51
|
Abstract
The introduction of highly active antiretroviral therapy (HAART) has been an important breakthrough in the treatment of HIV-1 infection and has also a powerful tool to upset the equilibrium of viral production and HIV-1 pathogenesis. Despite the advent of potent combinations of this therapy, the long-lived HIV-1 reservoirs like cells from monocyte-macrophage lineage and resting memory CD4+ T cells which are established early during primary infection constitute a major obstacle to virus eradication. Further HAART interruption leads to immediate rebound viremia from latent reservoirs. This paper focuses on the essentials of the molecular mechanisms for the establishment of HIV-1 latency with special concern to present and future possible treatment strategies to completely purge and target viral persistence in the reservoirs.
Collapse
|
52
|
Porta C, Riboldi E, Totaro MG, Strauss L, Sica A, Mantovani A. Macrophages in cancer and infectious diseases: the 'good' and the 'bad'. Immunotherapy 2012; 3:1185-202. [PMID: 21995571 DOI: 10.2217/imt.11.116] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Macrophages are crucial orchestrators of host defence and tissue homeostasis. Macrophages are heterogeneous and plastic cells that in response to different microenvironmental signals can mount a broad spectrum of different programs of polarized activation. In different pathological contexts including cancer and infectious diseases, macrophages diversity and plasticity may act as a double-edged sword. The elucidation of the molecular mechanisms underlying macrophages recruitment and functional activation allows the identification of valuable targets for the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Porta
- DiSCAFF, University of Piemonte Orientale A. Avogadro, Novara, Italy
| | | | | | | | | | | |
Collapse
|
53
|
Adachi T, Tanaka R, Kodama A, Saito M, Takahashi Y, Ansari AA, Tanaka Y. Identification of an unique CXCR4 epitope whose ligation inhibits infection by both CXCR4 and CCR5 tropic human immunodeficiency type-I viruses. Retrovirology 2011; 8:84. [PMID: 22018245 PMCID: PMC3239297 DOI: 10.1186/1742-4690-8-84] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/22/2011] [Indexed: 11/24/2022] Open
Abstract
Background Small chemical compounds which target chemokine receptors have been developed against human immunodeficiency virus type 1 (HIV-1) and are under investigation for use as anti-HIV-1 microbicides. In addition, monoclonal antibodies (mAbs) against chemokine receptors have also been shown to have anti-HIV-1 activities. The objective of the present study was to screen a panel of three anti-CXCR4 specific monoclonal antibodies (mAbs) for their ability to block the HIV-1 infection using in vitro activated primary peripheral blood mononuclear cells (PBMCs). Results PBMCs from normal donors were pre-activated with anti-CD3 and anti-CD28 mAbs for 1 day, and aliquots were infected with a low dose of CCR5-tropic (R5), CXCR4 tropic (X4) or dual tropic (X4R5) HIV-1 isolates and cultured in the presence of a panel of anti-CXCR4 mAbs. The panel included clones A145 mAb against the N-terminus, A120 mAb against a conformational epitope consisting of extracellular loops (ECL)1 and ECL2, and A80 mAb against ECL3 of CXCR4. Among these mAbs, the A120 mAb showed the most potent inhibition of infection, by not only X4 but surprisingly also R5 and X4R5 HIV-1. The inhibition of R5 HIV-1 was postulated to result from the novel ability of the A120 mAb to induce the levels of the CCR5-binding β-chemokines MIP-1α, MIP-1β and/or RANTES, and the down modulation of CCR5 expression on activated CD4+ T cells. Neutralizing anti-MIP-1α mAb significantly reversed the inhibitory effect of the A120 mAb on R5 HIV-1 infection. Conclusions The data described herein have identified a unique epitope of CXCR4 whose ligation not only directly inhibits X4 HIV-1, but also indirectly inhibits R5 HIV-1 infection by inducing higher levels of natural CCR5 ligands.
Collapse
Affiliation(s)
- Tetsuya Adachi
- Department of Immunology, University of the Ryukyus, Okinawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
54
|
Saini V, Staren DM, Ziarek JJ, Nashaat ZN, Campbell EM, Volkman BF, Marchese A, Majetschak M. The CXC chemokine receptor 4 ligands ubiquitin and stromal cell-derived factor-1α function through distinct receptor interactions. J Biol Chem 2011; 286:33466-77. [PMID: 21757744 PMCID: PMC3190899 DOI: 10.1074/jbc.m111.233742] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/11/2011] [Indexed: 01/21/2023] Open
Abstract
Recently, we identified extracellular ubiquitin as an endogenous CXC chemokine receptor (CXCR) 4 agonist. However, the receptor selectivity and molecular basis of the CXCR4 agonist activity of ubiquitin are unknown, and functional consequences of CXCR4 activation with ubiquitin are poorly defined. Here, we provide evidence that ubiquitin and the cognate CXCR4 ligand stromal cell-derived factor (SDF)-1α do not share CXCR7 as a receptor. We further demonstrate that ubiquitin does not utilize the typical two-site binding mechanism of chemokine-receptor interactions, in which the receptor N terminus is important for ligand binding. CXCR4 activation with ubiquitin and SDF-1α lead to similar Gα(i)-responses and to a comparable magnitude of phosphorylation of ERK-1/2, p90 ribosomal S6 kinase-l and Akt, although phosphorylations occur more transiently after activation with ubiquitin. Despite the similarity of signal transduction events after activation of CXCR4 with both ligands, ubiquitin possesses weaker chemotactic activity than SDF-lα in cell migration assays and does not interfere with productive entry of HIV-1 into P4.R5 multinuclear activation of galactosidase indicator cells. Unlike SDF-1α, ubiquitin lacks interactions with an N-terminal CXCR4 peptide in NMR spectroscopy experiments. Binding and signaling studies in the presence of antibodies against the N terminus and extracellular loops 2/3 of CXCR4 confirm that the ubiquitin CXCR4 interaction is independent of the N-terminal receptor domain, whereas blockade of extracellular loops 2/3 prevents receptor binding and activation. Our findings define ubiquitin as a CXCR4 agonist, which does not interfere with productive cellular entry of HIV-1, and provide new mechanistic insights into interactions between CXCR4 and its natural ligands.
Collapse
Affiliation(s)
- Vikas Saini
- From the Department of Surgery, Burn and Shock Trauma Institute, and
| | - Daniel M. Staren
- From the Department of Surgery, Burn and Shock Trauma Institute, and
| | - Joshua J. Ziarek
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | | | - Brian F. Volkman
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Adriano Marchese
- Molecular Pharmacology & Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153 and
| | - Matthias Majetschak
- From the Department of Surgery, Burn and Shock Trauma Institute, and
- Molecular Pharmacology & Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153 and
| |
Collapse
|
55
|
HIV microbicides: state-of-the-art and new perspectives on the development of entry inhibitors. Future Med Chem 2011; 2:1141-59. [PMID: 21426161 DOI: 10.4155/fmc.10.203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Since the discovery of HIV at the beginning of the 1980s, numerous efforts have been devoted to the search of an efficient vaccine. There are at least 25 drugs available for HIV treatment, but no cure is available. The observation that therapy for HIV disease is life long and that these drugs are associated with a number of side effects underlines the need for approaches aimed at preventing rather than treating infection. Additionally, the economic burden of treatment for the HIV infection occupies an increasing share of healthcare expenditure, making current practices likely to become difficult to sustain in the long run. Unfortunately, no effective vaccine for this disease is foreseeable in the near future. Microbicides could be an alternate way to build preventative approaches to HIV infection. Strategies based on preventing the virus from reaching its target cells seem to have some room for development and application. In this review we explore the state-of-the-art of available microbicides, focusing on HIV entry inhibitors. In addition, we discuss new compounds that show anti-HIV activity, which could be effective candidates.
