51
|
|
52
|
Gagliese L, Gauthier LR, Narain N, Freedman T. Pain, aging and dementia: Towards a biopsychosocial model. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:207-215. [PMID: 28947182 DOI: 10.1016/j.pnpbp.2017.09.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/30/2022]
Abstract
Dementia is a progressive disease associated with irreversible impairment and loss of cognitive abilities. About half of older people with dementia experience pain. In this paper, we propose that pain in older people with dementia can be conceptualized as the final result of the interaction of three heterogeneous phenomena, pain, aging, and dementia, which are created and influenced by the interactions of predisposing, lifelong, and current biopsychosocial factors. We review pain assessment in people with dementia using both self-report and observational/behavioral measures. We then review the biological/sensory, psychological (cognitive and affective) and social dimensions of pain in dementia. The available data suggest that dementia does not impact pain threshold or tolerance. To date, there is little research on the social dimension of pain in dementia. Changes in the affective domain in response to experimental pain have been contradictory with evidence supporting both increased and decreased unpleasantness and emotional responsiveness in people with dementia compared to healthy controls. Clinically, depression is a significant burden for older people with dementia and chronic pain. The relationship between pain and other neuropsychiatric symptoms is controversial, and there is insufficient evidence on which to base conclusions. Some of the most important dementia-related changes may arise in the cognitive domain, including impairments of semantic and episodic memory for pain, executive function, and pain anticipation. Changes in brain activation and interconnectivity support many of these conclusions. Despite methodological limitations, we conclude there are compelling preliminary data to support a biopsychosocial framework of pain and dementia. Future research directions, especially the need for improved assessment tools, are highlighted.
Collapse
Affiliation(s)
- Lucia Gagliese
- School of Kinesiology and Health Science, York University, 4700 Keele St., Toronto M3J 1P3, Canada; Department of Anesthesia & Pain Management, Toronto General Hospital, Canada; Department of Supportive Care, Princess Margaret Cancer Centre, Canada; Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, 200 Elizabeth St., Toronto M5G 2C5, Canada; Department of Anesthesia, Mount Sinai Hospital, 600 University Ave, Toronto M5G 1X5, Canada; Faculty of Medicine, University of Toronto, 1 King's College Cir #3172, Toronto M5S 1A8, Canada; Department of Psychiatry, Toronto General Hospital, Canada.
| | - Lynn R Gauthier
- Department of Family and Emergency Medicine, Faculty of Medicine, Université Laval, 1050 Avenue de la Médecine, Québec G1V 0A6, Canada; l'Équipe de recherche Michel-Sarrazin en oncologie psychosociale et soins palliatifs, Canada; CHU de Québec-Université Laval Research Center, Oncology Research Axis, Canada; Université Laval Cancer Research Center, 9 Rue McMahon, Québec G1R 3S3, Canada
| | - Nadine Narain
- Department of Anesthesia & Pain Management, Toronto General Hospital, Canada
| | - Tamlyn Freedman
- Department of Anesthesia & Pain Management, Toronto General Hospital, Canada
| |
Collapse
|
53
|
Intranasal oxytocin administration promotes emotional contagion and reduces aggression in a mouse model of callousness. Neuropharmacology 2018; 143:250-267. [DOI: 10.1016/j.neuropharm.2018.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 12/30/2022]
|
54
|
Lichtenberg NT, Lee B, Kashtelyan V, Chappa BS, Girma HT, Green EA, Kantor S, Lagowala DA, Myers MA, Potemri D, Pecukonis MG, Tesfay RT, Walters MS, Zhao AC, Blair RJR, Cheer JF, Roesch MR. Rat behavior and dopamine release are modulated by conspecific distress. eLife 2018; 7:e38090. [PMID: 30484770 PMCID: PMC6261252 DOI: 10.7554/elife.38090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/12/2018] [Indexed: 11/13/2022] Open
Abstract
Rats exhibit 'empathy' making them a model to understand the neural underpinnings of such behavior. We show data consistent with these findings, but also that behavior and dopamine (DA) release reflects subjective rather than objective evaluation of appetitive and aversive events that occur to another. We recorded DA release in two paradigms: one that involved cues predictive of unavoidable shock to the conspecific and another that allowed the rat to refrain from reward when there were harmful consequences to the conspecific. Behavior and DA reflected pro-social interactions in that DA suppression was reduced during cues that predicted shock in the presence of the conspecific and that DA release observed on self-avoidance trials was present when the conspecific was spared. However, DA also increased when the conspecific was shocked instead of the recording rat and DA release during conspecific avoidance trials was lower than when the rat avoided shock for itself.
Collapse
Affiliation(s)
| | - Brian Lee
- Department of PsychologyUniversity of MarylandCollege ParkUnited States
| | - Vadim Kashtelyan
- Department of PsychologyUniversity of MarylandCollege ParkUnited States
| | | | - Henok T Girma
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
| | - Elizabeth A Green
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
| | - Shir Kantor
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
| | - Dave A Lagowala
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
| | - Matthew A Myers
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
| | - Danielle Potemri
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
| | | | - Robel T Tesfay
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
| | - Michael S Walters
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
| | - Adam C Zhao
- Department of PsychologyUniversity of MarylandCollege ParkUnited States
| | - R James R Blair
- Center for Neurobehavioral ResearchBoys Town National Research HospitalBoys TownUnited States
| | - Joseph F Cheer
- Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreUnited States
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreUnited States
- Program in NeuroscienceUniversity of Maryland School of MedicineBaltimoreUnited States
| | - Matthew R Roesch
- Department of PsychologyUniversity of MarylandCollege ParkUnited States
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
- Program in Neuroscience and Cognitive ScienceUniversity of MarylandCollege ParkUnited States
| |
Collapse
|
55
|
Zaniboni CR, Pelarin V, Baptista-de-Souza D, Canto-de-Souza A. Empathy for Pain: Insula Inactivation and Systemic Treatment With Midazolam Reverses the Hyperalgesia Induced by Cohabitation With a Pair in Chronic Pain Condition. Front Behav Neurosci 2018; 12:278. [PMID: 30519165 PMCID: PMC6250997 DOI: 10.3389/fnbeh.2018.00278] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/29/2018] [Indexed: 01/10/2023] Open
Abstract
Empathy for pain is the ability to perceive and understand the pain in the other individual. Recent studies suggested that rodents have this social ability. GABAergic system has receptors in the brain structures involved in emotional processes as well as in the insular cortex. This area has been described as an important key in modulation of pain and empathy. The present study has investigated the role of insula and its Benzodiazepine-GABAA system on social modulation of pain induced by cohabiting with a mouse submitted to sciatic nerve constriction, a neuropathic pain model. The insular cortex function was assessed by the structure inactivation (Experiments 1 and 2); the role of GABA system was evaluated by systemic treatment of midazolam (MDZ 0.5, 1, and 2 mg/kg) (Experiment 3); and the role of GABAA receptors of insula were studied by bilateral MDZ (3 and 30 nmol/0.1 μl) microinjections in the structure (Experiment 4). Male Swiss mice were housed in groups or dyads. On dyads, after 14 days of cohabitation they were divided into two groups: cagemate nerve constriction and cagemate sham (CS). After 14 days of familiarity, cagemates were evaluated on the writhing test. For group-housed, insula inactivation did not change nociception. For dyad-housed, cohabiting with a mouse in chronic pain increased the nociceptive response and the insula inactivation has reverted this response. Systemic MDZ attenuated nociception and intra-insula MDZ did not alter it. Our results suggest that cohabitation with a pair in chronic pain induces hypernociception, insula possibly modulates this response and the GABA system is also possibly involved, but not its insular mechanisms.
