51
|
Toprak O, Uzum A, Cirit M, Esi E, Inci A, Ersoy R, Tanrisev M, Ok E, Franco B. Oral-facial-digital syndrome type 1, Caroli's disease and cystic renal disease. Nephrol Dial Transplant 2005; 21:1705-9. [PMID: 16384823 DOI: 10.1093/ndt/gfk013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Omer Toprak
- Department of Nephrology, Medical School of Ege University, Izmir, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Marcucci G, Baldus CD, Ruppert AS, Radmacher MD, Mrózek K, Whitman SP, Kolitz JE, Edwards CG, Vardiman JW, Powell BL, Baer MR, Moore JO, Perrotti D, Caligiuri MA, Carroll AJ, Larson RA, de la Chapelle A, Bloomfield CD. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J Clin Oncol 2005; 23:9234-42. [PMID: 16275934 DOI: 10.1200/jco.2005.03.6137] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To test the prognostic significance of ETS-related gene (ERG) expression in cytogenetically normal primary acute myeloid leukemia (AML). PATIENTS AND METHODS Pretreatment blood samples from 84 cytogenetically normal AML patients aged less than 60 years, who were characterized for BAALC expression, FLT3 internal tandem duplication (ITD), and MLL partial tandem duplication (PTD) and uniformly treated on Cancer and Leukemia Group B 9621 protocol, were analyzed for ERG expression by real-time reverse transcriptase polymerase chain reaction. Patients were divided into quartiles according to ERG levels and were compared for clinical outcome. High-density oligonucleotide arrays were used to identify genes differentially expressed between high and low ERG expressers. RESULTS With a median follow-up of 5.7 years, patients with the upper 25% of ERG expression values had a worse cumulative incidence of relapse (CIR; P < .001) and overall survival (OS; P = .011) than the remaining patients. In a multivariable analysis, high ERG expression (P < .001) and the presence of MLL PTD (P = .027) predicted worse CIR. With regard to OS, an interaction was observed between expression of ERG and BAALC (P = .013), with ERG overexpression predicting shorter survival only in low BAALC expressers (P = .002). ERG overexpression was an independent prognostic factor even when the unfavorable group of FLT3 ITD patients lacking an FLT3 wild-type allele was included. High ERG expression was associated with upregulation of 112 expressed-sequenced tags and named genes, many of which are involved in cell proliferation, differentiation, and apoptosis. CONCLUSION ERG overexpression in AML patients with normal cytogenetics predicts an adverse clinical outcome and seems to be associated with a specific molecular signature.
Collapse
Affiliation(s)
- Guido Marcucci
- Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Keller LC, Romijn EP, Zamora I, Yates JR, Marshall WF. Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr Biol 2005; 15:1090-8. [PMID: 15964273 DOI: 10.1016/j.cub.2005.05.024] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/06/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND The centriole is one of the most enigmatic organelles in the cell. Centrioles are cylindrical, microtubule-based barrels found in the core of the centrosome. Centrioles also act as basal bodies during interphase to nucleate the assembly of cilia and flagella. There are currently only a handful of known centriole proteins. RESULTS We used mass-spectrometry-based MudPIT (multidimensional protein identification technology) to identify the protein composition of basal bodies (centrioles) isolated from the green alga Chlamydomonas reinhardtii. This analysis detected the majority of known centriole proteins, including centrin, epsilon tubulin, and the cartwheel protein BLD10p. By combining proteomic data with information about gene expression and comparative genomics, we identified 45 cross-validated centriole candidate proteins in two classes. Members of the first class of proteins (BUG1-BUG27) are encoded by genes whose expression correlates with flagellar assembly and which therefore may play a role in ciliogenesis-related functions of basal bodies. Members of the second class (POC1-POC18) are implicated by comparative-genomics and -proteomics studies to be conserved components of the centriole. We confirmed centriolar localization for the human homologs of four candidate proteins. Three of the cross-validated centriole candidate proteins are encoded by orthologs of genes (OFD1, NPHP-4, and PACRG) implicated in mammalian ciliary function and disease, suggesting that oral-facial-digital syndrome and nephronophthisis may involve a dysfunction of centrioles and/or basal bodies. CONCLUSIONS By analyzing isolated Chlamydomonas basal bodies, we have been able to obtain the first reported proteomic analysis of the centriole.