Collapse
|
56
|
Nishizawa R, Nishiyama T, Hisaichi K, Minamoto C, Murota M, Takaoka Y, Nakai H, Tada H, Sagawa K, Shibayama S, Fukushima D, Maeda K, Mitsuya H. Discovery of 4-[4-({(3R)-1-butyl-3-[(R)-cyclohexyl(hydroxy)methyl]-2,5-dioxo-1,4,9-triazaspiro[5.5]undec-9-yl}methyl)phenoxy]benzoic acid hydrochloride: a highly potent orally available CCR5 selective antagonist. Bioorg Med Chem 2011; 19:4028-42. [PMID: 21658961 PMCID: PMC7604827 DOI: 10.1016/j.bmc.2011.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 01/27/2023]
Abstract
Based on the original spirodiketopiperazine design framework, further optimization of an orally available CCR5 antagonist was undertaken. Structural hybridization of the hydroxylated analog 4 derived from one of the oxidative metabolites and the new orally available non-hydroxylated benzoic acid analog 5 resulted in another potent orally available CCR5 antagonist 6a as a clinical candidate. Full details of a structure-activity relationship (SAR) study and ADME properties are presented.
Collapse
Affiliation(s)
- Rena Nishizawa
- Medicinal Chemistry Research Laboratory, Ono Pharmaceutical Co. Ltd, Shimamoto, Mishima, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Zhou Z, Barry de Longchamps N, Schmitt A, Zerbib M, Vacher-Lavenu MC, Bomsel M, Ganor Y. HIV-1 efficient entry in inner foreskin is mediated by elevated CCL5/RANTES that recruits T cells and fuels conjugate formation with Langerhans cells. PLoS Pathog 2011; 7:e1002100. [PMID: 21738469 PMCID: PMC3128116 DOI: 10.1371/journal.ppat.1002100] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/16/2011] [Indexed: 01/01/2023] Open
Abstract
Male circumcision reduces acquisition of HIV-1 by 60%. Hence, the foreskin is an HIV-1 entry portal during sexual transmission. We recently reported that efficient HIV-1 transmission occurs following 1 h of polarized exposure of the inner, but not outer, foreskin to HIV-1-infected cells, but not to cell-free virus. At this early time point, Langerhans cells (LCs) and T-cells within the inner foreskin epidermis are the first cells targeted by the virus. To gain in-depth insight into the molecular mechanisms governing inner foreskin HIV-1 entry, foreskin explants were inoculated with HIV-1-infeceted cells for 4 h. The chemokine/cytokine milieu secreted by the foreskin tissue, and resulting modifications in density and spatial distribution of T-cells and LCs, were then investigated. Our studies show that in the inner foreskin, inoculation with HIV-1-infected cells induces increased CCL5/RANTES (1.63-fold) and decreased CCL20/MIP-3-alpha (0.62-fold) secretion. Elevated CCL5/RANTES mediates recruitment of T-cells from the dermis into the epidermis, which is blocked by a neutralizing CCL5/RANTES Ab. In parallel, HIV-1-infected cells mediate a bi-phasic modification in the spatial distribution of epidermal LCs: attraction to the apical surface at 1 h, followed by migration back towards the basement membrane later on at 4 h, in correlation with reduced CCL20/MIP-3-alpha at this time point. T-cell recruitment fuels the continuous formation of LC-T-cell conjugates, permitting the transfer of HIV-1 captured by LCs. Together, these results reveal that HIV-1 induces a dynamic process of immune cells relocation in the inner foreskin that is associated with specific chemokines secretion, which favors efficient HIV-1 entry at this site.
Collapse
Affiliation(s)
- Zhicheng Zhou
- Mucosal Entry of HIV-1 and Mucosal Immunity, Cell Biology and Host Pathogen Interactions Department, Cochin Institute, CNRS (UMR 8104), Paris, France
- INSERM, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Nicolas Barry de Longchamps
- Université Paris Descartes, Paris, France
- Electron Microscopy Platform, Cochin Institute, CNRS (UMR 8104), Paris, France
| | - Alain Schmitt
- INSERM, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Electron Microscopy Platform, Cochin Institute, CNRS (UMR 8104), Paris, France
| | - Marc Zerbib
- Université Paris Descartes, Paris, France
- Urology Service, GH Cochin-St Vincent de Paul, Paris, France
| | - Marie-Cécile Vacher-Lavenu
- Université Paris Descartes, Paris, France
- Department of Pathology, GH Cochin-St Vincent de Paul, Paris, France
| | - Morgane Bomsel
- Mucosal Entry of HIV-1 and Mucosal Immunity, Cell Biology and Host Pathogen Interactions Department, Cochin Institute, CNRS (UMR 8104), Paris, France
- INSERM, U1016, Paris, France
- Université Paris Descartes, Paris, France
- * E-mail:
| | - Yonatan Ganor
- Mucosal Entry of HIV-1 and Mucosal Immunity, Cell Biology and Host Pathogen Interactions Department, Cochin Institute, CNRS (UMR 8104), Paris, France
- INSERM, U1016, Paris, France
- Université Paris Descartes, Paris, France
| |
Collapse
|
58
|
Wheeler LA, Trifonova R, Vrbanac V, Basar E, McKernan S, Xu Z, Seung E, Deruaz M, Dudek T, Einarsson JI, Yang L, Allen TM, Luster AD, Tager AM, Dykxhoorn DM, Lieberman J. Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. J Clin Invest 2011; 121:2401-12. [PMID: 21576818 DOI: 10.1172/jci45876] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/30/2011] [Indexed: 12/21/2022] Open
Abstract
The continued spread of the HIV epidemic underscores the need to interrupt transmission. One attractive strategy is a topical vaginal microbicide. Sexual transmission of herpes simplex virus type 2 (HSV-2) in mice can be inhibited by intravaginal siRNA application. To overcome the challenges of knocking down gene expression in immune cells susceptible to HIV infection, we used chimeric RNAs composed of an aptamer fused to an siRNA for targeted gene knockdown in cells bearing an aptamer-binding receptor. Here, we showed that CD4 aptamer-siRNA chimeras (CD4-AsiCs) specifically suppress gene expression in CD4⁺ T cells and macrophages in vitro, in polarized cervicovaginal tissue explants, and in the female genital tract of humanized mice. CD4-AsiCs do not activate lymphocytes or stimulate innate immunity. CD4-AsiCs that knock down HIV genes and/or CCR5 inhibited HIV infection in vitro and in tissue explants. When applied intravaginally to humanized mice, CD4-AsiCs protected against HIV vaginal transmission. Thus, CD4-AsiCs could be used as the active ingredient of a microbicide to prevent HIV sexual transmission.
