51
|
von Knethen A, Tautenhahn A, Link H, Lindemann D, Brüne B. Activation-Induced Depletion of Protein Kinase Cα Provokes Desensitization of Monocytes/Macrophages in Sepsis. THE JOURNAL OF IMMUNOLOGY 2005; 174:4960-5. [PMID: 15814724 DOI: 10.4049/jimmunol.174.8.4960] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sepsis accounts for the majority of fatal casualties in critically ill patients, because extensive research failed to significantly improve appropriate therapy strategies. Thus, understanding molecular mechanisms initiating the septic phenotype is important. Symptoms of septic disease are often associated with monocyte/macrophage desensitization. In this study, we provide evidence that a desensitized cellular phenotype is characterized by an attenuated oxidative burst. Inhibition of the oxidative burst and depletion of protein kinase C alpha (PKC alpha) were correlated in septic patients. To prove that PKC alpha down-regulation indeed attenuated the oxidative burst, we set up a cell culture model to mimic desensitized monocytes/macrophages. We show that LPS/IFN-gamma-treatment of RAW264.7 and U937 cells lowered PKC alpha expression and went on to confirm these data in primary human monocyte-derived macrophages. To establish a role of PKC alpha in cellular desensitization, we overexpressed PKC alpha in RAW264.7 and U937 cells and tested for phorbolester-elicited superoxide formation following LPS/IFN-gamma-pretreatment. Inhibition of the oxidative burst, i.e., cellular desensitization, was clearly reversed in cells overexpressing PKC alpha, pointing to PKC alpha as the major transmitter in eliciting the oxidative burst in monocytes/macrophages. However, PKC alpha inactivation by transfecting a catalytically inactive PKC alpha mutant attenuated superoxide formation. We suggest that depletion of PKC alpha in monocytes from septic patients contributes to cellular desensitization, giving rise to clinical symptoms of sepsis.
Collapse
Affiliation(s)
- Andreas von Knethen
- Department of Cell Biology, University Kaiserslautern, Kaiserslautern, Germany.
| | | | | | | | | |
Collapse
|
52
|
Lim SY, Jang JH, Na HK, Lu SC, Rahman I, Surh YJ. 15-Deoxy-Delta12,14-prostaglandin J(2) protects against nitrosative PC12 cell death through up-regulation of intracellular glutathione synthesis. J Biol Chem 2004; 279:46263-70. [PMID: 15319433 DOI: 10.1074/jbc.m406555200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nitrosative stress with subsequent inflammatory cell death has been associated with many neurodegenerative disorders. Expression of inducible nitric-oxide synthase and production of nitric oxide (NO) have been frequently elevated in many inflammatory disorders. NO can rapidly react with superoxide anion, producing more reactive peroxynitrite. In the present study, exposure of rat pheochromocytoma (PC12) cells to the peroxynitrite donor 3-morpholinosydnonimine hydrochloride (SIN-1) induced apoptosis, which accompanied depletion of intracellular glutathione (GSH), c-Jun N-terminal kinase activation, mitochondrial membrane depolarization, the cleavage of poly(ADP-ribose)polymerase, and DNA fragmentation. During SIN-1-induced apoptotic cell death, expression of inducible cyclooxygenase (COX-2), and peroxisome proliferator-activated receptor-gamma (PPARgamma) was elevated. SIN-1 treatment resulted in elevated production of 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), an endogenous PPARgamma activator. Preincubation with 15d-PGJ(2) rendered PC12 cells resistant to nitrosative stress induced by SIN-1. 15d-PGJ(2) fortified an intracellular GSH pool through up-regulation of glutamylcysteine ligase, thereby preventing cells from SIN-1-induced GSH depletion. The above findings suggest that 15d-PGJ(2) may act as a survival mediator capable of augmenting cellular thiol antioxidant capacity through up-regulation of the intracellular GSH synthesis in response to the nitrosative insult.
