51
|
Nascimento-Filho CHV, Glinos AT, Jang Y, Goloni-Bertollo EM, Castilho RM, Squarize CH. From Tissue Physoxia to Cancer Hypoxia, Cost-Effective Methods to Study Tissue-Specific O 2 Levels in Cellular Biology. Int J Mol Sci 2022; 23:ijms23105633. [PMID: 35628446 PMCID: PMC9144419 DOI: 10.3390/ijms23105633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The human body is endowed with an extraordinary ability to maintain different oxygen levels in various tissues and organs. The maintenance of physiological levels of oxygen is known as physoxia. The development of hypoxic conditions plays an important role in the biology of several pathologies, including cancer. In vitro studies using normal and neoplastic cells require that culture conditions be carried out under appropriate oxygen levels, either physoxic or hypoxic conditions. Such requirements are difficult to widely implement in laboratory practice, mainly due to the high costs of specialized equipment. In this work, we present and characterize a cost-effective method to culture cells under a range of oxygen levels using deoxidizing pouches. Our results show that physoxic and hypoxic levels using deoxidizing absorbers can be achieved either by implementing a gradual change in oxygen levels or by a regimen of acute depletion of oxygen. This approach triggers the activation of an epithelial-mesenchymal transition in cancer cells while stimulating the expression of HIF-1α. Culturing cancer cells with deoxidizing agent pouches revealed PI3K oncogenic pathway exacerbations compared to tumor cells growing under atmospheric levels of oxygen. Similar to the PI3K signaling disturbance, we also observed augmented oxidative stress and superoxide levels and increased cell cycle arrest. Most interestingly, the culture of cancer cells under hypoxia resulted in the accumulation of cancer stem cells in a time-dependent manner. Overall, we present an attractive, cost-effective method of culturing cells under appropriate physoxic or hypoxic conditions that is easily implementable in any wet laboratory equipped with cell culture tools.
Collapse
Affiliation(s)
- Carlos H. V. Nascimento-Filho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
| | - Alexandra T. Glinos
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
| | - Yeejin Jang
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
| | - Eny M. Goloni-Bertollo
- Genetics and Molecular Biology Research Unit (UPGEM), Department of Molecular Biology, School of Medicine of São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil;
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-0944, USA
- Correspondence:
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; (C.H.V.N.-F.); (A.T.G.); (Y.J.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-0944, USA
| |
Collapse
|
52
|
Gu Z, Hübschmann D. Improve consensus partitioning via a hierarchical procedure. Brief Bioinform 2022; 23:bbac048. [PMID: 35289356 PMCID: PMC9116221 DOI: 10.1093/bib/bbac048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
Consensus partitioning is an unsupervised method widely used in high-throughput data analysis for revealing subgroups and assigning stability for the classification. However, standard consensus partitioning procedures are weak for identifying large numbers of stable subgroups. There are two major issues. First, subgroups with small differences are difficult to be separated if they are simultaneously detected with subgroups with large differences. Second, stability of classification generally decreases as the number of subgroups increases. In this work, we proposed a new strategy to solve these two issues by applying consensus partitioning in a hierarchical procedure. We demonstrated hierarchical consensus partitioning can be efficient to reveal more meaningful subgroups. We also tested the performance of hierarchical consensus partitioning on revealing a great number of subgroups with a large deoxyribonucleic acid methylation dataset. The hierarchical consensus partitioning is implemented in the R package cola with comprehensive functionalities for analysis and visualization. It can also automate the analysis only with a minimum of two lines of code, which generates a detailed HTML report containing the complete analysis. The cola package is available at https://bioconductor.org/packages/cola/.
Collapse
Affiliation(s)
- Zuguang Gu
- National Center for Tumor Disease, Heidelberg, Germany
| | - Daniel Hübschmann
- Molecular Precision Oncology Program, National Center for Tumor Disease, Heidelberg, Germany
| |
Collapse
|
53
|
Gaultier C, Foppolo S, Maurange C. Regulation of developmental hierarchy in Drosophila neural stem cell tumors by COMPASS and Polycomb complexes. SCIENCE ADVANCES 2022; 8:eabi4529. [PMID: 35544555 PMCID: PMC9094666 DOI: 10.1126/sciadv.abi4529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
COMPASS and Polycomb complexes are antagonistic chromatin complexes that are frequently inactivated in cancers, but how these events affect the cellular hierarchy, composition, and growth of tumors is unclear. These characteristics can be systematically investigated in Drosophila neuroblast tumors in which cooption of temporal patterning induces a developmental hierarchy that confers cancer stem cell (CSC) properties to a subset of neuroblasts retaining an early larval temporal identity. Here, using single-cell transcriptomics, we reveal that the trithorax/MLL1/2-COMPASS-like complex guides the developmental trajectory at the top of the tumor hierarchy. Consequently, trithorax knockdown drives larval-to-embryonic temporal reversion and the marked expansion of CSCs that remain locked in a spectrum of early temporal states. Unexpectedly, this phenotype is amplified by concomitant inactivation of Polycomb repressive complex 2 genes, unleashing tumor growth. This study illustrates how inactivation of specific COMPASS and Polycomb complexes cooperates to impair tumor hierarchies, inducing CSC plasticity, heterogeneity, and expansion.
Collapse
Affiliation(s)
| | - Sophie Foppolo
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living systems, Equipe Labellisée Ligue Contre le Cancer, Campus de Luminy Case 907, 13288 Cedex 09 Marseille, France
| | | |
Collapse
|
54
|
Niculescu VF. Cancer genes and cancer stem cells in tumorigenesis: Evolutionary deep homology and controversies. Genes Dis 2022; 9:1234-1247. [PMID: 35873035 PMCID: PMC9293697 DOI: 10.1016/j.gendis.2022.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 12/18/2022] Open
|
55
|
Suarez-Martinez E, Suazo-Sanchez I, Celis-Romero M, Carnero A. 3D and organoid culture in research: physiology, hereditary genetic diseases and cancer. Cell Biosci 2022; 12:39. [PMID: 35365227 PMCID: PMC8973959 DOI: 10.1186/s13578-022-00775-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/13/2022] [Indexed: 02/08/2023] Open
Abstract
In nature, cells reside in tissues subject to complex cell–cell interactions, signals from extracellular molecules and niche soluble and mechanical signaling. These microenvironment interactions are responsible for cellular phenotypes and functions, especially in normal settings. However, in 2D cultures, where interactions are limited to the horizontal plane, cells are exposed uniformly to factors or drugs; therefore, this model does not reconstitute the interactions of a natural microenvironment. 3D culture systems more closely resemble the architectural and functional properties of in vivo tissues. In these 3D cultures, the cells are exposed to different concentrations of nutrients, growth factors, oxygen or cytotoxic agents depending on their localization and communication. The 3D architecture also differentially alters the physiological, biochemical, and biomechanical properties that can affect cell growth, cell survival, differentiation and morphogenesis, cell migration and EMT properties, mechanical responses and therapy resistance. This latter point may, in part, explain the failure of current therapies and affect drug discovery research. Organoids are a promising 3D culture system between 2D cultures and in vivo models that allow the manipulation of signaling pathways and genome editing of cells in a body-like environment but lack the many disadvantages of a living system. In this review, we will focus on the role of stem cells in the establishment of organoids and the possible therapeutic applications of this model, especially in the field of cancer research.
Collapse
Affiliation(s)
- Elisa Suarez-Martinez
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Av Manuel Siurot sn, 41013, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Suazo-Sanchez
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Av Manuel Siurot sn, 41013, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Celis-Romero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Av Manuel Siurot sn, 41013, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Av Manuel Siurot sn, 41013, Sevilla, Spain. .,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
56
|
Mazloumi Z, Farahzadi R, Rafat A, Asl KD, Karimipour M, Montazer M, Movassaghpour AA, Dehnad A, Charoudeh HN. Effect of aberrant DNA methylation on cancer stem cell properties. Exp Mol Pathol 2022; 125:104757. [PMID: 35339454 DOI: 10.1016/j.yexmp.2022.104757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022]
Abstract
DNA methylation, as an epigenetic mechanism, occurs by adding a methyl group of cytosines in position 5 by DNA methyltransferases and has essential roles in cellular function, especially in the transcriptional regulation of embryonic and adult stem cells. Hypomethylation and hypermethylation cause either the expression or inhibition of genes, and there is a tight balance between regulating the activation or repression of genes in normal cellular activity. Abnormal methylation is well-known hallmark of cancer development and progression and can switch normal stem cells into cancer stem cells. Cancer Stem Cells (CSCs) are minor populations of tumor cells that exhibit unique properties such as self-regeneration, resistance to chemotherapy, and high ability of metastasis. The purpose of this paper is to show how aberrant DNA methylation accumulation affects self-renewal, differentiation, multidrug-resistant, and metastasis processes in cancer stem cells.
Collapse
Affiliation(s)
- Zeinab Mazloumi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rafat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Montazer
- Department of Cardiovascular Surgery, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Alireza Dehnad
- Department of Bacterial Disease Research, Razi Vaccine and Serum Research Institute, AREEO, Tabriz, Iran
| | | |
Collapse
|
57
|
Arjmand B, Hamidpour SK, Tayanloo-Beik A, Goodarzi P, Aghayan HR, Adibi H, Larijani B. Machine Learning: A New Prospect in Multi-Omics Data Analysis of Cancer. Front Genet 2022; 13:824451. [PMID: 35154283 PMCID: PMC8829119 DOI: 10.3389/fgene.2022.824451] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is defined as a large group of diseases that is associated with abnormal cell growth, uncontrollable cell division, and may tend to impinge on other tissues of the body by different mechanisms through metastasis. What makes cancer so important is that the cancer incidence rate is growing worldwide which can have major health, economic, and even social impacts on both patients and the governments. Thereby, the early cancer prognosis, diagnosis, and treatment can play a crucial role at the front line of combating cancer. The onset and progression of cancer can occur under the influence of complicated mechanisms and some alterations in the level of genome, proteome, transcriptome, metabolome etc. Consequently, the advent of omics science and its broad research branches (such as genomics, proteomics, transcriptomics, metabolomics, and so forth) as revolutionary biological approaches have opened new doors to the comprehensive perception of the cancer landscape. Due to the complexities of the formation and development of cancer, the study of mechanisms underlying cancer has gone beyond just one field of the omics arena. Therefore, making a connection between the resultant data from different branches of omics science and examining them in a multi-omics field can pave the way for facilitating the discovery of novel prognostic, diagnostic, and therapeutic approaches. As the volume and complexity of data from the omics studies in cancer are increasing dramatically, the use of leading-edge technologies such as machine learning can have a promising role in the assessments of cancer research resultant data. Machine learning is categorized as a subset of artificial intelligence which aims to data parsing, classification, and data pattern identification by applying statistical methods and algorithms. This acquired knowledge subsequently allows computers to learn and improve accurate predictions through experiences from data processing. In this context, the application of machine learning, as a novel computational technology offers new opportunities for achieving in-depth knowledge of cancer by analysis of resultant data from multi-omics studies. Therefore, it can be concluded that the use of artificial intelligence technologies such as machine learning can have revolutionary roles in the fight against cancer.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand, ; Bagher Larijani,
| | - Shayesteh Kokabi Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand, ; Bagher Larijani,
| |
Collapse
|
58
|
Delivering on the promise of early detection with liquid biopsies. Br J Cancer 2022; 126:313-315. [PMID: 35013576 PMCID: PMC8811021 DOI: 10.1038/s41416-021-01646-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Liquid biopsy approaches are relatively well developed for cancer therapy monitoring and disease relapse, but they also have incredible potential in the cancer early detection and screening field. There are, however, several challenges to overcome before this potential can be met. Research in this area needs to be cohesive and, as a driver of research, Cancer Research UK is in an ideal position to enable this.