Collapse
Affiliation(s)
- Lee Adam Wheeler
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
|
60
|
Mercorelli B, Lembo D, Palù G, Loregian A. Early inhibitors of human cytomegalovirus: state-of-art and therapeutic perspectives. Pharmacol Ther 2011; 131:309-29. [PMID: 21570424 PMCID: PMC7112563 DOI: 10.1016/j.pharmthera.2011.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/05/2011] [Indexed: 12/31/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe morbidity and mortality in immunocompromised individuals, mainly transplant recipients and AIDS patients, and is the most frequent cause of congenital malformations in newborn children. To date, few drugs are licensed for the treatment of HCMV infections, most of which target the viral DNA polymerase and suffer from many drawbacks, including long-term toxicity, low potency, and poor bioavailability. In addition, the emergence of drug-resistant viral strains is becoming an increasing problem for disease management. Finally, none of the current anti-HCMV drugs have been approved for the treatment of congenital infections. For all these reasons, there is still a strong need for new anti-HCMV drugs with novel mechanisms of action. The first events of the virus replication cycle, including attachment, entry, immediate-early gene expression, and immediate-early functions—in particular that of Immediate-Early 2 protein—represent attractive targets for the development of novel antiviral compounds. Such inhibitors would block not only the expression of viral immediate-early proteins, which play a key role in the pathogenesis of HCMV infection, but also the host immunomodulation and the changes to cell physiology induced by the first events of virus infection. This review describes the current knowledge on the initial phases of HCMV replication, their validation as potential novel antiviral targets, and the development of compounds that block such processes.
Collapse
Affiliation(s)
- Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35121 Padova, Italy
| | | | | | | |
Collapse
|
61
|
Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat Rev Microbiol 2011; 9:369-81. [PMID: 21478902 DOI: 10.1038/nrmicro2548] [Citation(s) in RCA: 331] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herpesviruses are double-stranded DNA, enveloped viruses that infect host cells through fusion with either the host cell plasma membrane or endocytic vesicle membranes. Efficient infection of host cells by herpesviruses is remarkably more complex than infection by other viruses, as it requires the concerted effort of multiple glycoproteins and involves multiple host receptors. The structures of the major viral glycoproteins and a number of host receptors involved in the entry of the prototypical herpesviruses, the herpes simplex viruses (HSVs) and Epstein-Barr virus (EBV), are now known. These structural studies have accelerated our understanding of HSV and EBV binding and fusion by revealing the conformational changes that occur on virus-receptor binding, depicting potential sites of functional protein and lipid interactions, and identifying the probable viral fusogen.
Collapse
|
62
|
Chen Y, Zeng G, Chen SS, Feng Q, Chen ZW. AFM force measurements of the gp120-sCD4 and gp120 or CD4 antigen-antibody interactions. Biochem Biophys Res Commun 2011; 407:301-6. [PMID: 21382342 DOI: 10.1016/j.bbrc.2011.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/02/2011] [Indexed: 11/28/2022]
Abstract
Soluble CD4 (sCD4), anti-CD4 antibody, and anti-gp120 antibody have long been regarded as entry inhibitors in human immunodeficiency virus (HIV) therapy. However, the interactions between these HIV entry inhibitors and corresponding target molecules are still poorly understood. In this study, atomic force microscopy (AFM) was utilized to investigate the interaction forces among them. We found that the unbinding forces of sCD4-gp120 interaction, CD4 antigen-antibody interaction, and gp120 antigen-antibody interaction were 25.45 ± 20.46, 51.2 2 ± 34.64, and 89.87 ± 44.63 pN, respectively, which may provide important mechanical information for understanding the effects of viral entry inhibitors on HIV infection. Moreover, we found that the functionalization of an interaction pair on AFM tip or substrate significantly influenced the results, implying that we must perform AFM force measurement and analyze the data with more caution.
Collapse
Affiliation(s)
- Yong Chen
- Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| | | | | | | | | |
Collapse
|
63
|
Andrianov AM. Human immunodeficiency virus-1 gp120 V3 loop for anti-acquired immune deficiency syndrome drug discovery: computer-aided approaches to the problem solving. Expert Opin Drug Discov 2011; 6:419-35. [DOI: 10.1517/17460441.2011.560603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alexander M Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Street 5/2, 220141 Minsk, Republic of Belarus +375 17 2678263 ; +375 17 2241214 ;
| |
Collapse
|
64
|
Da LT, Wu YD. Theoretical studies on the interactions and interferences of HIV-1 glycoprotein gp120 and its coreceptor CCR5. J Chem Inf Model 2011; 51:359-69. [PMID: 21284403 DOI: 10.1021/ci1003448] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction between the HIV gp120 protein and coreceptor CCR5 or CXCR4 of the host cell is critical in mediating the HIV entry process. A model for the CCR5-gp120 complex has been developed. In the model, the N-terminus of CCR5 binds to three discontinuous domains of gp120, including the fourth conserved (C4) region, β19/β20 connecting loop, and V3 loop. The second extra-cellular loop (ECL2) of CCR5 also interacts with the crown part of the gp120 V3 loop. The bindings of the three CCR5 antagonists, maraviroc, aplaviroc, and vicriviroc, to the trans-membrane domain of CCR5 have been modeled. The bindings are found to affect the conformation of the ECL2 domain, which in turn drives the N-terminus of CCR5 to an altered state. Aplaviroc is more hydrophilic than maraviroc and vicriviroc, and its binding is more interfered by solvent, resulting in a quite different effect to the structure of CCR5 compared with those of the other two molecules. The above results are in accord with experimental observations and provide a structural basis for further design of CCR5 antagonists.
Collapse
Affiliation(s)
- Lin-tai Da
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | | |
Collapse
|
65
|
Abstract
Since the discovery of CCR5 as a coreceptor for HIV entry, there has been interest in blockade of the receptor for treatment and prevention of HIV infection. Although several CCR5 antagonists have been evaluated in clinical trials, only maraviroc has been approved for clinical use in the treatment of HIV-infected patients. The efficacy, safety and resistance profile of CCR5 antagonists with a focus on maraviroc are reviewed here along with their usage in special and emerging clinical situations. Despite being approved for use since 2007, the optimal use of maraviroc has yet to be well-defined in HIV and potentially in other diseases. Maraviroc and other CCR5 antagonists have the potential for use in a variety of other clinical situations such as the prevention of HIV transmission, intensification of HIV treatment and prevention of rejection in organ transplantation. The use of CCR5 antagonists may be potentiated by other agents such as rapamycin which downregulate CCR5 receptors thus decreasing CCR5 density. There may even be a role for their use in combination with other entry inhibitors. However, clinical use of CCR5 antagonists may have negative consequences in diseases such as West Nile and Tick-borne encephalitis virus infections. In summary, CCR5 antagonists have great therapeutic potential in the treatment and prevention of HIV as well as future use in novel situations such as organ transplantation. Their optimal use either alone or in combination with other agents will be defined by further investigation.
