51
|
Abstract
The sensation of pain plays a vital protecting role, alerting organisms about potentially damaging stimuli. Tissue injury is detected by nerve endings of specialized peripheral sensory neurons called nociceptors that are equipped with different ion channels activated by thermal, mechanic, and chemical stimuli. Several transient receptor potential channels have been identified as molecular transducers of thermal stimuli in pain-sensing neurons. Skin injury or inflammation leads to increased sensitivity to thermal and mechanic stimuli, clinically defined as allodynia or hyperalgesia. This hypersensitivity is also characteristic of systemic inflammatory disorders and neuropathic pain conditions. Mechanisms of thermal hyperalgesia include peripheral sensitization of nociceptor afferents and maladaptive changes in pain-encoding neurons within the central nervous system. An important aspect of pain management involves attempts to minimize the development of nociceptor hypersensitivity. However, knowledge about the cellular and molecular mechanisms causing thermal hyperalgesia and allodynia in human subjects is still limited, and such knowledge would be an essential step for the development of more effective therapies.
Collapse
Affiliation(s)
- Félix Viana
- Alicante Institute of Neurosciences, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Spain.
| |
Collapse
|
52
|
Hansen EØ, Arendt-Nielsen L, Boudreau SA. A Comparison of Oral Sensory Effects of Three TRPA1 Agonists in Young Adult Smokers and Non-smokers. Front Physiol 2017; 8:663. [PMID: 28936178 PMCID: PMC5594084 DOI: 10.3389/fphys.2017.00663] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/21/2017] [Indexed: 01/28/2023] Open
Abstract
This study profiled intra-oral somatosensory and vasomotor responses to three different transient receptor potential (TRP) channels, subfamily A, member 1 (TRPA1) agonists (menthol, nicotine, and cinnamaldehyde) in smoking and non-smoking young adults. Healthy non-smokers (N = 30) and otherwise healthy smokers (N = 25) participated in a randomized, double-blinded, cross-over study consisting of three experimental sessions in which they received menthol (30 mg), nicotine (4 mg), or cinnamaldehyde (25 mg) chewing gum. Throughout a standardized 10 min chewing regime, burning, cooling, and irritation intensities, and location were recorded. In addition, blood pressure, heart rate and intra-oral temperature were assessed before, during, and after chewing. Basal intra-oral temperature was lower in smokers (35.2°C ± 1.58) as compared to non-smokers (35.9°C ± 1.61) [F(1, 52) = 8.5, P = 0.005, post hoc, p = 0.005]. However, the increase in temperature, heart rate, and blood pressure in response to chewing menthol, nicotine, and cinnamaldehyde gums were similar between smokers and non-smokers. Although smoking status did not influence the intensity of burning, cooling, and irritation, smokers did report nicotine burn more often (92%) than non-smokers (63%) [χ(1, N=55)2 = 6.208, P = 0.013]. Reports of nicotine burn consistently occurred at the back of the throat and cinnamaldehyde burn on the tongue. The cooling sensation of menthol was more widely distributed in the mouth of non-smokers as compared to smokers. Smoking alters thermoregulation, somatosensory, and possibly TRPA1 receptor responsiveness and suggests that accumulated exposure of nicotine by way of cigarette smoke alters oral sensory and vasomotor sensitivity.
Collapse
Affiliation(s)
- Eva Ø Hansen
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg, Denmark
| | - Shellie A Boudreau
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg, Denmark
| |
Collapse
|
53
|
Viana F. TRPA1 channels: molecular sentinels of cellular stress and tissue damage. J Physiol 2017; 594:4151-69. [PMID: 27079970 DOI: 10.1113/jp270935] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/31/2016] [Indexed: 01/08/2023] Open
Abstract
TRPA1 is a non-selective cation channel expressed in mammalian peripheral pain receptors, with a major role in chemonociception. TRPA1 has also been implicated in noxious cold and mechanical pain sensation. TRPA1 has an ancient origin and plays important functions in lower organisms, including thermotaxis, mechanotransduction and modulation of lifespan. Here we highlight the role of TRPA1 as a multipurpose sensor of harmful signals, including toxic bacterial products and UV light, and as a sensor of stress and tissue damage. Sensing roles span beyond the peripheral nervous system to include major barrier tissues: gut, skin and lung. Tissue injury, environmental irritants and microbial pathogens are danger signals that can threaten the health of organisms. These signals lead to the coordinated activation of the nociceptive and the innate immune system to provide a homeostatic response trying to re-establish physiological conditions including tissue repair. Activation of TRPA1 participates in protective neuroimmune interactions at multiple levels, sensing ROS and bacterial products and triggering the release of neuropeptides. However, an exaggerated response to danger signals is maladaptive and can lead to the development of chronic inflammatory conditions.
Collapse
Affiliation(s)
- Félix Viana
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| |
Collapse
|
54
|
Development of TRPM8 Antagonists to Treat Chronic Pain and Migraine. Pharmaceuticals (Basel) 2017; 10:ph10020037. [PMID: 28358322 PMCID: PMC5490394 DOI: 10.3390/ph10020037] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 01/17/2023] Open
Abstract
A review. Development of pharmaceutical antagonists of transient receptor potential melastatin 8 (TRPM8) have been pursued for the treatment of chronic pain and migraine. This review focuses on the current state of this progress.
Collapse
|
55
|
Skerratt S. Recent Progress in the Discovery and Development of TRPA1 Modulators. PROGRESS IN MEDICINAL CHEMISTRY 2017; 56:81-115. [PMID: 28314413 DOI: 10.1016/bs.pmch.2016.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TRPA1 is a well-validated therapeutic target in areas of high unmet medical need that include pain and respiratory disorders. The human genetic rationale for TRPA1 as a pain target is provided by a study describing a rare gain-of-function mutation in TRPA1, causing familial episodic pain syndrome. There is a growing interest in the TRPA1 field, with many pharmaceutical companies reporting the discovery of TRPA1 chemical matter; however, GRC 17536 remains to date the only TRPA1 antagonist to have completed Phase IIa studies. A key issue in the progression of TRPA1 programmes is the identification of high-quality orally bioavailable molecules. Most published TRPA1 ligands are commonly not suitable for clinical progression due to low lipophilic efficiency and/or poor absorption, distribution, metabolism, excretion and pharmaceutical properties. The recent TRPA1 cryogenic electron microscopy structure from the Cheng and Julius labs determined the structure of full-length human TRPA1 at up to 4Å resolution in the presence of TRPA1 ligands. This ground-breaking science paves the way to enable structure-based drug design within the TRPA1 field.
Collapse
Affiliation(s)
- S Skerratt
- Convergence (a Biogen Company), Cambridge, United Kingdom
| |
Collapse
|
56
|
Logashina YA, Mosharova IV, Korolkova YV, Shelukhina IV, Dyachenko IA, Palikov VA, Palikova YA, Murashev AN, Kozlov SA, Stensvåg K, Andreev YA. Peptide from Sea Anemone Metridium senile Affects Transient Receptor Potential Ankyrin-repeat 1 (TRPA1) Function and Produces Analgesic Effect. J Biol Chem 2017; 292:2992-3004. [PMID: 28077580 DOI: 10.1074/jbc.m116.757369] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/03/2017] [Indexed: 11/06/2022] Open
Abstract
The transient receptor potential ankyrin-repeat 1 (TRPA1) is an important player in pain and inflammatory pathways. It is a promising target for novel drug development for the treatment of a number of pathological states. A novel peptide producing a significant potentiating effect on allyl isothiocyanate- and diclofenac-induced currents of TRPA1 was isolated from the venom of sea anemone Metridium senile. It is a 35-amino acid peptide cross-linked by two disulfide bridges named τ-AnmTX Ms 9a-1 (short name Ms 9a-1) according to a structure similar to other sea anemone peptides belonging to structural group 9a. The structures of the two genes encoding the different precursor proteins of Ms 9a-1 were determined. Peptide Ms 9a-1 acted as a positive modulator of TRPA1 in vitro but did not cause pain or thermal hyperalgesia when injected into the hind paw of mice. Intravenous injection of Ms 9a-1 (0.3 mg/kg) produced a significant decrease in the nociceptive and inflammatory response to allyl isothiocyanate (the agonist of TRPA1) and reversed CFA (Complete Freund's Adjuvant)-induced inflammation and thermal hyperalgesia. Taken together these data support the hypothesis that Ms 9a-1 potentiates the response of TRPA1 to endogenous agonists followed by persistent functional loss of TRPA1-expressing neurons. We can conclude that TRPA1 potentiating may be useful as a therapeutic approach as Ms 9a-1 produces significant analgesic and anti-inflammatory effects in mice models of pain.
Collapse
Affiliation(s)
- Yulia A Logashina
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10,117997 Moscow, Russia.,the Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya St. 8, Bldg. 2, 119991 Moscow, Russia
| | - Irina V Mosharova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10,117997 Moscow, Russia
| | - Yulia V Korolkova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10,117997 Moscow, Russia
| | - Irina V Shelukhina
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10,117997 Moscow, Russia
| | - Igor A Dyachenko
- the Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Moscow, Russia, and
| | - Victor A Palikov
- the Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Moscow, Russia, and
| | - Yulia A Palikova
- the Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Moscow, Russia, and
| | - Arkadii N Murashev
- the Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Moscow, Russia, and
| | - Sergey A Kozlov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10,117997 Moscow, Russia
| | - Klara Stensvåg
- the Norwegian College of Fishery Science, University of Tromsø, N9037 Tromsø, Norway
| | - Yaroslav A Andreev
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10,117997 Moscow, Russia, .,the Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya St. 8, Bldg. 2, 119991 Moscow, Russia
| |
Collapse
|
57
|
Schwarz MG, Namer B, Reeh PW, Fischer MJM. TRPA1 and TRPV1 Antagonists Do Not Inhibit Human Acidosis-Induced Pain. THE JOURNAL OF PAIN 2017; 18:526-534. [PMID: 28062311 DOI: 10.1016/j.jpain.2016.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/21/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
Acidosis occurs in a variety of pathophysiological and painful conditions where it is thought to excite or contribute to excitation of nociceptive neurons. Despite potential clinical relevance the principal receptor for sensing acidosis is unclear, but several receptors have been proposed. We investigated the contribution of the acid-sensing ion channels, transient receptor potential vanilloid type 1 (TRPV1) and transient receptor potential ankyrin type 1 (TRPA1) to peripheral pain signaling. We first established a human pain model using intraepidermal injection of the TRPA1 agonist carvacrol. This resulted in concentration-dependent pain sensations, which were reduced by experimental TRPA1 antagonist A-967079. Capsaicin-induced pain was reduced by the TRPV1 inhibitor BCTC. Amiloride was used to block acid-sensing ion channels. Testing these antagonists in a double-blind and randomized experiment, we probed the contribution of the respective channels to experimental acidosis-induced pain in 15 healthy human subjects. A continuous intraepidermal injection of pH 4.3 was used to counter the buffering capacity of tissue and generate a prolonged painful stimulation. In this model, addition of A-967079, BCTC or amiloride did not reduce the reported pain. In conclusion, target-validated antagonists, applied locally in human skin, have excluded the main hypothesized targets and the mechanism of the human acidosis-induced pain remains unclear. PERSPECTIVE An acidic milieu is a trigger of pain in many clinical conditions. The aim of this study was to identify the contribution of the currently hypothesized sensors of acid-induced pain in humans. Surprisingly, inhibition of these receptors did not alter acidosis-induced pain.