Collapse
|
59
|
Cortes-Dericks L, Galetta D. Impact of Cancer Stem Cells and Cancer Stem Cell-Driven Drug Resiliency in Lung Tumor: Options in Sight. Cancers (Basel) 2022; 14:267. [PMID: 35053430 PMCID: PMC8773978 DOI: 10.3390/cancers14020267] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Causing a high mortality rate worldwide, lung cancer remains an incurable malignancy resistant to conventional therapy. Despite the discovery of specific molecular targets and new treatment strategies, there remains a pressing need to develop more efficient therapy to further improve the management of this disease. Cancer stem cells (CSCs) are considered the root of sustained tumor growth. This consensus corroborates the CSC model asserting that a distinct subpopulation of malignant cells within a tumor drives and maintains tumor progression with high heterogeneity. Besides being highly tumorigenic, CSCs are highly refractory to standard drugs; therefore, cancer treatment should be focused on eliminating these cells. Herein, we present the current knowledge of the existence of CSCs, CSC-associated mechanisms of chemoresistance, the ability of CSCs to evade immune surveillance, and potential CSC inhibitors in lung cancer, to provide a wider insight to drive a more efficient elimination of this pro-oncogenic and treatment-resistant cell fraction.
Collapse
Affiliation(s)
| | - Domenico Galetta
- Division of Thoracic Surgery, European Institute of Oncology, IRCCS, 20141 Milan, Italy;
- Department of Oncology and Hematology-Oncology-DIPO, University of Milan, 20122 Milan, Italy
| |
Collapse
|
60
|
Naz F, Shi M, Sajid S, Yang Z, Yu C. Cancer stem cells: a major culprit of intra-tumor heterogeneity. Am J Cancer Res 2021; 11:5782-5811. [PMID: 35018226 PMCID: PMC8727794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023] Open
Abstract
Cancer is recognized as a preeminent factor of the world's mortality. Although various modalities have been designed to cure this life-threatening ailment, a significant impediment in the effective output of cancer treatment is heterogeneity. Cancer is characterized as a heterogeneous health disorder that comprises a distinct group of transformed cells to assist anomalous proliferation of affected cells. Cancer stem cells (CSCs) are a leading cause of cancer heterogeneity that is continually transformed by cellular extrinsic and intrinsic factors. They intensify neoplastic cells aggressiveness by strengthening their dissemination, relapse and therapy resistance. Considering this viewpoint, in this review article we have discussed some intrinsic (transcription factors, cell signaling pathways, genetic alterations, epigenetic modifications, non-coding RNAs (ncRNAs) and epitranscriptomics) and extrinsic factors (tumor microenvironment (TME)) that contribute to CSC heterogeneity and plasticity, which may help scientists to meddle these processes and eventually improve cancer research and management. Besides, the potential role of CSCs heterogeneity in establishing metastasis and therapy resistance has been articulated which signifies the importance of developing novel anticancer therapies to target CSCs along with targeting bulk tumor mass to achieve an effective output.
Collapse
Affiliation(s)
- Faiza Naz
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Mengran Shi
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Salvia Sajid
- Department of Biotechnology, Jinnah University for WomenKarachi 74600, Pakistan
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim UniversityAlar 843300, Xinjiang, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| |
Collapse
|
61
|
Acuña RA, Varas-Godoy M, Herrera-Sepulveda D, Retamal MA. Connexin46 Expression Enhances Cancer Stem Cell and Epithelial-to-Mesenchymal Transition Characteristics of Human Breast Cancer MCF-7 Cells. Int J Mol Sci 2021; 22:12604. [PMID: 34830485 PMCID: PMC8624448 DOI: 10.3390/ijms222212604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Connexins (Cxs) are a family of proteins that form two different types of ion channels: hemichannels and gap junction channels. These channels participate in cellular communication, enabling them to share information and act as a synchronized syncytium. This cellular communication has been considered a strong tumor suppressor, but it is now recognized that some type of Cxs can be pro-tumorigenic. For example, Cx46 expression is increased in human breast cancer samples and correlates with cancer stem cell (CSC) characteristics in human glioma. Thus, we explored whether Cx46 and glioma cells, can set up CSC and epithelial-to-mesenchymal transition (EMT) properties in a breast cancer cell line. To this end, we transfected MCF-7 cells with Cx46 attached to a green fluorescent protein (Cx46GFP), and we determined how its expression orchestrates both the gene-expression and functional changes associated with CSC and EMT. We observed that Cx46GFP increased Sox2, Nanog, and OCT4 mRNA levels associated with a high capacity to form monoclonal colonies and tumorspheres. Similarly, Cx46GFP increased the mRNA levels of n-cadherin, Vimentin, Snail and Zeb1 to a higher migratory and invasive capacity. Furthermore, Cx46GFP transfected in MCF-7 cells induced the release of higher amounts of VEGF, which promoted angiogenesis in HUVEC cells. We demonstrated for the first time that Cx46 modulates CSC and EMT properties in breast cancer cells and thus could be relevant in the design of future cancer therapies.
Collapse
Affiliation(s)
- Rodrigo A. Acuña
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago 7510157, Chile;
| | - Diego Herrera-Sepulveda
- Carrera de Medicina Universidad del Desarrollo, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile;
| | - Mauricio A. Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile
| |
Collapse
|
62
|
Phon BWS, Kamarudin MNA, Bhuvanendran S, Radhakrishnan AK. Transitioning pre-clinical glioblastoma models to clinical settings with biomarkers identified in 3D cell-based models: A systematic scoping review. Biomed Pharmacother 2021; 145:112396. [PMID: 34775238 DOI: 10.1016/j.biopha.2021.112396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 11/02/2022] Open
Abstract
Glioblastoma (GBM) remains incurable despite the overwhelming discovery of 2-dimensional (2D) cell-based potential therapeutics since the majority of them have met unsatisfactory results in animal and clinical settings. Incremental empirical evidence has laid the widespread need of transitioning 2D to 3-dimensional (3D) cultures that better mimic GBM's complex and heterogenic nature to allow better translation of pre-clinical results. This systematic scoping review analyses the transcriptomic data involving 3D models of GBM against 2D models from 22 studies identified from four databases (PubMed, ScienceDirect, Medline, and Embase). From a total of 499 genes reported in these studies, 313 (63%) genes were upregulated across 3D models cultured using different scaffolds. Our analysis showed that 4 of the replicable upregulated genes are associated with GBM stemness, epithelial to mesenchymal transition (EMT), hypoxia, and migration-related genes regardless of the type of scaffolds, displaying close resemblances to primitive undifferentiated tumour phenotypes that are associated with decreased overall survival and increased hazard ratio in GBM patients. The upregulation of drug response and drug efflux genes (e.g. cytochrome P450s and ABC transporters) mirrors the GBM genetic landscape that contributes to in vivo and clinical treatment resistance. These upregulated genes displayed strong protein-protein interactions when analysed using an online bioinformatics software (STRING). These findings reinforce the need for widespread transition to 3D GBM models as a relatively inexpensive humanised pre-clinical tool with suitable genetic biomarkers to bridge clinical gaps in potential therapeutic evaluations.
Collapse
Affiliation(s)
- Brandon Wee Siang Phon
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Muhamad N A Kamarudin
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Saatheeyavaane Bhuvanendran
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
63
|
Wu Y, Chen Q, Zhang Q, Li M, Li H, Jia L, Huang Y, Zhang J. Analysis of whole-exome data of cfDNA and the tumor tissue of non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1453. [PMID: 34734005 PMCID: PMC8506706 DOI: 10.21037/atm-21-4117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022]
Abstract
Background Non-small cell lung cancer (NSCLC) has the highest cancer mortality rate in the world, but currently there is no effective method of dynamic monitoring. Gene mutation is an important factor in tumorigenesis and can be detected using high-throughput sequencing technology. This study aimed to analyze the driving genes in the tumor of NSCLC patients by whole exon sequencing, and to compare and analyze the subclones of the tumor at different time points. Methods We collected 87 cases of NSCLC tumor tissues, para-cancer tissues, and peripheral blood samples for detecting cell-free DNAs (cfDNAs) from January 2016 to December 2018, and whole-exome sequencing was performed. The gene mutation map of NSCLC was drawn in detail by second-generation sequencing data analysis and new driver genes were found. In addition, we performed a subclonal analysis of tumors from different stages of the same patient to further describe the tumor heterogeneity. Results We found that the clonal analysis obtained by cfDNA detection was similar to the clonal analysis of the tissue samples, so real-time monitoring of tumor changes can be carried out through monitoring cfDNA. Conclusions This study provides evidence for studying the gene mutation information of NSCLC and shows the importance of cfDNA in the analysis of tumor subcloning information.