Collapse
Affiliation(s)
- Bruce L Gilliam
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard St, Baltimore, 21201 Maryland, USA
| | | | | |
Collapse
|
66
|
Iwamoto A, Hosoya N, Kawana-Tachikawa A. HIV-1 tropism. Protein Cell 2011; 1:510-3. [PMID: 21204004 DOI: 10.1007/s13238-010-0066-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 05/27/2010] [Indexed: 11/26/2022] Open
Affiliation(s)
- Aikichi Iwamoto
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| | | | | |
Collapse
|
67
|
Teissier E, Penin F, Pécheur EI. Targeting cell entry of enveloped viruses as an antiviral strategy. Molecules 2010; 16:221-50. [PMID: 21193846 PMCID: PMC6259279 DOI: 10.3390/molecules16010221] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/16/2010] [Accepted: 12/24/2010] [Indexed: 12/16/2022] Open
Abstract
The entry of enveloped viruses into their host cells involves several successive steps, each one being amenable to therapeutic intervention. Entry inhibitors act by targeting viral and/or cellular components, through either the inhibition of protein-protein interactions within the viral envelope proteins or between viral proteins and host cell receptors, or through the inhibition of protein-lipid interactions. Interestingly, inhibitors that concentrate into/onto the membrane in order to target a protein involved in the entry process, such as arbidol or peptide inhibitors of the human immunodeficiency virus (HIV), could allow the use of doses compatible with therapeutic requirements. The efficacy of these drugs validates entry as a point of intervention in viral life cycles. Strategies based upon small molecule antiviral agents, peptides, proteins or nucleic acids, would most likely prove efficient in multidrug combinations, in order to inhibit several steps of virus life cycle and prevent disease progression.
Collapse
Affiliation(s)
| | | | - Eve-Isabelle Pécheur
- Institut de Biologie et Chimie des Protéines, UMR 5086, Université de Lyon, IFR 128 BioSciences Gerland-Lyon Sud, 69367 Lyon, France; E-Mails: (E.T.); (F.P.)
| |
Collapse
|
68
|
Antiviral activity, pharmacokinetics, and safety of BMS-488043, a novel oral small-molecule HIV-1 attachment inhibitor, in HIV-1-infected subjects. Antimicrob Agents Chemother 2010; 55:722-8. [PMID: 21078951 DOI: 10.1128/aac.00759-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BMS-488043 is a novel and unique oral small-molecule inhibitor of the attachment of human immunodeficiency virus type 1 (HIV-1) to CD4(+) lymphocytes. The antiviral activity, pharmacokinetics, viral susceptibility, and safety of BMS-488043 were evaluated in an 8-day monotherapy trial. Thirty HIV-1-infected study subjects were randomly assigned to sequential, safety-guided dose panels of 800 and 1,800 mg BMS-488043 or a matched placebo in a 4:1 ratio, and the drug was administered every 12 h with a high-fat meal for 7 days and on the morning of day 8. Dose-related, albeit less-than-dose-proportional, increases in plasma BMS-488043 concentrations were observed. Mean plasma HIV-1 RNA decreases from the baseline for the BMS-488043 800- and 1,800-mg dose groups on day 8 were 0.72 and 0.96 log(10) copies/ml, respectively, compared with 0.02 log(10) copies/ml for the placebo group. A lower baseline BMS-488043 50% effective concentration (EC(50)) in the active-treatment groups was predictive of a greater antiviral response. Although absolute drug exposure was not associated with an antiviral response, the trough concentration (C(trough)), adjusted by the baseline EC(50) (C(trough)/EC(50)), was associated with antiviral activity. During dosing, four subjects experienced >10-fold reductions in viral susceptibility to BMS-488043, providing further support of the direct antiviral mechanism of BMS-488043. BMS-488043 was generally safe and well tolerated. These results suggest that further development of this novel class of oral HIV-1 attachment inhibitors is warranted.
Collapse
|
69
|
In vivo patterns of resistance to the HIV attachment inhibitor BMS-488043. Antimicrob Agents Chemother 2010; 55:729-37. [PMID: 21078948 DOI: 10.1128/aac.01173-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Attachment inhibitors (AI) are a novel class of HIV-1 antivirals, with little information available on clinical resistance. BMS-488043 is an orally bioavailable AI that binds to gp120 of HIV-1 and abrogates its binding to CD4(+) lymphocytes. A clinical proof-of-concept study of the AI BMS-488043, administered as monotherapy for 8 days, demonstrated significant viral load reductions. In order to examine the effects of AI monotherapy on HIV-1 sensitivity, phenotypic sensitivity assessment of baseline and postdosing (day 8) samples was performed. These analyses revealed that four subjects had emergent phenotypic resistance (a 50% effective concentration [EC(50)] >10-fold greater than the baseline value) and four had high baseline EC(50)s (>200 nM). Population sequencing and sequence determination of cloned envelope genes uncovered five gp120 mutations at four loci (V68A, L116I, S375I/N, and M426L) associated with BMS-488043 resistance. Substitution at the 375 locus, located near the CD4 binding pocket, was the most common (maintained in 5/8 subjects at day 8). The five substitutions were evaluated for their effects on AI sensitivity through reverse genetics in functional envelopes, confirming their role in decreasing sensitivity to the drug. Additional analyses revealed that these substitutions did not alter sensitivity to other HIV-1 entry inhibitors. Thus, our studies demonstrate that although the majority of the subjects' viruses maintained sensitivity to BMS-488043, substitutions can be selected that decrease HIV-1 susceptibility to the AI. Most importantly, the substitutions described here are not associated with resistance to other approved antiretrovirals, and therefore, attachment inhibitors could complement the current arsenal of anti-HIV agents.
Collapse
|
70
|
Smith JM, Dauner A, Li B, Srinivasan P, Mitchell J, Hendry M, Ellenberger D, Butera S, Otten RA. Generation of a dual RT Env SHIV that is infectious in rhesus macaques. J Med Primatol 2010; 39:213-23. [PMID: 20618587 DOI: 10.1111/j.1600-0684.2010.00434.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The best current animal model for HIV infection and evaluation of antiviral compounds is the Simian-human immunodeficiency virus (SHIV)/macaque system. There are multiple recombinant SHIVs available, but these viruses have limitations in evaluating combination drug strategies for prevention. Drug combinations that target reverse transcriptase (RT, either nRTI or nnRTI) and envelope (entry or fusion inhibitors) have to be tested separately, which does not permit the assessment of additive, synergistic, or antagonistic effects of ARV combinations. We describe construction of a dual SHIV containing both HIV RT and a CCR5-specific HIV envelope gene in a simian immunodeficiency virus backbone. METHODS The RT Env SHIV molecular clone was constructed using RT SHIV and SHIV162p3 sequences as templates to generate RT Env SHIV. RT Env SHIV was expanded in vitro in CD8-depleted macaque peripheral blood mononuclear cells (PBMC). Recombinant virus was used to infect a rhesus macaque (4.3 x 10(4) tissue culture infectious dose [TCID(50)], intravenously [IV]). A second passage in a macaque by IV transfer of 10 ml of blood obtained from the first infection was also done. The in vivo adapted virus stock from these macaques was used to produce high titer stocks in vitro and used to rectally infect an additional macaque. RESULTS Peak viral load reached 6 x 10(5) vRNA copies/ml in plasma in both IV-exposed macaques and remained detectable in the one animal for 16 weeks after infection. A viral stock (1.68 x 10(4) TCID(50)) derived from the second macaque passage has been produced in CD8-depleted rhesus PBMC and was successfully used to demonstrate mucosal transmission. The resulting RT Env SHIV retained the sensitivity to HIV RT and entry inhibitors of its parental viruses. CONCLUSIONS The objective of this study was to develop and characterize a SHIV recombinant virus for evaluating the efficacy of ART and microbicide products that target both HIV RT and/or Env-mediated entry. RT Env SHIV can productively infect macaques by both the IV and mucosal route, making it a valuable tool for transmission studies.
