families from currently five entirely sequenced eukaryotic target organisms based on their sequence homology, 2) discard those families that can be modeled on the basis of structural information already present in the PDB, and 3) target representatives of the remaining families for structure determination. To guarantee that all members of one family share a common foldlike region, we had to begin by dissecting proteins into structural domain-like regions before clustering. Our hierarchical approach, CHOP, utilizing homology to PrISM, Pfam-A, and SWISS-PROT chopped the 103,796 eukaryotic proteins/ORFs into 247,222 fragments. Of these fragments, 122,999 appeared suitable targets that were grouped into >27,000 singletons and >18,000 multifragment clusters. Thus, our results suggested that it might be necessary to determine >40,000 structures to minimally cover the subset of five eukaryotic proteomes.
Collapse
Affiliation(s)
- Jinfeng Liu
- CUBIC, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
92
|
Xu Q, Porter SW, West AH. The yeast YPD1/SLN1 complex: insights into molecular recognition in two-component signaling systems. Structure 2004; 11:1569-81. [PMID: 14656441 DOI: 10.1016/j.str.2003.10.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In Saccharomyces cerevisiae, a branched multistep phosphorelay signaling pathway regulates cellular adaptation to hyperosmotic stress. YPD1 functions as a histidine-phosphorylated protein intermediate required for phosphoryl group transfer from a membrane-bound sensor histidine kinase (SLN1) to two distinct response regulator proteins (SSK1 and SKN7). These four proteins are evolutionarily related to the well-characterized "two-component" regulatory proteins from bacteria. Although structural information is available for many two-component signaling proteins, there are very few examples of complexes between interacting phosphorelay partners. Here we report the first crystal structure of a prototypical monomeric histidine-containing phosphotransfer (HPt) protein YPD1 in complex with its upstream phosphodonor, the response regulator domain associated with SLN1.
Collapse
Affiliation(s)
- Qingping Xu
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019, USA
| | | | | |
Collapse
|
93
|
Caffrey DR, Somaroo S, Hughes JD, Mintseris J, Huang ES. Are protein-protein interfaces more conserved in sequence than the rest of the protein surface? Protein Sci 2004; 13:190-202. [PMID: 14691234 PMCID: PMC2286531 DOI: 10.1110/ps.03323604] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Protein interfaces are thought to be distinguishable from the rest of the protein surface by their greater degree of residue conservation. We test the validity of this approach on an expanded set of 64 protein-protein interfaces using conservation scores derived from two multiple sequence alignment types, one of close homologs/orthologs and one of diverse homologs/paralogs. Overall, we find that the interface is slightly more conserved than the rest of the protein surface when using either alignment type, with alignments of diverse homologs showing marginally better discrimination. However, using a novel surface-patch definition, we find that the interface is rarely significantly more conserved than other surface patches when using either alignment type. When an interface is among the most conserved surface patches, it tends to be part of an enzyme active site. The most conserved surface patch overlaps with 39% (+/- 28%) and 36% (+/- 28%) of the actual interface for diverse and close homologs, respectively. Contrary to results obtained from smaller data sets, this work indicates that residue conservation is rarely sufficient for complete and accurate prediction of protein interfaces. Finally, we find that obligate interfaces differ from transient interfaces in that the former have significantly fewer alignment gaps at the interface than the rest of the protein surface, as well as having buried interface residues that are more conserved than partially buried interface residues.
Collapse
Affiliation(s)
- Daniel R Caffrey
- Pfizer Discovery Technology Center, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
94
|
Evans JC, Huddler DP, Hilgers MT, Romanchuk G, Matthews RG, Ludwig ML. Structures of the N-terminal modules imply large domain motions during catalysis by methionine synthase. Proc Natl Acad Sci U S A 2004; 101:3729-36. [PMID: 14752199 PMCID: PMC374312 DOI: 10.1073/pnas.0308082100] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
B(12)-dependent methionine synthase (MetH) is a large modular enzyme that utilizes the cobalamin cofactor as a methyl donor or acceptor in three separate reactions. Each methyl transfer occurs at a different substrate-binding domain and requires a different arrangement of modules. In the catalytic cycle, the cobalamin-binding domain carries methylcobalamin to the homocysteine (Hcy) domain to form methionine and returns cob(I)alamin to the folate (Fol) domain for remethylation by methyltetrahydrofolate (CH(3)-H(4)folate). Here, we describe crystal structures of a fragment of MetH from Thermotoga maritima comprising the domains that bind Hcy and CH(3)-H(4)folate. These substrate-binding domains are (beta alpha)(8) barrels packed tightly against one another with their barrel axes perpendicular. The properties of the domain interface suggest that the two barrels remain associated during catalysis. The Hcy and CH(3)-H(4)folate substrates are bound at the C termini of their respective barrels in orientations that position them for reaction with cobalamin, but the two active sites are separated by approximately 50 A. To complete the catalytic cycle, the cobalamin-binding domain must travel back and forth between these distant active sites.