Collapse
Affiliation(s)
- Matthias G Schwarz
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Namer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter W Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael J M Fischer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Center of Physiology and Pharmacology Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
58
|
Epigenetic divergence in the TRPA1 promoter correlates with pressure pain thresholds in healthy individuals. Pain 2016; 158:698-704. [DOI: 10.1097/j.pain.0000000000000815] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
59
|
Buntinx L, Chang L, Amin A, Morlion B, de Hoon J. Development of an in vivo target-engagement biomarker for TRPA1 antagonists in humans. Br J Clin Pharmacol 2016; 83:603-611. [PMID: 27685892 DOI: 10.1111/bcp.13143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/19/2016] [Accepted: 09/26/2016] [Indexed: 01/12/2023] Open
Abstract
AIM To develop a non-invasive, safe and reproducible target-engagement biomarker for future TRPA1 antagonists in healthy volunteers. METHODS Dose finding (n = 11): 3%, 10%, and 30% cinnamaldehyde (CA) and placebo (= vehicle) was topically applied on the right forearm. One-way ANOVA with post-hoc Bonferroni was used to compare between doses. Reproducibility: 10% CA doses were topically applied during one visit on both arms (n = 10) or during two visits (n = 23) separated by a washout period of 7 days. CA-induced dermal blood flow (DBF) was assessed by laser Doppler imaging (LDI) at baseline and at 10, 20, 30, 40 and 50 min post-CA. Paired t-test was used to compare between arms or visits. Concordance correlation coefficient (CCC) was calculated to assess reproducibility. Data are expressed as percent change from baseline (mean ± 95% CI). RESULTS All three doses increased DBF compared to vehicle at all time-points, with the maximum response at 10-20 min post-CA. Dose response was found when comparing AUC0-50min of 30% CA (51 364 ± 8475%*min) with 10% CA (32 239 ± 8034%*min, P = 0.03) and 3% CA (30 226 ± 11 958%*min, P = 0.015). 10% CA was chosen as an effective and safe dose. DBF response to 10% CA was found to be reproducible between arms (AUC0-50min , CCC = 0.91) and visits (AUC0-50min , CCC = 0.83). Based on sample size calculations, this model allows a change in CA-induced DBF of 30-50% to be detected between two independent groups of maximum 10-15 subjects with 80% power. CONCLUSIONS Evaluation of CA-induced changes in DBF offers a safe, non-invasive and reproducible target-engagement biomarker in vivo in humans to evaluate TRPA1 antagonists.
Collapse
Affiliation(s)
- Linde Buntinx
- Centre for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Lin Chang
- Centre for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Aasim Amin
- Centre for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bart Morlion
- Department of Cardiovascular Sciences, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Jan de Hoon
- Centre for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
60
|
Hoeck EA, Marker JB, Gazerani P, H. Andersen H, Arendt-Nielsen L. Preclinical and human surrogate models of itch. Exp Dermatol 2016; 25:750-7. [DOI: 10.1111/exd.13078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Emil A. Hoeck
- SMI; Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg E Denmark
| | - Jens B. Marker
- SMI; Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg E Denmark
| | - Parisa Gazerani
- SMI; Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg E Denmark
| | - Hjalte H. Andersen
- SMI; Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg E Denmark
| | - Lars Arendt-Nielsen
- SMI; Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg E Denmark
| |
Collapse
|
61
|
Role of thermo TRPA1 and TRPV1 channels in heat, cold, and mechanical nociception of rats. Behav Pharmacol 2016; 27:29-36. [PMID: 26274042 DOI: 10.1097/fbp.0000000000000176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A sensitive response of the nervous system to changes in temperature is of predominant importance for homeotherms to maintain a stable body temperature. A number of temperature-sensitive transient receptor potential (TRP) ion channels have been studied as nociceptors that respond to extreme temperatures and harmful chemicals. Recent findings in the field of pain have established a family of six thermo-TRP channels (TRPA1, TRPM8, TRPV1, TRPV2, TRPV3, and TRPV4) that exhibit sensitivity to increases or decreases in temperature, as well as to chemical substances eliciting the respective hot or cold sensations. In this study, we used behavioral methods to investigate whether mustard oil (allyl isothiocyanate) and capsaicin affect the sensitivity to heat, innocuous and noxious cold, and mechanical stimuli in male rats. The results obtained indicate that TRPA1 and TRPV1 channels are clearly involved in pain reactions, and the TRPA1 agonist allyl isothiocyanate enhances the heat pain sensitivity, possibly by indirectly modulating TRPV1 channels coexpressed in nociceptors with TRPA1. Overall, our data support the role of thermosensitive TRPA1 and TRPV1 channels in pain modulation and show that these two thermoreceptor channels are in a synergistic and/or conditional relationship with noxious heat and cold cutaneous stimulation.
Collapse
|
62
|
Differential Activation of TRP Channels in the Adult Rat Spinal Substantia Gelatinosa by Stereoisomers of Plant-Derived Chemicals. Pharmaceuticals (Basel) 2016; 9:ph9030046. [PMID: 27483289 PMCID: PMC5039499 DOI: 10.3390/ph9030046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/19/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023] Open
Abstract
Activation of TRPV1, TRPA1 or TRPM8 channel expressed in the central terminal of dorsal root ganglion (DRG) neuron increases the spontaneous release of l-glutamate onto spinal dorsal horn lamina II (substantia gelatinosa; SG) neurons which play a pivotal role in regulating nociceptive transmission. The TRP channels are activated by various plant-derived chemicals. Although stereoisomers activate or modulate ion channels in a distinct manner, this phenomenon is not fully addressed for TRP channels. By applying the whole-cell patch-clamp technique to SG neurons of adult rat spinal cord slices, we found out that all of plant-derived chemicals, carvacrol, thymol, carvone and cineole, increase the frequency of spontaneous excitatory postsynaptic current, a measure of the spontaneous release of l-glutamate from nerve terminals, by activating TRP channels. The presynaptic activities were different between stereoisomers (carvacrol and thymol; (-)-carvone and (+)-carvone; 1,8-cineole and 1,4-cineole) in the extent or the types of TRP channels activated, indicating that TRP channels in the SG are activated by stereoisomers in a distinct manner. This result could serve to know the properties of the central terminal TRP channels that are targets of drugs for alleviating pain.
Collapse
|
63
|
Human TRPA1 is a heat sensor displaying intrinsic U-shaped thermosensitivity. Sci Rep 2016; 6:28763. [PMID: 27349477 PMCID: PMC4923899 DOI: 10.1038/srep28763] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/07/2016] [Indexed: 12/20/2022] Open
Abstract
Thermosensitive Transient Receptor Potential (TRP) channels are believed to respond to either cold or heat. In the case of TRP subtype A1 (TRPA1), there seems to be a species-dependent divergence in temperature sensation as non-mammalian TRPA1 is heat-sensitive whereas mammalian TRPA1 is sensitive to cold. It has been speculated but never experimentally proven that TRPA1 and other temperature-sensitive ion channels have the inherent capability of responding to both cold and heat. Here we show that redox modification and ligands affect human TRPA1 (hTRPA1) cold and heat sensing properties in lipid bilayer and whole-cell patch-clamp recordings as well as heat-evoked TRPA1-dependent calcitonin gene-related peptide (CGRP) release from mouse trachea. Studies of purified hTRPA1 intrinsic tryptophan fluorescence, in the absence of lipid bilayer, consolidate hTRPA1 as an intrinsic bidirectional thermosensor that is modified by the redox state and ligands. Thus, the heat sensing property of TRPA1 is conserved in mammalians, in which TRPA1 may contribute to sensing warmth and uncomfortable heat in addition to noxious cold.
Collapse
|
64
|
Boros K, Jancsó G, Dux M, Fekécs Z, Bencsik P, Oszlács O, Katona M, Ferdinandy P, Nógrádi A, Sántha P. Multiple impairments of cutaneous nociceptor function induced by cardiotoxic doses of Adriamycin in the rat. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1009-20. [PMID: 27342418 DOI: 10.1007/s00210-016-1267-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 06/16/2016] [Indexed: 12/31/2022]
Abstract
Besides their deleterious action on cardiac muscle, anthracycline-type cytostatic agents exert significant neurotoxic effects on primary sensory neurons. Since cardiac sensory nerves confer protective effects on heart muscle and share common traits with cutaneous chemosensitive nerves, this study examined the effects of cardiotoxic doses of adriamycin on the function and morphology of epidermal nerves. Sensory neurogenic vasodilatation, plasma extravasation, and the neural CGRP release evoked by TRPV1 and TRPA1 agonists in vitro were examined by using laser Doppler flowmetry, the Evans blue technique, and ELISA, respectively. Carrageenan-induced hyperalgesia was assessed with the Hargreaves method. Immunohistochemistry was utilized to study cutaneous innervation. Adriamycin treatment resulted in profound reductions in the cutaneous neurogenic sensory vasodilatation and plasma extravasation evoked by the TRPV1 and TRPA1 agonists capsaicin and mustard oil, respectively. The in vitro capsaicin-, but not high potassium-evoked neural release of the major sensory neuropeptide, CGRP, was markedly attenuated after adriamycin treatment. Carrageenan-induced inflammatory hyperalgesia was largely abolished following the administration of adriamycin. Immunohistochemistry revealed a substantial loss of epidermal TRPV1-expressing nociceptive nerves and a marked thinning of the epidermis. These findings indicate impairments in the functions of TRPV1 and TRPA1 receptors expressed on cutaneous chemosensitive nociceptive nerves and the loss of epidermal axons following the administration of cardiotoxic doses of adriamycin. Monitoring of the cutaneous nociceptor function in the course of adriamycin therapy may well be of predictive value for early detection of the deterioration of cardiac nerves which confer protection against the deleterious effects of the drug.