Collapse
Affiliation(s)
- James M Smith
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, STD, TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Accurate and efficient gp120 V3 loop structure based models for the determination of HIV-1 co-receptor usage. BMC Bioinformatics 2010; 11:494. [PMID: 20923564 PMCID: PMC2976756 DOI: 10.1186/1471-2105-11-494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 10/05/2010] [Indexed: 11/15/2022] Open
Abstract
Background HIV-1 targets human cells expressing both the CD4 receptor, which binds the viral envelope glycoprotein gp120, as well as either the CCR5 (R5) or CXCR4 (X4) co-receptors, which interact primarily with the third hypervariable loop (V3 loop) of gp120. Determination of HIV-1 affinity for either the R5 or X4 co-receptor on host cells facilitates the inclusion of co-receptor antagonists as a part of patient treatment strategies. A dataset of 1193 distinct gp120 V3 loop peptide sequences (989 R5-utilizing, 204 X4-capable) is utilized to train predictive classifiers based on implementations of random forest, support vector machine, boosted decision tree, and neural network machine learning algorithms. An in silico mutagenesis procedure employing multibody statistical potentials, computational geometry, and threading of variant V3 sequences onto an experimental structure, is used to generate a feature vector representation for each variant whose components measure environmental perturbations at corresponding structural positions. Results Classifier performance is evaluated based on stratified 10-fold cross-validation, stratified dataset splits (2/3 training, 1/3 validation), and leave-one-out cross-validation. Best reported values of sensitivity (85%), specificity (100%), and precision (98%) for predicting X4-capable HIV-1 virus, overall accuracy (97%), Matthew's correlation coefficient (89%), balanced error rate (0.08), and ROC area (0.97) all reach critical thresholds, suggesting that the models outperform six other state-of-the-art methods and come closer to competing with phenotype assays. Conclusions The trained classifiers provide instantaneous and reliable predictions regarding HIV-1 co-receptor usage, requiring only translated V3 loop genotypes as input. Furthermore, the novelty of these computational mutagenesis based predictor attributes distinguishes the models as orthogonal and complementary to previous methods that utilize sequence, structure, and/or evolutionary information. The classifiers are available online at http://proteins.gmu.edu/automute.
Collapse
|
72
|
|
73
|
Sulfated derivatives of Escherichia coli K5 capsular polysaccharide are potent inhibitors of human cytomegalovirus. Antimicrob Agents Chemother 2010; 54:4561-7. [PMID: 20713657 DOI: 10.1128/aac.00721-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, there are few drugs licensed for the treatment of human cytomegalovirus (HCMV) infections, most of which target the viral DNA polymerase and suffer from many drawbacks. Thus, there is still a strong need for new anti-HCMV compounds with novel mechanisms of action. In this study, we investigated the anti-HCMV activity of chemically sulfated derivatives of Escherichia coli K5 capsular polysaccharide. These compounds are structurally related to cellular heparan sulfate and have been previously shown to be effective against some enveloped and nonenveloped viruses. We demonstrated that two derivatives, i.e., K5-N,OS(H) and K5-N,OS(L), are able to prevent cell infection by different strains of HCMV at concentrations in the nanomolar range while having no significant cytotoxicity. Studies performed to elucidate the mechanism of action of their anti-HCMV activity revealed that these compounds do not interact with either the host cell or the viral particle but need a virus-cell interaction to exert antiviral effects. Furthermore, these K5 derivatives were able to inhibit the attachment step of HCMV infection, as well as the viral cell-to-cell spread. Since the mode of inhibition of these compounds appears to differ from that of the available anti-HCMV drugs, sulfated K5 derivatives could represent the basis for the development of a novel class of potent anti-HCMV compounds. Interestingly, our studies highlight that small variations of the K5 derivatives structure can modulate the selectivity and potency of their activities against different viruses, including viruses belonging to the same family.
Collapse
|
74
|
Tang H. Cyclophilin inhibitors as a novel HCV therapy. Viruses 2010; 2:1621-1634. [PMID: 21994697 PMCID: PMC3185723 DOI: 10.3390/v2081621] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/23/2010] [Accepted: 08/04/2010] [Indexed: 12/16/2022] Open
Abstract
A critical role of Cyclophilins, mostly Cyclophilin A (CyPA), in the replication of HCV is supported by a growing body of in vitro and in vivo evidence. CyPA probably interacts directly with nonstructural protein 5A to exert its effect, through its peptidyl-prolyl isomerase activity, on maintaining the proper structure and function of the HCV replicase. The major proline substrates are located in domain II of NS5A, centered around a “DY” dipeptide motif that regulates CyPA dependence and CsA resistance. Importantly, Cyclosporine A derivatives that lack immunosuppressive function efficiently block the CyPA-NS5A interaction and inhibit HCV in cell culture, an animal model, and human trials. Given the high genetic barrier to development of resistance and the distinctness of their mechanism from that of either the current standard of care or any specifically targeted antiviral therapy for HCV (STAT-C), CyP inhibitors hold promise as a novel class of anti-HCV therapy.
Collapse
Affiliation(s)
- Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| |
Collapse
|
75
|
Miller JF, Gudmundsson KS, D'Aurora Richardson L, Jenkinson S, Spaltenstein A, Thomson M, Wheelan P. Synthesis and SAR of novel isoquinoline CXCR4 antagonists with potent anti-HIV activity. Bioorg Med Chem Lett 2010; 20:3026-30. [PMID: 20443225 DOI: 10.1016/j.bmcl.2010.03.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using AMD070 as a starting point for structural modification, a novel series of isoquinoline CXCR4 antagonists was developed. A structure-activity scan of alternate lower heterocycles led to the 3-isoquinolinyl moiety as an attractive replacement for benzimidazole. Side chain optimization in the isoquinoline series led to a number of compounds with low nanomolar anti-HIV activities and promising rat PK properties.
