51
|
Ruiz-Andres O, Sanchez-Niño MD, Moreno JA, Ruiz-Ortega M, Ramos AM, Sanz AB, Ortiz A. Downregulation of kidney protective factors by inflammation: role of transcription factors and epigenetic mechanisms. Am J Physiol Renal Physiol 2016; 311:F1329-F1340. [PMID: 27760772 DOI: 10.1152/ajprenal.00487.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) is associated to an increased risk of death, CKD progression, and acute kidney injury (AKI) even from early stages, when glomerular filtration rate (GFR) is preserved. The link between early CKD and these risks is unclear, since there is no accumulation of uremic toxins. However, pathological albuminuria and kidney inflammation are frequent features of early CKD, and the production of kidney protective factors may be decreased. Indeed, Klotho expression is already decreased in CKD category G1 (normal GFR). Klotho has anti-aging and nephroprotective properties, and decreased Klotho levels may contribute to increase the risk of death, CKD progression, and AKI. In this review, we discuss the downregulation by mediators of inflammation of molecules with systemic and/or renal local protective functions, exemplified by Klotho and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a transcription factor that promotes mitochondrial biogenesis. Cytokines such as TWEAK, TNF-α, or transforming growth factor -β1 produced locally during kidney injury or released from inflammatory sites at other organs may decrease kidney expression of Klotho and PGC-1α or lead to suboptimal recruitment of these nephroprotective proteins. Transcription factors (e.g., Smad3 and NF-κB) and epigenetic mechanisms (e.g., histone acetylation or methylation) contribute to downregulate the expression of Klotho and/or PGC-1α, while histone crotonylation promotes PGC-1α expression. NF-κBiz facilitates the repressive effect of NF-κB on Klotho expression. A detailed understanding of these mediators may contribute to the development of novel therapeutic approaches to prevent CKD progression and its negative impact on mortality and AKI.
Collapse
Affiliation(s)
- Olga Ruiz-Andres
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid.,REDINREN, Madrid, Spain; and
| | - Maria Dolores Sanchez-Niño
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid.,REDINREN, Madrid, Spain; and
| | - Juan Antonio Moreno
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid
| | - Marta Ruiz-Ortega
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid.,REDINREN, Madrid, Spain; and
| | - Adrian Mario Ramos
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid.,REDINREN, Madrid, Spain; and
| | - Ana Belen Sanz
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid.,REDINREN, Madrid, Spain; and
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid; .,REDINREN, Madrid, Spain; and.,Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| |
Collapse
|
52
|
Zhang Q, Yin S, Liu L, Liu Z, Cao W. Rhein reversal of DNA hypermethylation-associated Klotho suppression ameliorates renal fibrosis in mice. Sci Rep 2016; 6:34597. [PMID: 27703201 PMCID: PMC5050540 DOI: 10.1038/srep34597] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/15/2016] [Indexed: 11/15/2022] Open
Abstract
Renal fibrosis is the hallmark of chronic kidney diseases (CKD) and its development and progression are significantly affected by epigenetic modifications. Rhein, a plant-derived anthraquinone, displays strong anti-fibrosis properties, but its protective mode of action remains incompletely understood. Here we explore the mechanism of Rhein anti-renal fibrosis by investigating its regulation of Klotho, a known renal anti-fibrotic protein whose suppression after renal injury reportedly involves aberrant DNA methylation. We report that Rhein is an impressive up-regulator of Klotho and it markedly reversed Klotho down-regulation in unilateral ureteral occlusion-induced fibrotic kidney. Further examinations revealed that Klotho loss in fibrotic kidney is associated with Klotho promoter hypermethylation due to aberrant methyltransferase 1 and 3a expressions. However, Rhein significantly corrected all these epigenetic alterations and subsequently alleviated pro-fibrotic protein expression and renal fibrosis, whereas Klotho knockdown via RNA interferences largely abrogated the anti-renal fibrotic effects of Rhein, suggesting that Rhein epigenetic reversal of Klotho loss represents a critical mode of action that confers Rhein’s anti- renal fibrotic functions. Altogether our studies uncover a novel hypomethylating character of Rhein in preventing Klotho loss and renal fibrosis, and demonstrate the efficacy of Klotho-targeted epigenetic intervention in potential treatment of renal fibrosis-associated kidney diseases.