Collapse
Affiliation(s)
- So-Young Lim
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
53
|
Sánchez-Pozo C, Rodriguez-Baño J, Domínguez-Castellano A, Muniain MA, Goberna R, Sánchez-Margalet V. Leptin stimulates the oxidative burst in control monocytes but attenuates the oxidative burst in monocytes from HIV-infected patients. Clin Exp Immunol 2004; 134:464-9. [PMID: 14632752 PMCID: PMC1808878 DOI: 10.1111/j.1365-2249.2003.02321.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Leptin, the 16 kDa product of the ob gene, is a an adipocyte-secreted hormone that centrally regulates weight. However, the physiological role of leptin is not limited to the regulation of food intake and energy expenditure, and leptin has a variety of effects in peripheral tissues, such as a regulatory role modulating the immune system. Thus, leptin receptor is expressed in human peripheral blood mononuclear cells, mediating the leptin stimulation of proliferation and activation, the production of proinflammatory cytokines from cultured monocytes, and the prevention of apoptotic death in serum-deprived monocytes. Because leptin can stimulate monocytes and the production of reactive oxygen species (ROS) are the result of monocyte activation, we investigated the effect of leptin on ROS production by human monocytes in vitro. Oxidative burst was measured by oxidation of the redox-sensitive dye 2',7'-dichlorofluorescein diacetate, and analysed by flow cytometry. We have found that stimulation with leptin produces oxygen radical formation by monocytes. This effect is dependent on the dose and maximal response is achieved at 10 nM leptin. Because HIV infection induces the production of ROS, we next investigated the effect of leptin on ROS production in monocytes from HIV-positive (HIV+) subjects. We have also found that monocytes from HIV+ subjects spontaneously produced increased amounts of free radicals. In contrast, leptin stimulation of monocytes from these patients partially inhibited the production of ROS. This effect of leptin was also dependent on the dose and maximal effect was achieved at 10 nM. The effect of leptin stimulating the production of ROS is consistent with the proinflammatory role in the immune system. On the other hand, the inhibitory effect on monocytes from HIV+ subjects may be explained by the attenuation of the oxidative burst by a delayed activation of monocytes in a hyperinflammatory state.
Collapse
Affiliation(s)
- C Sánchez-Pozo
- Department of Clinical Biochemistry, Virgen Macarena University Hospital, Seville, Spain
| | | | | | | | | | | |
Collapse
|
54
|
Zingarelli B, Sheehan M, Hake PW, O'Connor M, Denenberg A, Cook JA. Peroxisome Proliferator Activator Receptor-γ Ligands, 15-Deoxy-Δ12,14-Prostaglandin J2 and Ciglitazone, Reduce Systemic Inflammation in Polymicrobial Sepsis by Modulation of Signal Transduction Pathways. THE JOURNAL OF IMMUNOLOGY 2003; 171:6827-37. [PMID: 14662889 DOI: 10.4049/jimmunol.171.12.6827] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Peroxisome proliferator activator receptor-gamma (PPARgamma) is a nuclear receptor that controls the expression of several genes involved in metabolic homeostasis. We investigated the role of PPARgamma during the inflammatory response in sepsis by the use of the PPARgamma ligands, 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) and ciglitazone. Polymicrobial sepsis was induced by cecal ligation and puncture in rats and was associated with hypotension, multiple organ failure, and 50% mortality. PPARgamma expression was markedly reduced in lung and thoracic aorta after sepsis. Immunohistochemistry showed positive staining for nitrotyrosine and poly(ADP-ribose) synthetase in thoracic aortas. Plasma levels of TNF-alpha, IL-6, and IL-10 were increased. Elevated activity of myeloperoxidase was found in lung, colon, and liver, indicating a massive infiltration of neutrophils. These events were preceded by degradation of inhibitor kappaBalpha (IkappaBalpha), activation of IkappaB kinase complex, and c-Jun NH(2)-terminal kinase and, subsequently, activation of NF-kappaB and AP-1 in the lung. In vivo treatment with ciglitazone or 15d-PGJ(2) ameliorated hypotension and survival, blunted cytokine production, and reduced neutrophil infiltration in lung, colon, and liver. These beneficial effects of the PPARgamma ligands were associated with the reduction of IkappaB kinase complex and c-Jun NH(2)-terminal kinase activation and the reduction of NF-kappaB and AP-1 DNA binding in the lung. Furthermore, treatment with ciglitazone or 15d-PGJ(2) up-regulated the expression of PPARgamma in lung and thoracic aorta and abolished nitrotyrosine formation and poly(ADP-ribose) expression in aorta. Our data suggest that PPARgamma ligands attenuate the inflammatory response in sepsis through regulation of the NF-kappaB and AP-1 pathways.