Collapse
Affiliation(s)
- Yuanzhou Wu
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qunqing Chen
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | - Man Li
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Li
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Longfei Jia
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Huang
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
64
|
Diori Karidio I, Sanlier SH. Reviewing cancer's biology: an eclectic approach. J Egypt Natl Canc Inst 2021; 33:32. [PMID: 34719756 DOI: 10.1186/s43046-021-00088-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer refers to a group of some of the worldwide most diagnosed and deadliest pathophysiological conditions that conquered researchers' attention for decades and yet begs for more questions for a full comprehension of its complex cellular and molecular pathology. MAIN BODY The disease conditions are commonly characterized by unrestricted cell proliferation and dysfunctional replicative senescence pathways. In fact, the cell cycle operates under the rigorous control of complex signaling pathways involving cyclins and cyclin-dependent kinases assumed to be specific to each phase of the cycle. At each of these checkpoints, the cell is checked essentially for its DNA integrity. Genetic defects observed in these molecules (i.e., cyclins, cyclin-dependent kinases) are common features of cancer cells. Nevertheless, each cancer is different concerning its molecular and cellular etiology. These could range from the genetic defects mechanisms and/or the environmental conditions favoring epigenetically harbored homeostasis driving tumorigenesis alongside with the intratumoral heterogeneity with respect to the model that the tumor follows. CONCLUSIONS This review is not meant to be an exhaustive interpretation of carcinogenesis but to summarize some basic features of the molecular etiology of cancer and the intratumoral heterogeneity models that eventually bolster anticancer drug resistance for a more efficient design of drug targeting the pitfalls of the models.
Collapse
Affiliation(s)
- Ibrahim Diori Karidio
- Department of Biochemistry, Faculty of Science, E Block, Ege University, Erzene Mahallesi, Bornova, 35040, Izmir, Turkey.
| | - Senay Hamarat Sanlier
- Department of Biochemistry, Faculty of Science, E Block, Ege University, Erzene Mahallesi, Bornova, 35040, Izmir, Turkey.,ARGEFAR, Faculty of Medicine, Ege University, Bornova, 35040, Izmir, Turkey
| |
Collapse
|
65
|
Margarit DH, González NS, Romanelli LM, Fendrik AJ, Scagliotti AF, Reale MV. An integrative model of cancer cell differentiation with immunotherapy . Phys Biol 2021; 18. [PMID: 34633296 DOI: 10.1088/1478-3975/ac2e72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
In order to improve cancer treatments, cancer cell differentiation and immunotherapy are the subjects of several studies in different branches of interdisciplinary sciences. In this work, we develop a new population model that integrates other complementary ones, thus emphasizing the relationship between cancer cells at different differentiation stages and the main immune system cells. For this new system, specific ranges were found where transdifferentiation of differentiated cancer cells can occur. In addition, a specific therapy against cancer stem cells was analysed by simulating cytotoxic cell vaccines. In reference to the latter, the different combinations of parameters that optimize it were studied.
Collapse
Affiliation(s)
- David H Margarit
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J M Gutiérrez 1150, Los Polvorines (B1613), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Nadia S González
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J M Gutiérrez 1150, Los Polvorines (B1613), Buenos Aires, Argentina
| | - Lilia M Romanelli
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J M Gutiérrez 1150, Los Polvorines (B1613), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alejandro J Fendrik
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J M Gutiérrez 1150, Los Polvorines (B1613), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Ariel F Scagliotti
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J M Gutiérrez 1150, Los Polvorines (B1613), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marcela V Reale
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J M Gutiérrez 1150, Los Polvorines (B1613), Buenos Aires, Argentina.,Departamento de Ingeniería e Investigaciones Tecnológicas, Universidad Nacional de La Matanza (UNLaM), Florencio Varela 1903, San Justo (B1754), Buenos Aires, Argentina
| |
Collapse
|
66
|
Scioli MG, Terriaca S, Fiorelli E, Storti G, Fabbri G, Cervelli V, Orlandi A. Extracellular Vesicles and Cancer Stem Cells in Tumor Progression: New Therapeutic Perspectives. Int J Mol Sci 2021; 22:10572. [PMID: 34638913 PMCID: PMC8508599 DOI: 10.3390/ijms221910572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor burden is a complex microenvironment where different cell populations coexist and have intense cross-talk. Among them, a heterogeneous population of tumor cells with staminal features are grouped under the definition of cancer stem cells (CSCs). CSCs are also considered responsible for tumor progression, drug resistance, and disease relapse. Furthermore, CSCs secrete a wide variety of extracellular vesicles (EVs) with different cargos, including proteins, lipids, ssDNA, dsDNA, mRNA, siRNA, or miRNA. EVs are internalized by other cells, orienting the microenvironment toward a protumorigenic and prometastatic one. Given their importance in tumor growth and metastasis, EVs could be exploited as a new therapeutic target. The inhibition of biogenesis, release, or uptake of EVs could represent an efficacious strategy to impair the cross-talk between CSCs and other cells present in the tumor microenvironment. Moreover, natural or synthetic EVs could represent suitable carriers for drugs or bioactive molecules to target specific cell populations, including CSCs. This review will discuss the role of CSCs and EVs in tumor growth, progression, and metastasis and how they affect drug resistance and disease relapse. Furthermore, we will analyze the potential role of EVs as a target or vehicle of new therapies.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Sonia Terriaca
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Elena Fiorelli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy; (G.S.); (V.C.)
| | - Giulia Fabbri
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy; (G.S.); (V.C.)
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| |
Collapse
|
67
|
Wan Kamarul Zaman WS, Nurul AA, Nordin F. Stem Cells and Cancer Stem Cells: The Jekyll and Hyde Scenario and Their Implications in Stem Cell Therapy. Biomedicines 2021; 9:biomedicines9091245. [PMID: 34572431 PMCID: PMC8468168 DOI: 10.3390/biomedicines9091245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 12/12/2022] Open
Abstract
"Jekyll and Hyde" refers to persons with an unpredictably dual personality, who are battling between good and evil within themselves In this regard, even cells consist of good and evil counterparts. Normal stem cells (NSCs) and cancer stem cells (CSCs) are two types of cells that share some similar characteristics but have distinct functions that play a major role in physiological and pathophysiological development. In reality, NSCs such as the adult and embryonic stem cells, are the good cells and the ultimate treatment used in cell therapy. CSCs are the corrupted cells that are a subpopulation of cancer cells within the cancer microenvironment that grow into a massive tumour or malignancy that needs to be treated. Hence, understanding the connection between NSCs and CSCs is important not just in cancer development but also in their therapeutic implication, which is the focus of this review.
Collapse
Affiliation(s)
- Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| | - Asma Abdullah Nurul
- School of Health Science, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre, UKM, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
68
|
Becerril-Rico J, Alvarado-Ortiz E, Toledo-Guzmán ME, Pelayo R, Ortiz-Sánchez E. The cross talk between gastric cancer stem cells and the immune microenvironment: a tumor-promoting factor. Stem Cell Res Ther 2021; 12:498. [PMID: 34503571 PMCID: PMC8428093 DOI: 10.1186/s13287-021-02562-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Cross talk between cancer cells and the immune system is determinant for cancer progression. Emerging evidence demonstrates that GC characteristics such as metastasis, treatment resistance, and disease recurrence are associated with a tumor subpopulation called gastric cancer stem cells (GCSCs). However, the specific interaction between GCSCs and the immune microenvironment is still under investigation. Although immune evasion has been well described for cancer stem cells (CSCs), recent studies show that GCSCs can also regulate the immune system and even benefit from it. This review will provide an overview of bidirectional interactions between CSCs and immune cells in GC, compiling relevant data about how CSCs can induce leukocyte reprogramming, resulting in pro-tumoral immune cells that orchestrate promotion of metastasis, chemoresistance, tumorigenicity, and even increase in number of cancer cells with stem properties. Some immune cells studied are tumor-associated macrophages (TAMs), neutrophils, Th17 and T regulatory (Treg) cells, mesenchymal stem cells (MSCs), and cancer-associated fibroblasts (CAFs), as well as the signaling pathways involved in these pro-tumoral activities. Conversely, although there are cytotoxic leukocytes that can potentially eliminate GCSCs, we describe mechanisms for immune evasion in GCSCs and their clinical implications. Furthermore, we describe current available immunotherapy targeting GCSC-related markers as possible treatment for GC, discussing how the CSC-modified immune microenvironment can mitigate or inactivate these immunotherapies, limiting their effectiveness. Finally, we summarize key concepts and relevant evidence to understand the cross talk between GCSCs and the immune microenvironment as an important process for effective design of therapies against GCSCs that improve the outcome of patients with GC.
Collapse
Affiliation(s)
- Jared Becerril-Rico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, Mexico
| | - Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Mariel E Toledo-Guzmán
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, Mexico
| | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Delegación Puebla, Puebla, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, Mexico.
| |
Collapse
|
69
|
Orel VE, Ashykhmin A, Golovko T, Rykhalskyi O, Orel VB. Texture Analysis of Tumor and Peritumoral Tissues Based on 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Hybrid Imaging in Patients With Rectal Cancer. J Comput Assist Tomogr 2021; 45:820-828. [PMID: 34469907 DOI: 10.1097/rct.0000000000001218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to determine whether texture parameters could be used in differentiation between the tumor and the peritumoral tissues based on hybrid 18F-Fluorodeoxyglucose positron emission tomography/computed tomography imaging for patients with rectal cancer. METHODS Seven parameters, including heterogeneity, entropy, energy, skewness, kurtosis, standard deviation, and average brightness, were extracted from positron emission tomography/computed tomography scans of 22 patients (12 male and 10 female; mean age, 61 ± 2 years). RESULTS The peritumoral tissue had a significantly lower value of the heterogeneity parameter (23%) than the tumor. Tumor size (r = -0.48, P < 0.05) and extramural venous invasion scores (r = 0.64, P < 0.05) correlated with heterogeneity in the peritumoral tissue. There were significant differences (P < 0.05) in the correlation coefficients between men and women. CONCLUSIONS Therefore, we provided additional quantitative information to differentiate the tumor from the peritumoral tissue and indicated possible application for extramural venous invasion evaluation in rectal cancer.