Collapse
Affiliation(s)
- Qin Zhang
- Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, 210016, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Shasha Yin
- The Key lab of Jiangsu molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China
| | - Lin Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Zhihong Liu
- Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, 210016, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Wangsen Cao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China.,The Key lab of Jiangsu molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China
| |
Collapse
|
53
|
Zhang Q, Liu L, Lin W, Yin S, Duan A, Liu Z, Cao W. Rhein reverses Klotho repression via promoter demethylation and protects against kidney and bone injuries in mice with chronic kidney disease. Kidney Int 2016; 91:144-156. [PMID: 27692562 DOI: 10.1016/j.kint.2016.07.040] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/19/2016] [Accepted: 07/28/2016] [Indexed: 12/26/2022]
Abstract
Rhein is an anthraquinone compound isolated from the medicinal plant rhubarb and mainly used in the clinical treatment of diabetic nephropathy. Rhein exhibits various renoprotective functions, but the underlying mechanisms are not fully determined. However, its renoprotective properties recapitulate the role of Klotho, a renal-specific antiaging protein critical for maintaining kidney homeostasis. Here we explored the connections between rhein renoprotection and Klotho in a mouse model of adenine-induced chronic kidney disease. In addition to being an impressive Klotho upregulator, rhein remarkably reversed renal Klotho deficiency in adenine-treated mice. This effect was associated with significant improvement in disturbed serum biochemistry, profibrogenic protein expression, and kidney and bone damage. Further investigation of the molecular basis of Klotho loss revealed that these kidneys displayed marked inductions of DNA methyltransferase DNMT1/DNMT3a and Klotho promoter hypermethylation, whereas rhein treatment effectively corrected these alterations. The renal protective effects of rhein were largely abolished when Klotho was knocked-down by RNA interferences, suggesting that rhein reversal of Klotho deficiency is essential for its renoprotective actions. Thus, our study clarifies how rhein regulation of Klotho expression contributes to its renoprotection and brings new insights into Klotho-targeted strategy for the treatment of kidney diseases of various etiologies.
Collapse
Affiliation(s)
- Qin Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; The Key Lab of Jiangsu Molecular Medicine, Nanjing University School of Medicine, Nanjing, China; Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Lin Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wenjun Lin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shasha Yin
- The Key Lab of Jiangsu Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Aiping Duan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, China.
| | - Wangsen Cao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; The Key Lab of Jiangsu Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
54
|
Hu Y, Mou L, Yang F, Tu H, Lin W. Curcumin attenuates cyclosporine A‑induced renal fibrosis by inhibiting hypermethylation of the klotho promoter. Mol Med Rep 2016; 14:3229-36. [PMID: 27510836 DOI: 10.3892/mmr.2016.5601] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 04/21/2016] [Indexed: 11/05/2022] Open
Abstract
Chronic kidney disease is increasingly considered to be a worldwide public health problem and usually leads to renal fibrosis. In the present study, curcumin, a polyphenol pigment extracted from turmeric, was demonstrated to exert protective effects on renal fibrosis via the suppression of transforming growth factor‑β (TGF‑β) downstream signaling, such as plasminogen activator inhibitor‑1 (PAI‑1), α‑smooth muscle actin (α‑SMA) and collagen I (Col I) downregulation. The present findings demonstrate that curcumin exerted a protective effect on cyclosporine A‑induced renal fibrosis via a klotho (KL)‑dependent mechanism, which inhibits the TGF‑β signaling pathway. Further research indicated that curcumin induced KL expression in HK‑2 tubular epithelial cells by inhibiting CpG hypermethylation in the KL promoter, which mediates the loss of expression in cells. Methylation‑specific polymerase chain reaction (PCR) combined with bisulfite sequencing identified numerous key CpG sites, such as 249, 240 and 236, whose methylation statuses are important for KL expression. A PCR reporter assay was utilized to further confirm these findings. In addition, the effects of curcumin on the regulation of DNA methyltransferase 1 (Dnmt1) expression were evaluated, and the data suggest that curcumin inhibits Dnmt1 expression and restricts CpG hypermethylation. Thus, the current study reveals that curcumin attenuated renal fibrosis by suppressing CpG methylation in the KL promoter, thus inducing KL expression, which inhibited TGF‑β signaling, which may provide a novel therapeutic approach for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Ying Hu