Collapse
Affiliation(s)
- Basilia Zingarelli
- Division of Critical Care, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
55
|
Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors: new targets for the pharmacological modulation of macrophage gene expression and function. Curr Opin Lipidol 2003; 14:459-68. [PMID: 14501584 DOI: 10.1097/00041433-200310000-00006] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review focuses on recent advances on the roles of peroxisome proliferator-activated receptors in the control of lipid metabolism, and the inflammatory response of macrophages and the potential participation of these actions in the modulation of atherogenesis. RECENT FINDINGS Altered macrophage functions contribute to the pathogenesis of many infectious, immunological and inflammatory disease processes. Pharmacological modulation of macrophage gene expression therefore represents an important strategy for the prevention and treatment of inflammation-related diseases, such as atherosclerosis. Peroxisome proliferator-activated receptors are lipid-activated transcription factors that control lipid and lipoprotein metabolism, glucose and energy homeostasis, as well as cellular differentiation and proliferation. Recent data suggest that peroxisome proliferator-activated receptor alpha and peroxisome proliferator-activated receptor gamma activators may decrease the incidence of cardiovascular disease, not only by correcting metabolic disorders, but also by directly acting at the level of the vascular wall. In this context, ligand-activated peroxisome proliferator-activated receptors control cellular functions by regulating gene expression in different cell types, including monocytes, macrophages and foam cells. SUMMARY These findings identify the crucial roles of peroxisome proliferator-activated receptors in macrophages, improving the comprehension of the patho-physiological mechanisms of atherogenesis. Moreover, a scientific rationale for the evaluation of peroxisome proliferator-activated receptor activators in the treatment of inflammatory disorders such as atherosclerosis is thus provided.
Collapse
Affiliation(s)
- Giulia Chinetti
- Institut Pasteur de Lille, UR 545 INSERM, Lille, France; and Université de Lille 2, Lille, France
| | | | | |
Collapse
|
56
|
Hodgkinson CP, Ye S. Microarray analysis of peroxisome proliferator-activated receptor-gamma induced changes in gene expression in macrophages. Biochem Biophys Res Commun 2003; 308:505-10. [PMID: 12914779 DOI: 10.1016/s0006-291x(03)01416-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We used a combination of expression microarray and Northern blot analyses to identify target genes for peroxisome proliferator-activated receptor (PPAR) gamma in RAW264.7 macrophages. PPARgamma natural ligand 15-deoxy-Delta(12,14) prostaglandin and synthetic ligands ciglitazone and rosiglitazone increased the expression of scavenger receptor CD36 and ATP-binding cassette transporter A1, as well as adipophilin (a lipid droplet coating protein involved in intracellular lipid storage and transport), calpain (a protease implicated in ABCA1 protein degradation), and ADAM8 (a disintegrin and metalloprotease protein involved in cell adhesion). These findings are relevant to understanding the effect of PPARgamma activation on gene expression and cognate pathways in macrophages.