Collapse
Affiliation(s)
- John C Evans
- Department of Biological Chemistry and Biophysics Research Division, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | |
Collapse
|
95
|
Fernández A, Scott R, Berry RS. The nonconserved wrapping of conserved protein folds reveals a trend toward increasing connectivity in proteomic networks. Proc Natl Acad Sci U S A 2004; 101:2823-7. [PMID: 14978274 PMCID: PMC365704 DOI: 10.1073/pnas.0308295100] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although protein folding domains are generally conserved for function across distant homologous sequences, one crucial structural feature is not conserved: the wrapping of backbone hydrogen bonds, that is, the extent to which they are intramolecularly desolvated and thereby protected from water attack. Extensive data on protein complex interfaces led us to postulate that insufficiently wrapped backbone hydrogen bonds in monomeric domains must be adhesive, and therefore determinants of interactivity, a result that has been experimentally confirmed. Here, we show that the wrapping of certain conserved folds becomes progressively poorer as species diverge in some lineages. This trend is thus concurrent with a progressive enhancement of the interactivity of individual domains sharing the conserved fold. Such increase in interactivity is predicted to impose an "evolutionary brake" on the overall speed of sequence divergence. This phenomenon follows when more and more residues become engaged in protein associations and thus become functionally indispensable. For complete proteomes for which statistically significant structural data are available, scale-free network statistics based solely on the distribution of folding domains, catalogued by their number of wrapping defects, best describe the proteomic connectivity. Thus, the intermolecular connectivity may be effectively used as a measure of species complexity. Our results might contribute to explaining how interactome complexity may be achieved without a dramatic increase in genome size.
Collapse
Affiliation(s)
- Ariel Fernández
- Indiana University School of Informatics, Center for Computational Biology and Bioinformatics, and Department of Biochemistry and Molecular Biology, Indiana University Medical School, 714 North Senate Avenue, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
96
|
Statistical analysis on protein-protein interface in crystals: Specific and non-specific interfaces are differentially distributed. CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf03182812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
97
|
Bolser D, Dafas P, Harrington R, Park J, Schroeder M. Visualisation and graph-theoretic analysis of a large-scale protein structural interactome. BMC Bioinformatics 2003; 4:45. [PMID: 14531933 PMCID: PMC272926 DOI: 10.1186/1471-2105-4-45] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 10/08/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Large-scale protein interaction maps provide a new, global perspective with which to analyse protein function. PSIMAP, the Protein Structural Interactome Map, is a database of all the structurally observed interactions between superfamilies of protein domains with known three-dimensional structure in the PDB. PSIMAP incorporates both functional and evolutionary information into a single network. RESULTS We present a global analysis of PSIMAP using several distinct network measures relating to centrality, interactivity, fault-tolerance, and taxonomic diversity. We found the following results: Centrality: we show that the center and barycenter of PSIMAP do not coincide, and that the superfamilies forming the barycenter relate to very general functions, while those constituting the center relate to enzymatic activity. Interactivity: we identify the P-loop and immunoglobulin superfamilies as the most highly interactive. We successfully use connectivity and cluster index, which characterise the connectivity of a superfamily's neighbourhood, to discover superfamilies of complex I and II. This is particularly significant as the structure of complex I is not yet solved. Taxonomic diversity: we found that highly interactive superfamilies are in general taxonomically very diverse and are thus amongst the oldest. Fault-tolerance: we found that the network is very robust as for the majority of superfamilies removal from the network will not break up the network. CONCLUSIONS Overall, we can single out the P-loop containing nucleotide triphosphate hydrolases superfamily as it is the most highly connected and has the highest taxonomic diversity. In addition, this superfamily has the highest interaction rank, is the barycenter of the network (it has the shortest average path to every other superfamily in the network), and is an articulation vertex, whose removal will disconnect the network. More generally, we conclude that the graph-theoretic and taxonomic analysis of PSIMAP is an important step towards the understanding of protein function and could be an important tool for tracing the evolution of life at the molecular level.