- Department of Nephrology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 31009, P.R. China
| | - Lijun Mou
- Department of Nephrology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 31009, P.R. China
| | - Fuye Yang
- Department of Nephrology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 31009, P.R. China
| | - Haiyan Tu
- Department of Nephrology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 31009, P.R. China
| | - Wanbing Lin
- Department of Nephrology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 31009, P.R. China
| |
Collapse
|
55
|
Wehling-Henricks M, Li Z, Lindsey C, Wang Y, Welc SS, Ramos JN, Khanlou N, Kuro-O M, Tidball JG. Klotho gene silencing promotes pathology in the mdx mouse model of Duchenne muscular dystrophy. Hum Mol Genet 2016; 25:2465-2482. [PMID: 27154199 DOI: 10.1093/hmg/ddw111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/10/2016] [Accepted: 04/08/2016] [Indexed: 11/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle disease involving progressive loss of muscle regenerative capacity and increased fibrosis. We tested whether epigenetic silencing of the klotho gene occurs in the mdx mouse model of DMD and whether klotho silencing is an important feature of the disease. Our findings show that klotho undergoes muscle-specific silencing at the acute onset of mdx pathology. Klotho experiences increased methylation of CpG sites in its promoter region, which is associated with gene silencing, and increases in a repressive histone mark, H3K9me2. Expression of a klotho transgene in mdx mice restored their longevity, reduced muscle wasting, improved function and greatly increased the pool of muscle-resident stem cells required for regeneration. Reductions of fibrosis in late, progressive stages of the mdx pathology achieved by transgene expression were paralleled by reduced expression of Wnt target genes (axin-2), transforming growth factor-beta (TGF-β1) and collagens types 1 and 3, indicating that Klotho inhibition of the profibrotic Wnt/TGFβ axis underlies its anti-fibrotic effect in aging, dystrophic muscle. Thus, epigenetic silencing of klotho during muscular dystrophy contributes substantially to lost regenerative capacity and increased fibrosis of dystrophic muscle during late progressive stages of the disease.
Collapse
Affiliation(s)
| | - Zhenzhi Li
- Department of Integrative Biology and Physiology
| | | | - Ying Wang
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606, USA
| | | | | | - Négar Khanlou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1732, USA
| | - Makoto Kuro-O
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - James G Tidball
- Department of Integrative Biology and Physiology .,Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1732, USA
| |
Collapse
|
56
|
Abstract
Alpha-Klotho (αKlotho) protein is encoded by the gene, Klotho, and functions as a coreceptor for endocrine fibroblast growth factor-23. The extracellular domain of αKlotho is cleaved by secretases and released into the circulation where it is called soluble αKlotho. Soluble αKlotho in the circulation starts to decline in chronic kidney disease (CKD) stage 2 and urinary αKlotho in even earlier CKD stage 1. Therefore soluble αKlotho is an early and sensitive marker of decline in kidney function. Preclinical data from numerous animal experiments support αKlotho deficiency as a pathogenic factor for CKD progression and extrarenal CKD complications including cardiac and vascular disease, hyperparathyroidism, and disturbed mineral metabolism. αKlotho deficiency induces cell senescence and renders cells susceptible to apoptosis induced by a variety of cellular insults including oxidative stress. αKlotho deficiency also leads to defective autophagy and angiogenesis and promotes fibrosis in the kidney and heart. Most importantly, prevention of αKlotho decline, upregulation of endogenous αKlotho production, or direct supplementation of soluble αKlotho are all associated with attenuation of renal fibrosis, retardation of CKD progression, improvement of mineral metabolism, amelioration of cardiac function and morphometry, and alleviation of vascular calcification in CKD. Therefore in rodents, αKlotho is not only a diagnostic and prognostic marker for CKD but the enhancement of endogenous or supplement of exogenous αKlotho are promising therapeutic strategies to prevent, retard, and decrease the comorbidity burden of CKD.