Collapse
|
70
|
Shenouda S, Kulkarni K, Abuetabh Y, Sergi C. Cancer Stem Cells and their Management in Cancer Therapy. Recent Pat Anticancer Drug Discov 2021; 15:212-227. [PMID: 32660407 DOI: 10.2174/1574892815666200713145931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/16/2020] [Accepted: 06/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the last decade, the proposed Cancer Stem Cell (CSC) hypothesis has steadily changed the way cancer treatment is approached. CSCs may be the source of the heterogeneous non-tumorigenic cell population included in a neoplasm. Intratumor and intertumoral heterogeneity is a well-known phenomenon that massively entangles the diagnosis and treatment of cancer. The literature seems to suggest that heterogeneity develops progressively within tumor-initiating stem cells. CSCs harbor genetic and/or epigenetic alterations that allow them to differentiate into multiple tumor cell types sequentially. OBJECTIVE The CSC hypothesis, cellular therapy, and the most recent patents on CSCs were reviewed. METHODS PubMed, Scopus, and Google Scholar were screened for this information. Also, an analysis of the most recent data targeting CSCs in pediatric cancer developed at two Canadian institutions is provided. The genes involved with the activation of CSCs and the drugs used to antagonize them are also highlighted. RESULTS It is underlined that (1) CSCs possess stem cell-like properties, including the ability for self-renewal; (2) CSCs can start carcinogenesis and are responsible for tumor recurrence after treatment; (3) Although some limitations have been raised, which may oppose the CSC hypothesis, cancer progression and metastasis have been recognized to be caused by CSCs. CONCLUSION The significant roles of cell therapy may include an auto-transplant with high-dose treatment, an improvement of the immune function, creation of chimeric antigen receptor T cells, and the recruitment of NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Suzan Shenouda
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Ketan Kulkarni
- Department of Pediatrics, Pediatric Hematology/Oncology, Halifax, NS, Canada
| | - Yasser Abuetabh
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Consolato Sergi
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
71
|
Generali M, Satheesha S, Bode PK, Wanner D, Schäfer BW, Casanova EA. High Frequency of Tumor Propagating Cells in Fusion-Positive Rhabdomyosarcoma. Genes (Basel) 2021; 12:genes12091373. [PMID: 34573355 PMCID: PMC8469567 DOI: 10.3390/genes12091373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. Fusion-positive RMS (FPRMS), expressing the PAX3/7-FOXO1, has a worse prognosis compared to the more common fusion-negative RMS (FNRMS). Although several studies reported hierarchical organization for FNRMS with the identification of cancer stem cells, the cellular organization of FPRMS is not yet clear. In this study we investigated the expression of key stem cell markers, developed a sphere assay, and investigated the seven most common FPRMS cell lines for subpopulations of tumor propagating cancer stem-like cells, also called cancer stem cells (CSCs). Moreover, loss- and gain-of-functions of the stem cell genes SOX2, OCT4, and NANOG were investigated in the same cells. Single-cell clonal analysis was performed in vitro as well as in vivo. We found that no stable CSC subpopulation could be enriched in FPRMS. Unlike depletion of PAX3-FOXO1, neither overexpression nor siRNA-mediated downregulation of SOX2, OCT4, and NANOG affected physiology of RMS cells. Every single subclone-derived cell clone initiated tumor growth in mice, despite displaying considerable heterogeneity in gene expression. FPRMS appears to contain a high frequency of tumor propagating stem-like cells, which could explain their higher propensity for metastasis and relapse. Their dependency on PAX3-FOXO1 activity reinforces the importance of the fusion protein as the key therapeutic target.
Collapse
Affiliation(s)
- Melanie Generali
- Center for Therapy Development and Good Manufacturing Practice, Institute for Regenerative Medicine (IREM), University of Zurich, 8044 Zurich, Switzerland; (M.G.); (D.W.)
| | - Sampoorna Satheesha
- Department of Oncology and Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland;
| | - Peter K. Bode
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Debora Wanner
- Center for Therapy Development and Good Manufacturing Practice, Institute for Regenerative Medicine (IREM), University of Zurich, 8044 Zurich, Switzerland; (M.G.); (D.W.)
| | - Beat W. Schäfer
- Department of Oncology and Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland;
- Correspondence: (B.W.S.); (E.A.C.); Tel.: +41-44-266-7553 (B.W.S.); +41-44-255-1976 (E.A.C.)
| | - Elisa A. Casanova
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Correspondence: (B.W.S.); (E.A.C.); Tel.: +41-44-266-7553 (B.W.S.); +41-44-255-1976 (E.A.C.)
| |
Collapse
|
72
|
Peña-Hernández R, Aprigliano R, Carina Frommel S, Pietrzak K, Steiger S, Roganowicz M, Lerra L, Bizzarro J, Santoro R. BAZ2A-mediated repression via H3K14ac-marked enhancers promotes prostate cancer stem cells. EMBO Rep 2021; 22:e53014. [PMID: 34403195 PMCID: PMC8567280 DOI: 10.15252/embr.202153014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/09/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers in men. Cancer stem cells are thought to be associated with PCa relapse. Here, we show that BAZ2A is required for PCa cells with a cancer stem‐like state. BAZ2A genomic occupancy in PCa cells coincides with H3K14ac‐enriched chromatin regions. This association is mediated by BAZ2A‐bromodomain (BAZ2A‐BRD) that specifically binds H3K14ac. BAZ2A associates with inactive enhancers marked by H3K14ac and repressing transcription of genes frequently silenced in aggressive and poorly differentiated PCa. BAZ2A‐mediated repression is also linked to EP300 that acetylates H3K14ac. BAZ2A‐BRD mutations or treatment with inhibitors abrogating BAZ2A‐BRD/H3K14ac interaction impair PCa stem cells. Furthermore, pharmacological inactivation of BAZ2A‐BRD impairs Pten‐loss oncogenic transformation of prostate organoids. Our findings indicate a role of BAZ2A‐BRD in PCa stem cell features and suggest potential epigenetic‐reader therapeutic strategies to target BAZ2A in aggressive PCa.
Collapse
Affiliation(s)
- Rodrigo Peña-Hernández
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, Zurich, Switzerland.,Molecular Life Science Program, Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Rossana Aprigliano
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, Zurich, Switzerland
| | - Sandra Carina Frommel
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, Zurich, Switzerland
| | - Karolina Pietrzak
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, Zurich, Switzerland.,Molecular Life Science Program, Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Seraina Steiger
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, Zurich, Switzerland
| | - Marcin Roganowicz
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, Zurich, Switzerland.,RNA Biology Program, Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Luigi Lerra
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, Zurich, Switzerland.,RNA Biology Program, Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Juliana Bizzarro
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, Zurich, Switzerland
| | - Raffaella Santoro
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, Zurich, Switzerland
| |
Collapse
|
73
|
Stem Cell Theory of Cancer: Origin of Tumor Heterogeneity and Plasticity. Cancers (Basel) 2021; 13:cancers13164006. [PMID: 34439162 PMCID: PMC8394880 DOI: 10.3390/cancers13164006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
In many respects, heterogeneity is one of the most striking revelations and common manifestations of a stem cell origin of cancer. We observe heterogeneity in myriad mixed tumors including testicular, lung, and breast cancers. We recognize heterogeneity in diverse tumor subtypes in prostate and kidney cancers. From this perspective, we illustrate that one of the main stem-ness characteristics, i.e., the ability to differentiate into diverse and multiple lineages, is central to tumor heterogeneity. We postulate that cancer subtypes can be meaningless and useless without a proper theory about cancer's stem cell versus genetic origin and nature. We propose a unified theory of cancer in which the same genetic abnormalities, epigenetic defects, and microenvironmental aberrations cause different effects and lead to different outcomes in a progenitor stem cell versus a mature progeny cell. We need to recognize that an all-encompassing genetic theory of cancer may be incomplete and obsolete. A stem cell theory of cancer provides greater universality, interconnectivity, and utility. Although genetic defects are pivotal, cellular context is paramount. When it concerns tumor heterogeneity, perhaps we need to revisit the conventional wisdom of precision medicine and revise our current practice of targeted therapy in cancer care.
Collapse
|
74
|
The Renin-Angiotensin System in the Tumor Microenvironment of Glioblastoma. Cancers (Basel) 2021; 13:cancers13164004. [PMID: 34439159 PMCID: PMC8392691 DOI: 10.3390/cancers13164004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Glioblastoma (GB) is the most aggressive brain cancer in humans. Patient survival outcomes have remained dismal despite intensive research over the past 50 years, with a median overall survival of only 14.6 months. We highlight the critical role of the renin–angiotensin system (RAS) on GB cancer stem cells and the tumor microenvironment which, in turn, influences cancer stem cells in driving tumorigenesis and treatment resistance. We present recent developments and underscore the need for further research into the GB tumor microenvironment. We discuss the novel therapeutic targeting of the RAS using existing commonly available medications and utilizing model systems to further this critical investigation. Abstract Glioblastoma (GB) is an aggressive primary brain tumor. Despite intensive research over the past 50 years, little advance has been made to improve the poor outcome, with an overall median survival of 14.6 months following standard treatment. Local recurrence is inevitable due to the quiescent cancer stem cells (CSCs) in GB that co-express stemness-associated markers and components of the renin–angiotensin system (RAS). The dynamic and heterogeneous tumor microenvironment (TME) plays a fundamental role in tumor development, progression, invasiveness, and therapy resistance. There is increasing evidence showing the critical role of the RAS in the TME influencing CSCs via its upstream and downstream pathways. Drugs that alter the hallmarks of cancer by modulating the RAS present a potential new therapeutic alternative or adjunct to conventional treatment of GB. Cerebral and GB organoids may offer a cost-effective method for evaluating the efficacy of RAS-modulating drugs on GB. We review the nexus between the GB TME, CSC niche, and the RAS, and propose re-purposed RAS-modulating drugs as a potential therapeutic alternative or adjunct to current standard therapy for GB.
Collapse
|
75
|
Gaggianesi M, Di Franco S, Pantina VD, Porcelli G, D'Accardo C, Verona F, Veschi V, Colarossi L, Faldetta N, Pistone G, Bongiorno MR, Todaro M, Stassi G. Messing Up the Cancer Stem Cell Chemoresistance Mechanisms Supported by Tumor Microenvironment. Front Oncol 2021; 11:702642. [PMID: 34354950 PMCID: PMC8330815 DOI: 10.3389/fonc.2021.702642] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in cancer patient management and in the development of targeted therapies, systemic chemotherapy is currently used as a first-line treatment for many cancer types. After an initial partial response, patients become refractory to standard therapy fostering rapid tumor progression. Compelling evidence highlights that the resistance to chemotherapeutic regimens is a peculiarity of a subpopulation of cancer cells within tumor mass, known as cancer stem cells (CSCs). This cellular compartment is endowed with tumor-initiating and metastasis formation capabilities. CSC chemoresistance is sustained by a plethora of grow factors and cytokines released by neighboring tumor microenvironment (TME), which is mainly composed by adipocytes, cancer-associated fibroblasts (CAFs), immune and endothelial cells. TME strengthens CSC refractoriness to standard and targeted therapies by enhancing survival signaling pathways, DNA repair machinery, expression of drug efflux transporters and anti-apoptotic proteins. In the last years many efforts have been made to understand CSC-TME crosstalk and develop therapeutic strategy halting this interplay. Here, we report the combinatorial approaches, which perturb the interaction network between CSCs and the different component of TME.
