51
|
Huisman R, Bouwmeester K, Brattinga M, Govers F, Bisseling T, Limpens E. Haustorium Formation in Medicago truncatula Roots Infected by Phytophthora palmivora Does Not Involve the Common Endosymbiotic Program Shared by Arbuscular Mycorrhizal Fungi and Rhizobia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1271-80. [PMID: 26313411 DOI: 10.1094/mpmi-06-15-0130-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In biotrophic plant-microbe interactions, microbes infect living plant cells, in which they are hosted in a novel membrane compartment, the host-microbe interface. To create a host-microbe interface, arbuscular mycorrhizal (AM) fungi and rhizobia make use of the same endosymbiotic program. It is a long-standing hypothesis that pathogens make use of plant proteins that are dedicated to mutualistic symbiosis to infect plants and form haustoria. In this report, we developed a Phytophthora palmivora pathosystem to study haustorium formation in Medicago truncatula roots. We show that P. palmivora does not require host genes that are essential for symbiotic infection and host-microbe interface formation to infect Medicago roots and form haustoria. Based on these findings, we conclude that P. palmivora does not hijack the ancient intracellular accommodation program used by symbiotic microbes to form a biotrophic host-microbe interface.
Collapse
Affiliation(s)
- Rik Huisman
- 1 Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- 2 Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University
- 3 Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, PO Box 800.56 3508 TB, Utrecht, The Netherlands
| | - Marijke Brattinga
- 1 Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Francine Govers
- 2 Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University
| | - Ton Bisseling
- 1 Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Erik Limpens
- 1 Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
52
|
Ivanova KA, Tsyganova AV, Brewin NJ, Tikhonovich IA, Tsyganov VE. Induction of host defences by Rhizobium during ineffective nodulation of pea (Pisum sativum L.) carrying symbiotically defective mutations sym40 (PsEFD), sym33 (PsIPD3/PsCYCLOPS) and sym42. PROTOPLASMA 2015; 252:1505-17. [PMID: 25743038 DOI: 10.1007/s00709-015-0780-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/12/2015] [Indexed: 05/13/2023]
Abstract
Rhizobia are able to establish a beneficial interaction with legumes by forming a new organ, called the symbiotic root nodule, which is a unique ecological niche for rhizobial nitrogen fixation. Rhizobial infection has many similarities with pathogenic infection and induction of defence responses accompanies both interactions, but defence responses are induced to a lesser extent during rhizobial infection. However, strong defence responses may result from incompatible interactions between legumes and rhizobia due to a mutation in either macro- or microsymbiont. The aim of this research was to analyse different plant defence reactions in response to Rhizobium infection for several pea (Pisum sativum) mutants that result in ineffective symbiosis. Pea mutants were examined by histochemical and immunocytochemical analyses, light, fluorescence and transmission electron microscopy and quantitative real-time PCR gene expression analysis. It was observed that mutations in pea symbiotic genes sym33 (PsIPD3/PsCYCLOPS encoding a transcriptional factor) and sym40 (PsEFD encoding a putative negative regulator of the cytokinin response) led to suberin depositions in ineffective nodules, and in the sym42 there were callose depositions in infection thread (IT) and host cell walls. The increase in deposition of unesterified pectin in IT walls was observed for mutants in the sym33 and sym42; for mutant in the sym42, unesterified pectin was also found around degrading bacteroids. In mutants in the genes sym33 and sym40, an increase in the expression level of a gene encoding peroxidase was observed. In the genes sym40 and sym42, an increase in the expression levels of genes encoding a marker of hypersensitive reaction and PR10 protein was demonstrated. Thus, a range of plant defence responses like suberisation, callose and unesterified pectin deposition as well as activation of defence genes can be triggered by different pea single mutations that cause perception of an otherwise beneficial strain of Rhizobium as a pathogen.
Collapse
MESH Headings
- Gene Expression Regulation, Plant
- Genotype
- Glucans/metabolism
- Immunohistochemistry
- Lipids
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Mutation
- Nitrogen Fixation
- Pisum sativum/genetics
- Pisum sativum/metabolism
- Pisum sativum/microbiology
- Pisum sativum/ultrastructure
- Pectins/metabolism
- Phenotype
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/microbiology
- Plants, Genetically Modified/ultrastructure
- Real-Time Polymerase Chain Reaction
- Rhizobium leguminosarum/physiology
- Root Nodules, Plant/genetics
- Root Nodules, Plant/metabolism
- Root Nodules, Plant/microbiology
- Root Nodules, Plant/ultrastructure
- Soil Microbiology
- Symbiosis/genetics
- Time Factors
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Kira A Ivanova
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chaussee 3, Saint-Petersburg, Pushkin 8, 196608, Russia
| | - Anna V Tsyganova
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chaussee 3, Saint-Petersburg, Pushkin 8, 196608, Russia
| | | | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chaussee 3, Saint-Petersburg, Pushkin 8, 196608, Russia
- Saint-Petersburg State University, Universitetskaya embankment 7-9, Saint-Petersburg, 199034, Russia
| | - Viktor E Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chaussee 3, Saint-Petersburg, Pushkin 8, 196608, Russia.
| |
Collapse
|
53
|
Alves-Carvalho S, Aubert G, Carrère S, Cruaud C, Brochot AL, Jacquin F, Klein A, Martin C, Boucherot K, Kreplak J, da Silva C, Moreau S, Gamas P, Wincker P, Gouzy J, Burstin J. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1-19. [PMID: 26296678 DOI: 10.1111/tpj.12967] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/09/2015] [Accepted: 07/16/2015] [Indexed: 05/21/2023]
Abstract
Next-generation sequencing technologies allow an almost exhaustive survey of the transcriptome, even in species with no available genome sequence. To produce a Unigene set representing most of the expressed genes of pea, 20 cDNA libraries produced from various plant tissues harvested at various developmental stages from plants grown under contrasting nitrogen conditions were sequenced. Around one billion reads and 100 Gb of sequence were de novo assembled. Following several steps of redundancy reduction, 46 099 contigs with N50 length of 1667 nt were identified. These constitute the 'Caméor' Unigene set. The high depth of sequencing allowed identification of rare transcripts and detected expression for approximately 80% of contigs in each library. The Unigene set is now available online (http://bios.dijon.inra.fr/FATAL/cgi/pscam.cgi), allowing (i) searches for pea orthologs of candidate genes based on gene sequences from other species, or based on annotation, (ii) determination of transcript expression patterns using various metrics, (iii) identification of uncharacterized genes with interesting patterns of expression, and (iv) comparison of gene ontology pathways between tissues. This resource has allowed identification of the pea orthologs of major nodulation genes characterized in recent years in model species, as a major step towards deciphering unresolved pea nodulation phenotypes. In addition to a remarkable conservation of the early transcriptome nodulation apparatus between pea and Medicago truncatula, some specific features were highlighted. The resource provides a reference for the pea exome, and will facilitate transcriptome and proteome approaches as well as SNP discovery in pea.
