51
|
Soudani N, Ghantous CM, Farhat Z, Shebaby WN, Zibara K, Zeidan A. Calcineurin/NFAT Activation-Dependence of Leptin Synthesis and Vascular Growth in Response to Mechanical Stretch. Front Physiol 2016; 7:433. [PMID: 27746739 PMCID: PMC5040753 DOI: 10.3389/fphys.2016.00433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
Background and Aims: Hypertension and obesity are important risk factors of cardiovascular disease. They are both associated with high leptin levels and have been shown to promote vascular hypertrophy, through the RhoA/ROCK and ERK1/2 phosphorylation. Calcineurin/NFAT activation also induces vascular hypertrophy by upregulating various genes. This study aimed to decipher whether a crosstalk exists between the RhoA/ROCK pathway, Ca2+/calcineurin/NFAT pathway, and ERK1/2 phosphorylation in the process of mechanical stretch-induced vascular smooth muscle cell (VSMC) hypertrophy and leptin synthesis. Methods and Results: Rat portal vein (RPV) organ culture was used to investigate the effect of mechanical stretch and exogenous leptin (3.1 nM) on VSMC hypertrophy and leptin synthesis. Results showed that stretching the RPV significantly upregulated leptin secretion, mRNA, and protein expression, which were inhibited by the calcium channel blocker nifedipine (10 μM), the selective calcineurin inhibitor FK506 (1 nM), and the ERK1/2 inhibitor PD98059 (1 μM). The transcription inhibitor actinomycin D (0.1 μM) and the translation inhibitor cycloheximide (1 mM) significantly decreased stretch-induced leptin protein expression. Mechanical stretch or leptin caused an increase in wet weight changes and protein synthesis, considered as hypertrophic markers, while they were inhibited by FK506 (0.1 nM; 1 nM). In addition, stretch or exogenous leptin significantly increased calcineurin activity and MCIP1 expression whereas leptin induced NFAT nuclear translocation in VSMCs. Moreover, in response to stretch or exogenous leptin, the Rho inhibitor C3 exoenzyme (30 ng/mL), the ROCK inhibitor Y-27632 (10 μM), and the actin depolymerization agents Latrunculin B (50 nM) and cytochalasin D (1 μM) reduced calcineurin activation and NFAT nuclear translocation. ERK1/2 phosphorylation was inhibited by FK506 and C3. Conclusions: Mechanical stretch-induced VSMC hypertrophy and leptin synthesis and secretion are mediated by Ca2+/calcineurin/NFAT activation. RhoA/ROCK and ERK1/2 activation are critical for mechanical stretch-induced calcineurin activation.
Collapse
Affiliation(s)
- Nadia Soudani
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Beirut, Lebanon
| | - Crystal M Ghantous
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Beirut, Lebanon
| | - Zein Farhat
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Beirut, Lebanon
| | - Wassim N Shebaby
- Department of Natural Sciences, Lebanese American University Byblos, Lebanon
| | - Kazem Zibara
- Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, Lebanese University Beirut, Lebanon
| | - Asad Zeidan
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Beirut, Lebanon
| |
Collapse
|
52
|
Greulich F, Trowe MO, Leffler A, Stoetzer C, Farin HF, Kispert A. Misexpression of Tbx18 in cardiac chambers of fetal mice interferes with chamber-specific developmental programs but does not induce a pacemaker-like gene signature. J Mol Cell Cardiol 2016; 97:140-9. [PMID: 27180262 DOI: 10.1016/j.yjmcc.2016.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/13/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022]
Abstract
Initiation of cardiac excitation depends on a specialized group of cardiomyocytes at the venous pole of the heart, the sinoatrial node (SAN). The T-box transcription factor gene Tbx18 is expressed in the SAN myocardium and is required for formation of a large portion of the pacemaker. Previous studies suggested that Tbx18 is also sufficient to reprogram ventricular cardiomyocytes into SAN cells in rat, guinea-pig and pig hearts. To evaluate the consequences of misexpression of Tbx18 for imposing a nodal phenotype onto chamber myocardial cells in fetal mice, we used two independent conditional approaches with chamber-specific cre driver lines and an Hprt(Tbx18) misexpression allele. Myh6-Cre/+;Hprt(Tbx18/y) mice developed dilated atria with thickened walls, reduced right ventricles and septal defects that resulted in reduced embryonic and post-natal survival. Tagln-Cre/+;Hprt(Tbx18/y) mice exhibited slightly smaller hearts with rounded trabeculae that supported normal embryonic survival. Molecular analyses showed that the SAN gap junction and ion channel profile was not ectopically induced in chamber myocardium but the working myocardial gene program was partially inhibited in atria and ventricles of both misexpression models. Left atrial expression of Pitx2 was strongly repressed in Myh6-Cre/+;Hprt(Tbx18/y) embryos. We conclude that exclusion of Tbx18 expression from the developing atria and (right) ventricle is important to achieve normal cardiac left-right patterning and myocardial differentiation, and that Tbx18 is not sufficient to induce full SAN differentiation of chamber cardiomyocytes in fetal mice.
Collapse
Affiliation(s)
- Franziska Greulich
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany
| | - Andreas Leffler
- Klinik für Anästhesiologie und Intensivmedizin, OE8050, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany
| | - Carsten Stoetzer
- Klinik für Anästhesiologie und Intensivmedizin, OE8050, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany
| | - Henner F Farin
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
| |
Collapse
|
53
|
Kurdi M, Cerutti C, Randon J, McGregor L, Bricca G. Macroarray analysis in the hypertrophic left ventricle of renin-dependent hypertensive rats: identification of target genes for renin. J Renin Angiotensin Aldosterone Syst 2016; 5:72-8. [PMID: 15295718 DOI: 10.3317/jraas.2004.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Introduction The aim of this work was to identify new renin target genes in left ventricular hypertrophy during hypertension. Materials and methods We compared left ventricle gene expression from four transgenic TGR(mRen2)27 (TG+/-) rats and four non-transgenic littermates (TG-/-) using cDNA macroarray. Hybridisation signals were quantified with a phosphorimager, and normalised to an external scale. Data analysis was performed with Statistical Analysis for Microarrays (SAM 1.21) software. The mRNA levels of candidate genes were determined by semi-quantitative RT-PCR in three different hypertensive rats: TG+/-, spontaneously hypertensive (SHR) and genetically Lyon hypertensive (LH) rats, compared to their respective controls (TG-/-, Wistar-Kyoto, Lyon low blood pressure rats). Results Out of 1,200 genes present on the macroarray, 233 were reliably measured and only three were overexpressed (Biglycan, β1-adenosine monophosphate-activated protein kinase [AMPK] and amyloid precursor like protein 2 [APLP2]) and 19 were underexpressed in the left ventricle of TG+/compared with TG-/-. APLP2 is a member of the amyloid precursor protein (APP) family. APLP2 and APP mRNA levels were increased in TGR(mRen2)27 but significantly decreased in LH rats, while only APP was increased in SHR rats. Conclusions We report new genes associated with renin-dependent left ventricular hypertrophy. Moreover, this work shows for the first time that the APP family gene expression could be altered in response to high renin activity and this effect is independent of cardiac remodelling and hypertension.
Collapse
Affiliation(s)
- Mazen Kurdi
- Laboratoire de Pharmacologie, Génomique fonctionnelle dans l'athéro-thrombose, Université Claude Bernard-Lyon 1, UFR de Médecine RTH Laennec, France
| | | | | | | | | |
Collapse
|
54
|
Hou N, Ye B, Li X, Margulies KB, Xu H, Wang X, Li F. Transcription Factor 7-like 2 Mediates Canonical Wnt/β-Catenin Signaling and c-Myc Upregulation in Heart Failure. Circ Heart Fail 2016; 9. [PMID: 27301468 DOI: 10.1161/circheartfailure.116.003010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/16/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND How canonical Wnt/β-catenin signals in adult hearts, especially in different diseased states, remains unclear. The proto-oncogene, c-Myc, is a Wnt target and an early response gene during cardiac stress. It is not clear whether c-Myc is activated or how it is regulated during heart failure. METHODS AND RESULTS We investigated canonical Wnt/β-catenin signaling and how it regulated c-Myc expression in failing hearts of human ischemic heart disease, idiopathic dilated cardiomyopathy, and murine desmin-related cardiomyopathy. Our data demonstrated that canonical Wnt/β-catenin signaling was activated through nuclear accumulation of β-catenin in idiopathic dilated cardiomyopathy, ischemic heart disease, and murine desmin-related cardiomyopathy when compared with nonfailing controls and transcription factor 7-like 2 (TCF7L2) was the main β-catenin partner of the T-cell factor (TCF) family in adult hearts. We further revealed that c-Myc mRNA and protein levels were significantly elevated in failing hearts by real-time reverse transcription polymerase chain reaction, Western blotting, and immunohistochemical staining. Immunoprecipitation and confocal microscopy further showed that β-catenin interacted and colocalized with TCF7L2. More importantly, chromatin immunoprecipitation confirmed that β-catenin and TCF7L2 were recruited to the regulatory elements of c-Myc. This recruitment was associated with increased histone H3 acetylation and transcriptional upregulation of c-Myc. With lentiviral infection, TCF7L2 overexpression increased c-Myc expression and cardiomyocyte size, whereas shRNA-mediated knockdown of TCF7L2 suppressed c-Myc expression and cardiomyocyte growth in cultured neonatal rat cardiomyocytes. CONCLUSIONS This study indicates that TCF7L2 mediates canonic Wnt/β-catenin signaling and c-Myc upregulation during abnormal cardiac remodeling in heart failure and suppression of Wnt/β-catenin to c-Myc axis can be explored for preventing and treating heart failure.
