51
|
Jassem W, Fuggle SV, Rela M, Koo DDH, Heaton ND. The role of mitochondria in ischemia/reperfusion injury. Transplantation 2002; 73:493-9. [PMID: 11889418 DOI: 10.1097/00007890-200202270-00001] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In organ transplantation, ischemia/reperfusion injury is a multifactorial process that leads to organ damage and primary graft dysfunction. Injury to the organ is mediated by a complex chain of events that involves depletion of energy substrates, alteration of ionic homeostasis, production of reactive oxygen species, and cell death by apoptosis and necrosis. There is increasing evidence that mitochondria play a role in this process because of the profound changes experienced during ischemia and reperfusion. Understanding the mechanisms that lead to mitochondrial damage may be important for developing strategies aimed at improving graft outcome. In this review, we examine the role of mitochondria in ischemia/reperfusion injury and the possible mechanisms that may contribute to organ dysfunction.
Collapse
Affiliation(s)
- Wayel Jassem
- Liver Transplant Unit, Institute of Liver Studies, King's College Hospital, Denmark Hill, London, SE5 9RS, United Kingdom
| | | | | | | | | |
Collapse
|
52
|
Datta K, Babbar P, Srivastava T, Sinha S, Chattopadhyay P. p53 dependent apoptosis in glioma cell lines in response to hydrogen peroxide induced oxidative stress. Int J Biochem Cell Biol 2002; 34:148-57. [PMID: 11809417 DOI: 10.1016/s1357-2725(01)00106-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Generation of reactive oxygen species (ROS) is an important mode of action of many chemotherapeutic agents. Hydrogen peroxide (H(2)O(2)) is a model oxidant that has been used to study the response of cells to oxidative stress. The role of p53 in ROS induced cell death has not been consistent and has been shown to be cell type dependent. Study of cellular and molecular parameters and mechanisms involved in H(2)O(2) induced cell death in glioma cells will contribute to the understanding of response of these cells to oxidative stress. We investigated induction of cell death by H(2)O(2), and its relation to p53 in two human glial tumor derived cell lines U87MG (wild type p53) and U373MG (mutated p53). We observed that H(2)O(2) was able to induce apoptosis (as shown by morphology, flow cytometry and DNA fragmentation studies) in U87MG in a dose dependent manner. Dimethyl sulfoxide (DMSO), a known ROS scavenger, was protective to the cells. H(2)O(2) induced cell death was significantly reduced by antisense p53 oligonucleotide. Pretreatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of the redox sensitive transcription factor NF-kappa B, abrogated the increased expression of p53 protein in response to H(2)O(2), and enhanced cell survival. The U373MG cell line, having mutated p53, was comparatively resistant to H(2)O(2) induced cell death. We conclude from the study that p53, activated by NF-kappa B, is essential for H(2)O(2) induced apoptosis in glioma cells.
Collapse
Affiliation(s)
- Kamal Datta
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | | | | | |
Collapse
|
53
|
Abstract
During apoptosis, mitochondrial membrane permeability (MMP) increases and the release into the cytosol of pro-apoptotic factors (procaspases, caspase activators and caspase-independent factors such as apoptosis-inducing factor (AIF)) leads to the apoptotic phenotype. Apart from this pivotal role of mitochondria during the execution phase of apoptosis (documented in other reviews of this issue), it appears that reactive oxygen species (ROS) produced by the mitochondria can be involved in cell death. These toxic compounds are normally detoxified by the cells, failing which oxidative stress occurs. However, ROS are not only dangerous molecules for the cell, but they also display a physiological role, as mediators in signal transduction pathways. ROS participate in early and late steps of the regulation of apoptosis, according to different possible molecular mechanisms. In agreement with this role of ROS in apoptosis signaling, inhibition of apoptosis by anti-apoptotic Bcl-2 and Bcl-x(L) is associated with a protection against ROS and/or a shift of the cellular redox potential to a more reduced state. Furthermore, the fact that active forms of cell death in yeast and plants also involve ROS suggests the existence of an ancestral redox-sensitive death signaling pathway that has been independent of caspases and Bcl-2.