Collapse
Affiliation(s)
- J A Neyra
- University of Texas Southwestern Medical Center, Dallas, TX, United States; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - M C Hu
- University of Texas Southwestern Medical Center, Dallas, TX, United States; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
57
|
Koyama D, Sato Y, Aizawa M, Maki T, Kurosawa M, Kuro-o M, Furukawa Y. Soluble αKlotho as a candidate for the biomarker of aging. Biochem Biophys Res Commun 2015; 467:1019-25. [PMID: 26462468 DOI: 10.1016/j.bbrc.2015.10.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/04/2015] [Indexed: 11/18/2022]
Abstract
Although the Klotho gene has been recognized as an aging-suppressor gene, the significance of its soluble product, soluble αKlotho (sKlotho), in aging remains to be elucidated. To address this issue, we conducted a single-centered cross-sectional study in a region with a high prevalence of aging. We compared sKlotho levels with the patient characteristics from medical records and laboratory measurements, including fibroblast growth factor 23 (FGF23), intact parathyroid hormone, activated vitamin D3 and factors associated with mineral bone metabolism, in 52 outpatients with a mean age of 78.2 years. Serum sKlotho levels significantly decreased with age, but were not associated with the stage of chronic kidney disease (CKD). Serum FGF23 levels increased as CKD stages advanced, but were not associated with aging. Univariate analyses revealed that sKlotho levels positively correlated with glomerular filtration rate, and negatively with age and serum levels of FGF23 and phosphorus. In a multivariable linear regression analysis, sKlotho significantly correlated with aging and lower FGF23 levels. Only osteoporosis affected sKlotho and FGF23 levels among the various complications and patient status including medication. In summary, serum sKlotho levels inversely correlated with age and FGF23, and were significantly reduced in patients with osteoporosis. sKlotho may serve as a biomarker of aging independent of renal function.
Collapse
Affiliation(s)
- Daisuke Koyama
- Department of Internal Medicine, Fukushima Prefectural Miyashita Hospital, 1150 Minajiri, Mishima, Fukushima 969-7511, Japan; Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Yu Sato
- Department of Internal Medicine, Fukushima Prefectural Miyashita Hospital, 1150 Minajiri, Mishima, Fukushima 969-7511, Japan
| | - Masato Aizawa
- Department of Internal Medicine, Fukushima Prefectural Miyashita Hospital, 1150 Minajiri, Mishima, Fukushima 969-7511, Japan
| | - Takumi Maki
- Department of Internal Medicine, Fukushima Prefectural Miyashita Hospital, 1150 Minajiri, Mishima, Fukushima 969-7511, Japan
| | - Masaki Kurosawa
- Department of Internal Medicine, Fukushima Prefectural Miyashita Hospital, 1150 Minajiri, Mishima, Fukushima 969-7511, Japan
| | - Makoto Kuro-o
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Yusuke Furukawa
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
58
|
Abstract
The discovery of the Klotho (KL) gene, which was originally identified as a putative aging-suppressor gene, has generated tremendous interest and has advanced understanding of the aging process. In mice, the overexpression of the KL gene extends the life span, whereas mutations to the KL gene shorten the life span. The human KL gene encodes the α-Klotho protein, which is a multifunctional protein that regulates the metabolism of phosphate, calcium, and vitamin D. α-Klotho also may function as a hormone, although the α-Klotho receptor(s) has not been found. Point mutations of the KL gene in humans are associated with hypertension and kidney disease, which suggests that α-Klotho may be essential to the maintenance of normal renal function. Three α-Klotho protein types with potentially different functions have been identified: a full-length transmembrane α-Klotho, a truncated soluble α-Klotho, and a secreted α-Klotho. Recent evidence suggests that α-Klotho suppresses the insulin and Wnt signaling pathways, inhibits oxidative stress, and regulates phosphatase and calcium absorption. In this review, we provide an update on recent advances in the understanding of the molecular, genetic, biochemical, and physiological properties of the KL gene. Specifically, this review focuses on the structure of the KL gene and the factors that regulate KL gene transcription, the key sites in the regulation of α-Klotho enzyme activity, the α-Klotho signaling pathways, and the molecular mechanisms that underlie α-Klotho function. This current understanding of the molecular biology of the α-Klotho protein may offer new insights into its function and role in aging.