Collapse
Affiliation(s)
- Caroline R Zaniboni
- Psychobiology Group, Department of Psychology, Center for Education and Human Sciences - Universidade Federal de São Carlos, São Carlos, Brazil.,Graduate Program in Psychology, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Vinícius Pelarin
- Psychobiology Group, Department of Psychology, Center for Education and Human Sciences - Universidade Federal de São Carlos, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences PIPGCF UFSCar, Universidade Estadual Paulista, São Carlos, Brazil
| | - Daniela Baptista-de-Souza
- Psychobiology Group, Department of Psychology, Center for Education and Human Sciences - Universidade Federal de São Carlos, São Carlos, Brazil.,Institute for Neuroscience and Behavior, Universidade de São Paulo Ribeirão Preto, Ribeirão Preto, Brazil
| | - Azair Canto-de-Souza
- Psychobiology Group, Department of Psychology, Center for Education and Human Sciences - Universidade Federal de São Carlos, São Carlos, Brazil.,Graduate Program in Psychology, Universidade Federal de São Carlos, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences PIPGCF UFSCar, Universidade Estadual Paulista, São Carlos, Brazil.,Institute for Neuroscience and Behavior, Universidade de São Paulo Ribeirão Preto, Ribeirão Preto, Brazil
| |
Collapse
|
56
|
Li CL, Yu Y, He T, Wang RR, Geng KW, Du R, Luo WJ, Wei N, Wang XL, Wang Y, Yang Y, Yu YQ, Chen J. Validating Rat Model of Empathy for Pain: Effects of Pain Expressions in Social Partners. Front Behav Neurosci 2018; 12:242. [PMID: 30386220 PMCID: PMC6199527 DOI: 10.3389/fnbeh.2018.00242] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/26/2018] [Indexed: 01/09/2023] Open
Abstract
Pain can be socially transferred between familiar rats due to empathic responses. To validate rat model of empathy for pain, effects of pain expressions in a cagemate demonstrator (CD) in pain on empathic pain responses in a naïve cagemate observer (CO) after 30 min priming dyadic social interactions (PDSI) were evaluated. The CD rats were prepared with four pain models: bee venom (BV), formalin, complete Freund's adjuvant (CFA), and spared nerve injury (SNI). Both BV and formalin tests are characterized by displayable and eye-identifiable spontaneous pain-related behaviors (SPRB) immediately after treatment, while CFA and SNI models are characterized by delayed occurrence of evoked pain hypersensitivity but with less eye-identifiable SPRB. After 30 min PDSI with a CD immediately after BV and formalin, respectively, the empathic mechanical pain hypersensitivity (EMPH) could be identified at both hind paws in CO rats. The BV—or formalin-induced EMPH in CO rats lasted for 4–5 h until full recovery. However, EMPH failed to develop in CO after socially interacting with a CD immediately after CFA, or 2 h after BV when SPRB completely disappeared. The CO's EMPH was partially relieved when socially interacting with an analgecized CD whose SPRB had been significantly suppressed. Moreover, repeated exposures to a CD in pain could enhance EMPH in CO. Finally, social transfer of pain hypersensitivity was also identified in CO who was being co-housed in pairs with a conspecific treated with CFA or SNI. The results suggest that development of EMPH in CO rats would be determined not only by extent of familiarity but also by visually identifiable pain expressions in the social partners during short period of PDSI. However, the visually unidentifiable pain can also be transferred to naïve cagemate when being co-housed in pairs with a distressed conspecific. In summary, the vicariously social contagion of pain between familiar rats is dependent upon not only expressions of pain in social partners but also the time that dyads spent in social communications. The rat model of empathy for pain is a highly stable, reproducible and valid model for studying the neural mechanisms of empathy in lower animals.
Collapse
Affiliation(s)
- Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Yang Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Ting He
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Rui-Rui Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Kai-Wen Geng
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Luo
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Na Wei
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Yang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Yao-Qing Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| |
Collapse
|
57
|
Tansley SN, Tuttle AH, Wu N, Tohyama S, Dossett K, Gerstein L, Ham B, Austin JS, Sotocinal SG, Mogil JS. Modulation of social behavior and dominance status by chronic pain in mice. GENES BRAIN AND BEHAVIOR 2018; 18:e12514. [DOI: 10.1111/gbb.12514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Shannon N. Tansley
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Alexander H. Tuttle
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Neil Wu
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Sarasa Tohyama
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Kimberly Dossett
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Lindsay Gerstein
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Boram Ham
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Jean-Sebastien Austin
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Susana G. Sotocinal
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Jeffrey S. Mogil
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| |
Collapse
|
58
|
Macrì S, Zoratto F, Chiarotti F, Laviola G. Can laboratory animals violate behavioural norms? Towards a preclinical model of conduct disorder. Neurosci Biobehav Rev 2018; 91:102-111. [DOI: 10.1016/j.neubiorev.2017.01.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/15/2016] [Accepted: 01/18/2017] [Indexed: 11/25/2022]
|
59
|
Mogil JS. Friends in pain: pain tolerance in a social network. Scand J Pain 2018; 18:343-344. [PMID: 29794276 DOI: 10.1515/sjpain-2018-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jeffrey S Mogil
- Departments of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada, Phone: +1 (514) 398-6085
| |
Collapse
|
60
|
Shepherd AJ, Cloud ME, Cao YQ, Mohapatra DP. Deficits in Burrowing Behaviors Are Associated With Mouse Models of Neuropathic but Not Inflammatory Pain or Migraine. Front Behav Neurosci 2018; 12:124. [PMID: 30002622 PMCID: PMC6031738 DOI: 10.3389/fnbeh.2018.00124] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/06/2018] [Indexed: 01/21/2023] Open
Abstract
Burrowing, or the removal of material from an enclosed tube, is emerging as a prominent means of testing changes in a voluntary behavior in rodent models of various pain states. Here, we report no significant differences between male and female mice in terms of burrowing performance, in a substantially shorter time frame than previous reports. We found that the color of the burrow tube affects the variability of burrowing performance when tested in a lit room, suggesting that light aversion is at least a partial driver of this behavior. Spared nerve injury (SNI; as a model of neuropathy) impairs burrowing performance and correlates with enhanced mechanical sensitivity as assessed by von Frey filaments, as well as being pharmacologically reversed by an analgesic, gabapentin. Loss of the SNI-induced burrowing deficit was observed with daily testing post-surgery, but not when the testing interval was increased to 5 days, suggesting a confounding effect of daily repeat testing in this paradigm. Intraplantar complete Freund’s adjuvant (as a model of inflammatory pain) and systemic nitroglycerin (as a model of migraine-like symptoms) administration did not induce any burrowing deficit, indicating that assessment of burrowing behavior may not be universally suitable for the detection of behavioral changes across all rodent pain models.