Collapse
Affiliation(s)
- Susete Alves-Carvalho
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Grégoire Aubert
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes Micro-Organismes, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, 24 chemin de Borde Rouge, 31326, Castanet Tolosan, France
| | | | - Anne-Lise Brochot
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Françoise Jacquin
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Anthony Klein
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Chantal Martin
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Karen Boucherot
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Jonathan Kreplak
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | | | - Sandra Moreau
- Laboratoire des Interactions Plantes Micro-Organismes, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, 24 chemin de Borde Rouge, 31326, Castanet Tolosan, France
| | - Pascal Gamas
- Laboratoire des Interactions Plantes Micro-Organismes, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, 24 chemin de Borde Rouge, 31326, Castanet Tolosan, France
| | | | - Jérôme Gouzy
- Laboratoire des Interactions Plantes Micro-Organismes, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, 24 chemin de Borde Rouge, 31326, Castanet Tolosan, France
| | - Judith Burstin
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| |
Collapse
|
54
|
Tikhonovich IA, Andronov EE, Borisov AY, Dolgikh EA, Zhernakov AI, Zhukov VA, Provorov NA, Roumiantseva ML, Simarov BV. The principle of genome complementarity in the enhancement of plant adaptive capacities. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415090124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
55
|
van Zeijl A, Op den Camp RHM, Deinum EE, Charnikhova T, Franssen H, Op den Camp HJM, Bouwmeester H, Kohlen W, Bisseling T, Geurts R. Rhizobium Lipo-chitooligosaccharide Signaling Triggers Accumulation of Cytokinins in Medicago truncatula Roots. MOLECULAR PLANT 2015; 8:1213-26. [PMID: 25804975 DOI: 10.1016/j.molp.2015.03.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/12/2015] [Accepted: 03/15/2015] [Indexed: 05/20/2023]
Abstract
Legume rhizobium symbiosis is initiated upon perception of bacterial secreted lipo-chitooligosaccharides (LCOs). Perception of these signals by the plant initiates a signaling cascade that leads to nodule formation. Several studies have implicated a function for cytokinin in this process. However, whether cytokinin accumulation and subsequent signaling are an integral part of rhizobium LCO signaling remains elusive. Here, we show that cytokinin signaling is required for the majority of transcriptional changes induced by rhizobium LCOs. In addition, we demonstrate that several cytokinins accumulate in the root susceptible zone 3 h after rhizobium LCO application, including the biologically most active cytokinins, trans-zeatin and isopentenyl adenine. These responses are dependent on calcium- and calmodulin-dependent protein kinase (CCaMK), a key protein in rhizobial LCO-induced signaling. Analysis of the ethylene-insensitive Mtein2/Mtsickle mutant showed that LCO-induced cytokinin accumulation is negatively regulated by ethylene. Together with transcriptional induction of ethylene biosynthesis genes, it suggests a feedback loop negatively regulating LCO signaling and subsequent cytokinin accumulation. We argue that cytokinin accumulation is a key step in the pathway leading to nodule organogenesis and that this is tightly controlled by feedback loops.
Collapse
Affiliation(s)
- Arjan van Zeijl
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Rik H M Op den Camp
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Eva E Deinum
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Department of Systems Biophysics, FOM institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Tatsiana Charnikhova
- Department of Plant Sciences, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Henk Franssen
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Harro Bouwmeester
- Department of Plant Sciences, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Wouter Kohlen
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ton Bisseling
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; College of Science, King Saud University, Post Office Box 2455, Riyadh 11451, Saudi Arabia
| | - René Geurts
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
56
|
Kang H, Xiao A, Huang X, Gao X, Yu H, He X, Zhu H, Hong Z, Zhang Z. A Lotus japonicus Cochaperone Protein Interacts With the Ubiquitin-Like Domain Protein CIP73 and Plays a Negative Regulatory Role in Nodulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:534-45. [PMID: 25761207 DOI: 10.1094/mpmi-11-14-0354-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The calcium/calmodulin-dependent protein kinase CCaMK forms a complex with its phosphorylation target CIP73 (CCaMK-interacting protein of 73 kDa). In this work, a homolog of the animal HSC/HSP70 interacting protein (HIP) was identified as an interacting partner of CIP73 in Lotus japonicus. L. japonicus HIP contains all functional domains characteristic of animal HIP proteins. The C-terminal STI1-like domain of L. japonicus HIP was found to be necessary and sufficient for interaction with CIP73. The interaction between CIP73 and HIP occurred in both the nuclei and cytoplasm in Nicotiana benthamiana leaf cells. The interactions between CIP73 and HIP and between CIP73 and CCaMK could take place simultaneously in the same nuclei. HIP transcripts were detected in all plant tissues tested. As nodule primordia developed into young nodules, the expression of HIP was down-regulated and the HIP transcript level became very low in mature nodules. More nodules were formed in transgenic hairy roots of L. japonicus expressing HIP RNA interference at 16 days postinoculation as compared with the control hairy roots expressing the empty vector. It appears that HIP may play a role as a negative regulator for nodulation.
Collapse
Affiliation(s)
- Heng Kang
- 1Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- 2State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aifang Xiao
- 2State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqin Huang
- 2State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xioumei Gao
- 2State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haixiang Yu
- 2State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingxing He
- 2State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhu
- 2State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zonglie Hong
- 3Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-2339, U.S.A
| | - Zhongming Zhang
- 2State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
57
|
Suzaki T, Yoro E, Kawaguchi M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:111-58. [PMID: 25805123 DOI: 10.1016/bs.ircmb.2015.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Legumes and a few other plant species can establish a symbiotic relationship with nitrogen-fixing rhizobia, which enables them to survive in a nitrogen-deficient environment. During the course of nodulation, infection with rhizobia induces the dedifferentiation of host cells to form primordia of a symbiotic organ, the nodule, which prepares plants to accommodate rhizobia in host cells. While these nodulation processes are known to be genetically controlled by both plants and rhizobia, recent advances in studies on two model legumes, Lotus japonicus and Medicago truncatula, have provided great insight into the underlying plant-side molecular mechanism. In this chapter, we review such knowledge, with particular emphasis on two key processes of nodulation, nodule development and rhizobial invasion.
Collapse
Affiliation(s)
- Takuya Suzaki
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Emiko Yoro
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
58
|
Ried MK, Antolín-Llovera M, Parniske M. Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases. eLife 2014; 3:03891. [PMID: 25422918 PMCID: PMC4243133 DOI: 10.7554/elife.03891] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/29/2014] [Indexed: 01/23/2023] Open
Abstract
Symbiosis Receptor-like Kinase (SYMRK) is indispensable for the development of phosphate-acquiring arbuscular mycorrhiza (AM) as well as nitrogen-fixing root nodule symbiosis, but the mechanisms that discriminate between the two distinct symbiotic developmental fates have been enigmatic. In this study, we show that upon ectopic expression, the receptor-like kinase genes Nod Factor Receptor 1 (NFR1), NFR5, and SYMRK initiate spontaneous nodule organogenesis and nodulation-related gene expression in the absence of rhizobia. Furthermore, overexpressed NFR1 or NFR5 associated with endogenous SYMRK in roots of the legume Lotus japonicus. Epistasis tests revealed that the dominant active SYMRK allele initiates signalling independently of either the NFR1 or NFR5 gene and upstream of a set of genes required for the generation or decoding of calcium-spiking in both symbioses. Only SYMRK but not NFR overexpression triggered the expression of AM-related genes, indicating that the receptors play a key role in the decision between AM- or root nodule symbiosis-development.