Collapse
Affiliation(s)
- Conrad P Hodgkinson
- Human Genetics Division, University of Southampton School of Medicine, Southampton, United Kingdom.
| | | |
Collapse
|
57
|
Ameshima S, Golpon H, Cool CD, Chan D, Vandivier RW, Gardai SJ, Wick M, Nemenoff RA, Geraci MW, Voelkel NF. Peroxisome proliferator-activated receptor gamma (PPARgamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ Res 2003; 92:1162-9. [PMID: 12714563 DOI: 10.1161/01.res.0000073585.50092.14] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PPARgamma is a member of a family of nuclear receptors/ligand-dependent transcription factors, which bind to hormone response elements on target gene promoters. An antiproliferative and proapoptotic action profile of PPARgamma has been described and PPARgamma may function as a tumor suppressor gene, but little is known about the role of PPARgamma in vascular remodeling. One group of human diseases that shows impressive vascular remodeling exclusively in the lungs is the group of severe pulmonary hypertensive disorders, which is characterized by complex, endothelial cell-proliferative lesions of lung precapillary arterioles composed of clusters of phenotypically altered endothelial cells that occlude the vessel lumen and contribute to the elevation of the pulmonary arterial pressure and reduce local lung tissue blood flow. In the present study, we report the ubiquitous PPARgamma expression in normal lungs, and in contrast, a reduced lung tissue PPARgamma gene and protein expression in the lungs from patients with severe PH and loss of PPARgamma expression in their complex vascular lesions. We show that fluid shear stress reduces PPARgamma expression in ECV304 endothelial cells, that ECV304 cells that stably express dominant-negative PPARgamma (DN-PPARgamma ECV304) form sprouts when placed in matrigel and that DN-PPARgamma ECV304 cells, after tail vein injection in nude mice, form lumen-obliterating lung vascular lesions. We conclude that fluid shear stress decreases the expression of PPARgamma in endothelial cells and that loss of PPARgamma expression characterizes an abnormal, proliferating, apoptosis-resistant endothelial cell phenotype.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Division
- Cell Line
- Disease Models, Animal
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/transplantation
- Female
- Gene Expression
- Genes, Dominant
- Humans
- Hypertension, Pulmonary/complications
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Immunohistochemistry
- Lung/blood supply
- Lung/metabolism
- Lung/pathology
- Male
- Middle Aged
- Neovascularization, Physiologic/genetics
- Pulmonary Disease, Chronic Obstructive/complications
- Pulmonary Disease, Chronic Obstructive/pathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Stress, Mechanical
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
Collapse
Affiliation(s)
- Shingo Ameshima
- Pulmonary Hypertension Center, University of Colorado Health Sciences Center, Denver, Colo, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Tautenhahn A, Brüne B, von Knethen A. Activation-induced PPARgamma expression sensitizes primary human T cells toward apoptosis. J Leukoc Biol 2003; 73:665-72. [PMID: 12714582 DOI: 10.1189/jlb.1002487] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phytohemagglutinin (PHA) elicited expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in primary human T cells via the PPARgamma3 promoter, as shown by reverse transcription-polymerase chain reaction. Electrophoretic mobility shift assay demonstrated no correlation between PPARgamma expression and its activation. However, addition of specific PPARgamma agonists such as ciglitazone or 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) for 1 h following PHA pretreatment provoked PPARgamma activation verified by supershift analysis. Taking the proapoptotic properties of PPARgamma into consideration, we analyzed induction of apoptosis in activated T cells in response to PPARgamma agonists. Cells exposed to PPARgamma agonists alone revealed minor cell death compared with controls, whereas treatment with 15d-PGJ(2) or ciglitazone for 4 h subsequent to PHA stimulation significantly increased cell demise, which was attenuated by the pan-caspase inhibitor zVAD, pointing to apoptosis as the underlying mechanism. These data may be relevant for pathophysiological conditions accompanied with lymphopenia of T cells under conditions such as sepsis.