Collapse
Affiliation(s)
- Andrew J Shepherd
- Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Megan E Cloud
- Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Yu-Qing Cao
- Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Durga P Mohapatra
- Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|
61
|
Hayashi K, Ikemoto T, Ueno T, Arai YCP, Shimo K, Nishihara M, Suzuki S, Ushida T. Discordant Relationship Between Evaluation of Facial Expression and Subjective Pain Rating Due to the Low Pain Magnitude. Basic Clin Neurosci 2018; 9:43-50. [PMID: 29942439 PMCID: PMC6015640 DOI: 10.29252/nirp.bcn.9.1.43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Introduction Facial expression to pain is an important pain indicator; however, facial movements look unresponsive when perceiving mild pain. The present study investigates whether pain magnitude modulates the relationship between subjective pain rating and an observer's evaluation of facial expression. Methods Twelve healthy volunteers were recruited to obtain 108 samples for pain rating with Visual Analogue Scale (VAS). Subjects underwent three different mechanical painful stimuli (monofilament forces of 100 g, 300 g, and 600 g) over three sessions and their facial expressions were videotaped throughout all sessions. Three observers independently evaluated facial expression of the subjects with a four-point categorical scale (no pain, mild pain, moderate pain, and severe pain). The correlations between subjective pain ratings and the evaluation of facial expression were analyzed in dichotomous group which was low pain ratings (VAS<30), or high pain rating (VAS≥30). Results Subjective pain ratings was significantly correlated with the evaluation of facial expression in high pain ratings, however no correlation was found between them in mild pain ratings. In mild pain ratings, most of the subjects (78%) were rated as no pain by observers, despite the fact that subjects reported pain. Conclusion The results suggest that the evaluation of facial expression of pain was difficult for the observer to detect pain severity when the subjects feel mild pain.
Collapse
Affiliation(s)
- Kazuhiro Hayashi
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan.,Department of Rehabilitation, Nagoya University Hospital, Nagoya, Japan
| | - Tatsunori Ikemoto
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan.,Institute of Physical Fitness Sports Medicine and Rehabilitation, Aichi Medical University, Nagakute, Japan
| | - Takefumi Ueno
- National Hospital Organization, Hizen Psychiatric Center, Kyushu, Japan
| | | | - Kazuhiro Shimo
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan.,Institute of Physical Fitness Sports Medicine and Rehabilitation, Aichi Medical University, Nagakute, Japan
| | - Makoto Nishihara
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Shigeyuki Suzuki
- Program in Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Japan
| | - Takahiro Ushida
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan.,Institute of Physical Fitness Sports Medicine and Rehabilitation, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
62
|
Barbiani D, Camerone E, Benedetti F. What is the relative contribution of biological and psychosocial factors to the generation of hypoxia headache? Can J Pain 2018; 2:160-168. [PMID: 35005376 PMCID: PMC8730614 DOI: 10.1080/24740527.2018.1478224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 10/25/2022]
Abstract
BACKGROUND The biopsychosocial model claims that illness is generated by both biological and psychosocial factors. Accordingly, several studies have shown that both factors contribute to the generation of pain. AIMS The aim of the present study is to manipulate biological, psychological, and social factors in hypobaric hypoxia headache in order to understand their relative contribution to the generation of headache pain. METHODS Healthy subjects were subdivided into three groups and brought to our high-altitude labs for the assessment of hypoxia-induced headache, blood oxygen saturation (SO2), prostaglandins, and cortisol during the first 24 h after arrival. The first group did not undergo any manipulation. The second group (negative expectation) was told that severe headache would occur if SO2 dropped to less than 80% and their oximeters were set to display a saturation of 75%, even though real SO2 was much higher. The third group (negative expectation and social interaction) underwent the same manipulation as the second group, but these subjects spent the night together with people experiencing headache and insomnia. RESULTS Although none of the three groups differed significantly for SO2, the second group, compared to the first, experienced more severe headache and showed an increase in prostaglandins and cortisol. The third group, compared to the second group, showed a further increase of headache as well as of prostaglandin (PG) E2 and cortisol. CONCLUSIONS These findings indicate that biological, psychological, and social factors are additive not only in the generation of headache but also for the biochemical changes related to hypoxia.
Collapse
Affiliation(s)
- Diletta Barbiani
- Neuroscience Department, University of Turin Medical School, Turin, Italy
- Plateau Rosà Laboratories, Plateau Rosà, Italy/Switzerland
| | - Eleonora Camerone
- Neuroscience Department, University of Turin Medical School, Turin, Italy
- Plateau Rosà Laboratories, Plateau Rosà, Italy/Switzerland
- Institute of Psychiatry, Psychology & Neuroscience, King’s College, London, UK
| | - Fabrizio Benedetti
- Neuroscience Department, University of Turin Medical School, Turin, Italy
- Plateau Rosà Laboratories, Plateau Rosà, Italy/Switzerland
| |
Collapse
|
63
|
|
64
|
Laviola G, Zoratto F, Ingiosi D, Carito V, Huzard D, Fiore M, Macrì S. Low empathy-like behaviour in male mice associates with impaired sociability, emotional memory, physiological stress reactivity and variations in neurobiological regulations. PLoS One 2017; 12:e0188907. [PMID: 29200428 PMCID: PMC5714342 DOI: 10.1371/journal.pone.0188907] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/15/2017] [Indexed: 12/30/2022] Open
Abstract
Deficits in empathy have been proposed to constitute a hallmark of several psychiatric disturbances like conduct disorder, antisocial and narcissistic personality disorders. Limited sensitivity to punishment, shallow or deficient affect and reduced physiological reactivity to environmental stressors have been often reported to co-occur with limited empathy and contribute to the onset of antisocial phenotypes. Empathy in its simplest form (i.e. emotional contagion) is addressed in preclinical models through the evaluation of the social transmission of emotional states: mice exposed to a painful stimulus display a higher response if in the presence of a familiar individual experiencing a higher degree of discomfort, than in isolation. In the present study, we investigated whether a reduction of emotional contagion can be considered a predictor of reduced sociality, sensitivity to punishment and physiological stress reactivity. To this aim, we first evaluated emotional contagion in a group of Balb/cJ mice and then discretised their values in four quartiles. The upper (i.e. Emotional Contagion Prone, ECP) and the lower (i.e. Emotional Contagion Resistant, ECR) quartiles constituted the experimental groups. Our results indicate that mice in the lower quartile are characterized by reduced sociability, impaired memory of negative events and dampened hypothalamic-pituitary-adrenocortical reactivity to external stressors. Furthermore, in the absence of changes in oxytocin receptor density, we show that these mice exhibit elevated concentrations of oxytocin and vasopressin and reduced density of BDNF receptors in behaviourally-relevant brain areas. Thus, not only do present results translate to the preclinical investigation of psychiatric disturbances, but also they can contribute to the study of emotional contagion in terms of its adaptive significance.