Collapse
Affiliation(s)
| | | | - Martin Parniske
- Faculty of Biology, Ludwig Maximilians University Munich, Munich, Germany
| |
Collapse
|
59
|
Xiao TT, Schilderink S, Moling S, Deinum EE, Kondorosi E, Franssen H, Kulikova O, Niebel A, Bisseling T. Fate map of Medicago truncatula root nodules. Development 2014; 141:3517-28. [PMID: 25183870 DOI: 10.1242/dev.110775] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Legume root nodules are induced by N-fixing rhizobium bacteria that are hosted in an intracellular manner. These nodules are formed by reprogramming differentiated root cells. The model legume Medicago truncatula forms indeterminate nodules with a meristem at their apex. This organ grows by the activity of the meristem that adds cells to the different nodule tissues. In Medicago sativa it has been shown that the nodule meristem is derived from the root middle cortex. During nodule initiation, inner cortical cells and pericycle cells are also mitotically activated. However, whether and how these cells contribute to the mature nodule has not been studied. Here, we produce a nodule fate map that precisely describes the origin of the different nodule tissues based on sequential longitudinal sections and on the use of marker genes that allow the distinction of cells originating from different root tissues. We show that nodule meristem originates from the third cortical layer, while several cell layers of the base of the nodule are directly formed from cells of the inner cortical layers, root endodermis and pericycle. The latter two differentiate into the uninfected tissues that are located at the base of the mature nodule, whereas the cells derived from the inner cortical cell layers form about eight cell layers of infected cells. This nodule fate map has then been used to re-analyse several mutant nodule phenotypes. This showed, among other things, that intracellular release of rhizobia in primordium cells and meristem daughter cells are regulated in a different manner.
Collapse
Affiliation(s)
- Ting Ting Xiao
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Stefan Schilderink
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Sjef Moling
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Eva E Deinum
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands Department of Systems Biophysics, FOM institute AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
| | - Eva Kondorosi
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged 6726, Hungary
| | - Henk Franssen
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Olga Kulikova
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Andreas Niebel
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan F-31326, France CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan F-31326, France
| | - Ton Bisseling
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands College of Science, King Saud University, Post Office Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
60
|
Limpens E, Bisseling T. CYCLOPS: a new vision on rhizobium-induced nodule organogenesis. Cell Host Microbe 2014; 15:127-9. [PMID: 24528858 DOI: 10.1016/j.chom.2014.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The accommodation of nitrogen-fixing rhizobium bacteria inside plant cells requires reprogramming of root cortex cells by rhizobial signals. In this issue of Cell Host & Microbe, Singh et al. (2014) reveal that CYCLOPS, representing a novel class of transcription factors, links rhizobium-induced calcium signaling to reprogramming of root cortex cells.
Collapse
Affiliation(s)
- Erik Limpens
- Laboratory of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands; College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
61
|
Moling S, Pietraszewska-Bogiel A, Postma M, Fedorova E, Hink MA, Limpens E, Gadella TWJ, Bisseling T. Nod factor receptors form heteromeric complexes and are essential for intracellular infection in medicago nodules. THE PLANT CELL 2014; 26:4188-99. [PMID: 25351493 PMCID: PMC4247574 DOI: 10.1105/tpc.114.129502] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/08/2014] [Accepted: 10/09/2014] [Indexed: 05/18/2023]
Abstract
Rhizobial Nod factors are the key signaling molecules in the legume-rhizobium nodule symbiosis. In this study, the role of the Nod factor receptors NOD FACTOR PERCEPTION (NFP) and LYSIN MOTIF RECEPTOR-LIKE KINASE3 (LYK3) in establishing the symbiotic interface in root nodules was investigated. It was found that inside Medicago truncatula nodules, NFP and LYK3 localize at the cell periphery in a narrow zone of about two cell layers at the nodule apex. This restricted accumulation is narrower than the region of promoter activity/mRNA accumulation and might serve to prevent the induction of defense-like responses and/or to restrict the rhizobium release to precise cell layers. The distal cell layer where the receptors accumulate at the cell periphery is part of the meristem, and the proximal layer is part of the infection zone. In these layers, the receptors can most likely perceive the bacterial Nod factors to regulate the formation of symbiotic interface. Furthermore, our Förster resonance energy transfer-fluorescence lifetime imaging microscopy analysis indicates that NFP and LYK3 form heteromeric complexes at the cell periphery in M. truncatula nodules.
Collapse
MESH Headings
- Fluorescence Resonance Energy Transfer
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Host-Pathogen Interactions
- Lipopolysaccharides/metabolism
- Medicago truncatula/genetics
- Medicago truncatula/metabolism
- Medicago truncatula/microbiology
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Mutation
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Protein Kinases/chemistry
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Protein Multimerization
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Root Nodules, Plant/genetics
- Root Nodules, Plant/metabolism
- Root Nodules, Plant/microbiology
- Sinorhizobium meliloti/physiology
- Symbiosis
Collapse
Affiliation(s)
- Sjef Moling
- Department of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Anna Pietraszewska-Bogiel
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Marten Postma
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Elena Fedorova
- Department of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Mark A Hink
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Erik Limpens
- Department of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Theodorus W J Gadella
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Ton Bisseling
- Department of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
62
|
Guefrachi I, Nagymihaly M, Pislariu CI, Van de Velde W, Ratet P, Mars M, Udvardi MK, Kondorosi E, Mergaert P, Alunni B. Extreme specificity of NCR gene expression in Medicago truncatula. BMC Genomics 2014; 15:712. [PMID: 25156206 PMCID: PMC4168050 DOI: 10.1186/1471-2164-15-712] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/12/2014] [Indexed: 11/10/2022] Open
Abstract
Background Legumes form root nodules to house nitrogen fixing bacteria of the rhizobium family. The rhizobia are located intracellularly in the symbiotic nodule cells. In the legume Medicago truncatula these cells produce high amounts of Nodule-specific Cysteine-Rich (NCR) peptides which induce differentiation of the rhizobia into enlarged, polyploid and non-cultivable bacterial cells. NCRs are similar to innate immunity antimicrobial peptides. The NCR gene family is extremely large in Medicago with about 600 genes. Results Here we used the Medicago truncatula Gene Expression Atlas (MtGEA) and other published microarray data to analyze the expression of 334 NCR genes in 267 different experimental conditions. We find that all but five of these genes are expressed in nodules but in no other plant organ or in response to any other biotic interaction or abiotic stress tested. During symbiosis, none of the genes are induced by Nod factors. The NCR genes are activated in successive waves during nodule organogenesis, correlated with bacterial infection of the nodule cells and with a specific spatial localization of their transcripts from the apical to the proximal nodule zones. However, NCR expression is not associated with nodule senescence. According to their Shannon entropy, a measure expressing tissue specificity of gene expression, the NCR genes are among the most specifically expressed genes in M. truncatula. Moreover, when activated in nodules, their expression level is among the highest of all genes. Conclusions Together, these data show that the NCR gene expression is subject to an extreme tight regulation and is only activated during nodule organogenesis in the polyploid symbiotic cells. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-712) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Peter Mergaert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique UPR2355, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
63
|
Singh S, Katzer K, Lambert J, Cerri M, Parniske M. CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host Microbe 2014; 15:139-52. [PMID: 24528861 DOI: 10.1016/j.chom.2014.01.011] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/30/2013] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
Nuclear calcium oscillations are a hallmark of symbiotically stimulated plant root cells. Activation of the central nuclear decoder, calcium- and calmodulin-dependent kinase (CCaMK), triggers the entire symbiotic program including root nodule organogenesis, but the mechanism of signal transduction by CCaMK was unknown. We show that CYCLOPS, a direct phosphorylation substrate of CCaMK, is a DNA-binding transcriptional activator. Two phosphorylated serine residues within the N-terminal negative regulatory domain of CYCLOPS are necessary for its activity. CYCLOPS binds DNA in a sequence-specific and phosphorylation-dependent manner and transactivates the NODULE INCEPTION (NIN) gene. A phosphomimetic version of CYCLOPS was sufficient to trigger root nodule organogenesis in the absence of rhizobia and CCaMK. CYCLOPS thus induces a transcriptional activation cascade, in which NIN and a heterotrimeric NF-Y complex act in hierarchical succession to initiate symbiotic root nodule development.