Collapse
Affiliation(s)
- Ning Hou
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, PR China.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Bo Ye
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY.,Department of Laboratory Medicine and Pathology, University of Minnesota, Room 293, Dwan Variety Club Cardiovascular Research Center, 425 E River Pkwy, Minneapolis, MN
| | - Xiang Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Kenneth B Margulies
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, 3400 Civic Center, Boulevard, Room 11-101, Philadelphia, PA
| | - Haodong Xu
- Department of Pathology and Laboratory Medicine, UCLA Center for the Health Science, Room 13-145E, 10833 Le Conte Ave, Los Angeles, CA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD
| | - Faqian Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY.,Department of Laboratory Medicine and Pathology, University of Minnesota, Room 293, Dwan Variety Club Cardiovascular Research Center, 425 E River Pkwy, Minneapolis, MN
| |
Collapse
|
55
|
Jiang F, Zhou X, Huang J. Long Non-Coding RNA-ROR Mediates the Reprogramming in Cardiac Hypertrophy. PLoS One 2016; 11:e0152767. [PMID: 27082978 PMCID: PMC4833345 DOI: 10.1371/journal.pone.0152767] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cardiac hypertrophy associated with various cardiovascular diseases results in heart failure and sudden death. A clear understanding of the mechanisms of hypertrophy will benefit the development of novel therapies. Long non-coding RNAs (lncRNAs) have been shown to play essential roles in many biological process, however, whether lncRNA-ROR plays functional roles in the reprogramming of cardiomyocyte remains unclear. METHODOLOGY/PRINCIPAL FINDINGS Here we show that lncRNA-ROR plays important roles in the pathogenesis of cardiac hypertrophy. In hypertrophic heart and cardiomyocytes, the expression of lncRNA-ROR is dramatically increased, downregulation of which attenuates the hypertrophic responses. Furthermore, the expression of lncRNA-ROR negatively correlates with miR-133, whose expression is increased when lncRNA-ROR is knocked down. In line with this, overexpression of miR-133 prevents the elevation of lncRNA-ROR and re-expression of ANP and BNP in cardiomyocytes subject to phenylephrine treatment. CONCLUSIONS/SIGNIFICANCE Taken together, our study demonstrates that lncRNA-ROR promotes cardiac hypertrophy via interacting with miR-133, indicating that lncRNA-ROR could be targeted for developing novel antihypertrophic therapeutics.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangyu Zhou
- Department of Vascular and Thyroid Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Huang
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
56
|
Camer D, Yu Y, Szabo A, Wang H, Dinh CH, Huang XF. Bardoxolone methyl prevents the development and progression of cardiac and renal pathophysiologies in mice fed a high-fat diet. Chem Biol Interact 2016; 243:10-8. [DOI: 10.1016/j.cbi.2015.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/21/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
|
57
|
Reduced expression of adherens and gap junction proteins can have a fundamental role in the development of heart failure following cardiac hypertrophy in rats. Exp Mol Pathol 2015; 100:167-76. [PMID: 26708424 DOI: 10.1016/j.yexmp.2015.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
Hypertension causes cardiac hypertrophy, cardiac dysfunction and heart failure (HF). The mechanisms implicated in the transition from compensated to decompensated cardiac hypertrophy are not fully understood. This study was aimed to investigate whether alterations in the expression of intercalated disk proteins could contribute to the transition of compensated cardiac hypertrophy to dilated heart development that culminates in HF. Male rats were submitted to abdominal aortic constriction and at 90 days post surgery (dps), three groups were observed: sham-operated animals (controls), animals with hypertrophic hearts (HH) and animals with hypertrophic + dilated hearts (HD). Blood pressure was evaluated. The hearts were collected and Western blot and immunofluorescence were performed to desmoglein-2, desmocollin-2, N-cadherin, plakoglobin, Bcatenin, and connexin-43. Cardiac systolic function was evaluated using the Vevo 2100 ultrasound system. Data were considered significant when p b 0.05. Seventy percent of the animals presented with HH and 30% were HD at 90 dps. The blood pressure increased in both groups. The amount of desmoglein-2 and desmocollin-2 expression was increased in both groups and no difference was observed in either group. The expression of N-cadherin, plakoglobin and B-catenin increased in the HHgroup and decreased in the HDgroup; and connexin-43 decreased only in theHDgroup. Therewas no difference between the ejection fraction and fractional shortening at 30 and 60 dps; however, they were decreased in the HD group at 90 dps. We found that while some proteins have increased expression accompanied by the increase in the cell volume associated with preserved systolic cardiac function in theHHgroup, these same proteins had decreased expression evenwithout significant reduction in the cell volume associated with decreased systolic cardiac function in HD group. The increased expression of desmoglein-2 and desmocollin-2 in both the HH and HD groups could work as a protective compensatory mechanism, helping tomaintain the dilated heart.We can hypothesize that inappropriate intercellular mechanical and electrical coupling associated with necrosis and/or apoptosis are important factors contributing to the transition to HF.
Collapse
|
58
|
GTPase Activating Protein (Sh3 Domain) Binding Protein 1 Regulates the Processing of MicroRNA-1 during Cardiac Hypertrophy. PLoS One 2015; 10:e0145112. [PMID: 26675618 PMCID: PMC4684496 DOI: 10.1371/journal.pone.0145112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/27/2015] [Indexed: 01/14/2023] Open
Abstract
Background MicroRNAs (miR) are small, posttranscriptional regulators, expressed as part of a longer primary transcript, following which they undergo nuclear and cytoplasmic processing by Drosha and Dicer, respectively, to form the functional mature ~20mer that gets incorporated into the silencing complex. Others and we have shown that mature miR-1 levels decrease with pressure-induced cardiac hypertrophy, however, there is little or no change in the primary transcript encompassing miR-1 stem-loop, suggesting critical regulatory step in microRNA processing. The objective of this study was to investigate the underlying mechanisms regulating miR-1 expression in cardiomyocytes. Results Here we report that GTPase–activating protein (SH3 domain) binding protein 1 (G3bp1), an endoribonuclease regulates miR-1 processing in cardiomyocytes. G3bp1 is upregulated during cardiac hypertrophy and restricts miR-1 processing by binding to its consensus sequence in the pre-miR-1-2 stem-loop. In accordance, exogenous G3bp1 is sufficient to reduce miR-1 levels, along with derepression of miR-1 targets; General transcription factor IIB (Gtf2b), cyclin dependent factor 9 (Cdk9) and eukaryotic initiation factor 4E (Eif4e). While Cdk9 and Gtf2b are essential for transcription, Eif4e is required for translation. Thus, downregulation of miR-1 is necessary for increase in these molecules. Similar to miR-1 knockdown, G3bp1 overexpression is not sufficient for development of cardiac hypertrophy. Conversely, knockdown of G3bp1 in hypertrophying cardiomyocytes inhibited downregulation of miR-1 and upregulation of its targets along with restricted hypertrophy, suggesting that G3bp1 is necessary for development of cardiac hypertrophy. These results indicate that G3bp1-mediated inhibition of miR-1 processing with growth stimulation results in decrease in mature miR-1 and, thereby, an increase of its targets, which play fundamental roles in the development of hypertrophy. Conclusion G3bp1 posttranscriptionally regulates miRNA-1 processing in the heart, and G3bp1 mediated downregulation of mature miRNA-1 levels is required for the derepression of its targets and increase in gene expression during cardiac hypertrophy.
Collapse
|
59
|
Ghantous CM, Kobeissy FH, Soudani N, Rahman FA, Al-Hariri M, Itani HA, Sabra R, Zeidan A. Mechanical stretch-induced vascular hypertrophy occurs through modulation of leptin synthesis-mediated ROS formation and GATA-4 nuclear translocation. Front Pharmacol 2015; 6:240. [PMID: 26557089 PMCID: PMC4615939 DOI: 10.3389/fphar.2015.00240] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022] Open
Abstract
Background: Obesity and hypertension are associated with increased leptin production contributing to cardiovascular remodeling. Mechanisms involving mechanical stretch-induced leptin production and the cross talk between signaling pathways leading to vascular remodeling have not been fully elucidated. Methods and Results: Rat portal vein (RPV) organ culture was used to investigate the effect of mechanical stretch on leptin protein expression in vascular smooth muscle cells (VSMCs). Moreover, the involvement of reactive oxygen species (ROS), the RhoA/ROCK pathway, actin cytoskeleton dynamics and the transcriptional factor GATA-4 activation in mechanical stretch-induced vascular remodeling were investigated. Stretching the RPV for 1 or 24 h significantly increased leptin protein level and ROS formation in VSMCs, which was prevented by 1 h pretreatment with the ROCK inhibitor Y-27632 and the actin cytoskeleton depolymerization agent cytochalasin D. Moreover, Western blotting and immunohistochemistry revealed that mechanical stretch or treatment with 3.1 nmol/L leptin for 24 h significantly increased actin polymerization, as reflected by an increase in the F-actin to G-actin ratio. Increases in blood vessels’ wet weight and [3H]-leucine incorporation following a 24 h treatment with conditioned media from cultured stretched RPVs indicated RPV hypertrophy. This effect was prevented by 1 h pretreatment with anti-leptin antibody, indicating leptin’s crucial role in promoting VSMC hypertrophy. As an index of GATA-4 activation, GATA-4 nuclear translocation was assessed by immunohistochemistry method. Pretreating VSMC with leptin for 1 h significantly activated GATA-4 nuclear translocation, which was potently attenuated by the NADPH oxidase inhibitor apocynin, Y-27632, and cytochalasin D. Conclusion: Our results demonstrate that ROS formation, RhoA/ROCK pathway, and GATA-4 activation play a pivotal role in mechanical stretch-induced leptin synthesis leading to VSMC remodeling.
Collapse
Affiliation(s)
- Crystal M Ghantous
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, American University of Beirut , Beirut, Lebanon
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut , Beirut, Lebanon
| | - Nadia Soudani
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, American University of Beirut , Beirut, Lebanon
| | - Farah A Rahman
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, American University of Beirut , Beirut, Lebanon
| | - Mustafa Al-Hariri
- Department of Biochemistry and Molecular Genetics, American University of Beirut , Beirut, Lebanon
| | - Hana A Itani
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine , Nashville, TN, USA
| | - Ramzi Sabra
- Department of Pharmacology and Toxicology, American University of Beirut , Beirut, Lebanon
| | - Asad Zeidan
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, American University of Beirut , Beirut, Lebanon
| |
Collapse
|
60
|
Ligand activation of cannabinoid receptors attenuates hypertrophy of neonatal rat cardiomyocytes. J Cardiovasc Pharmacol 2015; 64:420-30. [PMID: 24979612 DOI: 10.1097/fjc.0000000000000134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
: Endocannabinoids are bioactive amides, esters, and ethers of long-chain polyunsaturated fatty acids. Evidence suggests that activation of the endocannabinoid pathway offers cardioprotection against myocardial ischemia, arrhythmias, and endothelial dysfunction of coronary arteries. As cardiac hypertrophy is a convergence point of risk factors for heart failure, we determined a role for endocannabinoids in attenuating endothelin-1-induced hypertrophy and probed the signaling pathways involved. The cannabinoid receptor ligand anandamide and its metabolically stable analog, R-methanandamide, suppressed hypertrophic indicators including cardiomyocyte enlargement and fetal gene activation (ie, the brain natriuretic peptide gene) elicited by endothelin-1 in isolated neonatal rat ventricular myocytes. The ability of R-methanandamide to suppress myocyte enlargement and fetal gene activation was mediated by CB2 and CB1 receptors, respectively. Accordingly, a CB2-selective agonist, JWH-133, prevented only myocyte enlargement but not brain natriuretic peptide gene activation. A CB1/CB2 dual agonist with limited brain penetration, CB-13, inhibited both hypertrophic indicators. CB-13 activated AMP-activated protein kinase (AMPK) and, in an AMPK-dependent manner, endothelial nitric oxide synthase (eNOS). Disruption of AMPK signaling, using compound C or short hairpinRNA knockdown, and eNOS inhibition using L-NIO abolished the antihypertrophic actions of CB-13. In conclusion, CB-13 inhibits cardiomyocyte hypertrophy through AMPK-eNOS signaling and may represent a novel therapeutic approach to cardioprotection.
Collapse
|
61
|
Hsieh YL, Tsai YL, Shibu MA, Su CC, Chung LC, Pai P, Kuo CH, Yeh YL, Viswanadha VP, Huang CY. ZAK induces cardiomyocyte hypertrophy and brain natriuretic peptide expression via p38/JNK signaling and GATA4/c-Jun transcriptional factor activation. Mol Cell Biochem 2015; 405:1-9. [PMID: 25869677 DOI: 10.1007/s11010-015-2389-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 03/26/2015] [Indexed: 01/19/2023]
Abstract
Cardiomyocyte hypertrophy is an adaptive response of heart to various stress conditions. During the period of stress accumulation, transition from physiological hypertrophy to pathological hypertrophy results in the promotion of heart failure. Our previous studies found that ZAK, a sterile alpha motif and leucine zipper containing kinase, was highly expressed in infarcted human hearts and demonstrated that overexpression of ZAK induced cardiac hypertrophy. This study evaluates, cellular events associated with the expression of two doxycycline (Dox) inducible Tet-on ZAK expression systems, a Tet-on ZAK WT (wild-type), and a Tet-on ZAK DN (mutant, Dominant-negative form) in H9c2 myoblast cells; Tet-on ZAK WT was found to increase cell size and hypertrophic marker BNP in a dose-dependent manner. To ascertain the mechanism of ZAK-mediated hypertrophy, expression analysis with various inhibitors of the related upstream and downstream proteins was performed. Tet-on ZAK WT expression triggered the p38 and JNK pathway and also activated the expression and nuclear translocation of p-GATA4 and p-c-Jun transcription factors, without the involvement of p-ERK or NFATc3. However, Tet-on ZAK DN showed no effect on the p38 and JNK signaling cascade. The results showed that the inhibitors of JNK1/2 and p38 significantly suppressed ZAK-induced BNP expression. The results show the role of ZAK and/or the ZAK downstream events such as JNK and p38 phosphorylation, c-Jun, and GATA-4 nuclear translocation in cardiac hypertrophy. ZAK and/or the ZAK downstream p38, and JNK pathway could therefore be potential targets to ameliorate cardiac hypertrophy symptoms in ZAK-overexpressed patients.