Collapse
Affiliation(s)
- Christophe Fleury
- CNRS-UPRES-A 8087, Laboratoire de génétique moléculaire et physiologique de l'EPHE, université de Versailles/Saint-Quentin, Bâtiment Fermat, 45, avenue des Etats-Unis, 78035 Versailles cedex, France
| | | | | |
Collapse
|
54
|
Kunikowska G, Jenner P. 6-Hydroxydopamine-lesioning of the nigrostriatal pathway in rats alters basal ganglia mRNA for copper, zinc- and manganese-superoxide dismutase, but not glutathione peroxidase. Brain Res 2001; 922:51-64. [PMID: 11730701 DOI: 10.1016/s0006-8993(01)03149-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of nigrostriatal pathway destruction on the mRNA levels of copper, zinc-dependent superoxide dismutase (Cu,Zn-SOD), manganese-dependent superoxide dismutase (Mn-SOD), and glutathione peroxidase in basal ganglia of adult rat were investigated using in situ hybridization histochemistry and oligodeoxynucleotide (single-stranded complementary DNA) probes. The 6-hydroxydopamine (6-OHDA)-induced destruction of the nigrostriatal pathway resulted in contralateral rotation to apomorphine and a marked loss of specific [(3)H]mazindol binding in the striatum (93%; P<0.05) and of tyrosine hydroxylase mRNA in substantia nigra pars compacta (SC) (93%; P<0.05) compared with control rats. Levels of Cu,Zn-SOD mRNA were decreased in the striatum, globus pallidus, and SC on the lesioned side of 6-OHDA-lesioned rats compared with sham-lesioned rats (P<0.05). Levels of Mn-SOD mRNA were increased in the nucleus accumbens (P<0.05), but decreased in the SC (P<0.05) on the lesioned side of 6-OHDA-treated rats compared with sham-lesioned rats. Lesioning with 6-OHDA had no effect on glutathione peroxidase mRNA levels in any region of basal ganglia examined. The significant changes in Cu,Zn-SOD and Mn-SOD mRNA indicate that SOD is primarily expressed by dopaminergic neurons of the nigrostriatal pathway, and that the Mn-SOD gene appears to be inducible in rat basal ganglia in response to both physical and chemical damage 5 weeks after 6-OHDA-lesioning. These findings may clarify the status of antioxidant enzymes, particularly Mn-SOD, in patients with Parkinson's disease and their relevance to disease pathogenesis.
Collapse
Affiliation(s)
- G Kunikowska
- Neurodegenerative Diseases Research Centre, Division of Pharmacology and Therapeutics, Guy's, King's and St Thomas' School of Biomedical Sciences, Hodgkin Building, King's College, London SE1 1UL, UK
| | | |
Collapse
|
55
|
Wang LI, Miller DP, Sai Y, Liu G, Su L, Wain JC, Lynch TJ, Christiani DC. Manganese superoxide dismutase alanine-to-valine polymorphism at codon 16 and lung cancer risk. J Natl Cancer Inst 2001; 93:1818-21. [PMID: 11734599 DOI: 10.1093/jnci/93.23.1818] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- L I Wang
- Department of Epidemiology, Harvard School of Public Health, 665 Huntington Ave., Bldg. 1 Rm. 1402, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Fu Y, Porres JM, Lei XG. Comparative impacts of glutathione peroxidase-1 gene knockout on oxidative stress induced by reactive oxygen and nitrogen species in mouse hepatocytes. Biochem J 2001; 359:687-95. [PMID: 11672444 PMCID: PMC1222191 DOI: 10.1042/0264-6021:3590687] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Selenium-dependent glutathione peroxidase-1 (GPX1) protects against reactive-oxygen-species (ROS)-induced oxidative stress in vivo, but its role in coping with reactive nitrogen species (RNS) is unclear. Our objective was to compare the protection of GPX1 against cytotoxicity of superoxide generator diquat (DQ), NO donor S-nitroso-N-acetyl-penicillamine (SNAP) and peroxynitrite generator 3-morpholinosydnonimine (SIN-1). Primary hepatocytes were isolated from GPX1-knockout (KO) and wild-type (WT) mice and cultured in complete Williams's medium E with various levels of these agents alone or in combination for up to 12 h. While the KO cells were more susceptible to cell death, DNA fragmentation and protein carbonyl formation induced by 0.25-1 mM DQ, these cells were as tolerant as the WT cells to cytotoxicity of 0.1-1 mM SNAP or 0.5-2 mM SIN-1. Treating cells with SNAP (0.1 or 0.25 mM) in addition to DQ produced synergistic cytotoxicity that minimized differences in apoptotic cell death and oxidative injuries between the KO and WT cells. Less protein nitrotyrosine was induced by 0.05-0.5 mM DQ+0.25 mM SNAP in the KO than in the WT cells. Total GPX activity in the WT cells was reduced by 65 and 25% by 0.5 mM DQ+0.1 mM SNAP and 0.5 mM DQ, respectively. Decreases in Cu,Zn-superoxide dismutase (SOD) activity and increases in Mn-SOD activity in response to DQ or DQ+SNAP were greater in the KO cells than in the WT cells. In conclusion, GPX1 was more effective in protecting hepatocytes against oxidative injuries mediated by ROS alone than by ROS and RNS together. Knockout of GPX1 did not enhance cell susceptibility to RNS-associated cytotoxicity. Instead, it attenuated protein nitration induced by DQ+SNAP.