Collapse
Affiliation(s)
- Yuechi Xu
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | | |
Collapse
|
59
|
Hayashi K, Itoh H. Transcription Factors and Epigenetic Modulation: Its Therapeutic Implication in Chronic Kidney Disease. Arch Immunol Ther Exp (Warsz) 2014; 63:193-6. [DOI: 10.1007/s00005-014-0326-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/18/2014] [Indexed: 11/24/2022]
|
60
|
Wing MR, Ramezani A, Gill HS, Devaney JM, Raj DS. Epigenetics of progression of chronic kidney disease: fact or fantasy? Semin Nephrol 2014; 33:363-74. [PMID: 24011578 DOI: 10.1016/j.semnephrol.2013.05.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Epigenetic modifications are important in the normal functioning of the cell, from regulating dynamic expression of essential genes and associated proteins to repressing those that are unneeded. Epigenetic changes are essential for development and functioning of the kidney, and aberrant methylation, histone modifications, and expression of microRNA could lead to chronic kidney disease (CKD). Here, epigenetic modifications modulate transforming growth factor β signaling, inflammation, profibrotic genes, and the epithelial-to-mesenchymal transition, promoting renal fibrosis and progression of CKD. Identification of these epigenetic changes is important because they are potentially reversible and may serve as therapeutic targets in the future to prevent subsequent renal fibrosis and CKD. In this review we discuss the different types of epigenetic control, methods to study epigenetic modifications, and how epigenetics promotes progression of CKD.
Collapse
Affiliation(s)
- Maria R Wing
- Division of Renal Disease and Hypertension, The George Washington University, Washington, DC
| | | | | | | | | |
Collapse
|
61
|
Mehi SJ, Maltare A, Abraham CR, King GD. MicroRNA-339 and microRNA-556 regulate Klotho expression in vitro. AGE (DORDRECHT, NETHERLANDS) 2014; 36:141-149. [PMID: 23818104 PMCID: PMC3889880 DOI: 10.1007/s11357-013-9555-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
Klotho is an anti-aging protein with direct effects on life-span in mice. Klotho functions to regulate pathways classically associated with longevity including insulin/IGF1 and Wnt signaling. Decreased Klotho protein expression is observed throughout the body during the normal aging process. While increased methylation of the Klotho promoter is reported, other epigenetic mechanisms could contribute to age-related downregulation of Klotho expression, including microRNA-mediated regulation. Following in silico identification of potential microRNA binding sites within the Klotho 3' untranslated region, reporter assays reveal regulation by microRNA-339, microRNA-556, and, to a lesser extent, microRNA-10 and microRNA-199. MicroRNA-339 and microRNA-556 were further found to directly decrease Klotho protein expression indicating that, if upregulated in aging tissue, these microRNA could play a role in age-related downregulation of Klotho messenger RNA. These microRNAs are differentially regulated in cancer cells compared to normal cells and may imply a role for microRNA-mediated regulation of Klotho in cancer.
Collapse
Affiliation(s)
- Stephen J. Mehi
- />Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd, Shelby Building 913, Birmingham, AL 35294 USA
| | - Astha Maltare
- />Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd, Shelby Building 913, Birmingham, AL 35294 USA
| | - Carmela R. Abraham
- />Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street K304, Boston, MA 02118 USA
| | - Gwendalyn D. King
- />Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd, Shelby Building 913, Birmingham, AL 35294 USA
| |
Collapse
|
62
|
Abstract
Extracellular phosphate is toxic to the cell at high concentrations. When the phosphate level is increased in the blood by impaired urinary phosphate excretion, premature aging ensues. When the phosphate level is increased in the urine by dietary phosphate overload, this may lead to kidney damage (tubular injury and interstitial fibrosis). Extracellular phosphate exerts its cytotoxicity when it forms insoluble nanoparticles with calcium and fetuin-A, referred to as calciprotein particles (CPPs). CPPs are highly bioactive ligands that can induce various cellular responses, including osteogenic transformation of vascular smooth muscle cells and cell death in vascular endothelium and renal tubular epithelium. CPPs are detected in the blood of animal models and patients with chronic kidney disease (CKD) and associated with adaptation of the endocrine axes mediated by fibroblast growth factor-23 (FGF23) and Klotho that regulate mineral metabolism and aging. These observations have raised the possibility that CPPs may contribute to the pathophysiology of CKD. This notion, if validated, is expected to provide new diagnostic and therapeutic targets for CKD.