Collapse
Affiliation(s)
- John F Miller
- Department of Medicinal Chemistry, Infectious Diseases Center for Excellence in Drug Discovery, GlaxoSmithKline Research and Development, Research Triangle Park, NC 27709-3398, USA.
| | | | | | | | | | | | | |
Collapse
|
76
|
Thorley JA, McKeating JA, Rappoport JZ. Mechanisms of viral entry: sneaking in the front door. PROTOPLASMA 2010; 244:15-24. [PMID: 20446005 PMCID: PMC3038234 DOI: 10.1007/s00709-010-0152-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/16/2010] [Indexed: 05/29/2023]
Abstract
Recent developments in methods to study virus internalisation are providing clearer insights into mechanisms used by viruses to enter host cells. The use of dominant negative constructs, specific inhibitory drugs and RNAi to selectively prevent entry through particular pathways has provided evidence for the clathrin-mediated entry of hepatitis C virus (HCV) as well as the caveolar entry of Simian Virus 40. Moreover, the ability to image and track fluorescent-labelled virus particles in real-time has begun to challenge the classical plasma membrane entry mechanisms described for poliovirus and human immunodeficiency virus. This review will cover both well-documented entry mechanisms as well as more recent discoveries in the entry pathways of enveloped and non-enveloped viruses. This will include viruses which enter the cytosol directly at the plasma membrane and those which enter via endocytosis and traversal of internal membrane barrier(s). Recent developments in imaging and inhibition of entry pathways have provided insights into the ill-defined entry mechanism of HCV, bringing it to the forefront of viral entry research. Finally, as high-affinity receptors often define viral internalisation pathways, and tropism in vivo, host membrane proteins to which viral particles specifically bind will be discussed throughout.
Collapse
Affiliation(s)
- Jennifer A. Thorley
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jane A. McKeating
- Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joshua Zachary Rappoport
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
77
|
Lipids and proteins act in opposing manners to regulate polyomavirus infection. J Virol 2010; 84:9840-52. [PMID: 20668088 DOI: 10.1128/jvi.01093-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
How receptors control virus infection is poorly understood. Polyomavirus (Py) binds to the sialic acid-galactose moiety on receptors to gain entry into host cells and cause infection. We previously demonstrated that the sialic acid-galactose-containing glycolipids called gangliosides GD1a and GT1b promote Py infection, in part, by sorting the virus from the endolysosomes to the endoplasmic reticulum (ER), a critical infection route. Whether these glycolipids act as Py entry receptors, however, is not clear. Additionally, as the majority of glycoproteins also harbor terminal sialic acid-galactose residues, their roles in Py infection are also not well established. Using a ganglioside-deficient cell line, we show that GD1a is the functional entry receptor for Py. GD1a binds to Py on the plasma membrane, and the receptor-virus complex is internalized and transported to the late endosomes and then the ER to initiate infection. In contrast, our findings indicate that glycoproteins act as decoy receptors, restricting the ER transport and infection of Py. Thus, glycolipids and glycoproteins, two major constituents of the plasma membrane, execute opposing functions in regulating infection by a defined virus.
Collapse
|
78
|
ADS-J1 inhibits HIV-1 entry by interacting with gp120 and does not block fusion-active gp41 core formation. Antimicrob Agents Chemother 2010; 54:4487-92. [PMID: 20643898 DOI: 10.1128/aac.00359-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We had shown that virus resistance to ADS-J1 was associated with amino acid changes in the envelope glycoprotein, mostly located in the gp120 coding region. Time-of-addition and endocytic virus transfer assays clearly demonstrated that ADS-J1 behaved as a gp120 inhibitor. ADS-J1-resistant virus was cross-resistant to the polyanion dextran sulfate, and recombination of gp120 recovered only the ADS-J1-resistant phenotype. In summary, ADS-J1 blocks an early step of virus entry that appears to be driven by gp120 alone.
Collapse
|
79
|
Bruno CJ, Jacobson JM. Ibalizumab: an anti-CD4 monoclonal antibody for the treatment of HIV-1 infection. J Antimicrob Chemother 2010; 65:1839-41. [PMID: 20639524 DOI: 10.1093/jac/dkq261] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The majority of currently available agents for the treatment of HIV-1 infection act by targeting one of several intracellular steps in the viral life cycle. Despite improvements in efficacy and tolerability, the development of viral resistance to these agents is common and significant toxicity and adherence issues still occur. For this reason the development of safe, well tolerated antiviral agents that target a novel step in the viral life cycle remains important. Viral entry into host cells affords several potential extracellular targets for antiretroviral therapy. Ibalizumab, a humanized monoclonal antibody to CD4, the primary host cellular receptor for HIV-1 entry, has been shown to block HIV-1 entry in vitro. Early clinical trials have demonstrated significant antiviral efficacy with a >1 log(10) reduction in viral load when given as monotherapy. Its long half-life, which allows weekly dosing, and its administration as an intravenous infusion differentiate it from other currently available antiretroviral agents. These properties may prove useful in allowing improved drug delivery to patients who have had difficulty adhering to daily oral regimens. Its unique mode of action reduces the risk of cross-resistance with currently available antiretroviral agents, with the potential to expand the choices available to treat drug-resistant HIV-1.
Collapse
Affiliation(s)
- Christopher J Bruno
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
80
|
HIV-1 resistance to CCR5 antagonists associated with highly efficient use of CCR5 and altered tropism on primary CD4+ T cells. J Virol 2010; 84:6505-14. [PMID: 20410277 DOI: 10.1128/jvi.00374-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported on a panel of HIV-1 clade B envelope (Env) proteins isolated from a patient treated with the CCR5 antagonist aplaviroc (APL) that were drug resistant. These Envs used the APL-bound conformation of CCR5, were cross resistant to other small-molecule CCR5 antagonists, and were isolated from the patient's pretreatment viral quasispecies as well as after therapy. We analyzed viral and host determinants of resistance and their effects on viral tropism on primary CD4(+) T cells. The V3 loop contained residues essential for viral resistance to APL, while additional mutations in gp120 and gp41 modulated the magnitude of drug resistance. However, these mutations were context dependent, being unable to confer resistance when introduced into a heterologous virus. The resistant virus displayed altered binding between gp120 and CCR5 such that the virus became critically dependent on the N' terminus of CCR5 in the presence of APL. In addition, the drug-resistant Envs studied here utilized CCR5 very efficiently: robust virus infection occurred even when very low levels of CCR5 were expressed. However, recognition of drug-bound CCR5 was less efficient, resulting in a tropism shift toward effector memory cells upon infection of primary CD4(+) T cells in the presence of APL, with relative sparing of the central memory CD4(+) T cell subset. If such a tropism shift proves to be a common feature of CCR5-antagonist-resistant viruses, then continued use of CCR5 antagonists even in the face of virologic failure could provide a relative degree of protection to the T(CM) subset of CD4(+) T cells and result in improved T cell homeostasis and immune function.