Collapse
Affiliation(s)
- Y Fu
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
57
|
Abid MR, Tsai JC, Spokes KC, Deshpande SS, Irani K, Aird WC. Vascular endothelial growth factor induces manganese-superoxide dismutase expression in endothelial cells by a Rac1-regulated NADPH oxidase-dependent mechanism. FASEB J 2001; 15:2548-50. [PMID: 11641265 DOI: 10.1096/fj.01-0338fje] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a potent vascular endothelial cell-specific mitogen that modulates endothelial cell function. In the present study, we show that VEGF induces manganese-superoxide dismutase (MnSOD) mRNA and protein in human coronary artery endothelial cells (HCAEC) and pulmonary artery endothelial cells. VEGF-mediated induction of MnSOD mRNA was inhibited by pretreatment with the NADPH oxidase inhibitors, diphenyleneiodonium (DPI), and 4-(2-aminoethyl)-benzenesulfonyl fluoride, but not with the nitric oxide synthase inhibitor L-NAME (N-monomethyl-L-arginine) or the xanthine oxidase inhibitor allopurinol. VEGF stimulation of MnSOD was also inhibited by adenoviral-mediated overexpression of catalase Cu, Zn-SOD and a dominant-negative form of the small GTPase component of NADPH oxidase Rac1 (Rac1N17). Treatment of HCAEC with VEGF resulted in a transient increase in ROS production at 20 min, as measured by 2,7-dichlorodihydrofluorescein oxidation. This effect was abrogated by expression of Rac1N17. Taken together, these findings suggest that VEGF induces MnSOD by an NADPH oxidase-dependent mechanism and that VEGF signaling in the endothelium is coupled to the redox state of the cell.
Collapse
MESH Headings
- Adenoviridae/genetics
- Blotting, Northern
- Blotting, Western
- Catalase/genetics
- Catalase/metabolism
- Cells, Cultured
- Dose-Response Relationship, Drug
- Endothelial Growth Factors/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Free Radical Scavengers/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Genetic Vectors/genetics
- Humans
- Lymphokines/pharmacology
- NADPH Oxidases/antagonists & inhibitors
- NADPH Oxidases/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reactive Oxygen Species/metabolism
- Superoxide Dismutase/drug effects
- Superoxide Dismutase/genetics
- Superoxide Dismutase/metabolism
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
- rac1 GTP-Binding Protein/genetics
- rac1 GTP-Binding Protein/physiology
Collapse
Affiliation(s)
- M R Abid
- Departments of Medicine and Molecular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 01125, USA
| | | | | | | | | | | |
Collapse
|
58
|
Soini Y, Vakkala M, Kahlos K, Pääkkö P, Kinnula V. MnSOD expression is less frequent in tumour cells of invasive breast carcinomas than in in situ carcinomas or non-neoplastic breast epithelial cells. J Pathol 2001; 195:156-62. [PMID: 11592093 DOI: 10.1002/path.946] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Manganese superoxide dismutase (MnSOD) is an antioxidant enzyme capable of neutralizing superoxide anion molecules. In previous studies it has been suggested to suppress both tumour proliferation and apoptosis. This study investigated 65 invasive, 50 in situ and 19 benign hyperplastic breast lesions for its immunohistochemical expression. MnSOD expression was also tested with in situ hybridization. To study cell proliferation, apoptosis and their association with MnSOD expression the neoplastic breast lesions were immunostained with a monoclonal antibody to Ki-67 and the extent of apoptosis in them was determined by the TUNEL method. 32/65 (49%) of the invasive ductal carcinomas, 41/50 (82%) of the in situ and 15/19 (79%) of the benign hyperplasias expressed the MnSOD protein. There were significantly more MnSOD positive cases in in situ carcinoma and in benign hyperplasia than in invasive carcinoma (p=0.00016 and p=0.022, respectively). Positivity was also more frequently found in non-neoplastic ductal and acinar epithelial cells than in invasive carcinoma. On the other hand, neoplastic epithelial cells of invasive and in situ carcinoma showed strong positivity more often than the epithelial cells of benign hyperplasia or non-neoplastic epithelium. In breast lesions, MnSOD positivity did not associate with proliferation or apoptosis. The lower frequency of MnSOD positive cases in invasive breast carcinoma suggests that the lack of its expression might contribute to the development of an invasive breast carcinoma phenotype and that it could in this way operate as a tumour suppressor gene, as previously suggested.