Collapse
Affiliation(s)
- Sylvia Singh
- Faculty of Biology, Genetics, University of Munich (LMU), D-82152 Martinsried, Germany
| | - Katja Katzer
- Faculty of Biology, Genetics, University of Munich (LMU), D-82152 Martinsried, Germany
| | - Jayne Lambert
- Faculty of Biology, Genetics, University of Munich (LMU), D-82152 Martinsried, Germany
| | - Marion Cerri
- Faculty of Biology, Genetics, University of Munich (LMU), D-82152 Martinsried, Germany
| | - Martin Parniske
- Faculty of Biology, Genetics, University of Munich (LMU), D-82152 Martinsried, Germany.
| |
Collapse
|
64
|
Floss DS, Levy JG, Lévesque-Tremblay V, Pumplin N, Harrison MJ. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 2013; 110:E5025-34. [PMID: 24297892 PMCID: PMC3870710 DOI: 10.1073/pnas.1308973110] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis.
Collapse
|
65
|
Domonkos A, Horvath B, Marsh JF, Halasz G, Ayaydin F, Oldroyd GED, Kalo P. The identification of novel loci required for appropriate nodule development in Medicago truncatula. BMC PLANT BIOLOGY 2013; 13:157. [PMID: 24119289 PMCID: PMC3852326 DOI: 10.1186/1471-2229-13-157] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/25/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND The formation of functional symbiotic nodules is the result of a coordinated developmental program between legumes and rhizobial bacteria. Genetic analyses in legumes have been used to dissect the signaling processes required for establishing the legume-rhizobial endosymbiotic association. Compared to the early events of the symbiotic interaction, less attention has been paid to plant loci required for rhizobial colonization and the functioning of the nodule. Here we describe the identification and characterization of a number of new genetic loci in Medicago truncatula that are required for the development of effective nitrogen fixing nodules. RESULTS Approximately 38,000 EMS and fast neutron mutagenized Medicago truncatula seedlings were screened for defects in symbiotic nitrogen fixation. Mutant plants impaired in nodule development and efficient nitrogen fixation were selected for further genetic and phenotypic analysis. Nine mutants completely lacking in nodule formation (Nod-) represented six complementation groups of which two novel loci have been identified. Eight mutants with ineffective nodules (Fix-) represented seven complementation groups, out of which five were new monogenic loci. The Fix- M. truncatula mutants showed symptoms of nitrogen deficiency and developed small white nodules. Microscopic analysis of Fix- nodules revealed that the mutants have defects in the release of rhizobia from infection threads, differentiation of rhizobia and maintenance of persistence of bacteria in nodule cells. Additionally, we monitored the transcriptional activity of symbiosis specific genes to define what transcriptional stage of the symbiotic process is blocked in each of the Fix- mutants. Based on the phenotypic and gene expression analysis a functional hierarchy of the FIX genes is proposed. CONCLUSIONS The new symbiotic loci of M. truncatula isolated in this study provide the foundation for further characterization of the mechanisms underpinning nodulation, in particular the later stages associated with bacterial release and nodule function.
Collapse
Affiliation(s)
- Agota Domonkos
- Agricultural Biotechnology Center, Gödöllő 2100, Hungary
| | | | | | - Gabor Halasz
- Agricultural Biotechnology Center, Gödöllő 2100, Hungary
| | - Ferhan Ayaydin
- Cellular Imaging Laboratory, Biological Research Center, Szeged 6726, Hungary
| | | | - Peter Kalo
- Agricultural Biotechnology Center, Gödöllő 2100, Hungary
| |
Collapse
|
66
|
Routray P, Miller JB, Du L, Oldroyd G, Poovaiah BW. Phosphorylation of S344 in the calmodulin-binding domain negatively affects CCaMK function during bacterial and fungal symbioses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:287-296. [PMID: 23869591 DOI: 10.1111/tpj.12288] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 05/27/2023]
Abstract
Calcium and Ca(2+)/calmodulin-dependent protein kinase (CCaMK) plays a critical role in the signaling pathway that establishes root nodule symbiosis and arbuscular mycorrhizal symbiosis. Calcium-dependent autophosphorylation is central to the regulation of CCaMK, and this has been shown to promote calmodulin binding. Here, we report a regulatory mechanism of Medicago truncatula CCaMK (MtCCaMK) through autophosphorylation of S344 in the calmodulin-binding/autoinhibitory domain. The phospho-ablative mutation S344A did not have significant effect on its kinase activities, and supports root nodule symbiosis and arbuscular mycorrhizal symbiosis, indicating that phosphorylation at this position is not required for establishment of symbioses. The phospho-mimic mutation S344D show drastically reduced calmodulin-stimulated substrate phosphorylation, and this coincides with a compromised interaction with calmodulin and its interacting partner, IPD3. Functional complementation tests revealed that the S344D mutation blocked root nodule symbiosis and reduced the mycorrhizal association. Furthermore, S344D was shown to suppress the spontaneous nodulation associated with a gain-of-function mutant of MtCCaMK (T271A), revealing that phosphorylation at S344 of MtCCaMK is adequate for shutting down its activity, and is epistatic over previously identified T271 autophosphorylation. These results reveal a mechanism that enables CCaMK to 'turn off' its function through autophosphorylation.