Collapse
|
81
|
Le Douce V, Herbein G, Rohr O, Schwartz C. Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology 2010; 7:32. [PMID: 20380694 PMCID: PMC2873506 DOI: 10.1186/1742-4690-7-32] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 04/09/2010] [Indexed: 01/09/2023] Open
Abstract
The introduction of the highly active antiretroviral therapy (HAART) has greatly improved survival. However, these treatments fail to definitively cure the patients and unveil the presence of quiescent HIV-1 reservoirs like cells from monocyte-macrophage lineage. A purge, or at least a significant reduction of these long lived HIV-1 reservoirs will be needed to raise the hope of the viral eradication. This review focuses on the molecular mechanisms responsible for viral persistence in cells of the monocyte-macrophage lineage. Controversy on latency and/or cryptic chronic replication will be specifically evoked. In addition, since HIV-1 infected monocyte-macrophage cells appear to be more resistant to apoptosis, this obstacle to the viral eradication will be discussed. Understanding the intimate mechanisms of HIV-1 persistence is a prerequisite to devise new and original therapies aiming to achieve viral eradication.
Collapse
Affiliation(s)
- Valentin Le Douce
- INSERM unit 575, Pathophysiology of Central Nervous System, Institute of Virology, rue Koeberlé, Strasbourg, France
| | | | | | | |
Collapse
|
82
|
Yin Q, Zhuang D, Jiang Y, Zhao C, Zeng X, Li S. Establishment of a high-throughput screening system for universal anti-HIV targets. CHINESE SCIENCE BULLETIN-CHINESE 2010. [DOI: 10.1007/s11434-009-0739-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
83
|
Gunaseelan S, Gunaseelan K, Deshmukh M, Zhang X, Sinko PJ. Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Adv Drug Deliv Rev 2010; 62:518-31. [PMID: 19941919 PMCID: PMC2841563 DOI: 10.1016/j.addr.2009.11.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 09/14/2009] [Indexed: 02/06/2023]
Abstract
A variety of nanocarriers such as bioconjugates, dendrimers, liposomes, and nanoparticles have been widely evaluated as potential targeted drug delivery systems. Passive targeting of nanoscale carriers is based on a size-flow-filtration phenomenon that is usually limited to tumors, the reticular endothelial system, and possibly lymph nodes (LNs). In fact, targeting the delivery of drugs to pivotal physiological sites such as the lymph nodes has emerged as a promising strategy in treating HIV disease. Ligands for specific cell surface receptors can be displayed on nanocarriers in order to achieve active targeting. The approach has been extensively used preclinically in cancer where certain receptors are over-expressed at various stages of the disease. Unfortunately, markers of HIV infection are lacking and latently infected cells do not show any signs of infection on their surface. However, the disease naturally targets only a few cell types. The HIV receptor CD4, coreceptors (CCR5 and CXCR4), and some receptors relatively specific for macrophages provide potentially valuable surface targets for drug delivery to all susceptible cells in patients infected by HIV. This review focuses on nanoscale targeting with an emphasis on surface modifications of drug delivery nanocarriers for active targeting. A number of related issues, including HIV biology, targets, pharmacokinetics, and intracellular fate as well as literature-cited examples of emerging surface-modified targeted carrier systems are discussed.
Collapse
Affiliation(s)
- Simi Gunaseelan
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
84
|
Strategies for development of dengue virus inhibitors. Antiviral Res 2010; 85:450-62. [DOI: 10.1016/j.antiviral.2009.12.011] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/16/2009] [Accepted: 12/30/2009] [Indexed: 01/03/2023]
|
85
|
Novel N-substituted benzimidazole CXCR4 antagonists as potential anti-HIV agents. Bioorg Med Chem Lett 2010; 20:2125-8. [PMID: 20207537 DOI: 10.1016/j.bmcl.2010.02.053] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 11/23/2022]
Abstract
The lead optimization of a series of N-substituted benzimidazole CXCR4 antagonists is described. Side chain modifications and stereochemical optimization led to substantial improvements in potency and protein shift to afford compounds with low nanomolar anti-HIV activity.
Collapse
|
86
|
Bueno CA, Alché LE, Barquero AA. 1-Cinnamoyl-3,11-dihydroxymeliacarpin delays glycoprotein transport restraining virus multiplication without cytotoxicity. Biochem Biophys Res Commun 2010; 393:32-7. [DOI: 10.1016/j.bbrc.2010.01.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 01/16/2010] [Indexed: 11/16/2022]
|
87
|
Armand-Ugón M, Moncunill G, Gonzalez E, Mena M, Ballana E, Clotet B, Esté JA. Different selection patterns of resistance and cross-resistance to HIV-1 agents targeting CCR5. J Antimicrob Chemother 2010; 65:417-24. [PMID: 20067983 DOI: 10.1093/jac/dkp482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Identification of CCR5 as an antiretroviral target led to the development of several CCR5 antagonists in clinical trials and the approval of maraviroc. Evaluating the mechanism of drug resistance to CCR5 agents may have implications in the clinical development of this class of agents. We have analysed the resistance profile of two R5 HIV-1 strains [BaL and a clinical isolate (CI)] after long-term passage in cell culture in the presence of TAK-779, the first developed non-peptidic small molecule targeting CCR5. METHODS Genotypic and phenotypic tests were used to evaluate the resistance of virus isolated from cell culture in the presence of the CCR5 inhibitor TAK-779. RESULTS Mutations conferring resistance appeared in the gp120 sequence but were not confined to the V3 loop region, and both strains had a different mutation pattern. Recombination of the env gene of the BaL-derived resistant virus into the HIV-1 HXB2 wild-type backbone conferred resistance to TAK-779 and cross-resistance to maraviroc, with 63- and 11-fold changes in their EC(50) (50% effective concentration), respectively, together with an apparent reduction of the maximal plateau inhibition (MPI) of TAK-779 but not of maraviroc. Conversely, the resistant CI viruses showed an approximately 50% reduction in MPI for both TAK-779 and maraviroc. CONCLUSIONS We confirm that different pathways to the generation of CCR5 drug resistance/cross-resistance may occur that strongly depend on cell culture conditions, CCR5 availability and the genetic background of the HIV strain. Our study provides complementary information to understand the complexity of resistance to CCR5 antagonists.