Collapse
Affiliation(s)
- Y Soini
- Department of Pathology, University of Oulu and Oulu University Hospital, Oulu, Finland.
| | | | | | | | | |
Collapse
|
59
|
Aramaki Y, Takano S, Tsuchiya S. Cationic liposomes induce macrophage apoptosis through mitochondrial pathway. Arch Biochem Biophys 2001; 392:245-50. [PMID: 11488598 DOI: 10.1006/abbi.2001.2458] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To clarify the mechanism of apoptosis of the macrophage-like cell line RAW264.7 induced by cationic liposomes, we focused on the mitochondria and investigated the changes in mitochondrial membrane potential and the release of cytochrome c following treatment of cationic liposomes composed of stearylamine (SA-liposomes). SA-liposomes induced mitochondrial membrane depolarization and also the release of cytochrome c from mitochondria. Caspase-3 was also activated by SA-liposome treatment. Pretreatment of cells with N-acetylcysteine, a scavenger of reactive oxygen species (ROS), conferred resistance to the induction of the membrane depolarization, cytochrome c release, and caspase-3 activation by SA-liposomes. These results indicated that SA-liposomes caused the apoptosis in RAW264.7 cells through the mitochondrial pathway, and ROS generation was required for this phenomenon.
Collapse
Affiliation(s)
- Y Aramaki
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | | | | |
Collapse
|
60
|
Porntadavity S, Xu Y, Kiningham K, Rangnekar VM, Prachayasittikul V, Prachayasitikul V, St Clair DK. TPA-activated transcription of the human MnSOD gene: role of transcription factors Sp-1 and Egr-1. DNA Cell Biol 2001; 20:473-81. [PMID: 11560779 DOI: 10.1089/104454901316976109] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Induction of manganese superoxide dismutase (MnSOD) in response to oxidative stress has been well established in animals, tissues, and cell culture. However, the role of the human MnSOD (hMnSOD) promoter in stimulus-dependent activation of transcription is unknown. The hMnSOD promoter lacks both a TATA and a CAAT box but possesses several GC motifs. In a previous study, we showed that the basal promoter contains multiple Sp1 and AP-2 binding sites and that Sp1 is essential for the constitutive expression of the hMnSOD gene. In this study, we identified an Egr-1 binding site in the basal promoter of hMnSOD. We also found that the basal promoter is responsive to 12-O-tetradecanoylphorbol-13-acetate (TPA)-activated hMnSOD transcription in the human hepatocarcinoma cell line HepG2. The contributions of these binding sites and the roles of the transcription factors Egr-1, AP-2, and Sp1 in the activation of hMnSOD transcription by TPA were investigated by site-directed mutation analysis, Western blotting, and overexpression of transcription factors. The results showed that Sp1 plays a positive role for both basal and TPA-activated hMnSOD transcription, whereas overexpression of Egr-1 has a negative role in the basal promoter activity without any effect on TPA-mediated activation of hMnSOD transcription.