Collapse
Affiliation(s)
- Krisztina Boros
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary
| | - Gábor Jancsó
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary.
| | - Mária Dux
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary
| | - Zoltán Fekécs
- Department of Anatomy, University of Szeged, Kossuth L. Sgt. 40, Szeged, H-6724, Hungary
| | - Péter Bencsik
- Department of Biochemistry, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Orsolya Oszlács
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary
| | - Márta Katona
- Department of Pediatrics and Pediatric Health Center, University of Szeged, Korányi fasor 14-15, Szeged, H-6720, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Antal Nógrádi
- Department of Anatomy, University of Szeged, Kossuth L. Sgt. 40, Szeged, H-6724, Hungary
| | - Péter Sántha
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary
| |
Collapse
|
65
|
Aubdool AA, Kodji X, Abdul-Kader N, Heads R, Fernandes ES, Bevan S, Brain SD. TRPA1 activation leads to neurogenic vasodilatation: involvement of reactive oxygen nitrogen species in addition to CGRP and NO. Br J Pharmacol 2016; 173:2419-33. [PMID: 27189253 PMCID: PMC4945766 DOI: 10.1111/bph.13519] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 01/08/2023] Open
Abstract
Background and Purpose Transient receptor potential ankyrin‐1 (TRPA1) activation is known to mediate neurogenic vasodilatation. We investigated the mechanisms involved in TRPA1‐mediated peripheral vasodilatation in vivo using the TRPA1 agonist cinnamaldehyde. Experimental Approach Changes in vascular ear blood flow were measured in anaesthetized mice using laser Doppler flowmetry. Key Results Topical application of cinnamaldehyde to the mouse ear caused a significant increase in blood flow in the skin of anaesthetized wild‐type (WT) mice but not in TRPA1 knockout (KO) mice. Cinnamaldehyde‐induced vasodilatation was inhibited by the pharmacological blockade of the potent microvascular vasodilator neuropeptide CGRP and neuronal NOS‐derived NO pathways. Cinnamaldehyde‐mediated vasodilatation was significantly reduced by treatment with reactive oxygen nitrogen species (RONS) scavenger such as catalase and the SOD mimetic TEMPOL, supporting a role of RONS in the downstream vasodilator TRPA1‐mediated response. Co‐treatment with a non‐selective NOS inhibitor L‐NAME and antioxidant apocynin further inhibited the TRPA1‐mediated vasodilatation. Cinnamaldehyde treatment induced the generation of peroxynitrite that was blocked by the peroxynitrite scavenger FeTPPS and shown to be dependent on TRPA1, as reflected by an increase in protein tyrosine nitration in the skin of WT, but not in TRPA1 KO mice. Conclusion and Implications This study provides in vivo evidence that TRPA1‐induced vasodilatation mediated by cinnamaldehyde requires neuronal NOS‐derived NO, in addition to the traditional neuropeptide component. A novel role of peroxynitrite is revealed, which is generated downstream of TRPA1 activation by cinnamaldehyde. This mechanistic pathway underlying TRPA1‐mediated vasodilatation may be important in understanding the role of TRPA1 in pathophysiological situations.
Collapse
Affiliation(s)
- Aisah A Aubdool
- Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK
| | - Xenia Kodji
- Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK
| | - Nayaab Abdul-Kader
- Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK
| | - Richard Heads
- Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK
| | - Elizabeth S Fernandes
- Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK.,Programa de Pós-graduação, Universidade CEUMA, São Luís, MA, Brazil
| | - Stuart Bevan
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | - Susan D Brain
- Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK
| |
Collapse
|
66
|
Nakanishi M, Nakae A, Kishida Y, Baba K, Sakashita N, Shibata M, Yoshikawa H, Hagihara K. Go-sha-jinki-Gan (GJG) ameliorates allodynia in chronic constriction injury-model mice via suppression of TNF-α expression in the spinal cord. Mol Pain 2016; 12:12/0/1744806916656382. [PMID: 27296622 PMCID: PMC4956397 DOI: 10.1177/1744806916656382] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Alternative medicine is noted for its clinical effect and minimal invasiveness in the treatment of neuropathic pain. Go-sha-jinki-Gan, a traditional Japanese herbal medicine, has been used for meralgia and numbness in elderly patients. However, the exact mechanism of GJG is unclear. This study aimed to investigate the molecular mechanism of the analgesic effect of GJG in a chronic constriction injury model. Results GJG significantly reduced allodynia and hyperalgesia from the early phase (von Frey test, p < 0.0001; cold-plate test, p < 0.0001; hot-plate test p = 0.011; two-way repeated measures ANOVA). Immunohistochemistry and Western blot analysis revealed that GJG decreased the expression of Iba1 and tumor necrosis factor-α in the spinal cord. Double staining immunohistochemistry showed that most of the tumor necrosis factor-α was co-expressed in Iba1-positive cells at day 3 post-operation. GJG decreased the phosphorylation of p38 in the ipsilateral dorsal horn. Moreover, intrathecal injection of tumor necrosis factor-α opposed the anti-allodynic effect of GJG in the cold-plate test. Conclusions Our data suggest that GJG ameliorates allodynia in chronic constriction injury model mice via suppression of tumor necrosis factor-α expression derived from activated microglia. GJG is a promising drug for the treatment of neuropathic pain induced by neuro-inflammation.
Collapse
Affiliation(s)
| | - Aya Nakae
- Osaka University Graduate School of medicineOsaka University Graduate School of medicineOsaka University Graduate School of medicineOsaka University Graduate School of medicine Osaka University Graduate School of Medicine Osaka University Graduate School of Medicine
| | | | | | | | | | | | - Keisuke Hagihara
- Osaka University Graduate School of medicineOsaka University Graduate School of medicineOsaka University Graduate School of medicineOsaka University Graduate School of medicine Osaka University Graduate School of Medicine Osaka University Graduate School of Medicine
| |
Collapse
|
67
|
Jensen TK, Andersen MV, Nielsen KA, Arendt-Nielsen L, Boudreau SA. Interaction between intra-oral cinnamaldehyde and nicotine assessed by psychophysical and physiological responses. Eur J Oral Sci 2016; 124:349-57. [DOI: 10.1111/eos.12279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Tanja K. Jensen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg Denmark
| | - Michelle V. Andersen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg Denmark
| | | | - Lars Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg Denmark
| | - Shellie A. Boudreau
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg Denmark
| |
Collapse
|
68
|
High-Concentration L-Menthol Exhibits Counter-Irritancy to Neurogenic Inflammation, Thermal and Mechanical Hyperalgesia Caused by Trans-cinnamaldehyde. THE JOURNAL OF PAIN 2016; 17:919-29. [PMID: 27260636 DOI: 10.1016/j.jpain.2016.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/21/2016] [Accepted: 05/10/2016] [Indexed: 11/20/2022]
Abstract
UNLABELLED The transient receptor potential cation channel subfamily M 8 (TRPM8) agonist L-menthol has been used traditionally for its topical counterirritant properties. Although the use of topical L-menthol for pain is casuistically established, evidence regarding its efficacy is negligible. This study aimed to characterize the effect of L-menthol as a counterirritant on cutaneous pain and hyperalgesia provoked by topical application of the transient receptor potential cation channel, subfamily A, member 1 (TRPA1) agonist trans-cinnamaldehyde (CA). In a randomized, double-blinded study CA was applied to a 3 × 3-cm area of the volar forearm evoking neurogenic inflammation, pain, mechanical, and thermal hyperalgesia in 14 healthy volunteers. In different sessions, 10% CA alone or 40% L-menthol applied simultaneously with 10% CA were administered for 20 minutes, throughout which the subjects rated the pain intensity on a visual analogue scale of 0 to 10. Extensive quantitative sensory testing was conducted and superficial blood flow (neurogenic inflammation) was recorded. Administration of CA evoked spontaneous pain, neurogenic inflammation, thermal hyperalgesia, and primary and secondary mechanical hyperalgesia. Coadministration of topical L-menthol reduced spontaneous pain intensity (P < .01), neurogenic inflammation (P < .01), primary mechanical hyperalgesia (P < .05), secondary mechanical hyperalgesia (P < .05), and heat hyperalgesia (P < .05), but not cold hyperalgesia. L-menthol exhibited inhibitory effects on simultaneously established pain, hypersensitivity, and neurogenic inflammation in a human TRPA1-induced pain model. Potent TRPM8 agonists could be useful as topical antihyperalgesics. The study and the trial protocol is registered and approved by the local research ethics committee under the jurisdiction of the Danish Medicines Agency number N-20130005. The protocol also is registered at Clinicaltrials.gov under NCT02653703. PERSPECTIVE Drugs interacting with transient receptor potential channels are of great therapeutic potential. In the present study we established cutaneous pain and hyperalgesia using the TRPA1 agonist CA. Subsequently, we showed that the frequently used topical counterirritant and TRPM8 agonist, L-menthol, decreased evoked pain, hyperalgesia, and inflammation, indicating direct and indirect antinociceptive mechanisms.
Collapse
|
69
|
Gillis DJ, Barwood MJ, Newton PS, House JR, Tipton MJ. The influence of a menthol and ethanol soaked garment on human temperature regulation and perception during exercise and rest in warm, humid conditions. J Therm Biol 2016; 58:99-105. [PMID: 27157339 DOI: 10.1016/j.jtherbio.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 01/22/2023]
Abstract
UNLABELLED This study assessed whether donning a garment saturated with menthol and ethanol (M/E) can improve evaporative cooling and thermal perceptions versus water (W) or nothing (CON) during low intensity exercise and rest in warm, humid conditions often encountered in recreational/occupational settings. It was hypothesised there would be no difference in rectal (Tre) and skin (Tsk) temperature, infra-red thermal imagery of the chest/back, thermal comfort (TC) and rating of perceived exertion (RPE) between M/E, W and CON, but participants would feel cooler in M/E versus W or CON. METHODS Six volunteers (mean [SD] 22 [4] years, 72.4 [7.4] kg and 173.6 [3.7] cm) completed (separate days) three, 60-min tests in 30°C, 70%rh, in a balanced order. After 15-min of seated rest participants donned a dry (CON) or 80mL soaked (M/E, W) long sleeve shirt appropriate to their intervention. They then undertook 30-min of low intensity stepping at a rate of 12steps/min on a 22.5cm box, followed by 15-min of seated rest. Measurements included heart rate (HR), Tre, Tsk (chest/back/forearm), thermal imaging (back/chest), thermal sensation (TS), TC and RPE. Data were reported every fifth minute as they changed from baseline and the area under the curves were compared by condition using one-way repeated measures ANOVA, with an alpha level of 0.05. RESULTS Tre differed by condition, with the largest heat storage response observed in M/E (p<0.05). Skin temperature at the chest/back/forearm, and thermal imaging of the chest all differed by condition, with the greatest rate of heat loss observed in W and M/E respectively (p<0.01). Thermal sensation differed by condition, with the coolest sensations observed in M/E (p<0.001). No other differences were observed. CONCLUSIONS Both M/E and W enhanced evaporative cooling compared CON, but M/E causes cooler sensations and a heat storage response, both of which are likely mediated by menthol.
Collapse
Affiliation(s)
- D Jason Gillis
- Human Performance Laboratory, Department of Sport and Movement Science, Salem State University, Salem, MA 01970, USA.
| | - M J Barwood
- Dept. Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, UK
| | - P S Newton
- Human Performance Research and Development, Canadian Forces Morale and Welfare Services, Ottawa, Ontario, Canada
| | - J R House
- Extreme Environments Laboratory, Department of Sport and Exercise Science, Portsmouth University, Portsmouth PO1 2ER, UK
| | - M J Tipton
- Extreme Environments Laboratory, Department of Sport and Exercise Science, Portsmouth University, Portsmouth PO1 2ER, UK
| |
Collapse
|
70
|
Abstract
Chronic nonallergic rhinitis (NAR) is a syndrome rather than a specific disease. A lack of understanding of the pathogenesis of this condition has led to imprecise terminology with several alternate names for the condition, including vasomotor rhinitis, nonallergic rhinopathy, and idiopathic rhinitis. The therapy for NAR is best based on the underlying pathology, which typically exists in a form whereby an abnormality of the autonomic nervous system is dominant or a form in which inflammation seems to be the cause of symptoms. In general the most effective therapy is the combination of an intranasal antihistamine and an intranasal corticosteroid.