Collapse
Affiliation(s)
- Giovanni Laviola
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità (ISS), Rome, Italy
- * E-mail:
| | - Francesca Zoratto
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Danilo Ingiosi
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Valentina Carito
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Rome, Italy
| | - Damien Huzard
- Laboratory of Behavioural Genetics, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Rome, Italy
| | - Simone Macrì
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| |
Collapse
|
65
|
Hestehave S, Munro G, Christensen R, Brønnum Pedersen T, Arvastson L, Hougaard P, Abelson KSP. Is there a reasonable excuse for not providing post-operative analgesia when using animal models of peripheral neuropathic pain for research purposes? PLoS One 2017; 12:e0188113. [PMID: 29166664 PMCID: PMC5699849 DOI: 10.1371/journal.pone.0188113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/01/2017] [Indexed: 12/26/2022] Open
Abstract
Introduction The induction of neuropathic pain-like behaviors in rodents often requires surgical intervention. This engages acute nociceptive signaling events that contribute to pain and stress post-operatively that from a welfare perspective demands peri-operative analgesic treatment. However, a large number of researchers avoid providing such care based largely on anecdotal opinions that it might interfere with model pathophysiology in the longer term. Objectives To investigate effects of various peri-operative analgesic regimens encapsulating different mechanisms and duration of action, on the development of post-operative stress/welfare and pain-like behaviors in the Spared Nerve Injury (SNI)-model of neuropathic pain. Methods Starting on the day of surgery, male Sprague-Dawley rats were administered either vehicle (s.c.), carprofen (5.0mg/kg, s.c.), buprenorphine (0.1mg/kg s.c. or 1.0mg/kg p.o. in Nutella®), lidocaine/bupivacaine mixture (local irrigation) or a combination of all analgesics, with coverage from a single administration, and up to 72 hours. Post-operative stress and recovery were assessed using welfare parameters, bodyweight, food-consumption, and fecal corticosterone, and hindpaw mechanical allodynia was tested for assessing development of neuropathic pain for 28 days. Results None of the analgesic regimes compromised the development of mechanical allodynia. Unexpectedly, the combined treatment with 0.1mg/kg s.c. buprenorphine and carprofen for 72 hours and local irrigation with lidocaine/bupivacaine, caused severe adverse effects with peritonitis. This was not observed when the combination included a lower dose of buprenorphine (0.05mg/kg, s.c.), or when buprenorphine was administered alone (0.1mg/kg s.c. or 1.0mg/kg p.o.) for 72 hours. An elevated rate of wound dehiscence was observed especially in the combined treatment groups, underlining the need for balanced analgesia. Repeated buprenorphine injections had positive effects on body weight the first day after surgery, but depressive effects on food intake and body weight later during the first week. Conclusion Post-operative analgesia does not appear to affect established neuropathic hypersensitivity outcome in the SNI model.
Collapse
Affiliation(s)
- Sara Hestehave
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurodegeneration In Vivo, H. Lundbeck A/S, Valby, Denmark
- * E-mail:
| | - Gordon Munro
- Department of Neurodegeneration In Vivo, H. Lundbeck A/S, Valby, Denmark
- Department of Neurology, Danish Headache Center, Glostrup Research Institute, Glostrup, Denmark
| | - Rie Christensen
- Department of Neurodegeneration In Vivo, H. Lundbeck A/S, Valby, Denmark
| | | | | | | | - Klas S. P. Abelson
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
66
|
Lü YF, Yang Y, Li CL, Wang Y, Li Z, Chen J. The Locus Coeruleus-Norepinephrine System Mediates Empathy for Pain through Selective Up-Regulation of P2X3 Receptor in Dorsal Root Ganglia in Rats. Front Neural Circuits 2017; 11:66. [PMID: 28979194 PMCID: PMC5611373 DOI: 10.3389/fncir.2017.00066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/01/2017] [Indexed: 11/13/2022] Open
Abstract
Empathy for pain (vicariously felt pain), an ability to feel, recognize, understand and share the painful emotions of others, has been gradually accepted to be a common identity in both humans and rodents, however, the underlying neural and molecular mechanisms are largely unknown. Recently, we have developed a rat model of empathy for pain in which pain can be transferred from a cagemate demonstrator (CD) in pain to a naïve cagemate observer (CO) after 30 min dyadic priming social interaction. The naïve CO rats display both mechanical pain hypersensitivity (hyperalgesia) and enhanced spinal nociception. Chemical lesions of bilateral medial prefrontal cortex (mPFC) abolish the empathic pain response completely, suggesting existence of a top-down facilitation system in production of empathy for pain. However, the social transfer of pain was not observed in non-cagemate observer (NCO) after dyadic social interaction with a non-cagemate demonstrator (NCD) in pain. Here we showed that dyadic social interaction with a painful CD resulted in elevation of circulating norepinephrine (NE) and increased neuronal activity in the locus coeruleus (LC) in the CO rats. Meanwhile, CO rats also had over-expression of P2X3, but not TRPV1, in the dorsal root ganglia (DRG). Chemical lesion of the LC-NE neurons by systemic DSP-4 and pharmacological inhibition of central synaptic release of NE by clonidine completely abolished increase in circulating NE and P2X3 receptor expression, as well as the sympathetically-maintained development of empathic mechanical hyperalgesia. However, in the NCO rats, neither the LC-NE neuronal activity nor the P2X3 receptor expression was altered after dyadic social interaction with a painful NCD although the circulating corticosterone and NE were elevated. Finally, in the periphery, both P2X3 receptor and α1 adrenergic receptor were found to be involved in the development of empathic mechanical hyperalgesia. Taken together with our previous results, empathy for pain observed in the CO rats is likely to be mediated by activation of the top-down mPFC-LC/NE-sympathoadrenomedullary (SAM) system that further up-regulates P2X3 receptors in the periphery, however, social stress observed in the NCO rats is mediated by activation of both hypothalamic-pituitary-adrenocortical axis and SAM axis.
Collapse
Affiliation(s)
- Yun-Fei Lü
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, PLAXi'an, China.,Anesthesia and Operation Center, 302 Military HospitalBeijing, China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, PLAXi'an, China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, PLAXi'an, China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, PLAXi'an, China
| | - Zhen Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, PLAXi'an, China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, PLAXi'an, China.,Beijing Institute for Brain DisordersBeijing, China
| |
Collapse
|
67
|
Sheahan TD, Siuda ER, Bruchas MR, Shepherd AJ, Mohapatra DP, Gereau RW, Golden JP. Inflammation and nerve injury minimally affect mouse voluntary behaviors proposed as indicators of pain. NEUROBIOLOGY OF PAIN 2017; 2:1-12. [PMID: 29075674 PMCID: PMC5653321 DOI: 10.1016/j.ynpai.2017.09.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inflammation suppressed wheel running and locomotion, and impaired gait in mice. Nerve injury gave rise to gait deficits that are likely motor-, not pain-related. Changes in wheel running or gait were unrelated to the degree of hypersensitivity. Neither inflammation nor nerve injury altered social interactions or anxiety-like behavior.
It has been suggested that the lack of rodent behavioral assays that represent the complexities of human pain contributes to the poor translational record of basic pain research findings. Clinically, chronic pain interferes with patient mobility and physical/social activities, and increases anxiety symptoms, in turn negatively impacting quality of life. To determine whether these behaviors are similarly influenced by putative pain manipulations in rodents, we systematically evaluated wheel running, locomotion, gait, social interaction, and anxiety-like behavior in models of inflammation and nerve injury in adult C57BL6/J male mice. We demonstrate that inflammation and nerve injury differentially affect voluntary behaviors while mice are hypersensitive to mechanical stimuli. Bilateral Complete Freund’s Adjuvant (CFA)-induced inflammation transiently suppressed wheel running and locomotion and also induced gait deficits. In contrast, spared nerve injury (SNI) altered gait and impaired gross motor coordination. SNI-induced gait changes were not reversed by the analgesic PD123319, an angiotensin II type 2 receptor antagonist, and are therefore likely to be motor-related rather than pain-related. Neither CFA nor SNI significantly altered social interaction or elicited general anxiety-like behavior. Our findings suggest that in contrast to humans, mobility and physical/social activities are minimally altered, if at all, in mice following inflammation or nerve injury.