Collapse
Affiliation(s)
- S Porntadavity
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Zhao Y, Kiningham KK, Lin SM, St Clair DK. Overexpression of MnSOD protects murine fibrosarcoma cells (FSa-II) from apoptosis and promotes a differentiation program upon treatment with 5-azacytidine: involvement of MAPK and NFkappaB pathways. Antioxid Redox Signal 2001; 3:375-86. [PMID: 11499385 DOI: 10.1089/15230860152409022] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stable transfection of neomycin and human manganese superoxide dismutase (MnSOD2) expression plasmids into a murine fibrosarcoma cell line (FSa-II) was previously done in our laboratory. Treatment with 10 microM 5-azacytidine induced apoptosis in the control cell line (NEO), whereas the MnSOD-overexpressing cell line (SOD-H) demonstrated differentiated-appearing morphology. The levels of the myogenic transcription factor, MyoD, and the muscle-specific marker, alpha-actin, were increased over time with 5-azacytidine treatment in the SOD-H cell line. Nuclear transcription factor NFkappaB was activated in the SOD-H cell line, whereas inhibition of NFkappaB activation reduced the levels of MyoD and alpha-actin. Members of mitogen-activated protein kinase pathway and the Raf1/MEK/ERK cascade were shown to play a positive role in this event. Overexpression of MnSOD not only can protect cells from the toxic effects of 5-azacytidine, but can also promote the fibrosarcoma cells to enter a differentiation program.
Collapse
Affiliation(s)
- Y Zhao
- Graduate Center for Toxicology, University of Kentucky, Lexington 40536, USA
| | | | | | | |
Collapse
|
62
|
Abstract
Manganese superoxide dismutase (MnSOD) is essential for life as dramatically illustrated by the neonatal lethality of mice that are deficient in MnSOD. In addition, mice expressing only 50% of the normal compliment of MnSOD demonstrate increased susceptibility to oxidative stress and severe mitochondrial dysfunction resulting from elevation of reactive oxygen species. Thus, it is important to know the status of both MnSOD protein levels and activity in order to assess its role as an important regulator of cell biology. Numerous studies have shown that MnSOD can be induced to protect against pro-oxidant insults resulting from cytokine treatment, ultraviolet light, irradiation, certain tumors, amyotrophic lateral sclerosis, and ischemia/reperfusion. In addition, overexpression of MnSOD has been shown to protect against pro-apoptotic stimuli as well as ischemic damage. Conversely, several studies have reported declines in MnSOD activity during diseases including cancer, aging, progeria, asthma, and transplant rejection. The precise biochemical/molecular mechanisms involved with this loss in activity are not well understood. Certainly, MnSOD gene expression or other defects could play a role in such inactivation. However, based on recent findings regarding the susceptibility of MnSOD to oxidative inactivation, it is equally likely that post-translational modification of MnSOD may account for the loss of activity. Our laboratory has recently demonstrated that MnSOD is tyrosine nitrated and inactivated during human kidney allograft rejection and human pancreatic ductal adenocarcinoma. We have determined that peroxynitrite (ONOO- ) is the only known biological oxidant competent to inactivate enzymatic activity, to nitrate critical tyrosine residues, and to induce dityrosine formation in MnSOD. Tyrosine nitration and inactivation of MnSOD would lead to increased levels of superoxide and concomitant increases in ONOO- within the mitochondria which, could lead to tyrosine nitration/oxidation of key mitochondrial proteins and ultimately mitochondrial dysfunction and cell death. This article assesses the important role of MnSOD activity in various pathological states in light of this potentially lethal positive feedback cycle involving oxidative inactivation.
Collapse
Affiliation(s)
- L A Macmillan-Crow
- Pharmacology; University of Alabama at Birmingham 1900 8th Avenue, South Birmingham, AL 35294, USA
| | | |
Collapse
|
63
|
Ria F, Landriscina M, Remiddi F, Rosselli R, Iacoangeli M, Scerrati M, Pani G, Borrello S, Galeotti T. The level of manganese superoxide dismutase content is an independent prognostic factor for glioblastoma. Biological mechanisms and clinical implications. Br J Cancer 2001; 84:529-34. [PMID: 11207049 PMCID: PMC2363764 DOI: 10.1054/bjoc.2000.1594] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We address the issue of the role of manganese superoxide dismutase in tumorigenesis by studying a relatively homogeneous group of tumours for the correlation between amount of this anti-oxidant enzyme and prognosis. The clinical outcome of 30 patients affected by glioblastomas whose manganese superoxide dismutase content had been established at the time of first diagnosis is compared. When the survival of patients is stratified according to manganese superoxide dismutase level in the tumour, a link of these levels and prognosis can be observed. Patients with high levels of manganese superoxide dismutase show a median survival time of 6.11 months, while patients whose tumours display a low amount of MnSOD have a median survival time of 12.17 months. To assess the upstream mechanisms that sustain the increase in manganese superoxide dismutase content in brain neuroepithelial tumours, we also studied the expression of p53 in a series of 17 astrocytomas of various grading. In all tested astrocytomas, high manganese superoxide dismutase content is associated with cytoplasmic accumulation of p53. Thus glioblastomas can be divided into two distinct groups on the basis of their content of manganese superoxide dismutase, having 'better' or 'worse' prognosis, respectively. The use of this protein as a marker may help to define therapeutic strategies in the clinical management of glioblastoma.