Collapse
Affiliation(s)
- Phillip L Lieberman
- Division of Allergy and Immunology, Department of Medicine, University of Tennessee, Memphis, TN, USA; Department of Pediatrics, University of Tennessee, Memphis, TN, USA.
| | - Peter Smith
- Qld Allergy Services, Clinical School of Medicine, Griffith University, 17/123 Nerang Street, Southport, Queensland 4215, Australia
| |
Collapse
|
71
|
Abstract
The transient receptor potential canonical (TRPC) channels have gained interest as potential therapeutic targets for respiratory diseases, neurological disorders, cardiovascular disorders, pain, cancer and several other pathological conditions. The TRPC receptor family consists of seven isoforms (C1-C7) and has been divided into three subfamilies based on structural and functional similarities. Several pharmaceutical companies and academic institutes are currently exploring the potential of these nonselective cation channels as therapeutic targets using small molecule inhibitors or modulators. This review covers patents on TRPC receptor modulators published from 2002 to 2014. The review mainly focuses on TRPC receptor target biology, small and large molecule modulators and their therapeutic potential.
Collapse
|
72
|
Lötsch J, Ultsch A, Hummel T. How Many and Which Odor Identification Items Are Needed to Establish Normal Olfactory Function? Chem Senses 2016; 41:339-44. [DOI: 10.1093/chemse/bjw006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
73
|
Cold and L-menthol-induced sensitization in healthy volunteers--a cold hypersensitivity analogue to the heat/capsaicin model. Pain 2016; 156:880-889. [PMID: 25719613 DOI: 10.1097/j.pain.0000000000000123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Topical high-concentration L-menthol is the only established human experimental pain model to study mechanisms underlying cold hyperalgesia. We aimed at investigating the combinatorial effect of cold stimuli and topical L-menthol on cold pain and secondary mechanical hyperalgesia. Analogue to the heat-capsaicin model on skin sensitization, we proposed that cold/menthol enhances or prolong L-menthol-evoked sensitization. Topical 40% L-menthol or vehicle was applied (20 minutes) on the volar forearms of 20 healthy females and males (age, 28.7 ± 0.6 years). Cold stimulation of 5°C for 5 minutes was then applied to the treated area 3 times with 40-minute intervals. Cold detection threshold and pain, mechanical hyperalgesia (pinprick), static and dynamic mechanical allodynia (von Frey and brush), skin blood flow (laser speckle), and temperature (thermocamera) were assessed. Cold detection threshold and cold pain threshold (CPT) increased after L-menthol and remained high after the cold rekindling cycles (P < 0.001). L-menthol evoked secondary hyperalgesia to pinprick (P < 0.001) particularly in females (P < 0.05) and also induced secondary allodynia to von Frey and brush (P < 0.001). Application of cold stimuli kept these areas enlarged with a higher response in females to brush after the third cold cycle (P < 0.05). Skin blood flow increased after L-menthol (P < 0.001) and stayed stable after cold cycles. Repeated application of cold on skin treated by L-menthol facilitated and prolonged L-menthol-induced cold pain and hyperalgesia. This model may prove beneficial for testing analgesic compounds when a sufficient duration of time is needed to see drug effects on CPT or mechanical hypersensitivity.
Collapse
|
74
|
Horváth Á, Tékus V, Boros M, Pozsgai G, Botz B, Borbély É, Szolcsányi J, Pintér E, Helyes Z. Transient receptor potential ankyrin 1 (TRPA1) receptor is involved in chronic arthritis: in vivo study using TRPA1-deficient mice. Arthritis Res Ther 2016; 18:6. [PMID: 26746673 PMCID: PMC4718022 DOI: 10.1186/s13075-015-0904-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/22/2015] [Indexed: 12/04/2022] Open
Abstract
Background The transient receptor potential ankyrin 1 (TRPA1) is a calcium-permeable cation channel that is expressed on capsaicin-sensitive sensory neurons, endothelial and inflammatory cells. It is activated by a variety of inflammatory mediators, such as methylglyoxal, formaldehyde and hydrogen sulphide. Since only few data are available about the role of TRPA1 in arthritis and related pain, we investigated its involvement in inflammation models of different mechanisms. Methods Chronic arthritis was induced by complete Freund’s adjuvant (CFA), knee osteoarthritis by monosodium iodoacetate (MIA) in TRPA1 knockout (KO) mice and C57Bl/6 wildtype mice. For comparison, carrageenan- and CFA-evoked acute paw and knee inflammatory changes were investigated. Thermonociception was determined on a hot plate, cold tolerance in icy water, mechanonociception by aesthesiometry, paw volume by plethysmometry, knee diameter by micrometry, weight distribution with incapacitance tester, neutrophil myeloperoxidase activity and vascular leakage by in vivo optical imaging, and histopathological alterations by semiquantitative scoring. Results CFA-induced chronic mechanical hypersensitivity, tibiotarsal joint swelling and histopathological alterations, as well as myeloperoxidase activity in the early phase (day 2), and vascular leakage in the later stage (day 7), were significantly reduced in TRPA1 KO mice. Heat and cold sensitivities did not change in this model. Although in TRPA1 KO animals MIA-evoked knee swelling and histopathological destruction were not altered, hypersensitivity and impaired weight bearing on the osteoarthritic limb were significantly decreased. In contrast, carrageenan- and CFA-induced acute inflammation and pain behaviours were not modified by TRPA1 deletion. Conclusions TRPA1 has an important role in chronic arthritis/osteoarthritis and related pain behaviours in the mouse. Therefore, it might be a promising target for novel analgesic/anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - Melinda Boros
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - Gábor Pozsgai
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary.
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,PharmInVivo Ltd., 10 Szondi György Street, Pécs, 7624, Hungary.
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,PharmInVivo Ltd., 10 Szondi György Street, Pécs, 7624, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, 12 Szigeti Street, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, University of Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,Centre of Neuroscience, University of Pécs, Medical School, Pécs, 20 Ifjúság Street, Pécs, 7624, Hungary. .,PharmInVivo Ltd., 10 Szondi György Street, Pécs, 7624, Hungary. .,MTA-PTE NAP B Chronic Pain Research Group, 12 Szigeti Street, Pécs, 7624, Hungary.
| |
Collapse
|
75
|
The Vasodilator Effect of a Cream Containing 10% Menthol and 15% Methyl Salicylate on Random-Pattern Skin Flaps in Rats. Arch Plast Surg 2015; 42:695-703. [PMID: 26618115 PMCID: PMC4659981 DOI: 10.5999/aps.2015.42.6.695] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/06/2015] [Accepted: 08/17/2015] [Indexed: 01/07/2023] Open
Abstract
Background It is still difficult to prevent partial or full-thickness flap necrosis. In this study, the effects of a cream containing menthol and methyl salicylate on the viability of randompattern skin flaps were studied. Methods Forty female Sprague-Dawley rats were divided into two equal groups. Caudally based dorsal random-pattern skin flaps were elevated, including the panniculus carnosus. In the study group, 1.5 mL of a cream containing menthol and methyl salicylate was applied to the skin of the flap, and saline solution (0.9%) was used in the control group. Upon completion of the experiment, flap necrosis was analyzed with imaging software and radionuclide scintigraphy. Histopathological measurements were made of the percentage of viable flaps, the number of vessels, and the width of the panniculus carnosus muscle. Results According to the photographic analysis, the mean viable flap surface area in the study group was larger than that in the control group (P=0.004). According to the scintigrams, no change in radioactivity uptake was seen in the study group (P>0.05). However, a significant decrease was observed in the control group (P=0.006). No statistically significant differences were observed between the groups in terms of the percentage of viable flaps, the number of vessels, or the width of the panniculus carnosus muscle (P>0.05). Conclusions Based on these results, it is certain that the cream did not reduce the viability of the flaps. Due to its vasodilatory effect, it can be used as a component of the dressing in reconstructive operations where skin perfusion is compromised.
Collapse
|
76
|
Majhi RK, Saha S, Kumar A, Ghosh A, Swain N, Goswami L, Mohapatra P, Maity A, Kumar Sahoo V, Kumar A, Goswami C. Expression of temperature-sensitive ion channel TRPM8 in sperm cells correlates with vertebrate evolution. PeerJ 2015; 3:e1310. [PMID: 26500819 PMCID: PMC4614861 DOI: 10.7717/peerj.1310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/19/2015] [Indexed: 12/13/2022] Open
Abstract
Transient Receptor Potential cation channel, subfamily Melastatin, member 8 (TRPM8) is involved in detection of cold temperature, different noxious compounds and in execution of thermo- as well as chemo-sensitive responses at cellular levels. Here we explored the molecular evolution of TRPM8 by analyzing sequences from various species. We elucidate that several regions of TRPM8 had different levels of selection pressure but the 4th-5th transmembrane regions remain highly conserved. Analysis of synteny suggests that since vertebrate origin, TRPM8 gene is linked with SPP2, a bone morphogen. TRPM8, especially the N-terminal region of it, seems to be highly variable in human population. We found 16,656 TRPM8 variants in 1092 human genomes with top variations being SNPs, insertions and deletions. A total of 692 missense mutations are also mapped to human TRPM8 protein of which 509 seem to be delateroiours in nature as supported by Polyphen V2, SIFT and Grantham deviation score. Using a highly specific antibody, we demonstrate that TRPM8 is expressed endogenously in the testis of rat and sperm cells of different vertebrates ranging from fish to higher mammals. We hypothesize that TRPM8 had emerged during vertebrate evolution (ca 450 MYA). We propose that expression of TRPM8 in sperm cell and its role in regulating sperm function are important factors that have guided its molecular evolution, and that these understandings may have medical importance.