Collapse
Affiliation(s)
- Tayler D Sheahan
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America.,Washington University Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Edward R Siuda
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America.,Washington University Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael R Bruchas
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew J Shepherd
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Durga P Mohapatra
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Judith P Golden
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
68
|
Anterior Cingulate Cortex Contributes to Alcohol Withdrawal- Induced and Socially Transferred Hyperalgesia. eNeuro 2017; 4:eN-NWR-0087-17. [PMID: 28785727 PMCID: PMC5526654 DOI: 10.1523/eneuro.0087-17.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/29/2017] [Accepted: 05/18/2017] [Indexed: 01/10/2023] Open
Abstract
Pain is often described as a “biopsychosocial” process, yet social influences on pain and underlying neural mechanisms are only now receiving significant experimental attention. Expression of pain by one individual can be communicated to nearby individuals by auditory, visual, and olfactory cues. Conversely, the perception of another’s pain can lead to physiological and behavioral changes in the observer, which can include induction of hyperalgesia in “bystanders” exposed to “primary” conspecifics in which hyperalgesia has been induced directly. The current studies were designed to investigate the neural mechanisms responsible for the social transfer of hyperalgesia in bystander mice housed and tested with primary mice in which hyperalgesia was induced using withdrawal (WD) from voluntary alcohol consumption. Male C57BL/6J mice undergoing WD from a two-bottle choice voluntary alcohol-drinking procedure served as the primary mice. Mice housed in the same room served as bystanders. Naïve, water-drinking controls were housed in a separate room. Immunohistochemical mapping identified significantly enhanced Fos immunoreactivity (Fos-ir) in the anterior cingulate cortex (ACC) and insula (INS) of bystander mice compared to naïve controls, and in the dorsal medial hypothalamus (DMH) of primary mice. Chemogenetic inactivation of the ACC but not primary somatosensory cortex reversed the expression of hyperalgesia in both primary and bystander mice. These studies point to an overlapping neural substrate for expression of socially transferred hyperalgesia and that expressed during alcohol WD.
Collapse
|
69
|
Schneider LE, Henley KY, Turner OA, Pat B, Niedzielko TL, Floyd CL. Application of the Rat Grimace Scale as a Marker of Supraspinal Pain Sensation after Cervical Spinal Cord Injury. J Neurotrauma 2017; 34:2982-2993. [PMID: 27998207 DOI: 10.1089/neu.2016.4665] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Experimental models of neuropathic pain (NP) typically rely on withdrawal responses to assess the presence of pain. Reflexive withdrawal responses to a stimulus are used to evaluate evoked pain and, as such, do not include the assessment of spontaneous NP nor evaluation of the affective and emotional consequences of pain in animal models. Additionally, withdrawal responses can be mediated by spinal cord reflexes and may not accurately indicate supraspinal pain sensation. This is especially true in models of traumatic spinal cord injury (SCI), wherein spastic syndrome, a motor disorder characterized by exaggeration of the stretch reflex that is secondary to hyperexcitability of the spinal reflex, can cause paroxysmal withdrawals not associated with NP sensation. Consequently, the aim of this study was to utilize an assessment of supraspinal pain sensation, the Rat Grimace Scale (RGS), to measure both spontaneous and evoked NP after a contusion SCI at cervical level 5 in adult male rats. Spontaneous and evoked pain were assessed using the RGS to score facial action units before and after the application of a stimulus, respectively. Rodents exhibited significantly higher RGS scores at week 5 post-injury as compared to baseline and laminectomy controls before the application of the stimulus, suggesting the presence of spontaneous NP. Additionally, there was a significant increase in RGS scores after the application of the acetone. These data suggest that the RGS can be used to assess spontaneous NP and determine the presence of evoked supraspinal pain sensation after experimental cervical SCI.
Collapse
Affiliation(s)
- Lonnie E Schneider
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kathryn Y Henley
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Omari A Turner
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Betty Pat
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Tracy L Niedzielko
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Candace L Floyd
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
70
|
Smeester BA, Lee JH, Beitz AJ. Influence of social interaction on nociceptive-induced changes in locomotor activity in a mouse model of acute inflammatory pain: Use of novel thermal assays. Brain Res Bull 2017; 134:47-54. [PMID: 28652168 DOI: 10.1016/j.brainresbull.2017.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/14/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022]
Abstract
Most acute and chronic animal models of pain rely heavily on reflexive assays for evaluating levels of nociception, which involves removing the animal from its normal social environment. Here, we examine and characterize the influence of social interactions on inflammatory pain-evoked changes in movement in two different mouse strains. To produce inflammatory nociception, we injected CFA bilaterally into the hind paws of Balb/c and C3H mice and then recorded exploratory locomotor activity using an automated detector system to first evaluate the effects of social behavior on nociception. Secondly, we determined if carprofen administration altered the effects of social behavior on nociceptive-evoked movement. This methodology was expanded to create a novel thermal activity assay to objectively measure the effect of heat and cold on CFA-evoked animal movement in paired animals. Paired Balb/c and C3H mice exhibited significant hyper-locomotion that lasted for 3h post-injection in Balb/c, but only 1h post-injection in C3H. Single Balb/c mice only showed increased activity for 1h post-injection, while single C3H mice showed no increase. This CFA-induced increase in activity in paired animals was highly inversely correlated with mechanical allodynia as measured using standard Von Frey filaments. Carprofen administration completely blocked this CFA-induced hyperlocomotor activity. Both heat and cold induced a significant increase in locomotor activity in paired mice injected with CFA, while having no effect on activity in control mice injected with saline. The results presented here indicate that social interactions greatly influence inflammatory pain-induced changes in locomotor activity and indicate that the use of movement-based assays to evaluate nociception in paired mice may provide an alternative and more sensitive method to quantify nociception and characterize novel analgesic effects over time in the context of social interactions in rodent models of pain.
Collapse
Affiliation(s)
- Branden A Smeester
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Ave, St. Paul, MN 55108, United States
| | - Jang-Hern Lee
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Ave, St. Paul, MN 55108, United States.
| |
Collapse
|
71
|
Chen J. Empathy for Distress in Humans and Rodents. Neurosci Bull 2017; 34:216-236. [PMID: 28493169 DOI: 10.1007/s12264-017-0135-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/01/2017] [Indexed: 01/10/2023] Open
Abstract
Empathy is traditionally thought to be a unique ability of humans to feel, understand, and share the emotional state of others. However, the notion has been greatly challenged by the emerging discoveries of empathy for pain or distress in rodents. Because empathy is believed to be fundamental to the formation of prosocial, altruistic, and even moral behaviors in social animals and humans, studies associated with decoding the neural circuits and unraveling the underlying molecular and neural mechanisms of empathy for pain or distress in rodents would be very important and encouraging. In this review, the author set out to outline and update the concept of empathy from the evolutionary point of view, and introduce up-to-date advances in the study of empathy and its neural correlates in both humans and rodents. Finally, the author highlights the perspectives and challenges for the further use of rodent models in the study of empathy for pain or distress.