Collapse
Affiliation(s)
- F Ria
- Institute of General Pathology, Catholic University, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Drane P, Bravard A, Bouvard V, May E. Reciprocal down-regulation of p53 and SOD2 gene expression-implication in p53 mediated apoptosis. Oncogene 2001; 20:430-9. [PMID: 11313974 DOI: 10.1038/sj.onc.1204101] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2000] [Revised: 11/14/2000] [Accepted: 11/14/2000] [Indexed: 11/09/2022]
Abstract
p53 regulates the transcription of a number of genes among which are different redox-related genes. It has been proposed that these genes can induce a cellular oxidative stress leading to p53-dependent apoptosis (Polyak et al., 1997). MnSOD, the product of superoxide dismutase 2 (SOD2) gene, is one of the major cellular defences against oxidative stress. We demonstrate here that p53 is able to repress SOD2 gene expression and that this repression takes place at promoter level. We show the importance of this regulation for the p53 function, by demonstrating that an overexpression of MnSOD decreases p53-mediated induction of apoptosis. Moreover, we demonstrate that MnSOD overexpression decreases p53-gene expression at the promoter level. These findings raise the hypothesis that p53 and SOD2 genes are mutually regulated leading to the modulation of various cellular processes including apoptosis.
Collapse
Affiliation(s)
- P Drane
- Commissariat à l'Energie Atomique (CEA), Laboratoire de Cancérogenèse Moléculaire, UMR217 CEA-CNRS, DRR, DSV, BP6 92265 Fontenay-aux-Roses Cedex, France
| | | | | | | |
Collapse
|
65
|
Zhao ZQ, Budde JM, Morris C, Wang NP, Velez DA, Muraki S, Guyton RA, Vinten-Johansen J. Adenosine attenuates reperfusion-induced apoptotic cell death by modulating expression of Bcl-2 and Bax proteins. J Mol Cell Cardiol 2001; 33:57-68. [PMID: 11133223 DOI: 10.1006/jmcc.2000.1275] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study tests the hypothesis that infarct reduction with adenosine (Ado) is associated with inhibition of apoptotic cell death by modulating expression of anti-apoptotic Bcl-2 and pro-apoptotic Bax proteins and reducing neutrophil accumulation. In three groups of dogs, the left anterior descending coronary artery was occluded for 60 min and reperfused for 6 h. Either saline (Control, n=8), Ado (140 microg/kg/min, n=8) or CGS21680, an adenosine A2A receptor analogue, (0.2 microg/kg/min, n=7) were infused during the first 2 h of reperfusion. Myocardial apoptosis was detected by histological TUNEL staining and DNA laddering. Expression of Bcl-2 and Bax proteins was analyzed using Western blot assay. Neutrophil localization was detected by immunohistochemistry with monoclonal anti-neutrophil CD18 antibody. There was no group difference in collateral blood flow (colored microspheres) during ischemia. Intra-left atrial administration of Ado and CGS21680 significantly decreased infarct size from 26+/-2% in Control to 13+/-1%* and 16+/-3%*, respectively. TUNEL positive cells in the peri-necrotic zone of the ischemic myocardium were also significantly reduced from 16+/-2% in Control group to 9+/-1%* and 10+/-2%*, respectively, consistent with the absence of DNA laddering in these two groups. Densitometrically, Ado and CGS21680 at reperfusion significantly increased the expression (% of normal myocardium) of downregulated Bcl-2 from 45+/-6% in Control group to 78+/-12%* and 69+/-10%*, respectively, and attenuated expression of upregulated Bax from 198+/-16% in Control group to 148+/-10%* and 158+/-12%*, respectively. Furthermore, the number of positive CD18 cells (mm(2) myocardium), which was significantly correlated with TUNEL positive cells in peri-necrotic zone, was significantly reduced from 403+/-42 in Control group to 142+/-18* in Ado group and 153+/-20%* in CGS21680 group, respectively. In conclusion, the present study suggests that inhibition of apoptosis by Ado at reperfusion involves alterations in anti-apoptotic Bcl-2 and pro-apoptotic Bax proteins and neutrophil accumulation, primarily mediated by an adenosine A2A receptor. * P<0.05 v Control group.