Collapse
|
63
|
Clinton SM, Glover ME, Maltare A, Laszczyk AM, Mehi SJ, Simmons RK, King GD. Expression of klotho mRNA and protein in rat brain parenchyma from early postnatal development into adulthood. Brain Res 2013; 1527:1-14. [PMID: 23838326 DOI: 10.1016/j.brainres.2013.06.044] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/26/2013] [Accepted: 06/30/2013] [Indexed: 11/25/2022]
Abstract
Without the age-regulating protein klotho, mouse lifespan is shortened and the rapid onset of age-related disorders occurs. Conversely, overexpression of klotho extends mouse lifespan. Klotho is most abundant in kidney and expressed in a limited number of other organs, including the brain, where klotho levels are highest in choroid plexus. Reports vary on where klotho is expressed within the brain parenchyma, and no data is available as to whether klotho levels change across postnatal development. We used in situ hybridization to map klotho mRNA expression in the developing and adult rat brain and report moderate, widespread expression across grey matter regions. mRNA expression levels in cortex, hippocampus, caudate putamen, and amygdala decreased during the second week of life and then gradually rose to adult levels by postnatal day 21. Immunohistochemistry revealed a protein expression pattern similar to the mRNA results, with klotho protein expressed widely throughout the brain. Klotho protein co-localized with both the neuronal marker NeuN, as well as, oligodendrocyte marker olig2. These results provide the first anatomical localization of klotho mRNA and protein in rat brain parenchyma and demonstrate that klotho levels vary during early postnatal development.
Collapse
Affiliation(s)
- Sarah M Clinton
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Kuro-o M. Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol 2013; 9:650-60. [DOI: 10.1038/nrneph.2013.111] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
65
|
Zhang C, Liang Y, Lei L, Zhu G, Chen X, Jin T, Wu Q. Hypermethylations of RASAL1 and KLOTHO is associated with renal dysfunction in a Chinese population environmentally exposed to cadmium. Toxicol Appl Pharmacol 2013; 271:78-85. [PMID: 23665422 DOI: 10.1016/j.taap.2013.04.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/27/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Exposure to cadmium (Cd) can affect both DNA methylation and renal function, but there are few examples of the association between epigenetic markers and Cd-induced kidney damage. It has been suggested that hypermethylation of the genes RASAL1 and KLOTHO is associated with renal fibrogenesis. To investigate whether hypermethylation of RASAL1 and KLOTHO in peripheral blood DNA can be associated with Cd exposure and/or Cd-induced renal dysfunction, the degrees of methylation of RASAL1 and KLOTHO in peripheral blood DNA from 81 residents in Cd-polluted and non-polluted areas were measured using bisulfate-PCR-pyrosequencing. Changes in blood cadmium (BCd), urinary cadmium (UCd), and kidney parameters were measured, and the glomerular filtration rate (eGFR) was estimated. The levels of BCd and UCd correlated positively with the levels of DNA methylation in RASAL1 and in KLOTHO. The more heavily exposed residents (BCd, 4.23-13.22μg/L; UCd, 8.65-32.90μg/g creatinine) exhibited obvious renal dysfunction. Notably, when Cd concentration in blood and urine was adjusted, the increased methylation level in RASAL1 was inversely correlated with eGFR (P<0.01) but the relationship between hypermethylation of KLOTHO and eGFR was not statistically significant. The methylation of RASAL1 increased along with the increased abnormal prevalence of eGFR. Our findings suggest that Cd exposure can induce the hypermethylation of RASAL1 and KLOTHO. Hypermethylation of RASAL1 may be an indicator of the progress for chronic kidney disease.
Collapse
Affiliation(s)
- Chen Zhang
- School of Public Health, Fudan University, 130 DongAn Road, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|