Collapse
Affiliation(s)
- Lani C Keller
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
54
|
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is one of the most common human monogenic diseases with an incidence of 1:400 to 1:1000. It is characterized by the progressive development and enlargement of focal cysts in both kidneys, typically resulting in end-stage renal disease (ESRD) by the fifth decade. The cystogenic process is highly complex with a cellular phenotype consistent with "dedifferentiation" (i.e., a high proliferative rate, increased apoptosis, altered protein sorting, changed secretory characteristics, and disorganization of the extracellular matrix). Although cystic renal disease is the major cause of morbidity, the occurrence of nonrenal cysts, most notably in the liver (occasionally resulting in clinically significant polycystic liver disease) and the increased prevalence of other abnormalities including intracranial aneurysms, indicate that ADPKD is a systemic disorder. Following the identification of the first ADPKD gene, PKD1, 10 years ago and PKD2 2 years later, considerable progress has been made in defining the etiology and understanding the pathogenesis of this disorder, knowledge that is now leading to the development of several promising new therapies. The purpose of this review is to summarize our current state of knowledge as to the structure and function of the PKD1 and PKD2 proteins, polycystin-1 and -2, respectively, and explore how mutation at these loci results in the spectrum of changes seen in ADPKD.
Collapse
Affiliation(s)
- Albert C M Ong
- Academic Nephrology Unit, Sheffield Kidney Institute, Division of Clinical Sciences (North), University of Sheffield, Sheffield, United Kingdom.
| | | |
Collapse
|
55
|
W C, PX Y, BM L, RD C, DL M, RH M. Anorexia and Cachexia in Renal Failure—Is Leptin the Culprit? J Am Soc Nephrol 2005. [DOI: 10.1681/asn.2005050619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
56
|
Ward HH, Wang J, Phillips C. Analysis of multiple Invs transcripts in mouse and MDCK cells. Genomics 2005; 84:991-1001. [PMID: 15533716 DOI: 10.1016/j.ygeno.2004.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 07/19/2004] [Accepted: 08/03/2004] [Indexed: 01/05/2023]
Abstract
Infantile nephronophthisis is associated with cystic kidneys, situs inversus, and INVS mutations. The function of the INVS product, inversin, is unknown but evidence suggests there are multiple inversin isoforms with differing molecular weights, cellular localization patterns, and binding partners. We used Northern blots, RT-PCR, and sequence analysis to identify alternative INVS transcripts. Northern blots probed with Invs cDNA detected four bands in normal mouse kidney. RT-PCR of mouse kidney RNA revealed Invs transcripts with skipping of exon 5, 11, or 13. We sequenced canine (MDCK-II cells) INVS and determined that the corresponding full-length protein shares identity with mouse (74%) and human (84%) inversin. Canine INVS produces a transcript that skips exon 12. Exon skips cause loss of inversin protein motifs, including ankyrin repeats, IQ domains, destruction boxes, and nuclear localization signals. Identification of INVS splice variants will help us determine which inversin protein motifs contribute to left-right asymmetry and kidney development.
Collapse
Affiliation(s)
- Heather H Ward
- Department of Pathology, Indiana University School of Medicine, 950 West Walnut, RII 202, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
57
|
Boucher C, Sandford R. Autosomal dominant polycystic kidney disease (ADPKD, MIM 173900, PKD1 and PKD2 genes, protein products known as polycystin-1 and polycystin-2). Eur J Hum Genet 2004; 12:347-54. [PMID: 14872199 DOI: 10.1038/sj.ejhg.5201162] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited nephropathy affecting over 1:1000 of the worldwide population. It is a systemic condition with frequent hepatic and cardiovascular manifestations in addition to the progressive development of renal cysts that eventually result in loss of renal function in the majority of affected individuals. The diagnosis of ADPKD is typically made using renal imaging despite the identification of mutations in PKD1 and PKD2 that account for virtually all cases. Mutations in PKD1 are associated with more severe clinical disease and earlier onset of renal failure. Most PKD gene mutations are loss of function and a 'two-hit' mechanism has been demonstrated underlying focal cyst formation. The protein products of the PKD genes, the polycystins, form a calcium-permeable ion channel complex that regulates the cell cycle and the function of the renal primary cilium. Abnormal cilial function is now thought to be the primary defect in several types of PKD including autosomal recessive polycystic kidney disease and represents a novel and exciting mechanism underlying a range of human diseases.
Collapse
Affiliation(s)
- Catherine Boucher
- Department of Medical Genetics, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
| | | |
Collapse
|
58
|
Abstract
The external surfaces of the human body, as well as its internal organs, constantly experience different kinds of mechanical stimulations. For example, tubular epithelial cells of the kidney are continuously exposed to a variety of mechanical forces, such as fluid flow shear stress within the lumen of th nephron. The majority of epithelial cells along the nephron, except intercalated cells, possess a primary cilium, an organelle projecting from the cell's apical surface into the luminal space. Despite its discovery over 100 years ago, the primary cilium's function continued to elude researchers for many decades. However, recent studies indicate that renal cilia have a sensory function. Studies on polycystic kidney disease (PKD) have identified many of the molecular players, which should help solve the mystery of how the renal cilium senses fluid flow. In this review, we will summarize the recent breakthroughs in PKD research and discuss the role(s) of the polycystin signaling complex in mediating mechanosensory function by the primary cilium of renal epithelium as well as of the embryonic node.