Collapse
Affiliation(s)
- You-Liang Hsieh
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Costa ADF, Franco OL. Insights into RNA transcriptome profiling of cardiac tissue in obesity and hypertension conditions. J Cell Physiol 2015; 230:959-68. [PMID: 25393239 DOI: 10.1002/jcp.24807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/05/2014] [Indexed: 12/20/2022]
Abstract
Several epidemiologic studies suggest that obesity and hypertension are associated with cardiac transcriptome modifications that could be further associated with inflammatory processes and cardiac hypertrophy. In this field, transcriptome studies have demonstrated their importance to elucidate physiologic mechanisms, pathways or genes involved in many biologic processes. Over the past decade, RNA microarray and RNA-seq analysis has become an essential component to examine metabolic pathways in terms of mRNA expression in cardiology. In this review, cardiac muscle gene expression in response to effects of obesity and hypertension will be focused, providing a broad view on cardiac transcriptome and physiologic and biochemical mechanisms involved in gene expression changes produced by these events, emphasizing the use of new technologies for gene expression analyses.
Collapse
Affiliation(s)
- Alzenira de Fátima Costa
- Universidade Católica de Brasília, Pós-Graduação em Ciências Genômicas e Biotecnologia Centro de Análises Proteômicas e Bioquímicas, Brasília, Brazil
| | | |
Collapse
|
63
|
Wang KCW, Tosh DN, Zhang S, McMillen IC, Duffield JA, Brooks DA, Morrison JL. IGF-2R-Gαq signaling and cardiac hypertrophy in the low-birth-weight lamb. Am J Physiol Regul Integr Comp Physiol 2015; 308:R627-35. [PMID: 25632020 DOI: 10.1152/ajpregu.00346.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/29/2014] [Indexed: 01/19/2023]
Abstract
The cardiac insulin-like growth factor 2 receptor (IGF-2R) can induce cardiomyocyte hypertrophy in a heterotrimeric G protein receptor-coupled manner involving αq (Gαq) or αs (Gαs). We have previously shown increased left ventricular weight and cardiac IGF-2 and IGF-2R gene expression in low-birth-weight (LBW) compared with average-birth-weight (ABW) lambs. Here, we have investigated the cardiac expression of IGF-2 gene variants, the degree of histone acetylation, and the abundance of proteins in the IGF-2R downstream signaling pathway in ABW and LBW lambs. Samples from the left ventricle of ABW and LBW lambs were collected at 21 days of age. There was increased phospho-CaMKII protein with decreased HDAC 4 abundance in the LBW compared with ABW lambs. There was increased GATA 4 and decreased phospho-troponin I abundance in LBW compared with ABW lambs, which are markers of pathological cardiac hypertrophy and impaired or reduced contractility, respectively. There was increased histone acetylation of H3K9 at IGF-2R promoter and IGF-2R intron 2 differentially methylated region in the LBW lamb. In conclusion, histone acetylation of IGF-2R may lead to increased IGF-2R mRNA expression and subsequently mediate Gαq signaling early in life via CaMKII, resulting in an increased risk of left ventricular hypertrophy and cardiovascular disease in adult life.
Collapse
Affiliation(s)
- Kimberley C W Wang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and
| | - Darran N Tosh
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and
| | - Jaime A Duffield
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and
| |
Collapse
|
64
|
Dorn GW, Matkovich SJ. Epitranscriptional regulation of cardiovascular development and disease. J Physiol 2014; 593:1799-808. [PMID: 25433070 DOI: 10.1113/jphysiol.2014.283234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/14/2014] [Indexed: 12/18/2022] Open
Abstract
Development, homeostasis and responses to stress in the heart all depend on appropriate control of mRNA expression programmes, which may be enacted at the level of DNA sequence, DNA accessibility and RNA-mediated control of mRNA output. Diverse mechanisms underlie promoter-driven transcription of coding mRNAs and their translation into protein, and the ways in which sequence alteration of DNA can make an impact on these processes have been studied for some time. The field of epigenetics explores changes in DNA structure that influence its accessibility by transcriptional machinery, and we are continuing to develop our understanding of how these processes modify cardiac RNA production. In this topical review, we do not focus on how DNA sequence and methylation, and histone interactions, may alter its accessibility, but rather on newly described mechanisms by which some transcribed RNAs may alter initial transcription or downstream processing of other RNAs, involving both short non-coding RNAs (microRNAs) and long non-coding RNAs (lncRNAs). Here we present examples of how these two classes of non-coding RNAs mediate widespread effects on cardiac transcription and protein output in processes for which we use the broad term 'epitranscriptional regulation' and that are complementary to the DNA methylation and histone modification events studied by classical epigenetics.
Collapse
Affiliation(s)
- Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
65
|
Meyer M. Left ventricular atrophy in pulmonary arterial hypertension: a sinister dexter conundrum. J Am Coll Cardiol 2014; 64:38-40. [PMID: 24998126 DOI: 10.1016/j.jacc.2014.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Markus Meyer
- Division of Cardiology, University of Vermont College of Medicine, Burlington, Vermont.
| |
Collapse
|
66
|
Tota B, Angelone T, Cerra MC. The surging role of Chromogranin A in cardiovascular homeostasis. Front Chem 2014; 2:64. [PMID: 25177680 PMCID: PMC4132265 DOI: 10.3389/fchem.2014.00064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/25/2014] [Indexed: 02/06/2023] Open
Abstract
Together with Chromogranin B and Secretogranins, Chromogranin A (CGA) is stored in secretory (chromaffin) granules of the diffuse neuroendocrine system and released with noradrenalin and adrenalin. Co-stored within the granule together with neuropeptideY, cardiac natriuretic peptide hormones, several prohormones and their proteolytic enzymes, CGA is a multifunctional protein and a major marker of the sympatho-adrenal neuroendocrine activity. Due to its partial processing to several biologically active peptides, CGA appears an important pro-hormone implicated in relevant modulatory actions on endocrine, cardiovascular, metabolic, and immune systems through both direct and indirect sympatho-adrenergic interactions. As a part of this scenario, we here illustrate the emerging role exerted by the full-length CGA and its three derived fragments, i.e., Vasostatin 1, catestatin and serpinin, in the control of circulatory homeostasis with particular emphasis on their cardio-vascular actions under both physiological and physio-pathological conditions. The Vasostatin 1- and catestatin-induced cardiodepressive influences are achieved through anti-beta-adrenergic-NO-cGMP signaling, while serpinin acts like beta1-adrenergic agonist through AD-cAMP-independent NO signaling. On the whole, these actions contribute to widen our knowledge regarding the sympatho-chromaffin control of the cardiovascular system and its highly integrated “whip-brake” networks.
Collapse
Affiliation(s)
- Bruno Tota
- Department of Biology, Ecology and Earth Sciences, University of Calabria Arcavacata di Rende (CS), Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria Arcavacata di Rende (CS), Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria Arcavacata di Rende (CS), Italy
| |
Collapse
|
67
|
Stoyanova V, Zhelev N. Alterations in Protein P53 Expression During the Development of Pressure Overload-Induced Left Ventricular Hypertrophy in Rats. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2008.10817592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
68
|
Guo J, Sachs F, Meng F. Fluorescence-based force/tension sensors: a novel tool to visualize mechanical forces in structural proteins in live cells. Antioxid Redox Signal 2014; 20:986-99. [PMID: 24205787 PMCID: PMC3924807 DOI: 10.1089/ars.2013.5708] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
SIGNIFICANCE Three signaling systems, chemical, electrical, and mechanical, ubiquitously contribute to cellular activities. There is limited information on the mechanical signaling system because of a lack of tools to measure stress in specific proteins. Although significant advances in methodologies such as atomic force microscopy and laser tweezers have achieved great success in single molecules and measuring the mean properties of cells and tissues, they cannot deal with specific proteins in live cells. RECENT ADVANCES To remedy the situation, we developed a family of genetically encoded optical force sensors to measure the stress in structural proteins in living cells. The sensors can be incorporated into specific proteins and are not harmful in transgenic animals. The chimeric proteins distribute and function as their wild-type counterparts, and local stress can be read out from changes in Förster resonance energy transfer (FRET). CRITICAL ISSUES Our original sensor used two mutant green fluorescence proteins linked by an alpha helix that served as a linking spring. Ever since, we have improved the probe design in a number of ways. For example, we replaced the helical linker with more common elastic protein domains to better match the compliance of the wild-type hosts. We greatly improved sensitivity by using the angular dependence of FRET rather than the distance dependence as the transduction mechanism, because that has nearly 100% efficiency at rest and nearly zero when stretched. FUTURE DIRECTIONS These probes enable researchers to investigate the roles of mechanical force in cellular activities at the level of single molecules, cells, tissues, and whole animals.
Collapse
Affiliation(s)
- Jun Guo
- 1 Department of Biochemistry, Nanjing Medical University , Nanjing, People's Republic of China
| | | | | |
Collapse
|
69
|
Biomimetic scaffold combined with electrical stimulation and growth factor promotes tissue engineered cardiac development. Exp Cell Res 2013; 321:297-306. [PMID: 24240126 DOI: 10.1016/j.yexcr.2013.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/07/2013] [Accepted: 11/09/2013] [Indexed: 11/23/2022]
Abstract
Toward developing biologically sound models for the study of heart regeneration and disease, we cultured heart cells on a biodegradable, microfabricated poly(glycerol sebacate) (PGS) scaffold designed with micro-structural features and anisotropic mechanical properties to promote cardiac-like tissue architecture. Using this biomimetic system, we studied individual and combined effects of supplemental insulin-like growth factor-1 (IGF-1) and electrical stimulation (ES). On culture day 8, all tissue constructs could be paced and expressed the cardiac protein troponin-T. IGF-1 reduced apoptosis, promoted cell-to-cell connectivity, and lowered excitation threshold, an index of electrophysiological activity. ES promoted formation of tissue-like bundles oriented in parallel to the electrical field and a more than ten-fold increase in matrix metalloprotease-2 (MMP-2) gene expression. The combination of IGF-1 and ES increased 2D projection length, an index of overall contraction strength, and enhanced expression of the gap junction protein connexin-43 and sarcomere development. This culture environment, designed to combine cardiac-like scaffold architecture and biomechanics with molecular and biophysical signals, enabled functional assembly of engineered heart muscle from dissociated cells and could serve as a template for future studies on the hierarchy of various signaling domains relative to cardiac tissue development.