Collapse
Affiliation(s)
- Miriam Gaggianesi
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Simone Di Franco
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Vincenzo Davide Pantina
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Francesco Verona
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | | | - Naida Faldetta
- Department of Surgery, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
76
|
Zheng X, Yu C, Xu M. Linking Tumor Microenvironment to Plasticity of Cancer Stem Cells: Mechanisms and Application in Cancer Therapy. Front Oncol 2021; 11:678333. [PMID: 34262865 PMCID: PMC8273276 DOI: 10.3389/fonc.2021.678333] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/16/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) are a minority subset of cancer cells that can drive tumor initiation, promote tumor progression, and induce drug resistance. CSCs are difficult to eliminate by conventional therapies and eventually mediate tumor relapse and metastasis. Moreover, recent studies have shown that CSCs display plasticity that renders them to alter their phenotype and function. Consequently, the varied phenotypes result in varied tumorigenesis, dissemination, and drug-resistance potential, thereby adding to the complexity of tumor heterogeneity and further challenging clinical management of cancers. In recent years, tumor microenvironment (TME) has become a hotspot in cancer research owing to its successful application in clinical tumor immunotherapy. Notably, emerging evidence shows that the TME is involved in regulating CSC plasticity. TME can activate stemness pathways and promote immune escape through cytokines and exosomes secreted by immune cells or stromal cells, thereby inducing non-CSCs to acquire CSC properties and increasing CSC plasticity. However, the relationship between TME and plasticity of CSCs remains poorly understood. In this review, we discuss the emerging investigations on TME and CSC plasticity to illustrate the underlying mechanisms and potential implications in suppressing cancer progression and drug resistance. We consider that this review can help develop novel therapeutic strategies by taking into account the interlink between TME and CSC plasticity.
Collapse
Affiliation(s)
- Xiaobo Zheng
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chune Yu
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mingqing Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Hepatopancreatobiliary Surgery, Meishan City People's Hospital, Meishan Hospital of West China Hospital, Sichuan University, Meishan, China
| |
Collapse
|
77
|
Ghaderi F, Jokar N, Gholamrezanezhad A, Assadi M, Ahmadzadehfar H. Toward radiotheranostics in cancer stem cells: a promising initial step for tumour eradication. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
78
|
Wieczorek-Szukala K, Lewinski A. The Role of Snail-1 in Thyroid Cancer-What We Know So Far. J Clin Med 2021; 10:2324. [PMID: 34073413 PMCID: PMC8197874 DOI: 10.3390/jcm10112324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid carcinomas, despite the usually indolent behaviour and relatively good overall prognosis, show a high tendency to gain invasive phenotype and metastasise in some cases. However, due to a relatively slow progression, the exact mechanisms governing the metastatic process of thyroid carcinomas, including the epithelial-to-mesenchymal transition (EMT), are poorly described. One of the best-known regulators of cancer invasiveness is Snail-1-a zinc-finger transcription factor that plays a key role as an EMT inducer. More and more attention is being paid to the role of Snail with regard to thyroid cancer development. Apart from the obvious implications in the EMT process, Snail-1 plays an important role in the regulation of chemoresistance of the thyroid cells and cancer stem cell (CSC) formation, and it also interacts with miRNA specific to the thyroid gland. The aim of this review was to summarise the knowledge on Snail-1, especially in the context of thyroid oncogenesis.
Collapse
Affiliation(s)
| | - Andrzej Lewinski
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland;
| |
Collapse
|
79
|
Comertpay B, Gulfidan G, Arga KY, Gov E. Cancer Stem Cell Transcriptome Profiling Reveals Seed Genes of Tumorigenesis: New Avenues for Cancer Precision Medicine. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:372-388. [PMID: 34037481 DOI: 10.1089/omi.2021.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer stem-like cells (CSCs) possess the ability to self-renew and differentiate, and they are among the major factors driving tumorigenesis, metastasis, and resistance to chemotherapy. Therefore, it is critical to understand the molecular substrates of CSC biology so as to discover novel molecular biosignatures that distinguish CSCs and tumor cells. Here, we report new findings and insights by employing four transcriptome datasets associated with CSCs, with CSC and tumor samples from breast, lung, oral, and ovarian tissues. The CSC samples were analyzed to identify differentially expressed genes between CSC and tumor phenotypes. Through comparative profiling of expression levels in different cancer types, we identified 17 "seed genes" that showed a mutual differential expression pattern. We showed that these seed genes were strongly associated with cancer-associated signaling pathways and biological processes, the immune system, and the key cancer hallmarks. Further, the seed genes presented significant changes in their expression profiles in different cancer types and diverse mutation rates, and they also demonstrated high potential as diagnostic and prognostic biomarkers in various cancers. We report a number of seed genes that represent significant potential as "systems biomarkers" for understanding the pathobiology of tumorigenesis. Seed genes offer a new innovation avenue for potential applications toward cancer precision medicine in a broad range of cancers in oncology in the future.
Collapse
Affiliation(s)
- Betul Comertpay
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | | | - Esra Gov
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| |
Collapse
|
80
|
Zuccherato LW, Machado CMT, Magalhães WCS, Martins PR, Campos LS, Braga LC, Teixeira-Carvalho A, Martins-Filho OA, Franco TMRF, Paula SOC, da Silva IT, Drummond R, Gollob KJ, Salles PGO. Cervical Cancer Stem-Like Cell Transcriptome Profiles Predict Response to Chemoradiotherapy. Front Oncol 2021; 11:639339. [PMID: 34026616 PMCID: PMC8138064 DOI: 10.3389/fonc.2021.639339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC) represents a major global health issue, particularly impacting women from resource constrained regions worldwide. Treatment refractoriness to standard chemoradiotheraphy has identified cancer stem cells as critical coordinators behind the biological mechanisms of resistance, contributing to CC recurrence. In this work, we evaluated differential gene expression in cervical cancer stem-like cells (CCSC) as biomarkers related to intrinsic chemoradioresistance in CC. A total of 31 patients with locally advanced CC and referred to Mário Penna Institute (Belo Horizonte, Brazil) from August 2017 to May 2018 were recruited for the study. Fluorescence-activated cell sorting was used to enrich CD34+/CD45- CCSC from tumor biopsies. Transcriptome was performed using ultra-low input RNA sequencing and differentially expressed genes (DEGs) using Log2 fold differences and adjusted p-value < 0.05 were determined. The analysis returned 1050 DEGs when comparing the Non-Responder (NR) (n=10) and Responder (R) (n=21) groups to chemoradiotherapy. These included a wide-ranging pattern of underexpressed coding genes in the NR vs. R patients and a panel of lncRNAs and miRNAs with implications for CC tumorigenesis. A panel of biomarkers was selected using the rank-based AUC (Area Under the ROC Curve) and pAUC (partial AUC) measurements for diagnostic sensitivity and specificity. Genes overlapping between the 21 highest AUC and pAUC loci revealed seven genes with a strong capacity for identifying NR vs. R patients (ILF2, RBM22P2, ACO16722.1, AL360175.1 and AC092354.1), of which four also returned significant survival Hazard Ratios. This study identifies DEG signatures that provide potential biomarkers in CC prognosis and treatment outcome, as well as identifies potential alternative targets for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Larissa S. Campos
- Núcleo de Ensino e Pesquisa - Instituto Mário Penna, Belo Horizonte, Brazil
| | - Letícia C. Braga
- Núcleo de Ensino e Pesquisa - Instituto Mário Penna, Belo Horizonte, Brazil
| | | | | | | | | | | | - Rodrigo Drummond
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Kenneth J. Gollob
- Núcleo de Ensino e Pesquisa - Instituto Mário Penna, Belo Horizonte, Brazil
- Translational Immuno-Oncology Laboratory, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | |
Collapse
|
81
|
Abstract
The 2016 World Health Organization brain tumor classification is based on genomic and molecular profile of tumor tissue. These characteristics have improved understanding of the brain tumor and played an important role in treatment planning and prognostication. There is an ongoing effort to develop noninvasive imaging techniques that provide insight into tissue characteristics at the cellular and molecular levels. This article focuses on the molecular characteristics of gliomas, transcriptomic subtypes, and radiogenomic studies using semantic and radiomic features. The limitations and future directions of radiogenomics as a standalone diagnostic tool also are discussed.
Collapse
Affiliation(s)
- Chaitra Badve
- Department of Radiology, Division of Neuroradiology, University Hospitals Cleveland Medical Center, BSH 5056, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Sangam Kanekar
- Department of Radiology and Neurology, Division of Neuroradiology, Penn State College of Medicine, Penn State Milton Hershey Medical Center, Mail Code H066 500, University Drive, Hershey, PA 17033, USA
| |
Collapse
|
82
|
Genovese I, Carinci M, Modesti L, Aguiari G, Pinton P, Giorgi C. Mitochondria: Insights into Crucial Features to Overcome Cancer Chemoresistance. Int J Mol Sci 2021; 22:ijms22094770. [PMID: 33946271 PMCID: PMC8124268 DOI: 10.3390/ijms22094770] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are key regulators of cell survival and are involved in a plethora of mechanisms, such as metabolism, Ca2+ signaling, reactive oxygen species (ROS) production, mitophagy and mitochondrial transfer, fusion, and fission (known as mitochondrial dynamics). The tuning of these processes in pathophysiological conditions is fundamental to the balance between cell death and survival. Indeed, ROS overproduction and mitochondrial Ca2+ overload are linked to the induction of apoptosis, while the impairment of mitochondrial dynamics and metabolism can have a double-faceted role in the decision between cell survival and death. Tumorigenesis involves an intricate series of cellular impairments not yet completely clarified, and a further level of complexity is added by the onset of apoptosis resistance mechanisms in cancer cells. In the majority of cases, cancer relapse or lack of responsiveness is related to the emergence of chemoresistance, which may be due to the cooperation of several cellular protection mechanisms, often mitochondria-related. With this review, we aim to critically report the current evidence on the relationship between mitochondria and cancer chemoresistance with a particular focus on the involvement of mitochondrial dynamics, mitochondrial Ca2+ signaling, oxidative stress, and metabolism to possibly identify new approaches or targets for overcoming cancer resistance.