Collapse
Affiliation(s)
- Pratyush Routray
- Graduate Program in Molecular Plant Sciences, Washington State University, Pullman, WA, 99164-6414, USA; Department of Horticulture, Washington State University, Pullman, WA, 99164-6414, USA
| | | | | | | | | |
Collapse
|
67
|
Larkan NJ, Ruzicka DR, Edmonds-Tibbett T, Durkin JMH, Jackson LE, Smith FA, Schachtman DP, Smith SE, Barker SJ. The reduced mycorrhizal colonisation (rmc) mutation of tomato disrupts five gene sequences including the CYCLOPS/IPD3 homologue. MYCORRHIZA 2013; 23:573-584. [PMID: 23572326 DOI: 10.1007/s00572-013-0498-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/19/2013] [Indexed: 06/02/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis in vascular plant roots is an ancient mutualistic interaction that evolved with land plants. More recently evolved root mutualisms have recruited components of the AM signalling pathway as identified with molecular approaches in model legume research. Earlier we reported that the reduced mycorrhizal colonisation (rmc) mutation of tomato mapped to chromosome 8. Here we report additional functional characterisation of the rmc mutation using genotype grafts and proteomic and transcriptomic analyses. Our results led to identification of the precise genome location of the Rmc locus from which we identified the mutation by sequencing. The rmc phenotype results from a deletion that disrupts five predicted gene sequences, one of which has close sequence match to the CYCLOPS/IPD3 gene identified in legumes as an essential intracellular regulator of both AM and rhizobial symbioses. Identification of two other genes not located at the rmc locus but with altered expression in the rmc genotype is also described. Possible roles of the other four disrupted genes in the deleted region are discussed. Our results support the identification of CYCLOPS/IPD3 in legumes and rice as a key gene required for AM symbiosis. The extensive characterisation of rmc in comparison with its 'parent' 76R, which has a normal mycorrhizal phenotype, has validated these lines as an important comparative model for glasshouse and field studies of AM and non-mycorrhizal plants with respect to plant competition and microbial interactions with vascular plant roots.
Collapse
Affiliation(s)
- Nicholas J Larkan
- School of Plant Biology M090, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia, 6009, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 2013; 8:e64377. [PMID: 23734198 PMCID: PMC3667139 DOI: 10.1371/journal.pone.0064377] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/12/2013] [Indexed: 11/25/2022] Open
Abstract
Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital “in situ”. This digital “in situ” offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.
Collapse
|
69
|
Guan D, Stacey N, Liu C, Wen J, Mysore KS, Torres-Jerez I, Vernié T, Tadege M, Zhou C, Wang ZY, Udvardi MK, Oldroyd GE, Murray JD. Rhizobial infection is associated with the development of peripheral vasculature in nodules of Medicago truncatula. PLANT PHYSIOLOGY 2013; 162:107-15. [PMID: 23535942 PMCID: PMC3641196 DOI: 10.1104/pp.113.215111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nodulation in legumes involves the coordination of epidermal infection by rhizobia with cell divisions in the underlying cortex. During nodulation, rhizobia are entrapped within curled root hairs to form an infection pocket. Transcellular tubes called infection threads then develop from the pocket and become colonized by rhizobia. The infection thread grows toward the developing nodule primordia and rhizobia are taken up into the nodule cells, where they eventually fix nitrogen. The epidermal and cortical developmental programs are synchronized by a yet-to-be-identified signal that is transmitted from the outer to the inner cell layers of the root. Using a new allele of the Medicago truncatula mutant Lumpy Infections, lin-4, which forms normal infection pockets but cannot initiate infection threads, we show that infection thread initiation is required for normal nodule development. lin-4 forms nodules with centrally located vascular bundles similar to that found in lateral roots rather than the peripheral vasculature characteristic of legume nodules. The same phenomenon was observed in M. truncatula plants inoculated with the Sinorhizobium meliloti exoY mutant, and the M. truncatula vapyrin-2 mutant, all cases where infections arrest. Nodules on lin-4 have reduced expression of the nodule meristem marker MtCRE1 and do not express root-tip markers. In addition, these mutant nodules have altered patterns of gene expression for the cytokinin and auxin markers CRE1 and DR5. Our work highlights the coordinating role that bacterial infection exerts on the developing nodule and allows us to draw comparisons with primitive actinorhizal nodules and rhizobia-induced nodules on the nonlegume Parasponia andersonii.
Collapse
|
70
|
Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 2013; 11:252-63. [PMID: 23493145 DOI: 10.1038/nrmicro2990] [Citation(s) in RCA: 877] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plants associate with a wide range of microorganisms, with both detrimental and beneficial outcomes. Central to plant survival is the ability to recognize invading microorganisms and either limit their intrusion, in the case of pathogens, or promote the association, in the case of symbionts. To aid in this recognition process, elaborate communication and counter-communication systems have been established that determine the degree of ingress of the microorganism into the host plant. In this Review, I describe the common signalling processes used by plants during mutualistic interactions with microorganisms as diverse as arbuscular mycorrhizal fungi and rhizobial bacteria.
Collapse
|
71
|
Guan SH, Gris C, Cruveiller S, Pouzet C, Tasse L, Leru A, Maillard A, Médigue C, Batut J, Masson-Boivin C, Capela D. Experimental evolution of nodule intracellular infection in legume symbionts. ISME JOURNAL 2013; 7:1367-77. [PMID: 23426010 DOI: 10.1038/ismej.2013.24] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Soil bacteria known as rhizobia are able to establish an endosymbiosis with legumes that takes place in neoformed nodules in which intracellularly hosted bacteria fix nitrogen. Intracellular accommodation that facilitates nutrient exchange between the two partners and protects bacteria from plant defense reactions has been a major evolutionary step towards mutualism. Yet the forces that drove the selection of the late event of intracellular infection during rhizobium evolution are unknown. To address this question, we took advantage of the previous conversion of the plant pathogen Ralstonia solanacearum into a legume-nodulating bacterium that infected nodules only extracellularly. We experimentally evolved this draft rhizobium into intracellular endosymbionts using serial cycles of legume-bacterium cocultures. The three derived lineages rapidly gained intracellular infection capacity, revealing that the legume is a highly selective environment for the evolution of this trait. From genome resequencing, we identified in each lineage a mutation responsible for the extracellular-intracellular transition. All three mutations target virulence regulators, strongly suggesting that several virulence-associated functions interfere with intracellular infection. We provide evidence that the adaptive mutations were selected for their positive effect on nodulation. Moreover, we showed that inactivation of the type three secretion system of R. solanacearum that initially allowed the ancestral draft rhizobium to nodulate, was also required to permit intracellular infection, suggesting a similar checkpoint for bacterial invasion at the early nodulation/root infection and late nodule cell entry levels. We discuss our findings with respect to the spread and maintenance of intracellular infection in rhizobial lineages during evolutionary times.