Collapse
|
70
|
Liu SJ. Characterization of functional capacity of adult ventricular myocytes in long-term culture. Int J Cardiol 2013; 168:1923-36. [PMID: 23375882 DOI: 10.1016/j.ijcard.2012.12.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/15/2012] [Accepted: 12/27/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Functional properties of freshly isolated adult ventricular myocytes (AVMs) or those of AVMs during first few weeks in culture were well described. However, the functional capacity of these AVMs such as regenerative potential remains unknown, in part, due to the short lifespan of AVMs in culture. This study modified culture conditions that extended the lifespan of AVMs, isolated from adult rat hearts, longer than 6 months. METHODS Temporal changes in the morphology of individual AVMs, cell-cell interaction, formation of myofibers, self-repair capacity after injury, expression of senescence biomarkers, and contractile function of AVMs over 5 weeks (defined as long-term culture) were chronologically characterized and quantified with live-cell video and fluorescence microscopy, and immunocytochemistry. RESULTS Cell growth in size reached a plateau after 4 weeks in culture concomitantly with continuous increase in structural remodeling in long-term culture. Dynamic remodeling of AVMs promoted self-contact of filopodia and cell-cell contact where these contained abundant myofilaments, connexin 43 proteins, and high density and high integrity of mitochondria. Such high capacity also enabled self-repair of AVMs after injury, cytokinesis, and formation of myofibers. AVMs in long-term culture displayed spontaneous contraction and importantly were responsive to electrical stimulation. Moreover, AVMs expressed senescence-associated β-galactosidase, p16, and stress-associated atrial natriuretic peptides that resulted likely from cellular modeling. CONCLUSIONS Prolonged longevity of AVMs in culture with characteristics of high functional capacity of organelle regeneration and contraction makes them invaluable for further longitudinal mechanistic studies in cardiac (patho)physiology (e.g., hypertrophy and aging), single-cell analysis (e.g., function of hetero-phenotypes) and drug discovery.
Collapse
Affiliation(s)
- Shi J Liu
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
71
|
Pacini L, Suffredini S, Ponti D, Coppini R, Frati G, Ragona G, Cerbai E, Calogero A. Altered calcium regulation in isolated cardiomyocytes from Egr-1 knock-out mice. Can J Physiol Pharmacol 2013; 91:1135-42. [PMID: 24289086 DOI: 10.1139/cjpp-2012-0419] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Early growth response-1 one gene (Egr-1), one of the immediate early response genes, plays an important role in the adaptive response of the myocardium to hypertrophic stimuli. We aimed to investigate the effects of Egr-1 deletion on cardiac function. Egr-1 knock-out (Egr-1(-/-)) homozygous mice were employed to evaluate the electrophysiological and molecular properties of left ventricular cardiomyocytes (VCM) by using patch-clamp technique, intracellular calcium measurements, real-time PCR, and Western blot. Action potential was prolonged and diastolic potential was positive-shifted in VCMs isolated from Egr-1(-/-) mice, in comparison with those from their wild-type (WT) littermates. The calcium content of the sarcoplasmic reticulum was reduced and the decay time for steady-state calcium transient slowed down. Serca2, Ryr, L-type Ca(2+)-channel, and PLB mRNA expression were reduced in Egr-1(-/-) mice compared with the controls. Moreover, Serca2 protein was reduced, while the amount of Ncx1 protein was increased in Egr-1(-/-) hearts compared with those of the WT littermates. Furthermore, genes involved in heart development (GATA-4, TGF-β) and in Egr-1 regulation (Nab1, Nab2) were down regulated in Egr-1(-/-) mice. These results suggest that Egr-1 plays a pivotal role in regulating excitation-contraction coupling in cardiac myocytes.
Collapse
Affiliation(s)
- Luca Pacini
- a Department of Medico-surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Corso della Repubblica 79, Latina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Le Quang K, Benito B, Naud P, Qi XY, Shi YF, Tardif JC, Gillis MA, Dobrev D, Charpentier F, Nattel S. T-Type Calcium Current Contributes to Escape Automaticity and Governs the Occurrence of Lethal Arrhythmias After Atrioventricular Block in Mice. Circ Arrhythm Electrophysiol 2013; 6:799-808. [DOI: 10.1161/circep.113.000407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Khai Le Quang
- From the Department of Medicine and Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (K.L.Q., B.B., P.N., X.Y.Q., Y.F.S., J.-C.T., M.-A.G., S.N.); Department of Medicine, Laval University, Quebec, Canada (K.L.Q.); IMIM Parc de Salut Mar, Hospital del Mar, Barcelona, Spain (B.B.); Institute of Pharmacology, University of Duisburg-Essen, Essen, Germany (D.D.); Division of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany (D.D.); and
| | - Begoña Benito
- From the Department of Medicine and Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (K.L.Q., B.B., P.N., X.Y.Q., Y.F.S., J.-C.T., M.-A.G., S.N.); Department of Medicine, Laval University, Quebec, Canada (K.L.Q.); IMIM Parc de Salut Mar, Hospital del Mar, Barcelona, Spain (B.B.); Institute of Pharmacology, University of Duisburg-Essen, Essen, Germany (D.D.); Division of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany (D.D.); and
| | - Patrice Naud
- From the Department of Medicine and Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (K.L.Q., B.B., P.N., X.Y.Q., Y.F.S., J.-C.T., M.-A.G., S.N.); Department of Medicine, Laval University, Quebec, Canada (K.L.Q.); IMIM Parc de Salut Mar, Hospital del Mar, Barcelona, Spain (B.B.); Institute of Pharmacology, University of Duisburg-Essen, Essen, Germany (D.D.); Division of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany (D.D.); and
| | - Xiao Yan Qi
- From the Department of Medicine and Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (K.L.Q., B.B., P.N., X.Y.Q., Y.F.S., J.-C.T., M.-A.G., S.N.); Department of Medicine, Laval University, Quebec, Canada (K.L.Q.); IMIM Parc de Salut Mar, Hospital del Mar, Barcelona, Spain (B.B.); Institute of Pharmacology, University of Duisburg-Essen, Essen, Germany (D.D.); Division of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany (D.D.); and
| | - Yan Fen Shi
- From the Department of Medicine and Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (K.L.Q., B.B., P.N., X.Y.Q., Y.F.S., J.-C.T., M.-A.G., S.N.); Department of Medicine, Laval University, Quebec, Canada (K.L.Q.); IMIM Parc de Salut Mar, Hospital del Mar, Barcelona, Spain (B.B.); Institute of Pharmacology, University of Duisburg-Essen, Essen, Germany (D.D.); Division of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany (D.D.); and
| | - Jean-Claude Tardif
- From the Department of Medicine and Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (K.L.Q., B.B., P.N., X.Y.Q., Y.F.S., J.-C.T., M.-A.G., S.N.); Department of Medicine, Laval University, Quebec, Canada (K.L.Q.); IMIM Parc de Salut Mar, Hospital del Mar, Barcelona, Spain (B.B.); Institute of Pharmacology, University of Duisburg-Essen, Essen, Germany (D.D.); Division of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany (D.D.); and
| | - Marc-Antoine Gillis
- From the Department of Medicine and Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (K.L.Q., B.B., P.N., X.Y.Q., Y.F.S., J.-C.T., M.-A.G., S.N.); Department of Medicine, Laval University, Quebec, Canada (K.L.Q.); IMIM Parc de Salut Mar, Hospital del Mar, Barcelona, Spain (B.B.); Institute of Pharmacology, University of Duisburg-Essen, Essen, Germany (D.D.); Division of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany (D.D.); and
| | - Dobromir Dobrev
- From the Department of Medicine and Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (K.L.Q., B.B., P.N., X.Y.Q., Y.F.S., J.-C.T., M.-A.G., S.N.); Department of Medicine, Laval University, Quebec, Canada (K.L.Q.); IMIM Parc de Salut Mar, Hospital del Mar, Barcelona, Spain (B.B.); Institute of Pharmacology, University of Duisburg-Essen, Essen, Germany (D.D.); Division of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany (D.D.); and
| | - Flavien Charpentier
- From the Department of Medicine and Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (K.L.Q., B.B., P.N., X.Y.Q., Y.F.S., J.-C.T., M.-A.G., S.N.); Department of Medicine, Laval University, Quebec, Canada (K.L.Q.); IMIM Parc de Salut Mar, Hospital del Mar, Barcelona, Spain (B.B.); Institute of Pharmacology, University of Duisburg-Essen, Essen, Germany (D.D.); Division of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany (D.D.); and
| | - Stanley Nattel
- From the Department of Medicine and Research Centre, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (K.L.Q., B.B., P.N., X.Y.Q., Y.F.S., J.-C.T., M.-A.G., S.N.); Department of Medicine, Laval University, Quebec, Canada (K.L.Q.); IMIM Parc de Salut Mar, Hospital del Mar, Barcelona, Spain (B.B.); Institute of Pharmacology, University of Duisburg-Essen, Essen, Germany (D.D.); Division of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany (D.D.); and
| |
Collapse
|
73
|
Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods 2013; 10:781-7. [PMID: 23793239 PMCID: PMC4071061 DOI: 10.1038/nmeth.2524] [Citation(s) in RCA: 710] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/17/2013] [Indexed: 02/07/2023]
Abstract
Directed differentiation protocols enable derivation of cardiomyocytes from human pluripotent stem cells (hPSC) and permit engineering of human myocardium in vitro. However, hPSC-derived cardiomyocytes are reflective of very early human development, limiting their utility in the generation of in vitro models of mature myocardium. Here, we developed a new platform that combines three-dimensional cell cultivation in a microfabricated system with electrical stimulation to mature hPSC-derived cardiac tissues. We utilized quantitative structural, molecular and electrophysiological analyses to elucidate the responses of immature human myocardium to electrical stimulation and pacing. We demonstrated that the engineered platform allowed for the generation of 3-dimensional, aligned cardiac tissues (biowires) with frequent striations. Biowires submitted to electrical stimulation markedly increased myofibril ultrastructural organization, displayed elevated conduction velocity and altered both the electrophysiological and Ca2+ handling properties versus non-stimulated controls. These changes were in agreement with cardiomyocyte maturation and were dependent on the stimulation rate.
Collapse
|
74
|
Louridas GE, Lourida KG. Systems biology and biomechanical model of heart failure. Curr Cardiol Rev 2013; 8:220-30. [PMID: 22935019 PMCID: PMC3465828 DOI: 10.2174/157340312803217238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 01/08/2023] Open
Abstract
Heart failure is seen as a complex disease caused by a combination of a mechanical disorder, cardiac remodeling and neurohormonal activation. To define heart failure the systems biology approach integrates genes and molecules, interprets the relationship of the molecular networks with modular functional units, and explains the interaction between mechanical dysfunction and cardiac remodeling. The biomechanical model of heart failure explains satisfactorily the progression of myocardial dysfunction and the development of clinical phenotypes. The earliest mechanical changes and stresses applied in myocardial cells and/or myocardial loss or dysfunction activate left ventricular cavity remodeling and other neurohormonal regulatory mechanisms such as early release of natriuretic peptides followed by SAS and RAAS mobilization. Eventually the neurohormonal activation and the left ventricular remodeling process are leading to clinical deterioration of heart failure towards a multi-organic damage. It is hypothesized that approaching heart failure with the methodology of systems biology we promote the elucidation of its complex pathophysiology and most probably we can invent new therapeutic strategies.