Collapse
Affiliation(s)
- Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China. .,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China. .,Beijing Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
72
|
Blaker CL, Clarke EC, Little CB. Using mouse models to investigate the pathophysiology, treatment, and prevention of post-traumatic osteoarthritis. J Orthop Res 2017; 35:424-439. [PMID: 27312470 DOI: 10.1002/jor.23343] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is defined by its development after joint injury. Factors contributing to the risk of PTOA occurring, the rate of progression, and degree of associated disability in any individual, remain incompletely understood. What constitutes an "OA-inducing injury" is not defined. In line with advances in the traumatic brain injury field, we propose the scope of PTOA-inducing injuries be expanded to include not only those causing immediate structural damage and instability (Type I), but also those without initial instability/damage from moderate (Type II) or minor (Type III) loading severity. A review of the literature revealed this full spectrum of potential PTOA subtypes can be modeled in mice, with 27 Type I, 6 Type II, and 4 Type III models identified. Despite limitations due to cartilage anatomy, joint size, and bio-fluid availability, mice offer advantages as preclinical models to study PTOA, particularly genetically modified strains. Histopathology was the most common disease outcome, cartilage more frequently studied than bone or synovium, and meniscus and ligaments rarely evaluated. Other methods used to examine PTOA included gene expression, protein analysis, and imaging. Despite the major issues reported by patients being pain and biomechanical dysfunction, these were the least commonly measured outcomes in mouse models. Informative correlations of simultaneously measured disease outcomes in individual animals, was rarely done in any mouse PTOA model. This review has identified knowledge gaps that need to be addressed to increase understanding and improve prevention and management of PTOA. Preclinical mouse models play a critical role in these endeavors. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:424-439, 2017.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
73
|
Smith MM, Clarke EC, Little CB. Considerations for the design and execution of protocols for animal research and treatment to improve reproducibility and standardization: "DEPART well-prepared and ARRIVE safely". Osteoarthritis Cartilage 2017; 25:354-363. [PMID: 27816577 DOI: 10.1016/j.joca.2016.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/11/2016] [Accepted: 10/20/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To review the factors in experimental design that contribute to poor translation of pre-clinical research to therapies for patients with osteoarthritis (OA) and how this might be improved. METHODS Narrative review of the literature, and evaluation of the different stages of design conduct and analysis of studies using animal models of OA to define specific issues that might reduce quality of evidence and how this can be minimised. RESULTS Preventing bias and improving experimental rigour and reporting are important modifiable factors to improve translation from pre-clinical animal models to successful clinical trials of therapeutic agents. Despite publication and adoption by many journals of guidelines such as Animals in Research: Reporting In Vivo Experiments (ARRIVE), experimental animal studies published in leading rheumatology journals are still deficient in their reporting. In part, this may be caused by researchers first consulting these guidelines after the completion of experiments, at the time of publication. This review discusses factors that can (1) bias the outcome of experimental studies using animal models of osteoarthritis or (2) alter the quality of evidence for translation. We propose a checklist to consult prior to starting experiments; in the Design and Execution of Protocols for Animal Research and Treatment (DEPART). CONCLUSIONS Following DEPART during the design phase will enable completion of the ARRIVE checklist at the time of publication, and thus improve the quality of evidence for inclusion of experimental animal research in meta-analyses and systematic reviews: "DEPART well-prepared and ARRIVE safely".
Collapse
Affiliation(s)
- M M Smith
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute (University of Sydney), Level 10, Kolling Building, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - E C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute (University of Sydney), Level 10, Kolling Building, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute (University of Sydney), Level 10, Kolling Building, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| |
Collapse
|
74
|
|
75
|
Gallant NL, Hadjistavropoulos T. Experiencing Pain in the Presence of Others: A Structured Experimental Investigation of Older Adults. THE JOURNAL OF PAIN 2017; 18:456-467. [PMID: 28062310 DOI: 10.1016/j.jpain.2016.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 01/30/2023]
Abstract
The role of various forms of social support (including the mere presence of another person) in pain has been studied in children and younger adults, but parallel studies involving older persons have not been conducted. In this investigation, older adults (N = 100) took part in a series of experimental pain tasks in each of the following conditions: alone, in the presence of a stranger, and in the presence of a family member. Indices of pain (threshold, tolerance, intensity, unpleasantness, facial expressions) and facial expressions of emotion were analyzed. Facial expressions of pain and happiness were more prominent when a family member was present. In the presence of a stranger, pain was reported as less unpleasant and facial expressions of fear were more frequent. In examining sex differences, male participants reported higher pain tolerance and female participants displayed more prominent facial expressions of pain. Moreover, facial expressions of neutral states and happiness were more frequent among female participants, whereas facial expressions of anger were more frequent among male participants. Results show that the presence of others influences the experience and expression of pain in older persons. PERSPECTIVE We showed that the presence of others influences the experience and expression of pain in older adults. The presence of a family member increases nonverbal pain expressiveness whereas the presence of a stranger results in decreased self-reported pain unpleasantness.
Collapse
Affiliation(s)
- Natasha L Gallant
- Department of Psychology and Centre on Aging and Health, University of Regina, Regina, Saskatchewan, Canada
| | - Thomas Hadjistavropoulos
- Department of Psychology and Centre on Aging and Health, University of Regina, Regina, Saskatchewan, Canada.
| |
Collapse
|
76
|
Abstract
Predictions which invoke evolutionary mechanisms are hard to test. Agent-based modeling in artificial life offers a way to simulate behaviors and interactions in specific physical or social environments over many generations. The outcomes have implications for understanding adaptive value of behaviors in context. Pain-related behavior in animals is communicated to other animals that might protect or help, or might exploit or predate. An agent-based model simulated the effects of displaying or not displaying pain (expresser/nonexpresser strategies) when injured and of helping, ignoring, or exploiting another in pain (altruistic/nonaltruistic/selfish strategies). Agents modeled in MATLAB interacted at random while foraging (gaining energy); random injury interrupted foraging for a fixed time unless help from an altruistic agent, who paid an energy cost, speeded recovery. Environmental and social conditions also varied, and each model ran for 10,000 iterations. Findings were meaningful in that, in general, contingencies that evident from experimental work with a variety of mammals, over a few interactions, were replicated in the agent-based model after selection pressure over many generations. More energy-demanding expression of pain reduced its frequency in successive generations, and increasing injury frequency resulted in fewer expressers and altruists. Allowing exploitation of injured agents decreased expression of pain to near zero, but altruists remained. Decreasing costs or increasing benefits of helping hardly changed its frequency, whereas increasing interaction rate between injured agents and helpers diminished the benefits to both. Agent-based modeling allows simulation of complex behaviors and environmental pressures over evolutionary time.
Collapse
|
77
|
Ison SH, Clutton RE, Di Giminiani P, Rutherford KMD. A Review of Pain Assessment in Pigs. Front Vet Sci 2016; 3:108. [PMID: 27965968 PMCID: PMC5124671 DOI: 10.3389/fvets.2016.00108] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/15/2016] [Indexed: 11/13/2022] Open
Abstract
There is a moral obligation to minimize pain in pigs used for human benefit. In livestock production, pigs experience pain caused by management procedures, e.g., castration and tail docking, injuries from fighting or poor housing conditions, “management diseases” like mastitis or streptococcal meningitis, and at parturition. Pigs used in biomedical research undergo procedures that are regarded as painful in humans, but do not receive similar levels of analgesia, and pet pigs also experience potentially painful conditions. In all contexts, accurate pain assessment is a prerequisite in (a) the estimation of the welfare consequences of noxious interventions and (b) the development of more effective pain mitigation strategies. This narrative review identifies the sources of pain in pigs, discusses the various assessment measures currently available, and proposes directions for future investigation.