Collapse
Affiliation(s)
- Rakesh Kumar Majhi
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Bhubaneswar, Orissa, India
| | - Somdatta Saha
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Bhubaneswar, Orissa, India
- School of Biotechnology, KIIT University, Bhubaneswar, Orissa, India
| | - Ashutosh Kumar
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Bhubaneswar, Orissa, India
| | - Arijit Ghosh
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Bhubaneswar, Orissa, India
| | - Nirlipta Swain
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Bhubaneswar, Orissa, India
| | - Luna Goswami
- School of Biotechnology, KIIT University, Bhubaneswar, Orissa, India
| | - Pratyush Mohapatra
- Department of Zoology, Government Science College, Chatrapur, Ganjam, Odisha, India
| | - Apratim Maity
- Department of Veterinary Biochemistry, CVSc & AH, Orissa University of Agriculture & Technology, Bhubaneswar, Orissa, India
| | - Vivek Kumar Sahoo
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Bhubaneswar, Orissa, India
| | - Abhishek Kumar
- Department of Genetics & Molecular Biology in Botany, Institute of Botany, Christian-Albrechts-University at Kiel, Kiel, SH, Germany
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, BW, Germany
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Bhubaneswar, Orissa, India
| |
Collapse
|
77
|
Farkas S, Bölcskei K, Markovics A, Varga A, Kis-Varga Á, Kormos V, Gaszner B, Horváth C, Tuka B, Tajti J, Helyes Z. Utility of different outcome measures for the nitroglycerin model of migraine in mice. J Pharmacol Toxicol Methods 2015; 77:33-44. [PMID: 26456070 DOI: 10.1016/j.vascn.2015.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Majority of the work for establishing nitroglycerin (NTG)-induced migraine models in animals was done in rats, though recently some studies in mice were also reported. Different special formulations of NTG were investigated in various studies; however, NTG treated groups were often compared to simple saline treated control groups. The aim of the present studies was to critically assess the utility of a panel of potential outcome measures in mice by revisiting previous findings and investigating endpoints that have not been tested in mice yet. METHODS We investigated two NTG formulations, Nitrolingual and Nitro Pohl, at an intraperitoneal dose of 10mg/kg, in comparison with relevant vehicle controls, and evaluated the following outcome measures: light aversive behaviour, cranial blood perfusion by laser Doppler imaging, number of c-Fos- and neuronal nitrogen monoxide synthase (nNOS)-immunoreactive neurons in the trigeminal nucleus caudalis (TNC) and trigeminal ganglia, thermal hyperalgesia and tactile allodynia of the hind paw and orofacial pain hypersensitivity. RESULTS We could not confirm previous reports of significant NTG-induced changes in light aversion and cranial blood perfusion of mice but we observed considerable effects elicited by the vehicle of Nitrolingual. In contrast, the vehicle of Nitro Pohl was apparently inert. Increased c-Fos expression in the TNC, thermal hyperalgesia, tactile allodynia and orofacial hypersensitivity were apparently good endpoints in mice that were increased by NTG-administration. The NTG-induced increase in c-Fos expression was prevented by topiramate but not by sumatriptan treatment. However, the NTG-induced orofacial hypersensitivity was dose dependently attenuated by sumatriptan. DISCUSSION Our results pointed to utilisable NTG formulations and outcome measures for NTG-induced migraine models in mice. Pending further cross-validation with positive and negative control drugs in these mouse models and in the human NTG models of migraine, these tests might be valuable translational research tools for development of new anti-migraine drugs.
Collapse
Affiliation(s)
- Sándor Farkas
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; Research Division, Gedeon Richter Plc., H-1103 Budapest, Gyömrői út 19-21, Hungary.
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary.
| | - Adrienn Markovics
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary.
| | - Anita Varga
- Laboratory of Neuropharmacology, Pharmacological and Drug Safety Research, Gedeon Richter Plc., H-1103 Budapest, Gyömrői út 19-21, Hungary.
| | - Ágnes Kis-Varga
- Laboratory of Neuropharmacology, Pharmacological and Drug Safety Research, Gedeon Richter Plc., H-1103 Budapest, Gyömrői út 19-21, Hungary.
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary.
| | - Balázs Gaszner
- Department of Anatomy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary.
| | - Csilla Horváth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; Laboratory of Neuropharmacology, Pharmacological and Drug Safety Research, Gedeon Richter Plc., H-1103 Budapest, Gyömrői út 19-21, Hungary.
| | - Bernadett Tuka
- Neurology Department, University of Szeged, Faculty of Medicine, H-6725 Szeged, Semmelweis u. 6, Hungary; MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - János Tajti
- Neurology Department, University of Szeged, Faculty of Medicine, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary; MTA-PTE NAP B Chronic Pain Research Group, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary.
| |
Collapse
|
78
|
Moilanen LJ, Hämäläinen M, Lehtimäki L, Nieminen RM, Muraki K, Moilanen E. Pinosylvin Inhibits TRPA1-Induced Calcium Influx In Vitro and TRPA1-Mediated Acute Paw Inflammation In Vivo. Basic Clin Pharmacol Toxicol 2015; 118:238-42. [PMID: 26335783 DOI: 10.1111/bcpt.12485] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/27/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Lauri J Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Lauri Lehtimäki
- Department of Respiratory Medicine, University of Tampere School of Medicine and Allergy Centre, Tampere University Hospital, Tampere, Finland
| | - Riina M Nieminen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
79
|
Niederberger E, Kuner R, Geißlinger G. [Pharmacological aspects of pain research in Germany]. Schmerz 2015; 29:531-8. [PMID: 26294077 DOI: 10.1007/s00482-015-0042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In spite of several approved analgesics, the therapy of pain still constitutes a challenge due to the fact that the drugs do not exert sufficient efficacy or are associated with severe side effects. Therefore, the development of new and improved painkillers is still of great importance. A number of highly qualified scientists in Germany are investigating signal transduction pathways in pain, effectivity of new drugs and the so far incompletely investigated mechanisms of well-known analgesics in preclinical and clinical studies. The highlights of pharmacological pain research in Germany are summarized in this article.
Collapse
Affiliation(s)
- E Niederberger
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland
| | - R Kuner
- Pharmakologisches Institut, Universität Heidelberg, Im Neuenheimer Feld 584, 69120, Heidelberg, Deutschland
| | - G Geißlinger
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland.
| |
Collapse
|
80
|
Nickel FT, Ott S, Möhringer S, Münster T, Rieß S, Filitz J, Koppert W, Maihöfner C. Effects of Different Anesthetics on Pain Processing in an Experimental Human Pain Model. Pain Pract 2015; 16:820-30. [PMID: 26179561 DOI: 10.1111/papr.12326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/14/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE After surgical procedures, anesthesia itself may affect pain perception. Particularly, there is increasing evidence that opioids not only have analgesic effects but also provoke pronociceptive changes, that is, opioid-induced hyperalgesia. We investigated the effect of different anesthetic regimens on pain processing in volunteers using a transdermal electrical pain model. In this model, stimulation of epidermal nerve fibers representing mainly peptidergic C-nociceptors leads to secondary hyperalgesia and habituation to the stimulus. METHODS Forty-eight healthy volunteers underwent conditioning noxious stimulation (CS) over 5 days. On day 2, the volunteers were randomized into 4 groups: control group (no anesthesia) and 3 groups receiving anesthesia before CS in anesthetic doses: propofol (P), propofol/remifentanil (PR), and propofol/remifentanil/S-ketamine (PRK). Quantitative sensory testing was performed on days 1 through 5 and on day 22. RESULTS In every group, CS was associated with short- and long-term habituation to the electrical stimulus. Repetitive CS resulted in unmodified short-term sensitization with stable areas of hyperalgesia. Although the PR group showed a trend toward increased areas of hyperalgesia on day 2, no significant differences were detectable between the groups. In contrast, anesthesia resulted in decreased intensity of the electrically evoked pain on day 2. Finally, the mechanical pain threshold before CS on day 5 was increased in all groups and remained elevated 3 weeks after the first CS, consistent with a long-term antinociceptive effect after CS. CONCLUSIONS The results suggest a short-term analgesic effect of general anesthesia. Furthermore, the conditioning stimulation over several days induced differential modulation of pro- and antinociceptive systems.
Collapse
Affiliation(s)
- Florian T Nickel
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany.,Department of Neurology, General Fürth Hospital, Fürth, Germany
| | - Stephan Ott
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Susanne Möhringer
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tino Münster
- Department of Anesthesiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Simon Rieß
- Department of Anesthesiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg Filitz
- Department of Anesthesiology, Hannover Medical School, Hannover, Germany
| | - Wolfgang Koppert
- Department of Anesthesiology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
81
|
Chen J, Hackos DH. TRPA1 as a drug target--promise and challenges. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:451-63. [PMID: 25640188 PMCID: PMC4359712 DOI: 10.1007/s00210-015-1088-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/12/2015] [Indexed: 12/25/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is a nonselective cation channel belonging to the superfamily of transient receptor potential (TRP) channels. It is predominantly expressed in sensory neurons and serves as an irritant sensor for a plethora of electrophilic compounds. Recent studies suggest that TRPA1 is involved in pain, itch, and respiratory diseases, and TRPA1 antagonists have been actively pursued as therapeutic agents. Here, we review the recent progress, unsettled issues, and challenges in TRPA1 research and drug discovery.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA 94080 USA
| | - David H. Hackos
- Department of Neuroscience, Genentech, South San Francisco, CA 94080 USA
| |
Collapse
|
82
|
Thermosensitive transient receptor potential (TRP) channel agonists and their role in mechanical, thermal and nociceptive sensations as assessed using animal models. CHEMOSENS PERCEPT 2015; 8:96-108. [PMID: 26388966 DOI: 10.1007/s12078-015-9176-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The present paper summarizes research using animal models to investigate the roles of thermosensitive transient receptor potential (TRP) channels in somatosensory functions including touch, temperature and pain. We present new data assessing the effects of eugenol and carvacrol, agonists of the warmth-sensitive TRPV3, on thermal, mechanical and pain sensitivity in rats. METHODS Thermal sensitivity was assessed using a thermal preference test, which measured the amount of time the animal occupied one of two adjacent thermoelectric plates set at different temperatures. Pain sensitivity was assessed as an increase in latency of hindpaw withdrawal away from a noxious thermal stimulus directed to the plantar hindpaw (Hargreaves test). Mechanical sensitivity was assessed by measuring the force exerted by an electronic von Frey filament pressed against the plantar surface that elicited withdrawal. RESULTS Topical application of eugenol and carvacrol did not significantly affect thermal preference, although there was a trend toward avoidance of the hotter surface in a 30 vs. 45°C preference test for rats treated with 1 or 10% eugenol and carvacrol. Both eugenol and carvacrol induced a concentration-dependent increase in thermal withdrawal latency (analgesia), with no significant effect on mechanosensitivity. CONCLUSIONS The analgesic effect of eugenol and carvacrol is consistent with previous studies. The tendency for these chemicals to increase the avoidance of warmer temperatures suggests a possible role for TRPV3 in warmth detection, also consistent with previous studies. Additional roles of other thermosensitive TRP channels (TRPM8 TRPV1, TRPV2, TRPV4, TRPM3, TRPM8, TRPA1, TRPC5) in touch, temperature and pain are reviewed.