Collapse
Affiliation(s)
- George E Louridas
- Department of Cardiology, Aristotle University, Thessaloniki, Greece.
| | | |
Collapse
|
75
|
Kim OY, Jung YS, Cho Y, Chung JH, Hwang GS, Shin MJ. Altered heart and kidney phospholipid fatty acid composition are associated with cardiac hypertrophy in hypertensive rats. Clin Biochem 2013; 46:1111-1117. [PMID: 23608354 DOI: 10.1016/j.clinbiochem.2013.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 11/15/2022]
Abstract
OBJECTIVE We examined the association of cardiac hypertrophy or fibrosis with the phospholipid fatty acid (FA) composition of heart and kidney in hypertensive rats. DESIGN AND METHODS Eight-week-old spontaneously hypertensive rats (SHRs) (n=8) and Wistar Kyoto rats (WKYs, n=8) as a normotensive control, were fed ad libitum for 6 weeks with regular AIN-76 diet. Phospholipid FA compositions in the left ventricle and kidney were measured and histological analyses were performed. RESULTS Compared with WKYs, SHRs had lower proportions of γ-linolenic acid, α-linolenic acid, eicosadienoic acid, eicosatrienoic acid, dihomo-γ-linoleic acid, docosadienoic acid and nervonic acid in heart, and stearic acid (SA), γ-linolenic acid, and eicosapentaenoic acid (EPA) in kidney. After adjusting for food intake, SHRs still maintained higher proportions of SA, and total saturated FAs in the heart and a lower proportion of eicosapentaenoic acid in the kidney. Additionally, compared with WKYs, SHRs showed larger cardiomyocyte diameters in the left ventricles, indicating cardiac hypertrophy and interstitial fibrosis. Cardiomyocyte diameters also positively correlated with cardiac SA (r=0.550, p<0.05) and negatively with kidney EPA (r=-0.575, p<0.05). CONCLUSION Tissue FA compositions were associated with cardiac hypertrophy in a hypertensive setting, implicating the pathogenic role of tissue FAs in hypertension and related complications.
Collapse
Affiliation(s)
- Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 604-714, Republic of Korea
| | - Young-Sang Jung
- Korea Basic Science Institute, Seoul 136-703, Republic of Korea
| | - Yoonsu Cho
- Department of Food and Nutrition, Korea University, Seoul 136-703, Republic of Korea
| | - Ji Hyung Chung
- Yonsei Cardiovascular Hospital and Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Geum-Sook Hwang
- Korea Basic Science Institute, Seoul 136-703, Republic of Korea.
| | - Min-Jeong Shin
- Department of Food and Nutrition, Korea University, Seoul 136-703, Republic of Korea.
| |
Collapse
|
76
|
Lee D, Oka T, Hunter B, Robinson A, Papp S, Nakamura K, Srisakuldee W, Nickel BE, Light PE, Dyck JRB, Lopaschuk GD, Kardami E, Opas M, Michalak M. Calreticulin induces dilated cardiomyopathy. PLoS One 2013; 8:e56387. [PMID: 23437120 PMCID: PMC3577809 DOI: 10.1371/journal.pone.0056387] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Calreticulin, a Ca(2+)-buffering chaperone of the endoplasmic reticulum, is highly expressed in the embryonic heart and is essential for cardiac development. After birth, the calreticulin gene is sharply down regulated in the heart, and thus, adult hearts have negligible levels of calreticulin. In this study we tested the role of calreticulin in the adult heart. METHODOLOGY/PRINCIPAL FINDINGS We generated an inducible transgenic mouse in which calreticulin is targeted to the cardiac tissue using a Cre/loxP system and can be up-regulated in adult hearts. Echocardiography analysis of hearts from transgenic mice expressing calreticulin revealed impaired left ventricular systolic and diastolic function and impaired mitral valve function. There was altered expression of Ca(2+) signaling molecules and the gap junction proteins, Connexin 43 and 45. Sarcoplasmic reticulum associated Ca(2+)-handling proteins (including the cardiac ryanodine receptor, sarco/endoplasmic reticulum Ca(2+)-ATPase, and cardiac calsequestrin) were down-regulated in the transgenic hearts with increased expression of calreticulin. CONCLUSIONS/SIGNIFICANCE We show that in adult heart, up-regulated expression of calreticulin induces cardiomyopathy in vivo leading to heart failure. This is due to an alternation in changes in a subset of Ca(2+) handling genes, gap junction components and left ventricle remodeling.
Collapse
Affiliation(s)
- Dukgyu Lee
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tatsujiro Oka
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Beth Hunter
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Alison Robinson
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sylvia Papp
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Kimitoshi Nakamura
- Department of Pediatrics, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Wattamon Srisakuldee
- Department of Human Anatomy and Cell Sciences, and Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Barbara E. Nickel
- Department of Human Anatomy and Cell Sciences, and Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Peter E. Light
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R. B. Dyck
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D. Lopaschuk
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Elissavet Kardami
- Department of Human Anatomy and Cell Sciences, and Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Michal Opas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
77
|
Abstract
Since their discovery not long ago, microRNAs (miRNAs) have been extensively studied in hundreds of laboratories around the world. Initially thought of as merely cytoplasmic repressors of mRNA expression, it has since become more apparent that they also play regulatory roles in the nucleus. A recent study published in Nature introduces novel concepts in both miRNA regulation and function by showing that the let-7 miRNA regulates its own expression.
Collapse
Affiliation(s)
- Alan Jiao
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | | |
Collapse
|
78
|
Domínguez-Rodríguez A, Ruiz-Hurtado G, Benitah JP, Gómez AM. The other side of cardiac Ca(2+) signaling: transcriptional control. Front Physiol 2012; 3:452. [PMID: 23226134 PMCID: PMC3508405 DOI: 10.3389/fphys.2012.00452] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 11/12/2012] [Indexed: 12/19/2022] Open
Abstract
Ca2+ is probably the most versatile signal transduction element used by all cell types. In the heart, it is essential to activate cellular contraction in each heartbeat. Nevertheless Ca2+ is not only a key element in excitation-contraction coupling (EC coupling), but it is also a pivotal second messenger in cardiac signal transduction, being able to control processes such as excitability, metabolism, and transcriptional regulation. Regarding the latter, Ca2+ activates Ca2+-dependent transcription factors by a process called excitation-transcription coupling (ET coupling). ET coupling is an integrated process by which the common signaling pathways that regulate EC coupling activate transcription factors. Although ET coupling has been extensively studied in neurons and other cell types, less is known in cardiac muscle. Some hints have been found in studies on the development of cardiac hypertrophy, where two Ca2+-dependent enzymes are key actors: Ca2+/Calmodulin kinase II (CaMKII) and phosphatase calcineurin, both of which are activated by the complex Ca2+/Calmodulin. The question now is how ET coupling occurs in cardiomyocytes, where intracellular Ca2+ is continuously oscillating. In this focused review, we will draw attention to location of Ca2+ signaling: intranuclear ([Ca2+]n) or cytoplasmic ([Ca2+]c), and the specific ionic channels involved in the activation of cardiac ET coupling. Specifically, we will highlight the role of the 1,4,5 inositol triphosphate receptors (IP3Rs) in the elevation of [Ca2+]n levels, which are important to locally activate CaMKII, and the role of transient receptor potential channels canonical (TRPCs) in [Ca2+]c, needed to activate calcineurin (Cn).
Collapse
|
79
|
Hetzer R, Weng Y, Delmo Walter EM. State of the art in paediatric heart transplantation: the Berlin experience. Eur J Cardiothorac Surg 2012. [PMID: 23184909 DOI: 10.1093/ejcts/ezs588] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Enormous progress has been made in paediatric heart transplantation since the first unsuccessful effort by Kantrowitz in 1967. Early reports of children undergoing heart transplantation showed alarmingly high perioperative mortality rates of 25-60%, with the diagnosis of congenital heart disease (CHD) representing a particularly high-risk subset compared with cardiomyopathy. Many of these early failures were related to poor patient selection, suboptimal immunosuppression and technical problems. We learned a great deal from these earlier difficulties. Presently, with more refined techniques, better-defined patient selection criteria, excellent graft rejection monitoring and optimal immunosuppression, the ISHLT 2011 registry reported a 10-year survival rate of 60% for patients transplanted for end-stage CHD and >70% for those transplanted for cardiomyopathy. The technical dilemmas in complex CHD were overcome by surgical ingenuity and creativity, innovative solutions and careful surgical planning, adapting the complex recipient anatomy to the normal donor anatomy. The miniaturized Berlin Heart pulsatile ventricular assist devices in children as a bridge to transplantation have revolutionized treatment and become a significant contribution in heart-failure therapy. The intramyocardial electrogram and echocardiographic strain rate imaging have been employed as non-invasive techniques of rejection monitoring. Immunosuppressive drugs have a major impact on the development and progression of cardiac allograft vasculopathy, the main cause of cardiac allograft loss and a leading cause of mortality after the first year post-transplantation. The questions of whether a transplanted heart in a newborn grows to adult size along with the child and whether the dimensional cardiac growth allows adequate function over time have been largely answered in our previous investigations. As more transplanted children reach adulthood, concerns about their life expectancy when they have reached 10 years of life post-transplant are raised, particularly with respect to establishing partnerships and families, their ability to earn a living and the fulfilment of personal life perspectives. Some heart-transplanted patients require retransplantation to remain alive. The disparity between the demand for and supply of donor hearts makes retransplantation an ethical issue. We 'do not refuse' any patient who needs retransplantation. Mechanical circulatory support devices for long-term use are now largely available to accommodate such cases.
Collapse
Affiliation(s)
- Roland Hetzer
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Berlin, Berlin, Germany
| | | | | |
Collapse
|
80
|
Seeherunvong W, Abitbol CL, Chandar J, Rusconi P, Zilleruelo GE, Freundlich M. Fibroblast growth factor 23 and left ventricular hypertrophy in children on dialysis. Pediatr Nephrol 2012; 27:2129-2136. [PMID: 22710695 DOI: 10.1007/s00467-012-2224-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 05/27/2012] [Accepted: 05/29/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Elevated fibroblast growth factor 23 (FGF-23) concentrations associate with left ventricular hypertrophy (LVH) and adverse outcomes in adult patients with chronic kidney disease. We hypothesized that similar associations are present in pediatric patients on maintenance hemodialysis. METHODS In this retrospective study of 26 young patients on chronic hemodialysis, aged 6-21 years, cardiac structure and geometry were measured by echocardiography, and circulating levels of FGF-23 and calciotropic hormones were obtained. RESULTS FGF-23 levels were uniformly elevated in all patients from three- to 835-fold above the upper limit of normal. The average LV mass index (LVMI) was 43 ± 13 g/m(2.7) and reflected LVH in 55 % of patients. Log-transformed FGF-23 concentrations correlated with LVMI (p = 0.03) and were independently associated with the interventricular septal thickness Z-score (p < 0.001). Concentric LVH was associated with the highest FGF-23 concentrations and the highest LVMI measurements (p < 0.001). Each 1 standard deviation increase in log-transformed FGF-23 levels was associated with a 17 % increase in LVMI. CONCLUSIONS FGF-23 levels are strongly associated with increased LVMI and with prevalent LVH in pediatric hemodialysis patients. Our cross-sectional findings provide observational evidence supporting the hypothesis linking FGF-23 to cardiac hypertrophy in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Wacharee Seeherunvong
- Division of Pediatric Nephrology, University of Miami Miller School of Medicine and Holtz Children's Hospital/Jackson Memorial Medical Center, PO Box 016960 (M-714), Miami, FL, 33101, USA
| | - Carolyn L Abitbol
- Division of Pediatric Nephrology, University of Miami Miller School of Medicine and Holtz Children's Hospital/Jackson Memorial Medical Center, PO Box 016960 (M-714), Miami, FL, 33101, USA
| | - Jayanthi Chandar
- Division of Pediatric Nephrology, University of Miami Miller School of Medicine and Holtz Children's Hospital/Jackson Memorial Medical Center, PO Box 016960 (M-714), Miami, FL, 33101, USA
| | - Paolo Rusconi
- Division of Pediatric Cardiology, University of Miami Miller School of Medicine and Holtz Children's Hospital/Jackson Memorial Medical Center, Miami, FL, USA
| | - Gaston E Zilleruelo
- Division of Pediatric Nephrology, University of Miami Miller School of Medicine and Holtz Children's Hospital/Jackson Memorial Medical Center, PO Box 016960 (M-714), Miami, FL, 33101, USA
| | - Michael Freundlich
- Division of Pediatric Nephrology, University of Miami Miller School of Medicine, PO Box 016960 (M-714), Miami, FL, 33101, USA.