Collapse
Affiliation(s)
- Sarah H Ison
- Animal Behaviour and Welfare, Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK; Easter Bush Veterinary Centre, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - R Eddie Clutton
- Easter Bush Veterinary Centre, Royal (Dick) School of Veterinary Studies, The University of Edinburgh , Midlothian , UK
| | - Pierpaolo Di Giminiani
- Food and Rural Development, School of Agriculture, Newcastle University , Newcastle upon Tyne , UK
| | - Kenneth M D Rutherford
- Animal Behaviour and Welfare, Animal and Veterinary Sciences, Scotland's Rural College (SRUC) , Edinburgh , UK
| |
Collapse
|
78
|
Lakes EH, Allen KD. Gait analysis methods for rodent models of arthritic disorders: reviews and recommendations. Osteoarthritis Cartilage 2016; 24:1837-1849. [PMID: 26995111 PMCID: PMC5026889 DOI: 10.1016/j.joca.2016.03.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/01/2016] [Accepted: 03/10/2016] [Indexed: 02/02/2023]
Abstract
Gait analysis is a useful tool to understand behavioral changes in preclinical arthritis models. While observational scoring and spatiotemporal gait parameters are the most widely performed gait analyses in rodents, commercially available systems can now provide quantitative assessments of spatiotemporal patterns. However, inconsistencies remain between testing platforms, and laboratories often select different gait pattern descriptors to report in the literature. Rodent gait can also be described through kinetic and kinematic analyses, but systems to analyze rodent kinetics and kinematics are typically custom made and often require sensitive, custom equipment. While the use of rodent gait analysis rapidly expands, it is important to remember that, while rodent gait analysis is a relatively modern behavioral assay, the study of quadrupedal gait is not new. Nearly all gait parameters are correlated, and a collection of gait parameters is needed to understand a compensatory gait pattern used by the animal. As such, a change in a single gait parameter is unlikely to tell the full biomechanical story; and to effectively use gait analysis, one must consider how multiple different parameters contribute to an altered gait pattern. The goal of this article is to review rodent gait analysis techniques and provide recommendations on how to use these technologies in rodent arthritis models, including discussions on the strengths and limitations of observational scoring, spatiotemporal, kinetic, and kinematic measures. Recognizing rodent gait analysis is an evolving tool, we also provide technical recommendations we hope will improve the utility of these analyses in the future.
Collapse
Affiliation(s)
- Emily H. Lakes
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL,Institute for Cell & Tissue Science and Engineering, University of Florida, Gainesville, FL
| | - Kyle D. Allen
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL,Institute for Cell & Tissue Science and Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
79
|
Ferris LJ, Jetten J, Molenberghs P, Bastian B, Karnadewi F. Increased Pain Communication following Multiple Group Memberships Salience Leads to a Relative Reduction in Pain-Related Brain Activity. PLoS One 2016; 11:e0163117. [PMID: 27657917 PMCID: PMC5033402 DOI: 10.1371/journal.pone.0163117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/03/2016] [Indexed: 11/22/2022] Open
Abstract
Pain is a fundamental human experience that triggers a range of social and psychological responses. In this study, we present behavioral and fMRI data to examine the effect of multiple group memberships salience on reported and neural indices of pain. We found that participants expressed higher levels of pain when more social group memberships were salient. This is consistent with the notion that pain itself motivates people to communicate their pain, and more so when multiple psychological resources are salient. In addition, fMRI results reveal an interesting twist: when participants increased their pain reporting as group memberships increased (from one group to four), there was a corresponding relative reduction in dorsal anterior cingulate cortex and anterior insula activation. These results provide evidence for an adaptive response to pain: the more people make use of the social resources at their disposal when experiencing pain, the less pain areas are activated.
Collapse
Affiliation(s)
| | | | - Pascal Molenberghs
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
| | | | | |
Collapse
|
80
|
Geng KW, He T, Wang RR, Li CL, Luo WJ, Wu FF, Wang Y, Li Z, Lu YF, Guan SM, Chen J. Ethanol Increases Mechanical Pain Sensitivity in Rats via Activation of GABAA Receptors in Medial Prefrontal Cortex. Neurosci Bull 2016; 32:433-44. [PMID: 27628528 DOI: 10.1007/s12264-016-0063-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022] Open
Abstract
Ethanol is widely known for its ability to cause dramatic changes in emotion, social cognition, and behavior following systemic administration in humans. Human neuroimaging studies suggest that alcohol dependence and chronic pain may share common mechanisms through amygdala-medial prefrontal cortex (mPFC) interactions. However, whether acute administration of ethanol in the mPFC can modulate pain perception is unknown. Here we showed that bilateral microinjections of ethanol into the prelimbic and infralimbic areas of the mPFC lowered the bilateral mechanical pain threshold for 48 h without influencing thermal pain sensitivity in adult rats. However, bilateral microinjections of artificial cerebrospinal fluid into the mPFC or bilateral microinjections of ethanol into the dorsolateral PFC (also termed as motor cortex area 1 in Paxinos and Watson's atlas of The Rat Brain. Elsevier Academic Press, Amsterdam, 2005) failed to do so, suggesting regional selectivity of the effects of ethanol. Moreover, bilateral microinjections of ethanol did not change the expression of either pro-apoptotic (caspase-3 and Bax) or anti-apoptotic (Bcl-2) proteins, suggesting that the dose was safe and validating the method used in the current study. To determine whether γ-aminobutyric acid A (GABAA) receptors are involved in mediating the ethanol effects, muscimol, a selective GABAA receptor agonist, or bicuculline, a selective GABAA receptor antagonist, was administered alone or co-administered with ethanol through the same route into the bilateral mPFC. The results showed that muscimol mimicked the effects of ethanol while bicuculline completely reversed the effects of ethanol and muscimol. In conclusion, ethanol increases mechanical pain sensitivity through activation of GABAA receptors in the mPFC of rats.
Collapse
Affiliation(s)
- Kai-Wen Geng
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Ting He
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Rui-Rui Wang
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Wen-Jun Luo
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Fang-Fang Wu
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Zhen Li
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Yun-Fei Lu
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Su-Min Guan
- School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Jun Chen
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China.
- Beijing Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
81
|
Diener I, Kargela M, Louw A. Listening is therapy: Patient interviewing from a pain science perspective. Physiother Theory Pract 2016; 32:356-67. [PMID: 27351690 DOI: 10.1080/09593985.2016.1194648] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interview of a patient attending physical therapy is the cornerstone of the physical examination, diagnosis, plan of care, prognosis, and overall efficacy of the therapeutic experience. A thorough, skilled interview drives the objective tests and measures chosen, as well as provides context for the interpretation of those tests and measures, during the physical examination. Information from the interview powerfully influences the treatment modalities chosen by the physical therapist (PT) and thus also impacts the overall outcome and prognosis of the therapy sessions. Traditional physical therapy focuses heavily on biomedical information to educate people about their pain, and this predominant model focusing on anatomy, biomechanics, and pathoanatomy permeates the interview and physical examination. Although this model may have a significant effect on people with acute, sub-acute or postoperative pain, this type of examination may not only gather insufficient information regarding the pain experience and suffering, but negatively impact a patient's pain experience. In recent years, physical therapy treatment for pain has increasingly focused on pain science education, with increasing evidence of pain science education positively affecting pain, disability, pain catastrophization, movement limitations, and overall healthcare cost. In line with the ever-increasing focus of pain science in physical therapy, it is time for the examination, both subjective and objective, to embrace a biopsychosocial approach beyond the realm of only a biomedical approach. A patient interview is far more than "just" collecting information. It also is a critical component to establishing an alliance with a patient and a fundamental first step in therapeutic neuroscience education (TNE) for patients in pain. This article highlights the interview process focusing on a pain science perspective as it relates to screening patients, establishing psychosocial barriers to improvement, and pain mechanism assessment.