Collapse
Affiliation(s)
- Z Q Zhao
- Department of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA 30365-2225, USA.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Tomita M, Sato EF, Nishikawa M, Yamano Y, Inoue M. Nitric oxide regulates mitochondrial respiration and functions of articular chondrocytes. ARTHRITIS AND RHEUMATISM 2001; 44:96-104. [PMID: 11212181 DOI: 10.1002/1529-0131(200101)44:1<96::aid-anr13>3.0.co;2-#] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Biologic effects of nitric oxide (NO) have been shown to increase under hypoxic conditions. Because the oxygen tension in joint cavities of patients with arthritis is fairly low, biologic effects of NO would be expected to be significantly large in these compartments. This study was undertaken to investigate the effects of NO on the energy metabolism and functions of articular chondrocytes under different oxygen tension conditions. METHODS Articular chondrocytes from rabbits were cultured under various oxygen concentrations in the presence or absence of NO and NOC18, an NO donor. Cellular respiration was measured using a Clark-type oxygen electrode. Levels of ATP in the cells were determined according to the luciferin-luciferase method. Cellular synthesis of proteoglycans was determined by measuring the incorporation of radioactivity (derived from 35S-labeled SO4) into glycosaminoglycans. Expression of stress-related proteins was evaluated by Western blotting analysis using specific antibodies. RESULTS Respiration and ATP synthesis of cultured chondrocytes were inhibited by NO, particularly under low oxygen concentrations. The presence of either NO or specific inhibitors of mitochondrial electron transport suppressed the synthesis of proteoglycans without affecting cell viability. When exposed to NO, cellular levels of heat-shock protein 70 (hsp70) and heme oxygenase 1 (HO-1) increased markedly. The presence of inhibitors of mitochondrial electron transport also increased cellular levels of hsp70 and HO-1. CONCLUSION These results suggest that NO generated in the joint might inhibit energy metabolism and the synthesis of proteoglycans of chondrocytes, thereby modulating pathophysiologic processes occurring in patients with arthritis.
Collapse
Affiliation(s)
- M Tomita
- Department of Biochemistry and Molecular Pathology, Osaka City University Medical School, Japan
| | | | | | | | | |
Collapse
|
67
|
Rodríguez AM, Carrico PM, Mazurkiewicz JE, Meléndez JA. Mitochondrial or cytosolic catalase reverses the MnSOD-dependent inhibition of proliferation by enhancing respiratory chain activity, net ATP production, and decreasing the steady state levels of H(2)O(2). Free Radic Biol Med 2000; 29:801-13. [PMID: 11063906 DOI: 10.1016/s0891-5849(00)00362-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Manganese superoxide dismutase (MnSOD) overexpression has been shown to reverse the malignant phenotype in a variety of tumor cell lines. The inhibition of proliferation and reversal of the malignant phenotype has been attributed to an increase in H(2)O(2) production as a result of the dismutation reaction. However, direct evidence in support of this hypothesis has not been forthcoming. To evaluate the contribution of H(2)O(2) in the regulation of cell growth in response to MnSOD overexpression, control and MnSOD-overexpressing HT-1080 fibrosarcoma cells were transfected with constructs that direct catalase to either the mitochondrial or cytosolic compartments. Overexpression of catalase in either compartment reversed the proliferative and clonogenic inhibition associated with MnSOD overexpression, blocked the increase in the steady state levels of H(2)O(2) as measured by flow cytometric analysis of 2', 7'-dichlorofluorescein diacetate, and increased protection from the cytotoxicity of H(2)O(2). In addition, mitochondrial or cytosolic catalase enhances respiration through complex I and II in both control and MnSOD overexpressing cell lines and reverses a MnSOD-dependent decrease in net ATP production. Thus, catalase reverses the proliferative inhibition associated with MnSOD overexpression and may also play an important role in metabolic regulation.