| |
Collapse
|
81
|
Piskorz D. Effects of activation of vitamin D receptor and phosphorus on left ventricular hypertrophy in chronic kidney disease. HIPERTENSION Y RIESGO VASCULAR 2012. [DOI: 10.1016/j.hipert.2012.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
82
|
Pietka TA, Sulkin MS, Kuda O, Wang W, Zhou D, Yamada KA, Yang K, Su X, Gross RW, Nerbonne JM, Efimov IR, Abumrad NA. CD36 protein influences myocardial Ca2+ homeostasis and phospholipid metabolism: conduction anomalies in CD36-deficient mice during fasting. J Biol Chem 2012; 287:38901-12. [PMID: 23019328 DOI: 10.1074/jbc.m112.413609] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sarcolemmal CD36 facilitates myocardial fatty acid (FA) uptake, which is markedly reduced in CD36-deficient rodents and humans. CD36 also mediates signal transduction events involving a number of cellular pathways. In taste cells and macrophages, CD36 signaling was recently shown to regulate store-responsive Ca(2+) flux and activation of Ca(2+)-dependent phospholipases A(2) that cycle polyunsaturated FA into phospholipids. It is unknown whether CD36 deficiency influences myocardial Ca(2+) handling and phospholipid metabolism, which could compromise the heart, typically during stresses. Myocardial function was examined in fed or fasted (18-22 h) CD36(-/-) and WT mice. Echocardiography and telemetry identified conduction anomalies that were associated with the incidence of sudden death in fasted CD36(-/-) mice. No anomalies or death occurred in WT mice during fasting. Optical imaging of perfused hearts from fasted CD36(-/-) mice documented prolongation of Ca(2+) transients. Consistent with this, knockdown of CD36 in cardiomyocytes delayed clearance of cytosolic Ca(2+). Hearts of CD36(-/-) mice (fed or fasted) had 3-fold higher SERCA2a and 40% lower phospholamban levels. Phospholamban phosphorylation by protein kinase A (PKA) was enhanced after fasting reflecting increased PKA activity and cAMP levels in CD36(-/-) hearts. Abnormal Ca(2+) homeostasis in the CD36(-/-) myocardium associated with increased lysophospholipid content and a higher proportion of 22:6 FA in phospholipids suggests altered phospholipase A(2) activity and changes in membrane dynamics. The data support the role of CD36 in coordinating Ca(2+) homeostasis and lipid metabolism and the importance of this role during myocardial adaptation to fasting. Potential relevance of the findings to CD36-deficient humans would need to be determined.
Collapse
Affiliation(s)
- Terri A Pietka
- Center for Human Nutrition, Washington University, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
The cardiac ventricular 5-HT4 receptor is functional in late foetal development and is reactivated in heart failure. PLoS One 2012; 7:e45489. [PMID: 23029047 PMCID: PMC3447799 DOI: 10.1371/journal.pone.0045489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 08/23/2012] [Indexed: 11/20/2022] Open
Abstract
A positive inotropic responsiveness to serotonin, mediated by 5-HT4 and 5-HT2A receptors, appears in the ventricle of rats with post-infarction congestive heart failure (HF) and pressure overload-induced hypertrophy. A hallmark of HF is a transition towards a foetal genotype which correlates with loss of cardiac functions. Thus, we wanted to investigate whether the foetal and neonatal cardiac ventricle displays serotonin responsiveness. Wistar rat hearts were collected day 3 and 1 before expected birth (days -3 and -1), as well as day 1, 3, 5 and 113 (age matched with Sham and HF) after birth. Hearts from post-infarction HF and sham-operated animals (Sham) were also collected. Heart tissue was examined for mRNA expression of 5-HT4, 5-HT2A and 5-HT2B serotonin receptors, 5-HT transporter, atrial natriuretic peptide (ANP) and myosin heavy chain (MHC)-α and MHC-β (real-time quantitative RT-PCR) as well as 5-HT-receptor-mediated increase in contractile function exvivo (electrical field stimulation of ventricular strips from foetal and neonatal rats and left ventricular papillary muscle from adult rats in organ bath). Both 5-HT4 mRNA expression and functional responses were highest at day -3 and decreased gradually to day 5, with a further decrease to adult levels. In HF, receptor mRNA levels and functional responses reappeared, but to lower levels than in the foetal ventricle. The 5-HT2A and 5-HT2B receptor mRNA levels increased to a maximum immediately after birth, but of these, only the 5-HT2A receptor mediated a positive inotropic response. We suggest that the 5-HT4 receptor is a representative of a foetal cardiac gene program, functional in late foetal development and reactivated in heart failure.
Collapse
|
84
|
Radin MJ, Chu YY, Hoepf TM, McCune SA. Treatment of Obese Female and MaleSHHF/Mcc-facpRats with Antihypertensive Drugs, Nifedipine and Enalapril: Effects on Body Weight, Fat Distribution, Insulin Resistance and Systolic Pressure. ACTA ACUST UNITED AC 2012; 1:433-42. [PMID: 16350319 DOI: 10.1002/j.1550-8528.1993.tb00025.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Little is known about the effects of common antihypertensive drugs in obese, insulin-resistant females. Nine-month-old obese female SHHF/Mcc-fa(cp) rats that received either nifedipine, a calcium channel antagonist, or enalapril, an angiotensin-converting-enzyme inhibitor, for three months were compared with untreated SHHF/Mcc-fa(cp) rats (controls). After one month, nifedipine significantly decreased body weight in obese females compared to either enalapril or controls. After three months of treatment, total, abdominal, and subcutaneous fat masses were decreased in obese females given nifedipine compared to either enalapril or controls. Enalapril treatment was associated with a redistribution of fat mass from abdominal to subcutaneous depots. Nifedipine reduced plasma triglyceride and fasting glucose levels and improved insulin response to an oral glucose load in obese females, whereas enalapril did not appear to affect glycemic control. Systolic pressure was not significantly decreased until after two months of treatment with nifedipine or three months of treatment with enalapril in obese females and may have coincided with improvement in insulin-resistance. Similarly, plasma atrial natriuretic peptide concentrations were significantly lower in obese females given nifedipine. To determine how obese males responded to a calcium channel antagonist, six-month-old obese male SHHF/Mcc-fa(cp) rats were treated for three months with either nifedipine or placebo (controls). Nifedipine-treated obese males showed a mild but significant decrease in weight gain that was due to a decrease in fat deposition in both subcutaneous and abdominal depots and systolic blood pressure was significantly reduced after one month of treatment. Nifedipine did not affect other plasma biochemical parameters in obese males. In conclusion, nifedipine improved systolic pressure and glycemic control in obese female SHHF/Mcc-fa(cp) rats, effects that may be associated with a marked loss in body weight and fat mass and improved lipid metabolism. Nifedipine-treated obese males exhibited only a diminished weight gain that was not associated with changes in diabetic characteristics.
Collapse
Affiliation(s)
- M J Radin
- Department of Veterinary Pathobiology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
85
|
Irzmański R, Pawlicki L, Charłusz M, Kowalski J. Concentration of natriuretic peptides in patients suffering from idiopathic arterial hypertension and left ventricular diastolic dysfunction confirmed by echocardiography. Clin Exp Hypertens 2012; 34:530-40. [PMID: 22783987 DOI: 10.3109/10641963.2012.702831] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Concentration of natriuretic peptides (NPs) in arterial hypertension (AH) patients is higher than that in healthy people. One of the first symptoms of left ventricular hypertrophy (LVH) is left ventricular diastolic dysfunction (LVDD). The aim of this study was to examine whether determination of NPs in blood can be a useful indicator of LVDD detection in idiopathic AH patients. The study was conducted on three groups of patients: group Ia, 19 patients (average age 57 ± 3) with eccentric hypertrophy; group Ib, 13 patients (59 ± 4) with concentric hypertrophy; group II, 33 patients (58 ± 4) without AH or LVH. In all groups, mitral inflow profile was evaluated with Doppler test to detect LVDD, blood flow in upper right pulmonary vein, and concentration of atrial natriuretic peptide (ANP), N-terminal ANP (N-ANP), brain natriuretic peptide (BNP), and N-terminal BNP (N-BNP). In group Ia, significant correlations were observed between the following pairs: ratio of maximum early to late mitral inflow and ANP; deceleration time of early mitral inflow speed and ANP; atrial contraction (AR) and ANP; atrial contraction (AR) and N-ANP; similarly, in group Ib, significant correlations were observed between the following: relative wall thickness and BNP; isovolumic relaxation time and BNP; AR and BNP; relative wall thickness and N-BNP; isovolumic relaxation time and N-BNP; AR and N-BNP.
Collapse
Affiliation(s)
- Robert Irzmański
- Laboratory of Ergonomics and Exercise Physiology, Medical University of Łódź, Łódź, Poland
| | | | | | | |
Collapse
|
86
|
Warkman AS, Whitman SA, Miller MK, Garriock RJ, Schwach CM, Gregorio CC, Krieg PA. Developmental expression and cardiac transcriptional regulation of Myh7b, a third myosin heavy chain in the vertebrate heart. Cytoskeleton (Hoboken) 2012; 69:324-35. [PMID: 22422726 DOI: 10.1002/cm.21029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/23/2012] [Accepted: 03/09/2012] [Indexed: 11/08/2022]
Abstract
The mammalian heart expresses two myosin heavy chain (MYH) genes (Myh6 and Myh7), which are major components of the thick filaments of the sarcomere. We have determined that a third MYH, MYH7B, is also expressed in the myocardium. Developmental analysis shows Myh7b expression in cardiac and skeletal muscle of Xenopus, chick and mouse embryos, and in smooth muscle tissues during later stages of mouse embryogenesis. Myh7b is also expressed in the adult human heart. The promoter region of the Myh7b gene shows remarkable similarity between diverse species, suggesting that transcriptional control mechanisms have been conserved. Using luciferase reporter analysis in rat cardiomyocytes, it can be shown that MEF2, GATA, and E-box regulatory elements are essential for efficient expression of the Myh7b gene. In addition two conserved elements that do not correspond to consensus binding sites for known transcription factors are also essential for full transcriptional activity of the Myh7b reporter. Finally, the Myh7b gene shows a transcriptional response similar to Myh6 in response to cardiac hypertrophy.