Collapse
Affiliation(s)
- Ina Diener
- a Department of Physical Therapy , Stellenbosch University , Stellenbosch , South Africa
| | - Mark Kargela
- b Department of Physical Medicine and Rehabilitation , Mayo Clinic , Phoenix , AZ , USA
| | - Adriaan Louw
- c International Spine and Pain Institute , Story City , IA , USA
| |
Collapse
|
82
|
Dueñas M, Ojeda B, Salazar A, Mico JA, Failde I. A review of chronic pain impact on patients, their social environment and the health care system. J Pain Res 2016; 9:457-67. [PMID: 27418853 PMCID: PMC4935027 DOI: 10.2147/jpr.s105892] [Citation(s) in RCA: 537] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chronic pain (CP) seriously affects the patient’s daily activities and quality of life, but few studies on CP have considered its effects on the patient’s social and family environment. In this work, through a review of the literature, we assessed several aspects of how CP influences the patient’s daily activities and quality of life, as well as its repercussions in the workplace, and on the family and social environment. Finally, the consequences of pain on the health care system are discussed. On the basis of the results, we concluded that in addition to the serious consequences on the patient’s life, CP has a severe detrimental effect on their social and family environment, as well as on health care services. Thus, we want to emphasize on the need to adopt a multidisciplinary approach to treatment so as to obtain more comprehensive improvements for patients in familial and social contexts. Accordingly, it would be beneficial to promote more social- and family-oriented research initiatives.
Collapse
Affiliation(s)
- María Dueñas
- Nursing Faculty "Salus Infirmorum", The Observatory of Pain, University of Cádiz, Cádiz, Spain
| | - Begoña Ojeda
- Preventive Medicine and Public Health Area, The Observatory of Pain, University of Cádiz, Cádiz, Spain
| | - Alejandro Salazar
- Preventive Medicine and Public Health Area, The Observatory of Pain, University of Cádiz, Cádiz, Spain
| | - Juan Antonio Mico
- Department of Neuroscience, Pharmacology, and Psychiatry, CIBER of Mental Health, CIBERSAM, Institute of Health Carlos III, University of Cádiz, Cádiz, Spain
| | - Inmaculada Failde
- Preventive Medicine and Public Health Area, The Observatory of Pain, University of Cádiz, Cádiz, Spain
| |
Collapse
|
83
|
|
84
|
|
85
|
|
86
|
Sex differences in sleep, anhedonia, and HPA axis activity in a rat model of chronic social defeat. Neurobiol Stress 2016; 3:105-113. [PMID: 27981183 PMCID: PMC5146204 DOI: 10.1016/j.ynstr.2016.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 03/07/2016] [Accepted: 03/20/2016] [Indexed: 01/26/2023] Open
Abstract
Repeated bouts of a major stressor such as social defeat are well known to induce a depression phenotype in male rats. Despite strong evidence and acknowledgement that women have a two-fold lifetime greater risk of developing major depression compared to men, the inclusion of female rats in studies employing social defeat are very rare; their absence is attributed to less aggressive interactions. This study sought to compare in male and female rats the impact of repeated social defeat, three times per week for four weeks, on the development of changes in sleep architecture and continuity, sucrose preference as a measure of anhedonia, changes in body weight, and basal plasma corticosterone levels. We found significant reductions in rapid eye movement sleep (REMS) during the light phase in both females and males, and significant increases in numbers of vigilance state transitions during the early dark phase in females but not in males. Additionally, females exhibited significantly greater reductions in sucrose intake than males. On the other hand, no sex differences in significantly elevated basal corticosterone levels were evident, and only the males exhibited changes in body weight. Taken together these findings suggest that the inclusion of female rats in studies of social defeat may offer greater insights in studies of stress and depression.
Collapse
|
87
|
Knowlton AR, Nguyen TQ, Robinson AC, Harrell PT, Mitchell MM. Pain Symptoms Associated with Opioid Use among Vulnerable Persons with HIV: An exploratory study with implications for palliative care and opioid abuse prevention. J Palliat Care 2016; 31:228-33. [PMID: 26856123 DOI: 10.1177/082585971503100404] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current or former injection drug users with human immunodeficiency virus (HIV) are at high risk for pain, which adversely affects their quality of life and may increase their risk for illicit drug use or relapse. We explored associations between pain symptoms and substance use among injection-drug-using study participants with HIV who had histories of heroin use. Using generalized estimating equations and controlling for prior substance use, we found that pain in each six-month period was associated with the use of heroin and prescription opioids, but not the use of nonopioid drugs or alcohol. Routine clinical assessment and improved management of pain symptoms may be needed for persons with HIV and a history of injection drug use, particularly those with chronic pain, for whom there is increased risk for heroin use.
Collapse
|
88
|
Goumon S, Špinka M. Emotional contagion of distress in young pigs is potentiated by previous exposure to the same stressor. Anim Cogn 2016; 19:501-11. [PMID: 26753689 DOI: 10.1007/s10071-015-0950-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/12/2015] [Accepted: 12/17/2015] [Indexed: 12/30/2022]
Abstract
This study tested whether emotional contagion occurs when piglets directly observe a penmate in distress (restraint) and whether there is an effect of previous experience on the response to subsequent restraint or exposure to conspecific distress. Piglets (49.7 ± 0.7 days) were exposed in pairs to two stress phases (SP1 and SP2) in an arena divided into two pens by a wire mesh wall. During SP1, one of the pigs of a pair was either restrained (Stress treatment) or sham-restrained (Control treatment), while the other pig was considered observer. During SP2, the previous observer was restrained, while its penmate took the observer role. Heart rate variability, locomotion, vocalizations, body/head/ear and tail postures were monitored. During SP1, observer pigs responded to conspecific distress with increased indicators of attention (looking at, proximity to and snout contacts with the distressed pigs) and increased indicators of fear (reduced locomotion, increased freezing). During SP2, the observer pigs that had been restrained previously reacted more strongly (through higher proximity, decreased locomotion, increased freezing) to observing the penmate in restraint than pigs without the previous negative experience. This study suggests that young pigs are susceptible to emotional contagion and that this contagion is potentiated by previous exposure to the same stressor. These findings have implications for pig welfare in practical animal husbandry systems.
Collapse
Affiliation(s)
| | - Marek Špinka
- Institute of Animal Science, Prague, Czech Republic
| |
Collapse
|
89
|
Hunter DJ, Little CB. The great debate: Should Osteoarthritis Research Focus on "Mice" or "Men"? Osteoarthritis Cartilage 2016; 24:4-8. [PMID: 26707987 DOI: 10.1016/j.joca.2015.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/08/2015] [Accepted: 07/21/2015] [Indexed: 02/02/2023]
Affiliation(s)
- D J Hunter
- Rheumatology Department, Royal North Shore Hospital, Kolling Institute and Institute of Bone and Joint Research, University of Sydney, St Leonards, NSW, Australia
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratories, Royal North Shore Hospital, Kolling Institute and Institute of Bone and Joint Research, University of Sydney, St Leonards, NSW, Australia.
| |
Collapse
|