Collapse
Affiliation(s)
- Su Hua Guan
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Yeoh CC, Balcerowicz M, Zhang L, Jaudal M, Brocard L, Ratet P, Putterill J. Fine mapping links the FTa1 flowering time regulator to the dominant spring1 locus in Medicago. PLoS One 2013; 8:e53467. [PMID: 23308229 PMCID: PMC3538541 DOI: 10.1371/journal.pone.0053467] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/29/2012] [Indexed: 12/27/2022] Open
Abstract
To extend our understanding of flowering time control in eudicots, we screened for mutants in the model legume Medicago truncatula (Medicago). We identified an early flowering mutant, spring1, in a T-DNA mutant screen, but spring1 was not tagged and was deemed a somaclonal mutant. We backcrossed the mutant to wild type R108. The F1 plants and the majority of F2 plants were early flowering like spring1, strongly indicating that spring1 conferred monogenic, dominant early flowering. We hypothesized that the spring1 phenotype resulted from over expression of an activator of flowering. Previously, a major QTL for flowering time in different Medicago accessions was located to an interval on chromosome 7 with six candidate flowering-time activators, including a CONSTANS gene, MtCO, and three FLOWERING LOCUS T (FT) genes. Hence we embarked upon linkage mapping using 29 markers from the MtCO/FT region on chromosome 7 on two populations developed by crossing spring1 with Jester. Spring1 mapped to an interval of ∼0.5 Mb on chromosome 7 that excluded MtCO, but contained 78 genes, including the three FT genes. Of these FT genes, only FTa1 was up-regulated in spring1 plants. We then investigated global gene expression in spring1 and R108 by microarray analysis. Overall, they had highly similar gene expression and apart from FTa1, no genes in the mapping interval were differentially expressed. Two MADS transcription factor genes, FRUITFULLb (FULb) and SUPPRESSOR OF OVER EXPRESSION OF CONSTANS1a (SOC1a), that were up-regulated in spring1, were also up-regulated in transgenic Medicago over-expressing FTa1. This suggested that their differential expression in spring1 resulted from the increased abundance of FTa1. A 6255 bp genomic FTa1 fragment, including the complete 5' region, was sequenced, but no changes were observed indicating that the spring1 mutation is not a DNA sequence difference in the FTa1 promoter or introns.
Collapse
Affiliation(s)
- Chin Chin Yeoh
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Martin Balcerowicz
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Lulu Zhang
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Mauren Jaudal
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Lysiane Brocard
- Institut des Sciences du Végétal, CNRS, Gif sur Yvette, France
| | - Pascal Ratet
- Institut des Sciences du Végétal, CNRS, Gif sur Yvette, France
| | - Joanna Putterill
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
73
|
Reynoso MA, Blanco FA, Bailey-Serres J, Crespi M, Zanetti ME. Selective recruitment of mRNAs and miRNAs to polyribosomes in response to rhizobia infection in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:289-301. [PMID: 23050939 DOI: 10.1111/tpj.12033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/14/2012] [Accepted: 09/19/2012] [Indexed: 05/23/2023]
Abstract
Translation of mRNAs is a key regulatory step that contributes to the coordination and modulation of eukaryotic gene expression during development or adaptation to the environment. mRNA stability or translatability can be regulated by the action of small regulatory RNAs (sRNAs), which control diverse biological processes. Under low nitrogen conditions, leguminous plants associate with soil bacteria and develop a new organ specialized in nitrogen fixation: the nodule. To gain insight into the translational regulation of mRNAs during nodule formation, the association of mRNAs and sRNAs to polysomes was characterized in roots of the model legume Medicago truncatula during the symbiotic interaction with Sinorhizobium meliloti. Quantitative comparison of steady-state and polysomal mRNAs for 15 genes involved in nodulation identified a group of transcripts with slight or no change in total cellular abundance that were significantly upregulated at the level of association with polysomes in response to rhizobia. This group included mRNAs encoding receptors like kinases required either for nodule organogenesis, bacterial infection or both, and transcripts encoding GRAS and NF-Y transcription factors (TFs). Quantitative analysis of sRNAs in total and polysomal RNA samples revealed that mature microRNAs (miRNAs) were associated with the translational machinery, notably, miR169 and miR172, which target the NF-YA/HAP2 and AP2 TFs, respectively. Upon inoculation, levels of miR169 pronouncedly decreased in polysomal complexes, concomitant with the increased accumulation of the NF-YA/HAP2 protein. These results indicate that both mRNAs and miRNAs are subject to differential recruitment to polysomes, and expose the importance of selective mRNA translation during root nodule symbiosis.
Collapse
Affiliation(s)
- Mauricio Alberto Reynoso
- Instituto de Biotecnología y Biología Molecular, FCE-UNLP CCT-CONICET Calle 115 y 49, C.P. 1900, La Plata, Argentina
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, FCE-UNLP CCT-CONICET Calle 115 y 49, C.P. 1900, La Plata, Argentina
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521-0124, USA
| | - Martín Crespi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette Cedex, France
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, FCE-UNLP CCT-CONICET Calle 115 y 49, C.P. 1900, La Plata, Argentina
| |
Collapse
|
74
|
Weller JL, Hecht VFG, Sussmilch FC. Isolation and forward genetic analysis of developmental genes in pea. Methods Mol Biol 2013; 1069:147-61. [PMID: 23996314 DOI: 10.1007/978-1-62703-613-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding of developmental processes relies heavily on isolation and functional characterization of relevant genes. The garden pea (Pisum sativum L.) is one of the classic model species in plant genetics and has been used for a wide range of physiological and molecular studies of plant development. Here we describe the resources and approaches available for isolation of genes and genetic characterization of loci affecting development in pea.
Collapse
Affiliation(s)
- James L Weller
- School of Plant Science, University of Tasmania, Hobart, TAS, Australia
| | | | | |
Collapse
|
75
|
Untergasser A, Bijl GJM, Liu W, Bisseling T, Schaart JG, Geurts R. One-step Agrobacterium mediated transformation of eight genes essential for rhizobium symbiotic signaling using the novel binary vector system pHUGE. PLoS One 2012; 7:e47885. [PMID: 23112864 PMCID: PMC3480454 DOI: 10.1371/journal.pone.0047885] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/18/2012] [Indexed: 11/19/2022] Open
Abstract
Advancement in plant research is becoming impaired by the fact that the transfer of multiple genes is difficult to achieve. Here we present a new binary vector for Agrobacterium tumefaciens mediated transformation, pHUGE-Red, in concert with a cloning strategy suited for the transfer of up to nine genes at once. This vector enables modular cloning of large DNA fragments by employing Gateway technology and contains DsRED1 as visual selection marker. Furthermore, an R/Rs inducible recombination system was included allowing subsequent removal of the selection markers in the newly generated transgenic plants. We show the successful use of pHUGE-Red by transferring eight genes essential for Medicago truncatula to establish a symbiosis with rhizobia bacteria as one 74 kb T-DNA into four non-leguminous species; strawberry, poplar, tomato and tobacco. We provide evidence that all transgenes are expressed in the root tissue of the non-legumes. Visual control during the transformation process and subsequent marker gene removal makes the pHUGE-Red vector an excellent tool for the efficient transfer of multiple genes.