Collapse
Affiliation(s)
- Andrew S Warkman
- Department of Cellular and Molecular Medicine, University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Song HK, Hong SE, Kim T, Kim DH. Deep RNA sequencing reveals novel cardiac transcriptomic signatures for physiological and pathological hypertrophy. PLoS One 2012; 7:e35552. [PMID: 22523601 PMCID: PMC3327670 DOI: 10.1371/journal.pone.0035552] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 03/21/2012] [Indexed: 12/25/2022] Open
Abstract
Although both physiological hypertrophy (PHH) and pathological hypertrophy (PAH) of the heart have similar morphological appearances, only PAH leads to fatal heart failure. In the present study, we used RNA sequencing (RNA-Seq) to determine the transcriptomic signatures for both PHH and PAH. Approximately 13-20 million reads were obtained for both models, among which PAH showed more differentially expressed genes (DEGs) (2,041) than PHH (245). The expression of 417 genes was barely detectable in the normal heart but was suddenly activated in PAH. Among them, Foxm1 and Plk1 are of particular interest, since Ingenuity Pathway Analysis (IPA) using DEGs and upstream motif analysis showed that they are essential hub proteins that regulate the expression of downstream proteins associated with PAH. Meanwhile, 52 genes related to collagen, chemokines, and actin showed opposite expression patterns between PHH and PAH. MAZ-binding motifs were enriched in the upstream region of the participating genes. Alternative splicing (AS) of exon variants was also examined using RNA-Seq data for PAH and PHH. We found 317 and 196 exon inclusions and exon exclusions, respectively, for PAH, and 242 and 172 exon inclusions and exclusions, respectively for PHH. The AS pattern was mostly related to gains or losses of domains, changes in activity, and localization of the encoded proteins. The splicing variants of 8 genes (i.e., Fhl1, Rcan1, Ndrg2, Synpo, Ttll1, Cxxc5, Egfl7, and Tmpo) were experimentally confirmed. Multilateral pathway analysis showed that the patterns of quantitative (DEG) and qualitative (AS) changes differ depending on the type of pathway in PAH and PHH. One of the most significant changes in PHH is the severe downregulation of autoimmune pathways accompanied by significant AS. These findings revealed the unique transcriptomic signatures of PAH and PHH and also provided a more comprehensive understanding at both the quantitative and qualitative levels.
Collapse
Affiliation(s)
| | | | | | - Do Han Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
88
|
Angiotensin II Type-1 Receptor-JAK/STAT Pathway Mediates the Induction of Visfatin in Angiotensin II-Induced Cardiomyocyte Hypertrophy. Am J Med Sci 2012; 343:220-6. [DOI: 10.1097/maj.0b013e31822993ff] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
89
|
Foster CR, Zha Q, Daniel LL, Singh M, Singh K. Lack of ataxia telangiectasia mutated kinase induces structural and functional changes in the heart: role in β-adrenergic receptor-stimulated apoptosis. Exp Physiol 2012. [DOI: 10.1111/j.1469-445x.2011.01034.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
90
|
Gupta S, Halushka MK, Hilton GM, Arking DE. Postmortem cardiac tissue maintains gene expression profile even after late harvesting. BMC Genomics 2012; 13:26. [PMID: 22251372 PMCID: PMC3342086 DOI: 10.1186/1471-2164-13-26] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/17/2012] [Indexed: 11/24/2022] Open
Abstract
Background Gene expression studies can be used to help identify disease-associated genes by comparing the levels of expressed transcripts between cases and controls, and to identify functional genetic variants (expression quantitative loci or eQTLs) by comparing expression levels between individuals with different genotypes. While many of these studies are performed in blood or lymphoblastoid cell lines due to tissue accessibility, the relevance of expression differences in tissues that are not the primary site of disease is unclear. Further, many eQTLs are tissue specific. Thus, there is a clear and compelling need to conduct gene expression studies in tissues that are specifically relevant to the disease of interest. One major technical concern about using autopsy-derived tissue is how representative it is of physiologic conditions, given the effect of postmortem interval on tissue degradation. Results In this study, we monitored the gene expression of 13 tissue samples harvested from a rapid autopsy heart (non-failed heart) and 7 from a cardiac explant (failed heart) through 24 hours of autolysis. The 24 hour autopsy simulation was designed to reflect a typical autopsy scenario where a body may begin cooling to ambient temperature for ~12 hours, before transportation and storage in a refrigerated room in a morgue. In addition, we also simulated a scenario wherein the body was left at room temperature for up to 24 hours before being found. A small fraction (< 2.5%) of genes showed fluctuations in expression over the 24 hr period and largely belong to immune and signal response and energy metabolism-related processes. Global expression analysis suggests that RNA expression is reproducible over 24 hours of autolysis with 95% genes showing < 1.2 fold change. Comparing the rapid autopsy to the failed heart identified 480 differentially expressed genes, including several types of collagens, lumican (LUM), natriuretic peptide A (NPPA) and connective tissue growth factor (CTGF), which allows for the clear separation between failing and non-failing heart based on gene expression profiles. Conclusions Our results demonstrate that RNA from autopsy-derived tissue, even up to 24 hours of autolysis, can be used to identify biologically relevant expression pattern differences, thus serving as a practical source for gene expression experiments.
Collapse
Affiliation(s)
- Simone Gupta
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
91
|
Ferreira JCB, Mochly-Rosen D, Boutjdir M. Regulation of cardiac excitability by protein kinase C isozymes. Front Biosci (Schol Ed) 2012. [PMID: 22202075 DOI: 10.2741/283] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiac excitability and electrical activity are determined by the sum of individual ion channels, gap junctions and exchanger activities. Electrophysiological remodeling during heart disease involves changes in membrane properties of cardiomyocytes and is related to higher prevalence of arrhythmia-associated morbidity and mortality. Pharmacological and genetic manipulation of cardiac cells as well as animal models of cardiovascular diseases are used to identity changes in electrophysiological properties and the molecular mechanisms associated with the disease. Protein kinase C (PKC) and several other kinases play a pivotal role in cardiac electrophysiological remodeling. Therefore, identifying specific therapies that regulate these kinases is the main focus of current research. PKC, a family of serine/threonine kinases, has been implicated as potential signaling nodes associated with biochemical and biophysical stress in cardiovascular diseases. In this review, we describe the role of PKC isozymes that are involved in cardiac excitability and discuss both genetic and pharmacological tools that were used, their attributes and limitations. Selective and effective pharmacological interventions to normalize cardiac electrical activities and correct cardiac arrhythmias will be of great clinical benefit.
Collapse
|
92
|
Foster CR, Zha Q, Daniel LL, Singh M, Singh K. Lack of ataxia telangiectasia mutated kinase induces structural and functional changes in the heart: role in β-adrenergic receptor-stimulated apoptosis. Exp Physiol 2011; 97:506-15. [PMID: 22179422 DOI: 10.1113/expphysiol.2011.061812] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ataxia telangiectasia mutated kinase (ATM) is involved in cell cycle checkpoints, DNA repair and apoptosis. β-Adrenergic receptor (β-AR) stimulation induces cardiac myocyte apoptosis. Here we analysed basal myocardial structure and function in ATM knockout (KO) mice and tested the hypothesis that ATM modulates β-AR-stimulated myocyte apoptosis. Left ventricular (LV) structure and function, myocyte apoptosis, fibrosis and expression of fibrosis-, hypertrophy- and apoptosis-related proteins were examined in wild-type (WT) and KO mice with or without l-isoprenaline treatment for 24 h. Body and heart weights were lower in KO mice. M-Mode echocardiography showed reduced septal wall thicknesses and LV diameters in KO mice. Doppler echocardiography showed an increased ratio of early peak velocity (E wave) to that of the late LV filling (A wave) in KO mice. Basal fibrosis and myocyte cross-sectional area were greater in KO hearts. Expression of fibrosis-related genes (connective tissue growth factor and plasminogen activator inhibitor-1) and hypertrophy-related gene (atrial natriuretic peptide) was higher in KO hearts. β-Adrenergic receptor stimulation increased myocyte apoptosis to a similar extent in both groups. Activation of c-Jun N-terminal kinases and expression and phosphorylation of p53 in response to β-AR stimulation were only observed in the WT group. Akt phosphorylation was lower in KO sham-treated animals and remained lower following β-AR stimulation in the KO group. β-Adrenergic receptor stimulation activated glycogen synthase kinase-3β to a similar extent in both groups. Thus, lack of ATM induces structural and functional changes in the heart, with enhanced myocardial fibrosis and myocyte hypertrophy. β-Adrenergic receptor-stimulated apoptosis in WT hearts is associated with a p53- and JNKs-dependent mechanism, while decreased Akt activity may play a role in increased myocyte apoptosis in the absence of ATM.
Collapse
Affiliation(s)
- Cerrone R Foster
- Department of Physiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | |
Collapse
|
93
|
PPARα activation inhibits endothelin-1-induced cardiomyocyte hypertrophy by prevention of NFATc4 binding to GATA-4. Arch Biochem Biophys 2011; 518:71-8. [PMID: 22198280 DOI: 10.1016/j.abb.2011.11.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/13/2011] [Accepted: 11/14/2011] [Indexed: 11/21/2022]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) has been implicated in the pathogenesis of cardiac hypertrophy, although its mechanism of action remains largely unknown. To determine the effect of PPARα activation on endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy and explore its molecular mechanisms, we evaluated the interaction of PPARα with nuclear factor of activated T-cells c4 (NFATc4) in nuclei of cardiomyocytes from neonatal rats in primary culture. In ET-1-stimulated cardiomyocytes, data from electrophoretic mobility-shift assays (EMSA) and co-immunoprecipitation (co-IP) revealed that fenofibrate (Fen), a PPARα activator, in a concentration-dependent manner, enhanced the association of NFATc4 with PPARα and decreased its interaction with GATA-4, in promoter complexes involved in activation of the rat brain natriuretic peptide (rBNP) gene. Effects of PPARα overexpression were similar to those of its activation by Fen. PPARα depletion by small interfering RNA abolished inhibitory effects of Fen on NFATc4 binding to GATA-4 and the rBNP DNA. Quantitative RT-PCR and confocal microscopy confirmed inhibitory effects of PPARα activation on elevation of rBNP mRNA levels and ET-1-induced cardiomyocyte hypertrophy. Our results suggest that activated PPARα can compete with GATA-4 binding to NFATc4, thereby decreasing transactivation of NFATc4, and interfering with ET-1 induced cardiomyocyte hypertrophy.
Collapse
|
94
|
Ververis K, Rodd AL, Tang MM, El-Osta A, Karagiannis TC. Histone deacetylase inhibitors augment doxorubicin-induced DNA damage in cardiomyocytes. Cell Mol Life Sci 2011; 68:4101-14. [PMID: 21584806 PMCID: PMC11115072 DOI: 10.1007/s00018-011-0727-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 04/19/2011] [Accepted: 05/03/2011] [Indexed: 01/11/2023]
Abstract
Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutics with suberoylanilide hydroxamic acid (Vorinostat) and depsipeptide (Romidepsin) already being approved for clinical use. Numerous studies have identified that histone deacetylase inhibitors will be most effective in the clinic when used in combination with conventional cancer therapies such as ionizing radiation and chemotherapeutic agents. One promising combination, particularly for hematologic malignancies, involves the use of histone deacetylase inhibitors with the anthracycline, doxorubicin. However, we previously identified that trichostatin A can potentiate doxorubicin-induced hypertrophy, the dose-limiting side-effect of the anthracycline, in cardiac myocytes. Here we have the extended the earlier studies and evaluated the effects of combinations of the histone deacetylase inhibitors, trichostatin A, valproic acid and sodium butyrate on doxorubicin-induced DNA double-strand breaks in cardiomyocytes. Using γH2AX as a molecular marker for the DNA lesions, we identified that all of the broad-spectrum histone deacetylase inhibitors tested augment doxorubicin-induced DNA damage. Furthermore, it is evident from the fluorescence photomicrographs of stained nuclei that the histone deacetylase inhibitors also augment doxorubicin-induced hypertrophy. These observations highlight the importance of investigating potential side-effects, in relevant model systems, which may be associated with emerging combination therapies for cancer.