Collapse
Affiliation(s)
- Surya M Nauli
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
59
|
Baker JD, Adhikarakunnathu S, Kernan MJ. Mechanosensory-defective, male-sterile unc mutants identify a novel basal body protein required for ciliogenesis in Drosophila. Development 2004; 131:3411-22. [PMID: 15226257 DOI: 10.1242/dev.01229] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
uncoordinated (unc) mutants of Drosophila, which lack transduction in ciliated mechanosensory neurons, do not produce motile sperm. Both sensory and spermatogenesis defects are associated with disrupted ciliary structures: mutant sensory neurons have truncated cilia, and sensory neurons and spermatids show defects in axoneme ultrastructure. unc encodes a novel protein with coiled-coil segments and a LisH motif, which is expressed in type I sensory neurons and in the male germline - the only ciliogenic cells in the fly. A functional UNC-GFP fusion protein specifically localizes to both basal bodies in differentiating sensory neurons. In premeiotic spermatocytes it localizes to all four centrioles in early G2, remaining associated with them through meiosis and as they become the basal bodies for the elongating spermatid flagella. UNC is thus specifically required for normal ciliogenesis. Its localization is an early marker for the centriole-basal body transition, a central but enigmatic event in eukaryotic cell differentiation.
Collapse
Affiliation(s)
- James D Baker
- Department of Neurobiology and Behavior and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | | | | |
Collapse
|
60
|
Morisawa T, Yagi M, Surono A, Yokoyama N, Ohmori M, Terashi H, Matsuo M. Novel double-deletion mutations of the OFD1 gene creating multiple novel transcripts. Hum Genet 2004; 115:97-103. [PMID: 15221448 DOI: 10.1007/s00439-004-1139-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 04/21/2004] [Indexed: 10/26/2022]
Abstract
Oral-facial-digital syndrome type 1 (OFD1) is an X-linked dominant disease characterized by malformations of the face, oral cavity, and digits. Thus far, 18 small mutations in the OFD1 gene have been reported. Here, we describe, in one Japanese sporadic female OFD1 case, the presence of a novel pair of deletion mutations: a 4,094-bp deletion encompassing exon 7 to intron 9, and a 14-bp deletion in intron 9, both of which are present in her paternal X-chromosome. The first deletion, the largest known to affect OFD1, was revealed by identifying four novel transcripts that all lacked exons 7-9. The most likely cause of the double deletion is two unequal recombinations between homologous sequences. Identification of the 4,094-bp deletion was made possible only by analyzing OFD1 mRNA, underscoring the utility of mRNA analysis in the mutational analysis of OFD1.
Collapse
Affiliation(s)
- Takeshi Morisawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo, 650-0017, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
61
|
Shah MM, Sampogna RV, Sakurai H, Bush KT, Nigam SK. Branching morphogenesis and kidney disease. Development 2004; 131:1449-62. [PMID: 15023929 DOI: 10.1242/dev.01089] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Branching morphogenesis in the kidney is a tightly regulated, complex process and its disruption potentially can lead to a broad spectrum of diseases, ranging from rare hereditary syndromes to common conditions such as hypertension and chronic kidney failure. This review synthesizes data on branching during kidney development derived from in vitro and in vivo rodent studies and to apply them to human diseases. It discusses how the broad organization of molecular interactions during kidney development might provide a mechanistic framework for understanding disorders related to aberrant branching.
Collapse
Affiliation(s)
- Mita M Shah
- Department of Pediatrics, University of California, San Diego, CA 92093-0693, USA
| | | | | | | | | |
Collapse
|
62
|
Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 2003; 426:570-4. [PMID: 14654843 DOI: 10.1038/nature02166] [Citation(s) in RCA: 1022] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Accepted: 10/30/2003] [Indexed: 11/08/2022]
Abstract
The centrosome is the major microtubule-organizing centre of animal cells and through its influence on the cytoskeleton is involved in cell shape, polarity and motility. It also has a crucial function in cell division because it determines the poles of the mitotic spindle that segregates duplicated chromosomes between dividing cells. Despite the importance of this organelle to cell biology and more than 100 years of study, many aspects of its function remain enigmatic and its structure and composition are still largely unknown. We performed a mass-spectrometry-based proteomic analysis of human centrosomes in the interphase of the cell cycle by quantitatively profiling hundreds of proteins across several centrifugation fractions. True centrosomal proteins were revealed by both correlation with already known centrosomal proteins and in vivo localization. We identified and validated 23 novel components and identified 41 likely candidates as well as the vast majority of the known centrosomal proteins in a large background of nonspecific proteins. Protein correlation profiling permits the analysis of any multiprotein complex that can be enriched by fractionation but not purified to homogeneity.
Collapse
Affiliation(s)
- Jens S Andersen
- Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|