Collapse
Affiliation(s)
- Mercedes Armand-Ugón
- Retrovirology Laboratory IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | | | | | | | | | | | | |
Collapse
|
88
|
Broder S. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antiviral Res 2010; 85:1-18. [PMID: 20018391 PMCID: PMC2815149 DOI: 10.1016/j.antiviral.2009.10.002] [Citation(s) in RCA: 292] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/31/2009] [Accepted: 10/10/2009] [Indexed: 12/21/2022]
Abstract
In the last 25 years, HIV-1, the retrovirus responsible for the acquired immunodeficiency syndrome (AIDS), has gone from being an "inherently untreatable" infectious agent to one eminently susceptible to a range of approved therapies. During a five-year period, starting in the mid-1980s, my group at the National Cancer Institute played a role in the discovery and development of the first generation of antiretroviral agents, starting in 1985 with Retrovir (zidovudine, AZT) in a collaboration with scientists at the Burroughs-Wellcome Company (now GlaxoSmithKline). We focused on AZT and related congeners in the dideoxynucleoside family of nucleoside reverse transcriptase inhibitors (NRTIs), taking them from the laboratory to the clinic in response to the pandemic of AIDS, then a terrifying and lethal disease. These drugs proved, above all else, that HIV-1 infection is treatable, and such proof provided momentum for new therapies from many sources, directed at a range of viral targets, at a pace that has rarely if ever been matched in modern drug development. Antiretroviral therapy has brought about a substantial decrease in the death rate due to HIV-1 infection, changing it from a rapidly lethal disease into a chronic manageable condition, compatible with very long survival. This has special implications within the classic boundaries of public health around the world, but at the same time in certain regions may also affect a cycle of economic and civil instability in which HIV-1/AIDS is both cause and consequence. Many challenges remain, including (1) the life-long duration of therapy; (2) the ultimate role of pre-exposure prophylaxis (PrEP); (3) the cardiometabolic side-effects or other toxicities of long-term therapy; (4) the emergence of drug-resistance and viral genetic diversity (non-B subtypes); (5) the specter of new cross-species transmissions from established retroviral reservoirs in apes and Old World monkeys; and (6) the continued pace of new HIV-1 infections in many parts of the world. All of these factors make refining current therapies and developing new therapeutic paradigms essential priorities, topics covered in articles within this special issue of Antiviral Research. Fortunately, there are exciting new insights into the biology of HIV-1, its interaction with cellular resistance factors, and novel points of attack for future therapies. Moreover, it is a short journey from basic research to public health benefit around the world. The current science will lead to new therapeutic strategies with far-reaching implications in the HIV-1/AIDS pandemic. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol. 85, issue 1, 2010.
Collapse
Affiliation(s)
- Samuel Broder
- Celera Corporation, 1401 Harbor Bay Pkwy, Alameda, CA 94502-7070, USA.
| |
Collapse
|
89
|
Abstract
Rag2(-/-) gamma(C)(-/-) mice transplanted with human hematopoietic stem cells (DKO-hu-HSC mice) mimic aspects of human infection with human immunodeficiency virus type 1 (HIV-1), including sustained viral replication and CD4(+) T-cell decline. However, the extent of HIV-1 evolution during long-term infection in these humanized mice, a key feature of the natural infection, has not been assessed fully. In this study, we examined the types of genotypic and phenotypic changes in the viral env gene that occur in the viral populations of DKO-hu-HSC mice infected with the CCR5-tropic isolate HIV-1(JRCSF) for up to 44 weeks. The mean rate of divergence of viral populations in mice was similar to that observed in a cohort of humans during a similar period of infection. Many amino acid substitutions were common across mice, including losses of N-linked glycosylation sites and substitutions in the CD4 binding site and in CD4-induced epitopes, indicating common selective pressures between mice. In addition, env variants evolved sensitivity to antibodies directed at V3, suggesting a more open conformation for Env. This phenotypic change was associated with increased CD4 binding efficiency and was attributed to specific amino acid substitutions. In one mouse, env variants emerged that exhibited a CXCR4-tropic phenotype. These sequences were compartmentalized in the mesenteric lymph node. In summary, viral populations in these mice exhibited dynamic behavior that included sequence evolution, compartmentalization, and the appearance of distinct phenotypic changes. Thus, humanized mice offer a useful model for studying evolutionary processes of HIV-1 in a complex host environment.
Collapse
|
90
|
Role of chemokine network in the development and progression of ovarian cancer: a potential novel pharmacological target. JOURNAL OF ONCOLOGY 2009; 2010:426956. [PMID: 20049170 PMCID: PMC2798669 DOI: 10.1155/2010/426956] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/28/2009] [Indexed: 12/26/2022]
Abstract
Ovarian cancer is the most common type of gynecologic malignancy. Despite advances in surgery and chemotherapy, the survival rate is still low since most ovarian cancers relapse and become drug-resistant. Chemokines are small chemoattractant peptides mainly involved in the immune responses. More recently, chemokines were also demonstrated to regulate extra-immunological functions. It was shown that the chemokine network plays crucial functions in the tumorigenesis in several tissues. In particular the imbalanced or aberrant expression of CXCL12 and its receptor CXCR4 strongly affects cancer cell proliferation, recruitment of immunosuppressive cells, neovascularization, and metastasization. In the last years, several molecules able to target CXCR4 or CXCL12 have been developed to interfere with tumor growth, including pharmacological inhibitors, antagonists, and specific antibodies. This chemokine ligand/receptor pair was also proposed to represent an innovative therapeutic target for the treatment of ovarian cancer. Thus, a thorough understanding of ovarian cancer biology, and how chemokines may control these different biological activities might lead to the development of more effective therapies. This paper will focus on the current biology of CXCL12/CXCR4 axis in the context of understanding their potential role in ovarian cancer development.
Collapse
|
91
|
Inhibition of envelope-mediated CD4+-T-cell depletion by human immunodeficiency virus attachment inhibitors. Antimicrob Agents Chemother 2009; 53:4726-32. [PMID: 19721067 DOI: 10.1128/aac.00494-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope (Env) binding induces proapoptotic signals in CD4(+) T cells without a requirement of infection. Defective virus particles, which represent the majority of HIV-1, usually contain a functional Env and therefore represent a potentially significant cause of such CD4(+)-T-cell loss. We reasoned that an HIV-1 inhibitor that prohibits Env-host cell interactions could block the destructive effects of defective particles. HIV-1 attachment inhibitors (AIs), which potently inhibit Env-CD4 binding and subsequent downstream effects of Env, display low-nanomolar antiapoptotic potency and prevent CD4(+)-T-cell depletion from mixed lymphocyte cultures, also with low-nanomolar potency. Specific Env amino acid changes that confer resistance to AI antientry activity eliminate AI antiapoptotic effects. We observed that CD4(+)-T-cell destruction is specific for CXCR4-utilizing HIV-1 strains and that the fusion blocker enfuvirtide inhibits Env-mediated CD4(+)-T-cell killing but is substantially less potent than AIs. These observations, in conjunction with observed antiapoptotic activities of soluble CD4 and the CXCR4 blocker AMD3100, suggest that this AI activity functions through a mechanism common to AI antientry activity, e.g., prevention of Env conformation changes necessary for specific interactions with cellular factors that facilitate viral entry. Our study suggests that AIs, in addition to having potent antientry activity, could contribute to immune system homeostasis in individuals infected with HIV-1 that can engage CXCR4, thereby mitigating the increased risk of adverse clinical events observed in such individuals on current antiretroviral regimens.
Collapse
|
92
|
Cherry S. What have RNAi screens taught us about viral-host interactions? Curr Opin Microbiol 2009; 12:446-52. [PMID: 19576842 DOI: 10.1016/j.mib.2009.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/04/2009] [Accepted: 06/04/2009] [Indexed: 12/30/2022]
Abstract
The blossoming of genomic technologies and miniaturization has opened up the field of genomic scale cell-based screening to the study of viral-host interactions. RNAi technology, while still at its infancy, is being used to identify cellular factors required for various viral infections. This has led to the discovery of hundreds of new factors, and has increased our knowledge of the host factors that impact viral infection and highlighted the cellular pathways at play.
Collapse
Affiliation(s)
- Sara Cherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|