Collapse
Affiliation(s)
- Andreas Untergasser
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
76
|
Bapaume L, Reinhardt D. How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza. FRONTIERS IN PLANT SCIENCE 2012; 3:223. [PMID: 23060892 PMCID: PMC3464683 DOI: 10.3389/fpls.2012.00223] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/14/2012] [Indexed: 05/19/2023]
Abstract
As sessile organisms that cannot evade adverse environmental conditions, plants have evolved various adaptive strategies to cope with environmental stresses. One of the most successful adaptations is the formation of symbiotic associations with beneficial microbes. In these mutualistic interactions the partners exchange essential nutrients and improve their resistance to biotic and abiotic stresses. In arbuscular mycorrhiza (AM) and in root nodule symbiosis (RNS), AM fungi and rhizobia, respectively, penetrate roots and accommodate within the cells of the plant host. In these endosymbiotic associations, both partners keep their plasma membranes intact and use them to control the bidirectional exchange of signaling molecules and nutrients. Intracellular accommodation requires the exchange of symbiotic signals and the reprogramming of both interacting partners. This involves fundamental changes at the level of gene expression and of the cytoskeleton, as well as of organelles such as plastids, endoplasmic reticulum (ER), and the central vacuole. Symbiotic cells are highly compartmentalized and have a complex membrane system specialized for the diverse functions in molecular communication and nutrient exchange. Here, we discuss the roles of the different cellular membrane systems and their symbiosis-related proteins in AM and RNS, and we review recent progress in the analysis of membrane proteins involved in endosymbiosis.
Collapse
Affiliation(s)
| | - Didier Reinhardt
- Department of Biology, University of FribourgFribourg, Switzerland
| |
Collapse
|
77
|
Singh S, Parniske M. Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:444-53. [PMID: 22727503 DOI: 10.1016/j.pbi.2012.04.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 04/26/2012] [Indexed: 05/19/2023]
Abstract
The key molecular event during the development of arbuscular mycorrhiza and the root nodule symbiosis is the activation of calcium- and calmodulin-dependent protein kinase (CCaMK). Its regulation is complex and involves positive as well as negative regulation facilitated by autophosphorylation of two conserved sites. Deregulated versions of CCaMK are sufficient for mediating both organogenesis and infection processes. Epistasis tests demonstrated that a main function of signaling components upstream of calcium spiking is the activation of CCaMK. Despite CCaMK being a central signaling hub, specificity for both symbioses exists, resulting in differential transcriptional gene expression patterns. While the specificity upstream of CCaMK can be conceptualized by the specific perception of rhizobial and fungal lipo-chitooligosaccharides via cognate LysM receptors, the mechanisms conferring transcriptional specificity downstream of CCaMK are likely conferred by a variety of transcriptional regulators, mediating symbiosis appropriate gene regulation.
Collapse
Affiliation(s)
- Sylvia Singh
- Genetics, University of Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
78
|
Geurts R, Lillo A, Bisseling T. Exploiting an ancient signalling machinery to enjoy a nitrogen fixing symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:438-43. [PMID: 22633856 DOI: 10.1016/j.pbi.2012.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/26/2012] [Indexed: 05/20/2023]
Abstract
For almost a century now it has been speculated that a transfer of the largely legume-specific symbiosis with nitrogen fixing rhizobium would be profitable in agriculture [1,2]. Up to now such a step has not been achieved, despite intensive research in this era. Novel insights in the underlying signalling networks leading to intracellular accommodation of rhizobium as well as mycorrhizal fungi of the Glomeromycota order show extensive commonalities between both interactions. As mycorrhizae symbiosis can be established basically with most higher plant species it raises questions why is it only in a few taxonomic lineages that the underlying signalling network could be hijacked by rhizobium. Unravelling this will lead to insights that are essential to achieve an old dream.
Collapse
Affiliation(s)
- Rene Geurts
- Wageningen University, Department of Plant Science, Laboratory of Molecular Biology, Droevendaalsesteeg 1, 6709BP Wageningen, The Netherlands
| | | | | |
Collapse
|
79
|
Czaja LF, Hogekamp C, Lamm P, Maillet F, Martinez EA, Samain E, Dénarié J, Küster H, Hohnjec N. Transcriptional responses toward diffusible signals from symbiotic microbes reveal MtNFP- and MtDMI3-dependent reprogramming of host gene expression by arbuscular mycorrhizal fungal lipochitooligosaccharides. PLANT PHYSIOLOGY 2012; 159:1671-85. [PMID: 22652128 PMCID: PMC3425205 DOI: 10.1104/pp.112.195990] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The formation of root nodules and arbuscular mycorrhizal (AM) roots is controlled by a common signaling pathway including the calcium/calmodulin-dependent kinase Doesn't Make Infection3 (DMI3). While nodule initiation by lipochitooligosaccharide (LCO) Nod factors is well characterized, diffusible AM fungal signals were only recently identified as sulfated and nonsulfated LCOs. Irrespective of different outcomes, the perception of symbiotic LCOs in Medicago truncatula is mediated by the LysM receptor kinase M. truncatula Nod factor perception (MtNFP). To shed light on transcriptional responses toward symbiotic LCOs and their dependence on MtNFP and Ca(2+) signaling, we performed genome-wide expression studies of wild-type, Nod-factor-perception mutant1, and dmi3 mutant roots challenged with Myc- and Nod-LCOs. We show that Myc-LCOs lead to transient, quick responses in the wild type, whereas Nod-LCOs require prolonged incubation for maximal expression activation. While Nod-LCOs are most efficient for an induction of persistent transcriptional changes, sulfated Myc-LCOs are less active, and nonsulfated Myc-LCOs display the lowest capacity to activate and sustain expression. Although all symbiotic LCOs up-regulated a common set of genes, discrete subsets were induced by individual LCOs, suggesting common and specific functions for these in presymbiotic signaling. Surprisingly, even sulfated fungal Myc-LCOs and Sinorhizobium meliloti Nod-LCOs, having very similar structures, each elicited discrete subsets of genes, while a mixture of both Myc-LCOs activated responses deviating from those induced by single treatments. Focusing on the precontact phase, we identified signaling-related and transcription factor genes specifically up-regulated by Myc-LCOs. Comparative gene expression studies in symbiotic mutants demonstrated that transcriptional reprogramming by AM fungal LCOs strictly depends on MtNFP and largely requires MtDMI3.
Collapse
|
80
|
Pislariu CI, D. Murray J, Wen J, Cosson V, Muni RRD, Wang M, A. Benedito V, Andriankaja A, Cheng X, Jerez IT, Mondy S, Zhang S, Taylor ME, Tadege M, Ratet P, Mysore KS, Chen R, Udvardi MK. A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation. PLANT PHYSIOLOGY 2012; 159:1686-99. [PMID: 22679222 PMCID: PMC3425206 DOI: 10.1104/pp.112.197061] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/01/2012] [Indexed: 05/20/2023]
Abstract
A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.