Collapse
|
83
|
Nam JS, Cheong YS, Karm MH, Ahn HS, Sim JH, Kim JS, Choi SS, Leem JG. Effects of nefopam on streptozotocin-induced diabetic neuropathic pain in rats. Korean J Pain 2014; 27:326-33. [PMID: 25317281 PMCID: PMC4196497 DOI: 10.3344/kjp.2014.27.4.326] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/19/2014] [Accepted: 09/25/2014] [Indexed: 11/22/2022] Open
Abstract
Background Nefopam is a centrally acting non-opioid analgesic agent. Its analgesic properties may be related to the inhibitions of monoamine reuptake and the N-methyl-D-aspartate (NMDA) receptor. The antinociceptive effect of nefopam has been shown in animal models of acute and chronic pain and in humans. However, the effect of nefopam on diabetic neuropathic pain is unclear. Therefore, we investigated the preventive effect of nefopam on diabetic neuropathic pain induced by streptozotocin (STZ) in rats. Methods Pretreatment with nefopam (30 mg/kg) was performed intraperitoneally 30 min prior to an intraperitoneal injection of STZ (60 mg/kg). Mechanical and cold allodynia were tested before, and 1 to 4 weeks after drug administration. Thermal hyperalgesia was also investigated. In addition, the transient receptor potential ankyrin 1 (TRPA1) and TRP melastatin 8 (TRPM8) expression levels in the dorsal root ganglion (DRG) were evaluated. Results Pretreatment with nefopam significantly inhibited STZ-induced mechanical and cold allodynia, but not thermal hyperalgesia. The STZ injection increased TRPM8, but not TRPA1, expression levels in DRG neurons. Pretreatment with nefopam decreased STZ-induced TRPM8 expression levels in the DRG. Conclusions These results demonstrate that a nefopam pretreatment has strong antiallodynic effects on STZ-induced diabetic rats, which may be associated with TRPM8 located in the DRG.
Collapse
Affiliation(s)
- Jae Sik Nam
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yu Seon Cheong
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Myong Hwan Karm
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho Soo Ahn
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Hoon Sim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Sun Kim
- Department of Anesthesiology and Pain Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | - Seong Soo Choi
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Gil Leem
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
84
|
Miyakawa T, Terashima Y, Takebayashi T, Tanimoto K, Iwase T, Ogon I, Kobayashi T, Tohse N, Yamashita T. Transient receptor potential ankyrin 1 in spinal cord dorsal horn is involved in neuropathic pain in nerve root constriction rats. Mol Pain 2014; 10:58. [PMID: 25192906 PMCID: PMC4163170 DOI: 10.1186/1744-8069-10-58] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 09/02/2014] [Indexed: 12/26/2022] Open
Abstract
Background Lumbar radicular pain is categorized as a type of neuropathic pain, but its pathophysiological mechanisms are not fully understood. The substantia gelatinosa (SG) in the spinal cord dorsal horn receives primary afferent inputs and is considered to be a therapeutic target for treating neuropathic pain. In vivo patch-clamp recording is a useful procedure for analyzing the functional properties of synaptic transmission in SG neurons. Transient receptor potential ankyrin 1 (TRPA1) has been widely identified in the central and peripheral nervous systems, such as in the peripheral nociceptor, dorsal root ganglion, and spinal cord dorsal horn and is involved in synaptic transmission of pain. However, its functional role and mechanism of pain transmission in the spinal cord dorsal horn are not well understood. The purpose of this study was to use in vivo patch-clamp analysis to examine changes in the excitatory synaptic transmission of SG neurons treated with TRPA1 antagonist and to clarify the potential role of TRPA1 in the rat spinal cord dorsal horn. Results The rats with root constriction (RC) showed mechanical hypersensitivity, hyperalgesia, and thermal hyperalgesia. In addition, pin pricks elicited pain-related behavior even in the sham and naïve rats. These pain-related behaviors were significantly attenuated by intrathecal injection of a TRPA1 antagonist. The degrees of intrathecal injection efficacy were equivalent among the 3 groups (RC, sham, and naïve groups). In an electrophysiological study, the frequencies and amplitudes of excitatory postsynaptic currents (EPSCs) were significantly increased in the RC rats compared with those in the sham and naïve rats. Spontaneous EPSCs and evoked-EPSCs by non-noxious and noxious stimuli were significantly decreased by TRPA1 antagonist. As in the behavioral study, there were no statistically significant differences among the 3 groups. Conclusion These data showed that the TRPA1 antagonist had an inhibitory effect on mechanical hypersensitivity and hyperalgesia as well as on physiological pain transmission in the spinal cord dorsal horn. This suggests that TRPA1 is consistently involved in excitatory synaptic transmission even in the physiological state and has a role in coordinating pain transmission.
Collapse
Affiliation(s)
- Tsuyoshi Miyakawa
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, S1 W16, Sapporo, Hokkaido 060-8543, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Okada Y, Shirai K, Reinach PS, Kitano-Izutani A, Miyajima M, Flanders KC, Jester JV, Tominaga M, Saika S. TRPA1 is required for TGF-β signaling and its loss blocks inflammatory fibrosis in mouse corneal stroma. J Transl Med 2014; 94:1030-41. [PMID: 25068659 PMCID: PMC5919187 DOI: 10.1038/labinvest.2014.85] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/19/2022] Open
Abstract
We examined whether the loss of transient receptor potential ankyrin 1 (TRPA1), an irritant-sensing ion channel, or TRPA1 antagonist treatment affects the severity inflammation and scarring during tissue wound healing in a mouse cornea injury model. In addition, the effects of the absence of TRPA1 on transforming growth factor β1 (TGF-β1)-signaling activation were studied in cell culture. The lack of TRPA1 in cultured ocular fibroblasts attenuated expression of TGF-β1, interleukin-6, and α-smooth muscle actin, a myofibroblast the marker, but suppressed the activation of Smad3, p38 MAPK, ERK, and JNK. Stroma of the healing corneas of TRPA1(-/-) knockout (KO) mice appeared more transparent compared with those of wild-type mice post-alkali burn. Eye globe diameters were measured from photographs. An examination of the corneal surface and eye globes suggested the loss of TRPA1 suppressed post-alkali burn inflammation and fibrosis/scarring, which was confirmed by histology, immunohistochemistry, and gene expression analysis. Reciprocal bone marrow transplantation between mice showed that KO corneal tissue resident cells, but not KO bone marrow-derived cells, are responsible for KO mouse wound healing with reduced inflammation and fibrosis. Systemic TRPA1 antagonists reproduced the KO phenotype of healing. In conclusion, a loss or blocking of TRPA1 in mice reduces inflammation and fibrosis/scarring in the corneal stroma during wound healing following an alkali burn. The responsible mechanism may include the inhibition of TGF-β1-signaling cascades in fibroblasts by attenuated TRPA1 signaling. Inflammatory cells are considered to have a minimum involvement in the exhibition of the KO phenotype after injury.
Collapse
Affiliation(s)
- Yuka Okada
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Kumi Shirai
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Peter S Reinach
- Wenzhou Medical University School of Ophthalmology and Optometry, Wenzhou, China
| | - Ai Kitano-Izutani
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Masayasu Miyajima
- Laboratory Animal Center, Wakayama Medical University, Wakayama, Japan
| | - Kathleen C Flanders
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institute of Natural Science, Okazaki, Aichi, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
86
|
Eberhardt M, Dux M, Namer B, Miljkovic J, Cordasic N, Will C, Kichko TI, de la Roche J, Fischer M, Suárez SA, Bikiel D, Dorsch K, Leffler A, Babes A, Lampert A, Lennerz JK, Jacobi J, Martí MA, Doctorovich F, Högestätt ED, Zygmunt PM, Ivanovic-Burmazovic I, Messlinger K, Reeh P, Filipovic MR. H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat Commun 2014; 5:4381. [PMID: 25023795 PMCID: PMC4104458 DOI: 10.1038/ncomms5381] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/12/2014] [Indexed: 02/08/2023] Open
Abstract
Nitroxyl (HNO) is a redox sibling of nitric oxide (NO) that targets distinct signalling pathways with pharmacological endpoints of high significance in the treatment of heart failure. Beneficial HNO effects depend, in part, on its ability to release calcitonin gene-related peptide (CGRP) through an unidentified mechanism. Here we propose that HNO is generated as a result of the reaction of the two gasotransmitters NO and H2S. We show that H2S and NO production colocalizes with transient receptor potential channel A1 (TRPA1), and that HNO activates the sensory chemoreceptor channel TRPA1 via formation of amino-terminal disulphide bonds, which results in sustained calcium influx. As a consequence, CGRP is released, which induces local and systemic vasodilation. H2S-evoked vasodilatatory effects largely depend on NO production and activation of HNO–TRPA1–CGRP pathway. We propose that this neuroendocrine HNO–TRPA1–CGRP signalling pathway constitutes an essential element for the control of vascular tone throughout the cardiovascular system. Nitric oxide (NO) and hydrogen sulphide (H2S) are two gaseous signalling molecules produced in tissues. Here the authors propose that NO and H2S react with each other to form nitroxyl (HNO), which activates the TRPA1 channel in nerve cells and triggers the release of the vasoactive peptide CGRP.
Collapse
Affiliation(s)
- Mirjam Eberhardt
- 1] Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany [2] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [3] Department of Anesthesiology and Intensive Care, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Maria Dux
- 1] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [2] Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | - Barbara Namer
- Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Jan Miljkovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Nada Cordasic
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
| | - Christine Will
- Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Tatjana I Kichko
- Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Jeanne de la Roche
- Department of Anesthesiology and Intensive Care, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Michael Fischer
- 1] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [2] Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB1 2PD, UK
| | - Sebastián A Suárez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Damian Bikiel
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Karola Dorsch
- Institute of Pathology, University of Ulm, Albert-Einstein-Allee 23, 89070 Ulm, Germany
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Alexandru Babes
- 1] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [2] Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Angelika Lampert
- 1] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [2]
| | - Jochen K Lennerz
- Institute of Pathology, University of Ulm, Albert-Einstein-Allee 23, 89070 Ulm, Germany
| | - Johannes Jacobi
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
| | - Marcelo A Martí
- 1] Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina [2] Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Edward D Högestätt
- Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University Hospital, SE-221 85 Lund, Sweden
| | - Peter M Zygmunt
- Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University Hospital, SE-221 85 Lund, Sweden
| | - Ivana Ivanovic-Burmazovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Peter Reeh
- 1] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [2]
| | - Milos R Filipovic
- 1] Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany [2]
| |
Collapse
|
87
|
Bodkin JV, Thakore P, Aubdool AA, Liang L, Fernandes ES, Nandi M, Spina D, Clark JE, Aaronson PI, Shattock MJ, Brain SD. Investigating the potential role of TRPA1 in locomotion and cardiovascular control during hypertension. Pharmacol Res Perspect 2014; 2:e00052. [PMID: 25505598 PMCID: PMC4186440 DOI: 10.1002/prp2.52] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/23/2022] Open
Abstract
Radiotelemetry was used to investigate the in vivo cardiovascular and activity phenotype of both TRPA1 (transient receptor potential ankyrin 1) wild-type (WT) and TRPA1 knockout (KO) mice. After baseline recording, experimental hypertension was induced using angiotensin II infusion (1.1 mg(-1) kg(-1) a day, for 14 days). TRPA1 WT and KO mice showed similar morphological and functional cardiovascular parameters, including similar basal blood pressure (BP), heart rate, size, and function. Similar hypertension was also displayed in response to angiotensin II (156 ± 7 and 165 ± 11 mmHg, systolic BP ± SEM, n = 5-6). TRPA1 KO mice showed increased hypertensive hypertrophy (heart weight:tibia length: 7.3 ± 1.6 mg mm(-1) vs. 8.8 ± 1.7 mg mm(-1)) and presented with blunted interleukin 6 (IL-6) production compared with hypertensive WT mice (151 ± 24 vs. 89 ± 16 pg mL(-1)). TRPA1 expression in dorsal root ganglion (DRG) neurones was upregulated during hypertension (163% of baseline expression). Investigations utilizing the TRPA1 agonist cinnamaldehyde (CA) on mesenteric arterioles isolated from näive mice suggested a lack of TRPA1-dependent vasoreactivity in this vascular bed; a site with notable ability to alter total peripheral resistance. However, mesenteric arterioles isolated from TRPA1 KO hypertensive mice displayed significantly reduced ability to relax in response to nitric oxide (NO) (P < 0.05). Unexpectedly, naïve TRPA1 KO mice also displayed physical hyperactivity traits at baseline, which was exacerbated during hypertension. In conclusion, our study provides a novel cardiovascular characterization of TRPA1 KO mice in a model of hypertension. Results suggest that TRPA1 has a limited role in global cardiovascular control, but we demonstrate an unexpected capacity for TRPA1 to regulate physical activity.