Collapse
Affiliation(s)
- Katherine Ververis
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, 75 Commercial Road, Melbourne, VIC Australia
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville, VIC Australia
| | - Annabelle L. Rodd
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, 75 Commercial Road, Melbourne, VIC Australia
- Department of Pathology, The University of Melbourne, Parkville, VIC Australia
| | - Michelle M. Tang
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, 75 Commercial Road, Melbourne, VIC Australia
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC Australia
| | - Assam El-Osta
- Department of Pathology, The University of Melbourne, Parkville, VIC Australia
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC Australia
- Epigenomics Profiling Facility, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC Australia
- Faculty of Medicine, Monash University, Melbourne, VIC Australia
| | - Tom C. Karagiannis
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, 75 Commercial Road, Melbourne, VIC Australia
- Department of Pathology, The University of Melbourne, Parkville, VIC Australia
| |
Collapse
|
95
|
Influence of size disparity of transplanted hearts on cardiac growth in infants and children. J Thorac Cardiovasc Surg 2011; 143:168-77. [PMID: 22036258 DOI: 10.1016/j.jtcvs.2011.09.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/26/2011] [Indexed: 11/21/2022]
Abstract
OBJECTIVE We aimed to evaluate the influence of size disparity of the transplanted heart on cardiac growth in infant and child recipients by comparing donor body surface area (BSA) and cardiac dimensions during transplantation to the corresponding parameters of the recipient over a period of time. METHODS A retrospective review of medical and echocardiographic records of 147 children (5.3 ± 4.0; median, 4.1; range, 1 month-15 years) who underwent orthotopic heart transplantation was done. The patients were divided into age groups as follows: less than 1 year (n = 23), 1 to 2 years (n = 26), more than 2 to 5 years (n = 18), more than 5 to 10 years (n = 27), and more than 10 to 15 years (n = 53). Donor/recipient BSA ratio was determined during transplantation. Cardiac dimensions were measured 30 days after transplantation and compared at 1 year, 2 to 5 years, and 5 to 10 years after transplantation. RESULTS There were no significant differences in the ventricular end-diastolic diameter, volumes, and mass among those with a donor/recipient BSA ratio of less than 0.80, 0.8 to 1.2, and more than 1.2 (P = .80, .44, and .48, respectively). In all the cardiac dimensions and volumes measured, donor-recipient mismatch did not influence the continuous growth of the heart, as indicated by the measured parameters, in accordance with the recipients' increase in BSA over time. All calculated Z-scores at 1 year, 2 to 5 years, and 6 to 10 years after transplantation were normal when indexed to BSA. CONCLUSIONS This study demonstrates that despite size disparity of a transplanted heart, it undergoes normal growth in diastolic dimensions, volumes, and myocardial mass over time as appropriate for body growth after cardiac transplantation in infants and children.
Collapse
|
96
|
Chu M, Iyengar R, Koshman YE, Kim T, Russell B, Martin JL, Heroux AL, Robia SL, Samarel AM. Serine-910 phosphorylation of focal adhesion kinase is critical for sarcomere reorganization in cardiomyocyte hypertrophy. Cardiovasc Res 2011; 92:409-19. [PMID: 21937583 DOI: 10.1093/cvr/cvr247] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS Tyrosine-phosphorylated focal adhesion kinase (FAK) is required for the hypertrophic response of cardiomyocytes to growth factors and mechanical load, but the role of FAK serine phosphorylation in this process is unknown. The aims of the present study were to characterize FAK serine phosphorylation in cultured neonatal rat ventricular myocytes (NRVM), analyse its functional significance during hypertrophic signalling, and examine its potential role in the pathogenesis of human dilated cardiomyopathy (DCM). METHODS AND RESULTS Endothelin-1 (ET-1) and other hypertrophic factors induced a time- and dose-dependent increase in FAK-S910 phosphorylation. ET-1-induced FAK-S910 phosphorylation required ET(A)R-dependent activation of PKCδ and Src via parallel Raf-1 → MEK1/2 → ERK1/2 and MEK5 → ERK5 signalling pathways. Replication-deficient adenoviruses expressing wild-type (WT) FAK and a non-phosphorylatable, S910A-FAK mutant were then used to examine the functional significance of FAK-S910 phosphorylation. Unlike WT-FAK, S910A-FAK increased the half-life of GFP-tagged paxillin within costameres (as determined by total internal reflection fluorescence microscopy and fluorescence recovery after photobleaching) and increased the steady-state FAK-paxillin interaction (as determined by co-immunoprecipitation and western blotting). These alterations resulted in reduced NRVM sarcomere reorganization and cell spreading. Finally, we found that FAK was serine-phosphorylated at multiple sites in non-failing, human left ventricular tissue. FAK-S910 phosphorylation and ERK5 expression were dramatically reduced in patients undergoing heart transplantation for end-stage DCM. CONCLUSION FAK undergoes S910 phosphorylation via PKCδ and Src-dependent pathways that are important for cell spreading and sarcomere reorganization. Reduced FAK-S910 phosphorylation may contribute to sarcomere disorganization in DCM.
Collapse
Affiliation(s)
- Miensheng Chu
- Department of Physiology, Loyola University Medical Center, Maywood, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Delmo Walter EM, Huebler M, Stamm C, Alexi-Meskishvili V, Weng Y, Berger F, Hetzer R. Adaptive growth and remodeling of transplanted hearts in children. Eur J Cardiothorac Surg 2011; 40:1374-82; discussion 1382-3. [PMID: 21903412 DOI: 10.1016/j.ejcts.2011.04.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 04/10/2011] [Accepted: 04/18/2011] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE We aimed to evaluate the adaptive growth and remodeling behavior of the transplanted heart in pediatric heart-transplant recipients by comparing donor body surface area (BSA) and cardiac dimensions during transplantation with the corresponding parameters of the recipient over a period of time. METHODS A retrospective review of medical and echocardiographic records of 167 children (8.65 ± 5.98, median 9; range 0-17 years) who underwent orthotopic heart transplantation between 1987 and March 2010 was done. RESULTS In the first 30 days post-transplantation, right- and left-ventricular end-diastolic diameters, volumes, and myocardial mass were found to be significantly increased (z score 3.96, p < 0.000) in relation to the recipients' BSA. Within the first year of post-transplantation, there was a significant reduction in the right-ventricular diameter (z score, -1.0 to +1.6, p = 0.000), left-ventricular diameter (z score -1.0 to +1.9, p = 0.000), right-ventricular end-diastolic volume (z score -1.3 to +1.9, p = 0.000) and left-ventricular end-diastolic volume (z score -1.3 to +1.8, p = 0.000), right-ventricular mass (z score, -1.4 to +1.7, p = 0.000) and left-ventricular mass (z score, -1.4 to +1.8, p = 0.000). During subsequent follow-up periods of 2-5 and 6-10 years, the aforementioned cardiac dimensions and volumes increased appropriately in accordance to the BSA (p = 0.000). In all the cardiac dimensions and volumes measured, donor-recipient mismatch did not influence the continuous growth of the measured parameters, which was in accordance to the recipients' BSA over time. Kaplan-Meier survival analysis showed a survival rate of 61.7% at 10 years. There is no statistically significant difference in survival rate among patients with varying donor-recipient weight ratios and donor-recipient BSA ratios (p = 0.53). CONCLUSIONS This study demonstrates that the transplanted heart undergoes remodeling processes and grows adaptively, in accordance to the BSA, over a period of time.
Collapse
Affiliation(s)
- Eva Maria Delmo Walter
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
98
|
Wang TL, Yang YH. Effect of mechanical stretch on rat neonatal cardiomyocyte somatostatin receptor subtype 1 expression. J Acute Med 2011. [DOI: 10.1016/j.jacme.2011.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
99
|
Abstract
Chromatin modifications are integral elements of chromosome structure and its function and the vasculature depends on tissue-specific genome regulation for its development. A general concept for the de-regulation of chromatin modifications in cardiac and vascular disease is also emerging. The recognition that metabolic memory contributes to disease persistence highlights the benefit of early and aggressive treatment. As for the importance of memory, we do know that good metabolic control delays the onset of long-term diabetic complications. There are striking parallels between the timing of disease and the development of complications. Landmark multicenter clinical trials on diabetes patients have popularized the concept that glucose is also a demonstrable determinant for the development of complications, indicating the prolonged benefit of intensive therapy and the lasting damage of conventional therapy. Each cell type experiences thousands of modifications to the epigenome in response to environmental changes it is exposed to. Therefore, history is neither lost nor forgotten and previous experiences and exposure may form future memories. There is now a strong resurgence in research trying to understand gene-environment interactions and to determine what commits specific vascular cell types to specific memories. Recent insights show that cardiac gene expression is distinguished by specific chromatin remodeling events and histone modifications that are associated with heart disease.
Collapse
Affiliation(s)
- Assam El-Osta
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.
| |
Collapse
|
100
|
Soci UPR, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT, Irigoyen MC, Phillips MI, Oliveira EM. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics 2011; 43:665-673. [PMID: 21447748 PMCID: PMC3121159 DOI: 10.1152/physiolgenomics.00145.2010] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 03/29/2011] [Indexed: 12/14/2022] Open
Abstract
MiRNAs regulate cardiac development, hypertrophy, and angiogenesis, but their role in cardiac hypertrophy (CH) induced by aerobic training has not previously been studied. Aerobic training promotes physiological CH preserving cardiac function. This study assessed involvement of miRNAs-29 in CH of trained rats. Female Wistar rats (n=7/group) were randomized into three groups: sedentary (S), training 1 (T1), training 2 (T2). T1: swimming sessions of 60 min/5 days/wk/10 wk. T2: similar to T1 until 8th wk. On the 9th wk rats swam 2×/day, and on the 10th wk 3×/day. MiRNAs analysis was performed by miRNA microarray and confirmed by real-time PCR. We assessed: markers of training, CH by ratio of left ventricle (LV) weight/body wt and cardiomyocytes diameter, pathological markers of CH (ANF, skeletal α-actin, α/β-MHC), collagen I and III (COLIAI and COLIIIAI) by real-time PCR, protein collagen by hydroxyproline (OH-proline) concentration, CF and CH by echocardiography. Training improved aerobic capacity and induced CH. MiRNAs-1, 133a, and 133b were downregulated as observed in pathological CH, however, without pathological markers. MiRNA-29c expression increased in T1 (52%) and T2 (123%), correlated with a decrease in COLIAI and COLIIIAI expression in T1 (27%, 38%) and T2 (33%, 48%), respectively. MiRNA-29c was inversely correlated to OH-proline concentration (r=0.61, P<0.05). The E/A ratio increased in T2, indicating improved LV compliance. Thus, these results show that aerobic training increase miR-29 expression and decreased collagen gene expression and concentration in the heart, which is relevant to the improved LV compliance and beneficial cardiac effects, associated with aerobic high performance training.
Collapse
Affiliation(s)
- U. P. R. Soci
- Laboratory of Biochemistry of the Motor Activity, School of Physical Education and Sport
| | - T. Fernandes
- Laboratory of Biochemistry of the Motor Activity, School of Physical Education and Sport
| | - N. Y. Hashimoto
- Laboratory of Biochemistry of the Motor Activity, School of Physical Education and Sport
| | - G. F. Mota
- Laboratory of Biochemistry of the Motor Activity, School of Physical Education and Sport
| | - M. A. Amadeu
- Laboratory of Biochemistry of the Motor Activity, School of Physical Education and Sport
| | - K. T. Rosa
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; and
| | - M. C. Irigoyen
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; and
| | - M. I. Phillips
- Laboratory of Stem Cells, Keck Graduate Institute of Applied Life Sciences, Claremont, California
| | - E. M. Oliveira
- Laboratory of Biochemistry of the Motor Activity, School of Physical Education and Sport
| |
Collapse
|