Collapse
Affiliation(s)
| | | | - JiangQi Wen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Viviane Cosson
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - RajaSekhara Reddy Duvvuru Muni
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Mingyi Wang
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Vagner A. Benedito
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Andry Andriankaja
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Xiaofei Cheng
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Ivone Torres Jerez
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Samuel Mondy
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Shulan Zhang
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Mark E. Taylor
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Million Tadege
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Pascal Ratet
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Kirankumar S. Mysore
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Rujin Chen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| | - Michael K. Udvardi
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (C.I.P., J.D.M., J.W., R.R.D.M., M.W., V.A.B., A.A., X.C., I.T.J., S.Z., M.E.T., M.T., K.S.M., R.C., M.K.U.); Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, United Kingdom (J.D.M.); Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France (V.C., S.M., P.R.); Monsanto Holdings Pvt., Ltd, Monsanto Research Center, NH7, Hebbal, Bangalore 560 092, India (R.R.D.M.); Division of Plant and Soil Sciences, Davies College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, West Virginia 26506 (V.A.B.); Badische Anilin- und Soda-Fabrik Plant Science Company, 67117 Limburgerhof, Germany (A.A.); and Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401 (M.T.)
| |
Collapse
|
81
|
Ivanov S, Fedorova EE, Limpens E, De Mita S, Genre A, Bonfante P, Bisseling T. Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proc Natl Acad Sci U S A 2012; 109:8316-21. [PMID: 22566631 PMCID: PMC3361388 DOI: 10.1073/pnas.1200407109] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Endosymbiotic interactions are characterized by the formation of specialized membrane compartments, by the host in which the microbes are hosted, in an intracellular manner. Two well-studied examples, which are of major agricultural and ecological importance, are the widespread arbuscular mycorrhizal symbiosis and the Rhizobium-legume symbiosis. In both symbioses, the specialized host membrane that surrounds the microbes forms a symbiotic interface, which facilitates the exchange of, for example, nutrients in a controlled manner and, therefore, forms the heart of endosymbiosis. Despite their key importance, the molecular and cellular mechanisms underlying the formation of these membrane interfaces are largely unknown. Recent studies strongly suggest that the Rhizobium-legume symbiosis coopted a signaling pathway, including receptor, from the more ancient arbuscular mycorrhizal symbiosis to form a symbiotic interface. Here, we show that two highly homologous exocytotic vesicle-associated membrane proteins (VAMPs) are required for formation of the symbiotic membrane interface in both interactions. Silencing of these Medicago VAMP72 genes has a minor effect on nonsymbiotic plant development and nodule formation. However, it blocks symbiosome as well as arbuscule formation, whereas root colonization by the microbes is not affected. Identification of these VAMP72s as common symbiotic regulators in exocytotic vesicle trafficking suggests that the ancient exocytotic pathway forming the periarbuscular membrane compartment has also been coopted in the Rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Sergey Ivanov
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Elena E. Fedorova
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Erik Limpens
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Stephane De Mita
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Andrea Genre
- Dipartimento di Biologia Vegetale, Universita’ di Torino, 10125 Turin, Italy; and
| | - Paola Bonfante
- Dipartimento di Biologia Vegetale, Universita’ di Torino, 10125 Turin, Italy; and
| | - Ton Bisseling
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
82
|
Damiani I, Baldacci-Cresp F, Hopkins J, Andrio E, Balzergue S, Lecomte P, Puppo A, Abad P, Favery B, Hérouart D. Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes. THE NEW PHYTOLOGIST 2012; 194:511-522. [PMID: 22360638 DOI: 10.1111/j.1469-8137.2011.04046.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The establishment and development of plant-microorganism interactions involve impressive transcriptomic reprogramming of target plant genes. The symbiont (Sinorhizobium meliloti) and the root knot-nematode pathogen (Meloidogyne incognita) induce the formation of new root organs, the nodule and the gall, respectively. Using laser-assisted microdissection, we specifically monitored, at the cell level, Medicago gene expression in nodule zone II cells, which are preparing to receive rhizobia, and in gall giant and surrounding cells, which play an essential role in nematode feeding and constitute the typical root swollen structure, respectively. We revealed an important reprogramming of hormone pathways and C1 metabolism in both interactions, which may play key roles in nodule and gall neoformation, rhizobia endocytosis and nematode feeding. Common functions targeted by rhizobia and nematodes were mainly down-regulated, whereas the specificity of the interaction appeared to involve up-regulated genes. Our transcriptomic results provide powerful datasets to unravel the mechanisms involved in the accommodation of rhizobia and root-knot nematodes. Moreover, they raise the question of host specificity and the evolution of plant infection mechanisms by a symbiont and a pathogen.
Collapse
Affiliation(s)
- Isabelle Damiani
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Fabien Baldacci-Cresp
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Julie Hopkins
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Emilie Andrio
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Sandrine Balzergue
- URGV UMR INRA 1165 - CNRS 8114 - UEVE, 2 rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France
| | - Philippe Lecomte
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Alain Puppo
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Pierre Abad
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Bruno Favery
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| | - Didier Hérouart
- INRA, UMR 1301, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- CNRS, UMR 6243, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
- Université de Nice Sophia-Antipolis, Interactions Biotiques et Santé Végétale, 400 route des Chappes, F-06903 Sophia Antipolis, France
| |
Collapse
|
83
|
Horváth B, Yeun LH, Domonkos A, Halász G, Gobbato E, Ayaydin F, Miró K, Hirsch S, Sun J, Tadege M, Ratet P, Mysore KS, Ané JM, Oldroyd GED, Kaló P. Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1345-58. [PMID: 21692638 DOI: 10.1094/mpmi-01-11-0015] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Legumes form endosymbiotic associations with nitrogen-fixing bacteria and arbuscular mycorrhizal (AM) fungi which facilitate nutrient uptake. Both symbiotic interactions require a molecular signal exchange between the plant and the symbiont, and this involves a conserved symbiosis (Sym) signaling pathway. In order to identify plant genes required for intracellular accommodation of nitrogen-fixing bacteria and AM fungi, we characterized Medicago truncatula symbiotic mutants defective for rhizobial infection of nodule cells and colonization of root cells by AM hyphae. Here, we describe mutants impaired in the interacting protein of DMI3 (IPD3) gene, which has been identified earlier as an interacting partner of the calcium/calmodulin-dependent protein, a member of the Sym pathway. The ipd3 mutants are impaired in both rhizobial and mycorrhizal colonization and we show that IPD3 is necessary for appropriate Nod-factor-induced gene expression. This indicates that IPD3 is a member of the common Sym pathway. We observed differences in the severity of ipd3 mutants that appear to be the result of the genetic background. This supports the hypothesis that IPD3 function is partially redundant and, thus, additional genetic components must exist that have analogous functions to IPD3. This explains why mutations in an essential component of the Sym pathway have defects at late stages of the symbiotic interactions.
Collapse
|