Collapse
Affiliation(s)
- Anja Tautenhahn
- University of Kaiserslautern, Institute of Cell Biology, Erwin-Schroedinger-Strasse, Germany
| | | | | |
Collapse
|
59
|
Brüne B, Zhou J, von Knethen A. Nitric oxide, oxidative stress, and apoptosis. KIDNEY INTERNATIONAL. SUPPLEMENT 2003:S22-4. [PMID: 12694301 DOI: 10.1046/j.1523-1755.63.s84.6.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Life demands intra- and intercellular communication in and between cells to respond and adapt to changes in the environment. Among signaling molecules, reactive oxygen (ROS) and nitrogen (RNS) species gained attention in facilitating intracellular communication and causing cell demise during pathology. Complexity was added with the notion that ROS and RNS signals overlap and/or produce synergistic, as well as antagonistic, effects. This is exemplified by using oxidized lipoproteins (oxLDL), or NO donors, in provoking the stabilization of two well recognized transcription factors, such as tumor suppressor p53 and hypoxia-inducible factor-1 alpha (HIF-1 alpha). Radical (i.e., superoxide) (O2-) formation in response to oxLDL is associated with p53, as well as HIF-1 alpha accumulation in human macrophages, a process that is antagonized by NO. On the other side, NO-elicited HIF-1 alpha stabilization is modulated by O2-. Thus, ROS- and RNS-signaling is important in understanding cell physiology and pathology, with the notion that marginal changes in the flux rates of either NO or O2- may shift vital signals used for communication into areas of pathology in close association with human diseases.
Collapse
Affiliation(s)
- Bernhard Brüne
- University of Kaiserslautern, Faculty of Biology, Department of Cell Biology, Kaiserslautern, Germany
| | | | | |
Collapse
|
60
|
Hong G, Davis B, Khatoon N, Baker SF, Brown J. PPAR gamma-dependent anti-inflammatory action of rosiglitazone in human monocytes: suppression of TNF alpha secretion is not mediated by PTEN regulation. Biochem Biophys Res Commun 2003; 303:782-7. [PMID: 12670479 DOI: 10.1016/s0006-291x(03)00418-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Thiazolidinediones (TZDs) are insulin-sensitising drugs that are ligands for the nuclear receptor PPAR gamma. They have been shown to inhibit PMA-stimulated secretion of TNFalpha from human monocytes, although only at concentrations well in excess of circulating levels observed during TZD therapy, suggesting a mechanism of action independent of PPAR gamma activation. Here we show that insulin-sensitising concentrations of the TZD rosiglitazone partially inhibit serum- or LPS- (but not PMA-) stimulated TNF alpha secretion from primary human monocytes, with an IC(50) of around 50nM. We also show that the observed effects are independent of PPAR gamma-mediated regulation of the lipid phosphatase PTEN. Reversed stimulus specificity, IC(50) in the insulin-sensitising range, and the fact that partial inhibition of TNF alpha secretion is also observed with a structurally unrelated PPAR gamma agonist, GW7845, demonstrate a mechanism of action distinct from that observed with higher TZD concentrations. These findings thus represent the first report of a PPAR gamma-dependent and therapeutically relevant anti-inflammatory action of TZDs in isolated human monocytes.