Collapse
Affiliation(s)
- Ilaria Genovese
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Lorenzo Modesti
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, Section of Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44121 Ferrara, Italy;
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
- Correspondence:
| |
Collapse
|
83
|
Domrachev B, Singh S, Li D, Rudloff U. Mini-Review: PDPK1 (3-phosphoinositide dependent protein kinase-1), An Emerging Cancer Stem Cell Target. ACTA ACUST UNITED AC 2021; 5:30-35. [PMID: 34079928 PMCID: PMC8168947 DOI: 10.29245/2578-2967/2021/1.1194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are subpopulations of tumor cells that possess abilities for self-renewal, differentiation, and tumor initiation. These rare but therapy-recalcitrant cells are assumed to repopulate tumors following administration of systemic chemotherapy driving therapy failure, tumor recurrence, and disease progression. In early clinical trials, anti-CSC therapies have found limited success to-date possibly due to the inherent heterogeneity and plasticity of CSCs and the incomplete characterization of essential CSC targets. Here, we review the role of 3-phosphoinositide dependent protein kinase-1 (PDPK1) as an emerging CSC target. While most previous studies have relied on CSC models which are based on lineage and tissue-specific marker profiles to define the relationships between putative target and CSC traits, this review discusses PDPK1 and its role in CSC biology with an emphasis on CSC systems which are based on proposed function like label-retaining cancer cells (LRCCs).
Collapse
Affiliation(s)
- Bogdan Domrachev
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sitanshu Singh
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Dandan Li
- Thoracic & GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.,Thoracic & GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
84
|
The Molecular Basis of Different Approaches for the Study of Cancer Stem Cells and the Advantages and Disadvantages of a Three-Dimensional Culture. Molecules 2021; 26:molecules26092615. [PMID: 33947095 PMCID: PMC8124970 DOI: 10.3390/molecules26092615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a rare tumor subpopulation with high differentiation, proliferative and tumorigenic potential compared to the remaining tumor population. CSCs were first discovered by Bonnet and Dick in 1997 in acute myeloid leukemia. The identification and isolation of these cells in this pioneering study were carried out through the flow cytometry, exploiting the presence of specific cell surface molecular markers (CD34+/CD38−). In the following years, different strategies and projects have been developed for the study of CSCs, which are basically divided into surface markers assays and functional assays; some of these techniques also allow working with a cellular model that better mimics the tumor architecture. The purpose of this mini review is to summarize and briefly describe all the current methods used for the identification, isolation and enrichment of CSCs, describing, where possible, the molecular basis, the advantages and disadvantages of each technique with a particular focus on those that offer a three-dimensional culture.
Collapse
|
85
|
Lenin S, Ponthier E, Scheer KG, Yeo ECF, Tea MN, Ebert LM, Oksdath Mansilla M, Poonnoose S, Baumgartner U, Day BW, Ormsby RJ, Pitson SM, Gomez GA. A Drug Screening Pipeline Using 2D and 3D Patient-Derived In Vitro Models for Pre-Clinical Analysis of Therapy Response in Glioblastoma. Int J Mol Sci 2021; 22:4322. [PMID: 33919246 PMCID: PMC8122466 DOI: 10.3390/ijms22094322] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is one of the most common and lethal types of primary brain tumor. Despite aggressive treatment with chemotherapy and radiotherapy, tumor recurrence within 6-9 months is common. To overcome this, more effective therapies targeting cancer cell stemness, invasion, metabolism, cell death resistance and the interactions of tumor cells with their surrounding microenvironment are required. In this study, we performed a systematic review of the molecular mechanisms that drive glioblastoma progression, which led to the identification of 65 drugs/inhibitors that we screened for their efficacy to kill patient-derived glioma stem cells in two dimensional (2D) cultures and patient-derived three dimensional (3D) glioblastoma explant organoids (GBOs). From the screening, we found a group of drugs that presented different selectivity on different patient-derived in vitro models. Moreover, we found that Costunolide, a TERT inhibitor, was effective in reducing the cell viability in vitro of both primary tumor models as well as tumor models pre-treated with chemotherapy and radiotherapy. These results present a novel workflow for screening a relatively large groups of drugs, whose results could lead to the identification of more personalized and effective treatment for recurrent glioblastoma.
Collapse
Affiliation(s)
- Sakthi Lenin
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Elise Ponthier
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Kaitlin G. Scheer
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Erica C. F. Yeo
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Melinda N. Tea
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Lisa M. Ebert
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Mariana Oksdath Mansilla
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Santosh Poonnoose
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia; (S.P.); (R.J.O.)
- Department of Neurosurgery, Flinders Medical Centre, Adelaide, SA 5042, Australia
| | - Ulrich Baumgartner
- Cell and Molecular Biology Department, Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (U.B.); (B.W.D.)
- Faculty of Health, Queensland University of Technology, Brisbane, QLD 4006, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bryan W. Day
- Cell and Molecular Biology Department, Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (U.B.); (B.W.D.)
- Faculty of Health, Queensland University of Technology, Brisbane, QLD 4006, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca J. Ormsby
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia; (S.P.); (R.J.O.)
| | - Stuart M. Pitson
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Guillermo A. Gomez
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| |
Collapse
|
86
|
Thomas TM, Miyaguchi K, Edwards LA, Wang H, Wollebo H, Aiguo L, Murali R, Wang Y, Braas D, Michael JS, Andres AM, Zhang M, Khalili K, Gottlieb RA, Perez JM, Yu JS. Elevated Asparagine Biosynthesis Drives Brain Tumor Stem Cell Metabolic Plasticity and Resistance to Oxidative Stress. Mol Cancer Res 2021; 19:1375-1388. [PMID: 33863814 DOI: 10.1158/1541-7786.mcr-20-0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/26/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
Asparagine synthetase (ASNS) is a gene on the long arm of chromosome 7 that is copy-number amplified in the majority of glioblastomas. ASNS copy-number amplification is associated with a significantly decreased survival. Using patient-derived glioma stem cells (GSC), we showed that significant metabolic alterations occur in gliomas when perturbing the expression of ASNS, which is not merely restricted to amino acid homeostasis. ASNS-high GSCs maintained a slower basal metabolic profile yet readily shifted to a greatly increased capacity for glycolysis and oxidative phosphorylation when needed. This led ASNS-high cells to a greater ability to proliferate and spread into brain tissue. Finally, we demonstrate that these changes confer resistance to cellular stress, notably oxidative stress, through adaptive redox homeostasis that led to radiotherapy resistance. Furthermore, ASNS overexpression led to modifications of the one-carbon metabolism to promote a more antioxidant tumor environment revealing a metabolic vulnerability that may be therapeutically exploited. IMPLICATIONS: This study reveals a new role for ASNS in metabolic control and redox homeostasis in glioma stem cells and proposes a new treatment strategy that attempts to exploit one vulnerable metabolic node within the larger multilayered tumor network.
Collapse
Affiliation(s)
- Tom M Thomas
- Department of Neurosurgery, Maxine-Dunitz Neurosurgical Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Ken Miyaguchi
- Department of Neurosurgery, Maxine-Dunitz Neurosurgical Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Lincoln A Edwards
- Department of Neurosurgery, Maxine-Dunitz Neurosurgical Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Hongqiang Wang
- Department of Neurosurgery, Maxine-Dunitz Neurosurgical Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Hassen Wollebo
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Li Aiguo
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Ramachandran Murali
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, California
| | - Yizhou Wang
- Genomics Core, Cedars Sinai Medical Center, Los Angeles, California
| | - Daniel Braas
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Justin S Michael
- Department of Neurosurgery, Maxine-Dunitz Neurosurgical Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Allen M Andres
- Mitochondria and Metabolism Core, Cedars Sinai Medical Center, Los Angeles, California
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington
| | - Kamel Khalili
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Roberta A Gottlieb
- Mitochondria and Metabolism Core, Cedars Sinai Medical Center, Los Angeles, California
| | - J Manuel Perez
- Department of Neurosurgery, and Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - John S Yu
- Department of Neurosurgery, Maxine-Dunitz Neurosurgical Institute, Cedars Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
87
|
Papachristou F, Anninou N, Koukoulis G, Paraskakis S, Sertaridou E, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha A. Differential effects of cisplatin combined with the flavonoid apigenin on HepG2, Hep3B, and Huh7 liver cancer cell lines. Mutat Res 2021; 866:503352. [PMID: 33985696 DOI: 10.1016/j.mrgentox.2021.503352] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
The potential of apigenin (APG) to enhance cisplatin's (CDDP) chemotherapeutic efficacy was investigated in HepG2, Hep3B, and Huh7 liver cancer cell lines. The presence of 20 μM APG sensitized all cell lines to CDDP treatment (degree of sensitization based on the MTT assay: HepG2>Huh7>Hep3B). As reflected by sister chromatid exchange levels, the degree of genetic instability as well as DNA repair by homologous recombination differed among cell lines. CDDP and 20 μM APG cotreatment exhibited a synergistic genotoxic effect on Hep3B cells and a less than additive effect on HepG2 and Huh7 cells. Cell cycle delays were noticed during the first mitotic division in Hep3B and Huh7 cells and the second mitotic division in HepG2 cells. CDDP and CDDP + APG treatments reduced the clonogenic capacity of all cell lines; however, there was a discordance in drug sensitivity compared with the MMT assay. Furthermore, a senescence-like phenotype was induced, especially in Hep3B and Huh7 cells. Unlike CDDP monotherapy, the combined treatment exhibited a significant anti-invasive and anti-migratory action in all cancer cell lines. The fact that the three liver cancer cell lines responded differently, yet positively, to CDDP + APG cotreatment could be attributed to variations they present in gene expression. Complex mechanisms seem to influence cellular responses and cell fate.