Collapse
Affiliation(s)
- Dan Bolser
- Dunn Human Nutrition Unit, Medical Research Council, Cambridge CB2 2XY, UK
| | - Panos Dafas
- Department of Computing, City University, London EC1V 0HB, UK
| | - Richard Harrington
- Dunn Human Nutrition Unit, Medical Research Council, Cambridge CB2 2XY, UK
| | - Jong Park
- Dunn Human Nutrition Unit, Medical Research Council, Cambridge CB2 2XY, UK
- Department of BioSystems, Korea Advanced Institute of Science and Technology, Korea
| | | |
Collapse
|
98
|
Griessler R, Schwarz A, Mucha J, Nidetzky B. Tracking interactions that stabilize the dimer structure of starch phosphorylase from Corynebacterium callunae. Roles of Arg234 and Arg242 revealed by sequence analysis and site-directed mutagenesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2126-36. [PMID: 12752432 DOI: 10.1046/j.1432-1033.2003.03562.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycogen phosphorylases (GPs) constitute a family of widely spread catabolic alpha1,4-glucosyltransferases that are active as dimers of two identical, pyridoxal 5'-phosphate-containing subunits. In GP from Corynebacterium callunae, physiological concentrations of phosphate are required to inhibit dissociation of protomers and cause a 100-fold increase in kinetic stability of the functional quarternary structure. To examine interactions involved in this large stabilization, we have cloned and sequenced the coding gene and have expressed fully active C. callunae GP in Escherichia coli. By comparing multiple sequence alignment to structure-function assignments for regulated and nonregulated GPs that are stable in the absence of phosphate, we have scrutinized the primary structure of C. callunae enzyme for sequence changes possibly related to phosphate-dependent dimer stability. Location of Arg234, Arg236, and Arg242 within the predicted subunit-to-subunit contact region made these residues primary candidates for site-directed mutagenesis. Individual Arg-->Ala mutants were purified and characterized using time-dependent denaturation assays in urea and at 45 degrees C. R234A and R242A are enzymatically active dimers and in the absence of added phosphate, they display a sixfold and fourfold greater kinetic stability of quarternary interactions than the wild-type, respectively. The stabilization by 10 mm of phosphate was, however, up to 20-fold greater in the wild-type than in the two mutants. The replacement of Arg236 by Ala was functionally silent under all conditions tested. Arg234 and Arg242 thus partially destabilize the C. callunae GP dimer structure, and phosphate binding causes a change of their tertiary or quartenary contacts, likely by an allosteric mechanism, which contributes to a reduced protomer dissociation rate.
Collapse
Affiliation(s)
- Richard Griessler
- Institute of Food Technology, University of Agricultural Sciences, Vienna, Austria
| | | | | | | |
Collapse
|
99
|
Abstract
Non-covalent residue side-chain interactions occur in many different types of proteins and facilitate many biological functions. Are these differences manifested in the sequence compositions and/or the residue-residue contact preferences of the interfaces? Previous studies analysed small data sets and gave contradictory answers. Here, we introduced a new data-mining method that yielded the largest high-resolution data set of interactions analysed. We introduced an information theory-based analysis method. On the basis of sequence features, we were able to differentiate six types of protein interfaces, each corresponding to a different functional or structural association between residues. Particularly, we found significant differences in amino acid composition and residue-residue preferences between interactions of residues within the same structural domain and between different domains, between permanent and transient interfaces, and between interactions associating homo-oligomers and hetero-oligomers. The differences between the six types were so substantial that, using amino acid composition alone, we could predict statistically to which of the six types of interfaces a pool of 1000 residues belongs at 63-100% accuracy. All interfaces differed significantly from the background of all residues in SWISS-PROT, from the group of surface residues, and from internal residues that were not involved in non-trivial interactions. Overall, our results suggest that the interface type could be predicted from sequence and that interface-type specific mean-field potentials may be adequate for certain applications.
Collapse
Affiliation(s)
- Yanay Ofran
- CUBIC, Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street BB217, New York, NY 10032, USA.
| | | |
Collapse
|
100
|
Dangi B, Dobrodumov AV, Louis JM, Gronenborn AM. Solution structure and dynamics of the human-Escherichia coli thioredoxin chimera: insights into thermodynamic stability. Biochemistry 2002; 41:9376-88. [PMID: 12135359 DOI: 10.1021/bi0258501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have determined the high-resolution solution structure of the oxidized form of a chimeric human and Escherichia coli thioredoxin (TRX(HE)) by NMR. The overall structure is well-defined with a rms difference for the backbone atoms of 0.27 +/- 0.06 A. The topology of the protein is identical to those of the human and E. coli parent proteins, consisting of a central five-stranded beta-sheet surrounded by four alpha-helices. Analysis of the interfaces between the two domains derived from the human and E. coli sequences reveals that the general hydrophobic packing is unaltered and only subtle changes in the details of side chain interactions are observed. The packing of helix alpha(4) with helix alpha(2) across the hybrid interface is less optimal than in the parent molecules, and electrostatic interactions between polar side chains are missing. In particular, lysine-glutamate salt bridges between residues on helices alpha(2) and alpha(4), which were observed in both human and E. coli proteins, are not present in the chimeric protein. The origin of the known reduced thermodynamic stability of TRX(HE) was probed by mutagenesis on the basis of these structural findings. Two mutants of TRX(HE), S44D and S44E, were created, and their thermal and chemical stabilities were examined. Improved stability toward chaotropic agents was observed for both mutants, but no increase in the denaturation temperature was seen compared to that of TRX(HE). In addition to the structural analysis, the backbone dynamics of TRX(HE) were investigated by (15)N NMR relaxation measurements. Analysis using the model free approach reveals that the protein is fairly rigid with an average S(2) of 0.88. Increased mobility is primarily present in two external loop regions comprising residues 72-74 and 92-94 that contain glycine and proline residues.
Collapse
Affiliation(s)
- Bindi Dangi
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0560, USA
| | | | | | | |
Collapse
|