Collapse
Affiliation(s)
- Guizhu Hong
- GlaxoSmithKline Translational Medicine and Technology Group, GSK Clinical Research Unit, ACCI, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2GG, UK
| | | | | | | | | |
Collapse
|
61
|
Cernuda-Morollón E, Rodríguez-Pascual F, Klatt P, Lamas S, Pérez-Sala D. PPAR agonists amplify iNOS expression while inhibiting NF-kappaB: implications for mesangial cell activation by cytokines. J Am Soc Nephrol 2002; 13:2223-31. [PMID: 12191966 DOI: 10.1097/01.asn.0000025786.87646.b1] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In acute inflammation, the transcription factor NF-kappaB is activated and increases the expression of multiple pro-inflammatory genes. Agonists of peroxisome proliferator activated receptors (PPAR) have been reported to exert antiinflammatory effects in various systems. In keeping with such an antiinflammatory role, it was found that several PPAR agonists, including Wy14,643, clofibrate, carbaprostacyclin, and ciglitazone inhibited NF-kappaB activity and increased IkappaBalpha levels in cytokine-stimulated mesangial cells (MC). Activation of NF-kappaB has been found to be crucial to the cytokine-elicited expression of inducible nitric oxide synthase (iNOS). Despite the inhibitory effect of PPAR agonists on NF-kappaB activity, this study provides experimental data demonstrating that these agonists amplify cytokine-elicited NO generation in MC, potentiating iNOS protein expression approximately threefold. The upregulation of iNOS expression occurred at the mRNA level and apparently did not result from iNOS mRNA stabilization. Clofibrate and ciglitazone amplified the cytokine-elicited stimulation of a 16-Kb human iNOS promoter construct in stably transfected MC, suggesting that PPAR agonists potentiate iNOS induction through transcriptional mechanisms. MC express all three PPAR proteins. However, iNOS potentiation did not correlate with increased PPAR activity. In addition, Wy14,643-induced amplification of cytokine-elicited iNOS levels also occurred in RAW264.7 macrophages and in human epithelial Caco-2 and HT-29 cells. The observation that these epithelial cell lines express an inactive, truncated PPARalpha variant suggests that a classical PPARalpha agonist, such as Wy14,643, may act through PPARalpha-independent mechanisms. In conclusion, these results show that, despite reducing NF-kappaB activity, PPAR agonists may amplify the expression of certain NF-kappaB-dependent genes that are relevant to the inflammatory process, like iNOS.
Collapse
Affiliation(s)
- Eva Cernuda-Morollón
- Department of Protein Structure and Function, Centro de Investigaciones Biológicas, C.S.I.C. and Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
| | | | | | | | | |
Collapse
|
62
|
Fischer B, von Knethen A, Brüne B. Dualism of oxidized lipoproteins in provoking and attenuating the oxidative burst in macrophages: role of peroxisome proliferator-activated receptor-gamma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2828-34. [PMID: 11884452 DOI: 10.4049/jimmunol.168.6.2828] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activation and deactivation of macrophages are of considerable importance during the development of various disease states, atherosclerosis among others. Macrophage activation is achieved by oxidized lipoproteins (oxLDL) and is determined by oxygen radical (ROS) formation. The oxidative burst was measured by flow cytometry and quantitated by oxidation of the redox-sensitive dye dichlorodihydrofluorescein diacetate. Short-time stimulation dose-dependently elicited ROS formation. Diphenylene iodonium prevented ROS formation, thus pointing to the involvement of a NAD(P)H oxidase in producing reduced oxygen species. In contrast, preincubation of macrophages with oxLDL for 16 h showed an attenuated oxidative burst upon a second contact with oxLDL. Taking into account that oxLDL is an established peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist and considering the anti-inflammatory properties of PPARgamma, we went on and showed that a PPARgamma agonist such as ciglitazone attenuated ROS formation. Along that line, major lipid peroxidation products of oxLDL, such as 9- and 13-hydroxyoctadecadienoic acid, shared that performance. Supporting evidence that PPARgamma activation accounted for reduced ROS generation came from studies in which proliferator-activated receptor response element decoy oligonucleotides, but not a mutated oligonucleotide, supplied in front of oxLDL delivery regained a complete oxidative burst upon cell activation. We conclude that oxLDL not only elicits an oxidative burst upon first contact, but also promotes desensitization of macrophages via activation of PPARgamma. Desensitization of macrophages may have important consequences for the behavior of macrophages/foam cells in atherosclerotic lesions.
Collapse
Affiliation(s)
- Barbara Fischer
- Faculty of Biology, Department of Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | |
Collapse
|