Collapse
Affiliation(s)
- Fotini Papachristou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece; Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece.
| | - Nikolia Anninou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Georgios Koukoulis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Stefanos Paraskakis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Eleni Sertaridou
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Christos Tsalikidis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Michael Pitiakoudis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Constantinos Simopoulos
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece; Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece; Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| |
Collapse
|
88
|
Aramini B, Masciale V, Grisendi G, Banchelli F, D'Amico R, Maiorana A, Morandi U, Dominici M, Haider KH. Cancer stem cells and macrophages: molecular connections and future perspectives against cancer. Oncotarget 2021; 12:230-250. [PMID: 33613850 PMCID: PMC7869576 DOI: 10.18632/oncotarget.27870] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) have been considered the key drivers of cancer initiation and progression due to their unlimited self-renewal capacity and their ability to induce tumor formation. Macrophages, particularly tumor-associated macrophages (TAMs), establish a tumor microenvironment to protect and induce CSCs development and dissemination. Many studies in the past decade have been performed to understand the molecular mediators of CSCs and TAMs, and several studies have elucidated the complex crosstalk that occurs between these two cell types. The aim of this review is to define the complex crosstalk between these two cell types and to highlight potential future anti-cancer strategies.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Masciale
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Banchelli
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto D'Amico
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
89
|
FOLFOX Therapy Induces Feedback Upregulation of CD44v6 through YB-1 to Maintain Stemness in Colon Initiating Cells. Int J Mol Sci 2021; 22:ijms22020753. [PMID: 33451103 PMCID: PMC7828641 DOI: 10.3390/ijms22020753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer initiating cells (CICs) drive tumor formation and drug-resistance, but how they develop drug-resistance characteristics is not well understood. In this study, we demonstrate that chemotherapeutic agent FOLFOX, commonly used for drug-resistant/metastatic colorectal cancer (CRC) treatment, induces overexpression of CD44v6, MDR1, and oncogenic transcription/translation factor Y-box-binding protein-1 (YB-1). Our study revealed that CD44v6, a receptor for hyaluronan, increased the YB-1 expression through PGE2/EP1-mTOR pathway. Deleting CD44v6, and YB-1 by the CRISPR/Cas9 system attenuates the in vitro and in vivo tumor growth of CICs from FOLFOX resistant cells. The results of DNA:CD44v6 immunoprecipitated complexes by ChIP (chromatin-immunoprecipitation) assay showed that CD44v6 maintained the stemness traits by promoting several antiapoptotic and stemness genes, including cyclin-D1,BCL2,FZD1,GINS-1, and MMP9. Further, computer-based analysis of the clones obtained from the DNA:CD44v6 complex revealed the presence of various consensus binding sites for core stemness-associated transcription factors “CTOS” (c-Myc, TWIST1, OCT4, and SOX2). Simultaneous expressions of CD44v6 and CTOS in CD44v6 knockout CICs reverted differentiated CD44v6-knockout CICs into CICs. Finally, this study for the first time describes a positive feedback loop that couples YB-1 induction and CD44 alternative splicing to sustain the MDR1 and CD44v6 expressions, and CD44v6 is required for the reversion of differentiated tumor cells into CICs.
Collapse
|
90
|
Ghatak D, Das Ghosh D, Roychoudhury S. Cancer Stemness: p53 at the Wheel. Front Oncol 2021; 10:604124. [PMID: 33505918 PMCID: PMC7830093 DOI: 10.3389/fonc.2020.604124] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor p53 maintains an equilibrium between self-renewal and differentiation to sustain a limited repertoire of stem cells for proper development and maintenance of tissue homeostasis. Inactivation of p53 disrupts this balance and promotes pluripotency and somatic cell reprogramming. A few reports in recent years have indicated that prevalent TP53 oncogenic gain-of-function (GOF) mutations further boosts the stemness properties of cancer cells. In this review, we discuss the role of wild type p53 in regulating pluripotency of normal stem cells and various mechanisms that control the balance between self-renewal and differentiation in embryonic and adult stem cells. We also highlight how inactivating and GOF mutations in p53 stimulate stemness in cancer cells. Further, we have explored the various mechanisms of mutant p53-driven cancer stemness, particularly emphasizing on the non-coding RNA mediated epigenetic regulation. We have also analyzed the association of cancer stemness with other crucial gain-of-function properties of mutant p53 such as epithelial to mesenchymal transition phenotypes and chemoresistance to understand how activation of one affects the other. Given the critical role of cancer stem-like cells in tumor maintenance, cancer progression, and therapy resistance of mutant p53 tumors, targeting them might improve therapeutic efficacy in human cancers with TP53 mutations.
Collapse
Affiliation(s)
- Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Damayanti Das Ghosh
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
91
|
The Harmonious Interplay of Amino Acid and Monocarboxylate Transporters Induces the Robustness of Cancer Cells. Metabolites 2021; 11:metabo11010027. [PMID: 33401672 PMCID: PMC7823946 DOI: 10.3390/metabo11010027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023] Open
Abstract
There is a growing body of evidence that metabolic reprogramming contributes to the acquisition and maintenance of robustness associated with malignancy. The fine regulation of expression levels of amino acid and monocarboxylate transporters enables cancer cells to exhibit the metabolic reprogramming that is responsible for therapeutic resistance. Amino acid transporters characterized by xCT (SLC7A11), ASCT2 (SLC1A5), and LAT1 (SLC7A5) function in the uptake and export of amino acids such as cystine and glutamine, thereby regulating glutathione synthesis, autophagy, and glutaminolysis. CD44 variant, a cancer stem-like cell marker, stabilizes the xCT antiporter at the cellular membrane, and tumor cells positive for xCT and/or ASCT2 are susceptible to sulfasalazine, a system Xc(-) inhibitor. Inhibiting the interaction between LAT1 and CD98 heavy chain prevents activation of the mammalian target of rapamycin (mTOR) complex 1 by glutamine and leucine. mTOR signaling regulated by LAT1 is a sensor of dynamic alterations in the nutrient tumor microenvironment. LAT1 is overexpressed in various malignancies and positively correlated with poor clinical outcome. Metabolic reprogramming of glutamine occurs often in cancer cells and manifests as ASCT2-mediated glutamine addiction. Monocarboxylate transporters (MCTs) mediate metabolic symbiosis, by which lactate in cancer cells under hypoxia is exported through MCT4 and imported by MCT1 in less hypoxic regions, where it is used as an oxidative metabolite. Differential expression patterns of transporters cause functional intratumoral heterogeneity leading to the therapeutic resistance. Therefore, metabolic reprogramming based on these transporters may be a promising therapeutic target. This review highlights the pathological function and therapeutic targets of transporters including xCT, ASCT2, LAT1, and MCT.
Collapse
|
92
|
Kang YK, Min B. SETDB1 Overexpression Sets an Intertumoral Transcriptomic Divergence in Non-small Cell Lung Carcinoma. Front Genet 2020; 11:573515. [PMID: 33343623 PMCID: PMC7738479 DOI: 10.3389/fgene.2020.573515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
An increasing volume of evidence suggests that SETDB1 plays a role in the tumorigenesis of various cancers, classifying SETDB1 as an oncoprotein. However, owing to its numerous protein partners and their global-scale effects, the molecular mechanism underlying SETDB1-involved oncogenesis remains ambiguous. In this study, using public transcriptome data of lung adenocarcinoma (ADC) and squamous-cell carcinoma (SCC), we compared tumors with high-level SETDB1 (SH) and those with low-level SETDB1 (comparable with normal samples; SL). The results of principal component analysis revealed a transcriptomic distinction and divergence between the SH and SL samples in both ADCs and SCCs. The results of gene set enrichment analysis indicated that genes involved in the “epithelial–mesenchymal transition,” “innate immune response,” and “autoimmunity” collections were significantly depleted in SH tumors, whereas those involved in “RNA interference” collections were enriched. Chromatin-modifying genes were highly expressed in SH tumors, and the variance in their expression was incomparably high in SCC-SH, which suggested greater heterogeneity within SCC tumors. DNA methyltransferase genes were also overrepresented in SH samples, and most differentially methylated CpGs (SH/SL) were undermethylated in a highly biased manner in ADCs. We identified interesting molecular signatures associated with the possible roles of SETDB1 in lung cancer. We expect these SETDB1-associated molecular signatures to facilitate the development of biologically relevant targeted therapies for particular types of lung cancer.
Collapse
Affiliation(s)
- Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| | - Byungkuk Min
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology, Daejeon, South Korea
| |
Collapse
|
93
|
Osman A, Oze M, Afify SM, Hassan G, EL-Ghlban S, Nawara HM, Fu X, Zahra MH, Seno A, Winer I, Salomon DS, Seno M. Tumor-associated macrophages derived from cancer stem cells. Acta Histochem 2020; 122:151628. [PMID: 32992123 DOI: 10.1016/j.acthis.2020.151628] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/03/2023]
Abstract
Macrophages are the most abundant immune cells in the microenvironment of solid tumors. The present study displayed histological and immunohistochemical analyses of a malignant tumor model developed from cancer stem cells (CSCs) converted from human induced pluripotent stem cells (hiPSCs) in a cancer microenvironment prepared from the conditioned medium (CM) of a pancreatic cancer cell line. We focused on the localization and the origin of tumor-associated macrophages (TAMs), To the best of our knowledge this may be the first study to suggest the potential differentiation of CSCs to TAMs. hiPSCs were converted into CSCs in the presence of CM from PK8 cells. CSCs were then transplanted in vivo and formed primary tumors. Primary cultures for these tumors were serially transplanted again to obtain secondary tumors. Secondary tumors exhibited histopathological features of malignancy. Cells derived from tumors maintained the expression of endogenous stemness markers and pancreatic CSCs markers. Simultaneously, high immunoreactivity to anti-mouse CD68, anti-human CD68, CD206 and CD11b antibodies were detected revealing that the tumor tissue derived from CSCs was enriched for macrophages which can originate from both human and mouse cells. The model of CSCs highlighted the possibility of CSCs to differentiate into TAMs.
Collapse
|
94
|
Abstract
Muscle-invasive bladder cancer (MIBC), a highly heterogeneous disease, shows genomic instability and a high mutation rate. Clinical outcomes are variable and responses to conventional chemotherapy differ among patients (due to inter-patient tumor heterogeneity and inter-tumor heterogeneity) and even within each individual tumor (intra-tumor heterogeneity). Emerging evidence indicates that tumor heterogeneity may play an important role in cancer progression, resistance to therapy, and metastasis. Comprehensive molecular subtyping classifies MIBC into distinct categories that have potential to guide prognosis, patient stratification, and treatment. Genomic characterization of time-series analyses at the single cell level, and of cell-free circulating tumor DNA or circulating tumor cells, are emerging technologies that enable dissection of the complex clonal architecture of MIBC. This review provides insight into the clinical significance of the molecular mechanisms underlying heterogeneity, focusing on inter- and intra-tumor heterogeneity, with special emphasis on molecular classification and methods used to analyze the complex patterns involved.