Collapse
Affiliation(s)
- Jennifer V Bodkin
- Cardiovascular Division, BHF Centre of Excellence and Centre of Integrative Biomedicine, School of Medicine, King's College London London, SE1 9NH, U.K
| | - Pratish Thakore
- Cardiovascular Division, BHF Centre of Excellence and Centre of Integrative Biomedicine, School of Medicine, King's College London London, SE1 9NH, U.K ; Pharmaceutical Sciences Division, School of Biomedical Sciences, King's College London London, SE1 9NH, U.K
| | - Aisah A Aubdool
- Cardiovascular Division, BHF Centre of Excellence and Centre of Integrative Biomedicine, School of Medicine, King's College London London, SE1 9NH, U.K
| | - Lihuan Liang
- Cardiovascular Division, BHF Centre of Excellence and Centre of Integrative Biomedicine, School of Medicine, King's College London London, SE1 9NH, U.K
| | - Elizabeth S Fernandes
- Cardiovascular Division, BHF Centre of Excellence and Centre of Integrative Biomedicine, School of Medicine, King's College London London, SE1 9NH, U.K ; Programa de Pós-Graduação em Biologia Parasitária, Universidade Ceuma São Luís, Brazil
| | - Manasi Nandi
- Pharmaceutical Sciences Division, School of Biomedical Sciences, King's College London London, SE1 9NH, U.K
| | - Domenico Spina
- Pharmaceutical Sciences Division, School of Biomedical Sciences, King's College London London, SE1 9NH, U.K
| | - James E Clark
- Cardiovascular Division, BHF Centre of Excellence and Centre of Integrative Biomedicine, School of Medicine, King's College London London, SE1 9NH, U.K
| | - Philip I Aaronson
- Asthma, Allergy and Lung Biology Division, School of Medicine, King's College London London, SE1 1UL, U.K
| | - Michael J Shattock
- Cardiovascular Division, BHF Centre of Excellence and Centre of Integrative Biomedicine, School of Medicine, King's College London London, SE1 9NH, U.K
| | - Susan D Brain
- Cardiovascular Division, BHF Centre of Excellence and Centre of Integrative Biomedicine, School of Medicine, King's College London London, SE1 9NH, U.K
| |
Collapse
|
88
|
TRP Channels Involved in Spontaneous L-Glutamate Release Enhancement in the Adult Rat Spinal Substantia Gelatinosa. Cells 2014; 3:331-62. [PMID: 24785347 PMCID: PMC4092856 DOI: 10.3390/cells3020331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/10/2014] [Accepted: 04/18/2014] [Indexed: 12/31/2022] Open
Abstract
The spinal substantia gelatinosa (SG) plays a pivotal role in modulating nociceptive transmission through dorsal root ganglion (DRG) neurons from the periphery. TRP channels such as TRPV1 and TRPA1 channels expressed in the SG are involved in the regulation of the nociceptive transmission. On the other hand, the TRP channels located in the peripheral terminals of the DRG neurons are activated by nociceptive stimuli given to the periphery and also by plant-derived chemicals, which generates a membrane depolarization. The chemicals also activate the TRP channels in the SG. In this review, we introduce how synaptic transmissions in the SG neurons are affected by various plant-derived chemicals and suggest that the peripheral and central TRP channels may differ in property from each other.
Collapse
|
89
|
Klein AH, Joe CL, Davoodi A, Takechi K, Carstens MI, Carstens E. Eugenol and carvacrol excite first- and second-order trigeminal neurons and enhance their heat-evoked responses. Neuroscience 2014; 271:45-55. [PMID: 24759772 DOI: 10.1016/j.neuroscience.2014.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 12/30/2022]
Abstract
Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive transient receptor potential ankyrin (TRPA)-1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if eugenol and carvacrol activate nociceptive primary afferent and higher order trigeminal neurons and enhance their heat-evoked responses, using calcium imaging of cultured trigeminal ganglion (TG) and dorsal root ganglion (DRG) neurons, and in vivo single-unit recordings in trigeminal subnucleus caudalis (Vc) of rats. Eugenol and carvacrol activated 20-30% of TG and 7-20% of DRG cells, the majority of which additionally responded to menthol, mustard oil and/or capsaicin. TG cell responses to innocuous (39°) and noxious (42 °C) heating were enhanced by eugenol and carvacrol. We identified dorsomedial Vc neurons responsive to noxious heating of the tongue in pentobarbital-anesthetized rats. Eugenol and carvacrol dose-dependently elicited desensitizing responses in 55% and 73% of heat-sensitive units, respectively. Responses to noxious heat were briefly enhanced by eugenol and carvacrol. Many eugenol- and carvacrol-responsive units also responded to menthol, cinnamaldehyde and capsaicin. These data support a peripheral site for eugenol and carvacrol to enhance warmth- and noxious heat-evoked responses of trigeminal neurons, and are consistent with the observation that these agonists briefly enhance warmth and heat pain on the human tongue.
Collapse
Affiliation(s)
- A H Klein
- Department of Neurobiology, Physiology and Behavior, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - C L Joe
- Department of Neurobiology, Physiology and Behavior, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - A Davoodi
- Department of Neurobiology, Physiology and Behavior, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - K Takechi
- Department of Neurobiology, Physiology and Behavior, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - M I Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - E Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
90
|
Gallic acid functions as a TRPA1 antagonist with relevant antinociceptive and antiedematogenic effects in mice. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:679-89. [PMID: 24722818 DOI: 10.1007/s00210-014-0978-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 03/30/2014] [Indexed: 12/17/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) has been identified as a relevant target for the development of novel analgesics. Gallic acid (GA) is a polyphenolic compound commonly found in green tea and various berries and possesses a wide range of biological activities. The goal of this study was to identify GA as a TRPA1 antagonist and observe its antinociceptive effects in different pain models. First, we evaluated the ability of GA to affect cinnamaldehyde-induced calcium influx. Then, we observed the antinociceptive and antiedematogenic effects of GA (3-100 mg/kg) oral administration after the intraplantar (i.pl.) injection of TRPA1 agonists (allyl isothiocyanate, cinnamaldehyde, or hydrogen peroxide-H2O2) in either an inflammatory pain model (carrageenan i.pl. injection) or a neuropathic pain model (chronic constriction injury) in male Swiss mice (25-35 g). GA reduced the calcium influx mediated by TRPA1 activation. Moreover, the oral administration of GA decreased the spontaneous nociception triggered by allyl isothiocyanate, cinnamaldehyde, and H2O2. Carrageenan-induced allodynia and edema were largely reduced by the pretreatment with GA. Moreover, the administration of GA was also capable of decreasing cold and mechanical allodynia in a neuropathic pain model. Finally, GA was absorbed after oral administration and did not produce any detectable side effects. In conclusion, we found that GA is a TRPA1 antagonist with antinociceptive properties in relevant models of clinical pain without detectable side effects, which makes it a good candidate for the treatment of painful conditions.
Collapse
|
91
|
Olsen R, Andersen H, Møller H, Eskelund P, Arendt-Nielsen L. Somatosensory and vasomotor manifestations of individual and combined stimulation of TRPM8 and TRPA1 using topical L-menthol andtrans-cinnamaldehyde in healthy volunteers. Eur J Pain 2014; 18:1333-42. [DOI: 10.1002/j.1532-2149.2014.494.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2014] [Indexed: 11/09/2022]
Affiliation(s)
- R.V. Olsen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - H.H. Andersen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - H.G. Møller
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - P.W. Eskelund
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - L. Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| |
Collapse
|
92
|
Teliban A, Bartsch F, Struck M, Baron R, Jänig W. Responses of intact and injured sural nerve fibers to cooling and menthol. J Neurophysiol 2014; 111:2071-83. [PMID: 24572095 DOI: 10.1152/jn.00287.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intact and injured cutaneous C-fibers in the rat sural nerve are cold sensitive, heat sensitive, and/or mechanosensitive. Cold-sensitive fibers are either low-threshold type 1 cold sensitive or high-threshold type 2 cold sensitive. The hypothesis was tested, in intact and injured afferent nerve fibers, that low-threshold cold-sensitive afferent nerve fibers are activated by the transient receptor potential melastatin 8 (TRPM8) agonist menthol, whereas high-threshold cold-sensitive C-fibers and cold-insensitive afferent nerve fibers are menthol insensitive. In anesthetized rats, activity was recorded from afferent nerve fibers in strands isolated from the sural nerve, which was either intact or crushed 6-12 days before the experiment distal to the recording site. In all, 77 functionally identified afferent C-fibers (30 intact fibers, 47 injured fibers) and 34 functionally characterized A-fibers (11 intact fibers, 23 injured fibers) were tested for their responses to menthol applied to their receptive fields either in the skin (10 or 20%) or in the nerve (4 or 8 mM). Menthol activated all intact (n = 12) and 90% of injured (n = 20/22) type 1 cold-sensitive C-fibers; it activated no intact type 2 cold-sensitive C-fibers (n = 7) and 1/11 injured type 2 cold-sensitive C-fibers. Neither intact nor injured heat- and/or mechanosensitive cold-insensitive C-fibers (n = 25) and almost no A-fibers (n = 2/34) were activated by menthol. These results strongly argue that cutaneous type 1 cold-sensitive afferent fibers are nonnociceptive cold fibers that use the TRPM8 transduction channel.