Collapse
Affiliation(s)
- A M Rodríguez
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
68
|
Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 2000; 351:183-93. [PMID: 10998361 PMCID: PMC1221349 DOI: 10.1042/0264-6021:3510183] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytochrome c (cyt. c) is a proapoptotic factor that binds preferentially to cardiolipin (CL), a mitochondrial lipid, but not to cardiolipin hydroperoxide (CL-OOH). Cyt. c that had bound to CL liposomes was liberated on peroxidation of the liposomes by a radical. The generation of CL-OOH in mitochondria occurred before the release of cyt. c in rat basophile leukaemia (RBL)2H3 cells that had been induced to undergo apoptosis by exposure to hypoglycaemia with 2-deoxyglucose (2DG). The amount of cyt. c bound to CL prepared from the mitochondria of 2DG-treated cells was lower than that of untreated cells. The release of cyt. c was completely suppressed when the production of CL-OOH in mitochondria was inhibited by the overexpression of mitochondrial phospholipid hydroperoxide glutathione peroxidase (PHGPx). The fluorescence from CL-labelling dye (10-N-nonyl Acridine Orange) decreased on the induction of apoptosis by 2DG. However, no decrease in fluorescence was observed in PHGPx-overexpressing cells. Cyt. c was released from mitochondria that had been isolated from control cells on peroxidation by t-butylhydroperoxide, but no similar liberation of cyt. c from mitochondria isolated from mitochondrial PHGPx-overexpressing cells was observed. These findings suggest that the generation of CL-OOH in mitochondria might be a primary event that triggers the release of cyt. c from mitochondria in the apoptotic process in which mitochondrial PHGPx participates as an anti-apoptotic factor by preventing the formation of CL-OOH.
Collapse
Affiliation(s)
- K Nomura
- School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | | | | | | | | |
Collapse
|
69
|
Katschinski DM, Boos K, Schindler SG, Fandrey J. Pivotal role of reactive oxygen species as intracellular mediators of hyperthermia-induced apoptosis. J Biol Chem 2000; 275:21094-8. [PMID: 10781588 DOI: 10.1074/jbc.m001629200] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effects of cellular antioxidant capacity on hyperthermia (HT)-induced apoptosis and production of antiapoptotic heat shock proteins (HSPs) were investigated in HL-60 cells and in HL-60AR cells that are characterized by an elevated endogenous catalase activity. Exposure of both cell lines to 43 degrees C for 1 h initiated apoptosis. Apoptosis peaked at 3-6 h after heat exposure in the HL-60 cells. Whereas HL-60AR cells were partially protected against HT-induced apoptosis at these early time points, maximal levels of apoptosis were detected later, i.e. 12-18 h after heat exposure. This differential induction of apoptosis was directly correlated to the induction of the antiapoptotic HSP27 and HSP70. In particular, in the HL-60 cells HSP27 was significantly induced at 12-18 h after exposure to 43 degrees C when apoptosis dropped. In contrast, coinciding with the late onset of apoptosis in HL-60AR cells at that time HL-60AR cells lacked a similar HSP response. In line with the higher antioxidant capacity HL-60AR cells accumulated reactive oxygen species to a lesser degree than HL-60 cells after heat treatment. Protection from HT-induced apoptosis as well as diminished heat-induced HSP27 expression was also observed after cotreatment of HL-60 cells with 43 degrees C and catalase but not with superoxide dismutase. These data emphasize the pivotal role of reactive oxygen species for HT induced pro- and antiapoptotic pathways.
Collapse
Affiliation(s)
- D M Katschinski
- Institute of Physiology, Medical University of Lübeck, D-23538 Lübeck, Germany.
| | | | | | | |
Collapse
|
70
|
Abstract
It is now established that endothelial cells acquire several functional properties in response to a diverse array of extracellular stimuli. This expression of an altered phenotype is referred to as endothelial cell activation, and it includes several activities that promote inflammation and coagulation. While it is recognized that endothelial cell activation has a principal role in host defense, recent studies also demonstrate that endothelial cells are capable of complex molecular responses that protect the endothelium against various forms of stress including heat shock, hypoxia, oxidative stress, shock, ischemia-reperfusion injury, toxins, wounds, and mechanical stress. In this review, we examine endothelial cell genotypic and phenotypic responses to stress. Also, we highlight important cellular stress responses that, although not yet demonstrated directly in endothelial cells, likely exist as part of the repertoire of stress responses in endothelium. A detailed understanding of the molecular mechanisms mediating the adaptive responses of endothelial cells to stress should facilitate the development of novel therapeutics to aid in the management of diverse surgical diseases and their complications.
Collapse
Affiliation(s)
- T H Pohlman
- Department of Surgery, University of Washington, Seattle, Washington 98104, USA
| | | |
Collapse
|