Collapse
Affiliation(s)
- Ho Won Kang
- Department of Urology, School of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea.,Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Wun-Jae Kim
- Department of Urology, School of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea.,Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Woonyoung Choi
- Johns Hopkins Greenberg Bladder Cancer Institute and Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Seok Joong Yun
- Department of Urology, School of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea.,Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
95
|
Warrier S, Patil M, Bhansali S, Varier L, Sethi G. Designing precision medicine panels for drug refractory cancers targeting cancer stemness traits. Biochim Biophys Acta Rev Cancer 2020; 1875:188475. [PMID: 33188876 DOI: 10.1016/j.bbcan.2020.188475] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Cancer is one amongst the major causes of death today and cancer biology is one of the most well researched fields in medicine. The driving force behind cancer is considered to be a minor subpopulation of cells, the cancer stem cells (CSCs). Similar to other stem cells, these cells are self-renewing and proliferating but CSCs are also difficult to target by chemo- or radio-therapies. Cancer stem cells are known to be present in most of the cancer subgroups such as carcinoma, sarcoma, myeloma, leukemia, lymphomas and mixed cancer types. There is a wide gamut of factors attributed to the stemness of cancers, ranging from dysregulated signaling pathways, and activation of enzymes aiding immune evasion, to conducive tumor microenvironment, to name a few. The defining outcome of the increased presence of CSCs is tumor metastasis and relapse. Predictive medicine approach based on the plethora of CSC markers would be a move towards precision medicine to specifically identify CSC-rich tumors. In this review, we discuss the cancer subtypes and the role of different CSC specific markers in these varying subtypes. We also categorize the CSC markers based their defining trait contributing to stemness. This review thus provides a comprehensive approach to catalogue a predictive set of markers to identify the resistant and refractory cancer stem cell population within different tumor subtypes, so as to facilitate better prognosis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| | - Manasi Patil
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Sanyukta Bhansali
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117 600, Singapore
| |
Collapse
|
96
|
Wróbel T, Luty M, Catapano J, Karnas E, Szczygieł M, Piwowarczyk K, Ryszawy D, Drabik G, Zuba‐Surma E, Siedlar M, Madeja Z, Elas M, Czyż J. CD44 + cells determine fenofibrate-induced microevolution of drug-resistance in prostate cancer cell populations. Stem Cells 2020; 38:1544-1556. [PMID: 32985018 PMCID: PMC7756969 DOI: 10.1002/stem.3281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022]
Abstract
Combinations of metabolic blockers (incl. fenofibrate) with chemotherapeutic drugs interfere with the drug-resistance of prostate cancer cells. However, their effect on cancer stem cells-dependent microevolution of prostate cancer malignancy remains unaddressed. Here, we hypothesize that the combined docetaxel/fenofibrate treatment prompts the selective expansion of cancer stem cells that affects the microevolution of their progenies. Accordingly, we adapted a combined in vitro/in vivo approach to identify biological and therapeutic consequences of this process. Minute subpopulations of docetaxel-resistant CD133high and/or CD44high cancer stem cell-like (SCL) cells were found in prostate cancer DU145 and PC3 cell populations. When pretreated with docetaxel, they readily differentiated into docetaxel-resistant CD44negative "bulk" cells, thus accounting for the microevolution of drug-resistant cell lineages. Combined docetaxel/fenofibrate treatment induced the generation of poly(morpho)nuclear giant cells and drug-resistant CD44high SCL cells. However, the CD44negative offspring of docetaxel- and docetaxel/fenofibrate-treated SCLs remained relatively sensitive to the combined treatment, while retaining enhanced resistance to docetaxel. Long-term propagation of drug-resistant SCL-derived lineages in the absence of docetaxel/fenofibrate resulted in their reverse microevolution toward the drug-sensitivity and invasive phenotype. Consequently, prostate tumors were able to recover from the combined docetaxel/fenofibrate stress after the initial arrest of their expansion in vivo. In conclusion, we have confirmed the potential of fenofibrate for the metronomic treatment of drug-resistant prostate tumors. However, docetaxel/fenofibrate-induced selective expansion of hyper-resistant CD44high SCL prostate cells and their "bulk" progenies prompts the microevolution of prostate tumor drug-resistance. This process can limit the implementation of metabolic chemotherapy in prostate cancer treatment.
Collapse
Affiliation(s)
- Tomasz Wróbel
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Marcin Luty
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Jessica Catapano
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Małgorzata Szczygieł
- Department of Biophysics, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Katarzyna Piwowarczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Damian Ryszawy
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Grażyna Drabik
- Department of TransplantologyInstitute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical CollegeKrakówPoland
| | - Ewa Zuba‐Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Maciej Siedlar
- Department of Clinical ImmunologyInstitute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical CollegeKrakówPoland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Martyna Elas
- Department of Biophysics, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
97
|
Espinosa-Sánchez A, Suárez-Martínez E, Sánchez-Díaz L, Carnero A. Therapeutic Targeting of Signaling Pathways Related to Cancer Stemness. Front Oncol 2020; 10:1533. [PMID: 32984007 PMCID: PMC7479251 DOI: 10.3389/fonc.2020.01533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
The theory of cancer stem cells (CSCs) proposes that the different cells within a tumor, as well as metastasis deriving from it, are originated from a single subpopulation of cells with self-renewal and differentiation capacities. These cancer stem cells are supposed to be critical for tumor expansion and metastasis, tumor relapse and resistance to conventional therapies, such as chemo- and radiotherapy. The acquisition of these abilities has been attributed to the activation of alternative pathways, for instance, WNT, NOTCH, SHH, PI3K, Hippo, or NF-κB pathways, that regulate detoxification mechanisms; increase the metabolic rate; induce resistance to apoptotic, autophagic, and senescence pathways; promote the overexpression of drug transporter proteins; and activate specific stem cell transcription factors. The elimination of CSCs is an important goal in cancer therapeutic approaches because it could decrease relapses and metastatic dissemination, which are main causes of mortality in oncology patients. In this work, we discuss the role of these signaling pathways in CSCs along with their therapeutic potential.
Collapse
Affiliation(s)
- Asunción Espinosa-Sánchez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Elisa Suárez-Martínez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Laura Sánchez-Díaz
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| |
Collapse
|
98
|
Loss of oral mucosal stem cell markers in oral submucous fibrosis and their reactivation in malignant transformation. Int J Oral Sci 2020; 12:23. [PMID: 32826859 PMCID: PMC7442837 DOI: 10.1038/s41368-020-00090-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
The integrity of the basal stem cell layer is critical for epithelial homoeostasis. In this paper, we review the expression of oral mucosal stem cell markers (OM-SCMs) in oral submucous fibrosis (OSF), oral potentially malignant disorders (OPMDs) and oral squamous cell carcinoma (OSCC) to understand the role of basal cells in potentiating cancer stem cell behaviour in OSF. While the loss of basal cell clonogenicity triggers epithelial atrophy in OSF, the transition of the epithelium from atrophic to hyperplastic and eventually neoplastic involves the reactivation of basal stemness. The vacillating expression patterns of OM-SCMs confirm the role of keratins 5, 14, 19, CD44, β1-integrin, p63, sex-determining region Y box (SOX2), octamer-binding transcription factor 4 (Oct-4), c-MYC, B-cell-specific Moloney murine leukaemia virus integration site 1 (Bmi-1) and aldehyde dehydrogenase 1 (ALDH1) in OSF, OPMDs and OSCC. The downregulation of OM-SCMs in the atrophic epithelium of OSF and their upregulation during malignant transformation are illustrated with relevant literature in this review.
Collapse
|
99
|
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol 2020; 11:1280. [PMID: 32849491 PMCID: PMC7426526 DOI: 10.3389/fimmu.2020.01280] [Citation(s) in RCA: 475] [Impact Index Per Article: 118.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
The use of biomarkers in diagnosis, therapy and prognosis has gained increasing interest over the last decades. In particular, the analysis of biomarkers in cancer patients within the pre- and post-therapeutic period is required to identify several types of cells, which carry a risk for a disease progression and subsequent post-therapeutic relapse. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and can cause relapses. At the time point of tumor initiation, CSCs originate from either differentiated cells or adult tissue resident stem cells. Due to their importance, several biomarkers that characterize CSCs have been identified and correlated to diagnosis, therapy and prognosis. However, CSCs have been shown to display a high plasticity, which changes their phenotypic and functional appearance. Such changes are induced by chemo- and radiotherapeutics as well as senescent tumor cells, which cause alterations in the tumor microenvironment. Induction of senescence causes tumor shrinkage by modulating an anti-tumorigenic environment in which tumor cells undergo growth arrest and immune cells are attracted. Besides these positive effects after therapy, senescence can also have negative effects displayed post-therapeutically. These unfavorable effects can directly promote cancer stemness by increasing CSC plasticity phenotypes, by activating stemness pathways in non-CSCs, as well as by promoting senescence escape and subsequent activation of stemness pathways. At the end, all these effects can lead to tumor relapse and metastasis. This review provides an overview of the most frequently used CSC markers and their implementation as biomarkers by focussing on deadliest solid (lung, stomach, liver, breast and colorectal cancers) and hematological (acute myeloid leukemia, chronic myeloid leukemia) cancers. Furthermore, it gives examples on how the CSC markers might be influenced by therapeutics, such as chemo- and radiotherapy, and the tumor microenvironment. It points out, that it is crucial to identify and monitor residual CSCs, senescent tumor cells, and the pro-tumorigenic senescence-associated secretory phenotype in a therapy follow-up using specific biomarkers. As a future perspective, a targeted immune-mediated strategy using chimeric antigen receptor based approaches for the removal of remaining chemotherapy-resistant cells as well as CSCs in a personalized therapeutic approach are discussed.
Collapse
Affiliation(s)
- Lia Walcher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ann-Kathrin Kistenmacher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Reni Kitte
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sarah Dluczek
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexander Strauß
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - André-René Blaudszun
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephan Fricke
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Uta Kossatz-Boehlert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
100
|
Cell polarity and oncogenesis: common mutations contribute to altered cellular polarity and promote malignancy. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|