Collapse
Affiliation(s)
- Alina Teliban
- Physiologisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and
| | - Fabian Bartsch
- Physiologisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and
| | - Marek Struck
- Physiologisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Wilfrid Jänig
- Physiologisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and
| |
Collapse
|
93
|
Alvarez-Collazo J, Alonso-Carbajo L, López-Medina AI, Alpizar YA, Tajada S, Nilius B, Voets T, López-López JR, Talavera K, Pérez-García MT, Alvarez JL. Cinnamaldehyde inhibits L-type calcium channels in mouse ventricular cardiomyocytes and vascular smooth muscle cells. Pflugers Arch 2014; 466:2089-99. [PMID: 24563220 DOI: 10.1007/s00424-014-1472-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 02/01/2023]
Abstract
Cinnamaldehyde (CA), a major component of cinnamon, is known to have important actions in the cardiovascular system, including vasorelaxation and decrease in blood pressure. Although CA-induced activation of the chemosensory cation channel TRPA1 seems to be involved in these phenomena, it has been shown that genetic ablation of Trpa1 is insufficient to abolish CA effects. Here, we confirm that CA relaxes rat aortic rings and report that it has negative inotropic and chronotropic effects on isolated mouse hearts. Considering the major role of L-type Ca(2+) channels in the control of the vascular tone and cardiac contraction, we used whole-cell patch-clamp to test whether CA affects L-type Ca(2+) currents in mouse ventricular cardiomyocytes (VCM, with Ca(2+) as charge carrier) and in mesenteric artery smooth muscle cells (VSMC, with Ba(2+) as charge carrier). We found that CA inhibited L-type currents in both cell types in a concentration-dependent manner, with little voltage-dependent effects. However, CA was more potent in VCM than in VSMC and caused opposite effects on the rate of inactivation. We found these divergences to be at least in part due to the use of different charge carriers. We conclude that CA inhibits L-type Ca(2+) channels and that this effect may contribute to its vasorelaxing action. Importantly, our results demonstrate that TRPA1 is not a specific target of CA and indicate that the inhibition of voltage-gated Ca(2+) channels should be taken into account when using CA to probe the pathophysiological roles of TRPA1.
Collapse
Affiliation(s)
- Julio Alvarez-Collazo
- Laboratorio de Electrofisiología, Instituto de Cardiología y Cirugía Cardiovascular, Habana, Cuba
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Involvement of transient receptor potential melastatin-8 (TRPM8) in menthol-induced calcium entry, reactive oxygen species production and cell death in rheumatoid arthritis rat synovial fibroblasts. Eur J Pharmacol 2014; 725:1-9. [PMID: 24440691 DOI: 10.1016/j.ejphar.2014.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 01/10/2023]
|
95
|
Abstract
The use of medicinal plants or other naturally derived products to relieve illness can be traced back over several millennia, and these natural products are still extensively used nowadays. Studies on natural products have, over the years, enormously contributed to the development of therapeutic drugs used in modern medicine. By means of the use of these substances as selective agonists, antagonists, enzyme inhibitors or activators, it has been possible to understand the complex function of many relevant targets. For instance, in an attempt to understand how pepper species evoke hot and painful actions, the pungent and active constituent capsaicin (from Capsicum sp.) was isolated in 1846 and the receptor for the biological actions of capsaicin was cloned in 1997, which is now known as TRPV1 (transient receptor potential vanilloid 1). Thus, TRPV1 agonists and antagonists have currently been tested in order to find new drug classes to treat different disorders. Indeed, the transient receptor potential (TRP) proteins are targets for several natural compounds, and antagonists of TRPs have been synthesised based on the knowledge of naturally derived products. In this context, this chapter focuses on naturally derived compounds (from plants and animals) that are reported to be able to modulate TRP channels. To clarify and make the understanding of the modulatory effects of natural compounds on TRPs easier, this chapter is divided into groups according to TRP subfamilies: TRPV (TRP vanilloid), TRPA (TRP ankyrin), TRPM (TRP melastatin), TRPC (TRP canonical) and TRPP (TRP polycystin). A general overview on the naturally derived compounds that modulate TRPs is depicted in Table 1.
Collapse
Affiliation(s)
- Flavia Carla Meotti
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | | | | |
Collapse
|
96
|
Abstract
The transient receptor potential ankyrin subtype 1 protein (TRPA1) is a nonselective cation channel permeable to Ca(2+), Na(+), and K(+). TRPA1 is a promiscuous chemical nocisensor that is also involved in noxious cold and mechanical sensation. It is present in a subpopulation of Aδ- and C-fiber nociceptive sensory neurons as well as in other sensory cells including epithelial cells. In primary sensory neurons, Ca(2+) and Na(+) flowing through TRPA1 into the cell cause membrane depolarization, action potential discharge, and neurotransmitter release both at peripheral and central neural projections. In addition to being activated by cysteine and lysine reactive electrophiles and oxidants, TRPA1 is indirectly activated by pro-inflammatory agents via the phospholipase C signaling pathway, in which cytosolic Ca(2+) is an important regulator of channel gating. The finding that non-electrophilic compounds, including menthol and cannabinoids, activate TRPA1 may provide templates for the design of non-tissue damaging activators to fine-tune the activity of TRPA1 and raises the possibility that endogenous ligands sharing binding sites with such non-electrophiles exist and regulate TRPA1 channel activity. TRPA1 is promising as a drug target for novel treatments of pain, itch, and sensory hyperreactivity in visceral organs including the airways, bladder, and gastrointestinal tract.
Collapse
Affiliation(s)
- Peter M Zygmunt
- Clinical and Experimental Pharmacology, Clinical Chemistry, Department of Laboratory Medicine, Lund University, Skåne University Hospital, SE-221 85, Lund, Sweden,
| | | |
Collapse
|
97
|
Ashoor A, Nordman JC, Veltri D, Yang KHS, Shuba Y, Al Kury L, Sadek B, Howarth FC, Shehu A, Kabbani N, Oz M. Menthol inhibits 5-HT3 receptor-mediated currents. J Pharmacol Exp Ther 2013; 347:398-409. [PMID: 23965380 DOI: 10.1124/jpet.113.203976] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The effects of alcohol monoterpene menthol, a major active ingredient of the peppermint plant, were tested on the function of human 5-hydroxytryptamine type 3 (5-HT3) receptors expressed in Xenopus laevis oocytes. 5-HT (1 μM)-evoked currents recorded by two-electrode voltage-clamp technique were reversibly inhibited by menthol in a concentration-dependent (IC50 = 163 μM) manner. The effects of menthol developed gradually, reaching a steady-state level within 10-15 minutes and did not involve G-proteins, since GTPγS activity remained unaltered and the effect of menthol was not sensitive to pertussis toxin pretreatment. The actions of menthol were not stereoselective as (-), (+), and racemic menthol inhibited 5-HT3 receptor-mediated currents to the same extent. Menthol inhibition was not altered by intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid injections and transmembrane potential changes. The maximum inhibition observed for menthol was not reversed by increasing concentrations of 5-HT. Furthermore, specific binding of the 5-HT3 antagonist [(3)H]GR65630 was not altered in the presence of menthol (up to 1 mM), indicating that menthol acts as a noncompetitive antagonist of the 5-HT3 receptor. Finally, 5-HT3 receptor-mediated currents in acutely dissociated nodose ganglion neurons were also inhibited by menthol (100 μM). These data demonstrate that menthol, at pharmacologically relevant concentrations, is an allosteric inhibitor of 5-HT3 receptors.
Collapse
Affiliation(s)
- Abrar Ashoor
- Laboratory of Functional Lipidomics, Departments of Pharmacology (A.A., L.A.K., B.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Molecular Neuroscience (J.C.N., N.K.), School of Systems Biology (D.V.), and Department of Computer Science (A.S.), George Mason University, Fairfax, Virginia; International Center of Molecular Physiology of the National Academy of Sciences of Ukraine, Kiev, Ukraine (Y.S.); and Department of Biological Sciences, Schmid College of Science and Engineering, Chapman University, Orange, California (K.-H.S.Y.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Koivisto A, Chapman H, Jalava N, Korjamo T, Saarnilehto M, Lindstedt K, Pertovaara A. TRPA1: a transducer and amplifier of pain and inflammation. Basic Clin Pharmacol Toxicol 2013; 114:50-5. [PMID: 24102997 DOI: 10.1111/bcpt.12138] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/10/2013] [Indexed: 12/01/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) ion channel on peripheral terminals of nociceptive primary afferent nerve fibres contributes to the transduction of noxious stimuli to electrical signals, while on central endings in the spinal dorsal horn, it amplifies transmission to spinal interneurons and projection neurons. The centrally propagating nociceptive signal that is induced and amplified by TRPA1 not only elicits pain sensation but also contributes to peripheral neurogenic inflammation through a peripheral axon reflex or a centrally mediated back propagating dorsal root reflex that releases vasoactive agents from sensory neurons in the periphery. Endogenous TRPA1 agonists that are generated under various pathophysiological conditions both in the periphery and in the spinal cord have TRPA1-mediated pro-nociceptive and pro-inflammatory effects. Among endogenous TRPA1 agonists that have been shown to play a role in the pathogenesis of pain and inflammatory conditions are, for example, methylglyoxal, 4-hydroxynonenal, 12-lipoxygenase-derived hepoxilin A3, 5,6-epoxyeicosatrienoic acid and reactive oxygen species, while mustard oil and cinnamaldehyde are most commonly used exogenous TRPA1 agonists in experimental studies. Among selective TRPA1 antagonists are HC-030031, A-967079, AP-14 and Chembridge-5861528. Recent evidence indicates that TRPA1 plays a role also in transition of acute to chronic pain. Due to its location on a subpopulation of pain-mediating primary afferent nerve fibres, blocking the TRPA1 channel is expected to have antinociceptive, antiallodynic and anti-inflammatory effects.
Collapse
|
99
|
Isoxazole derivatives as potent transient receptor potential melastatin type 8 (TRPM8) agonists. Eur J Med Chem 2013; 69:659-69. [PMID: 24095758 DOI: 10.1016/j.ejmech.2013.08.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/20/2013] [Accepted: 08/25/2013] [Indexed: 11/22/2022]
Abstract
Modulation of the transient receptor potential melastatin type-8 (TRPM8), the receptor for menthol acting as the major sensor for peripheral innocuous cool temperatures, has several important applications in pharmaceutical, food and cosmetic industries. In the present study, we designed 12 isoxazole derivatives and tested their pharmacological properties both in F11 sensory neurons in vitro, and in an in vivo model of cold allodynia. In F11 sensory neurons, single-cell Ca(2+)-imaging experiments revealed that, when compared to menthol, some newly-synthesized compounds were up to 200-fold more potent, though none of them showed an increased efficacy. Some isoxazole derivatives potentiated allodynic responses elicited by acetone when administered to rats subjected to sciatic nerve ligation; when compared to menthol, these compounds were efficacious at earlier (0-2 min) but not later (7-9 or 14-16 min) time points. Docking experiments performed in a human TRPM8 receptor model revealed that newly-synthesized compounds might adopt two possible conformations, thereby allowing to distinguish "menthol-like" compounds (characterized by high efficacy/low potency), and "icillin-like" compounds (with high potency/low efficacy). Collectively, these data provide rationale structure-activity relationships for isoxazole derivatives acting as TRPM8 agonists, and suggest their potential usefulness for cold-evoked analgesia.
Collapse
|
100
|
Tsagareli MG, Nozadze IR, Gurtskaia GP, Carstens MI, Tsiklauri NJ, Carstens EE. Behavioral and Electrophysiological Study of Thermal and Mechanical Pain Modulation by TRP Channel Agonists. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9377-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|